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HEIGHT ESTIMATES FOR KILLING GRAPHS

DEBORA IMPERA, JORGE H. DE LIRA, STEFANO PIGOLA, AND ALBERTO G. SETTI

Abstract. The paper aims at proving global height estimates for Killing graphs defined
over a complete manifold with nonempty boundary. To this end, we first point out how
the geometric analysis on a Killing graph is naturally related to a weighted manifold
structure, where the weight is defined in terms of the length of the Killing vector field.
According to this viewpoint, we introduce some potential theory on weighted manifolds
with boundary and we prove a weighted volume estimate for intrinsic balls on the Killing
graph. Finally, using these tools, we provide the desired estimate for the weighted height
function in the assumption that the Killing graph has constant weighted mean curvature
and the weighted geometry of the ambient space is suitably controlled.

Introduction and main results

Let (M, 〈·, ·〉M ) be a complete, (n+ 1)-dimensional Riemannian manifold endowed with
a complete Killing vector field Y whose orthogonal distribution has constant rank n and
it is integrable. Let (P, 〈·, ·〉P ) be an integral leaf of that distribution equipped with its
induced complete Riemannian metric 〈·, ·〉P . The flow ϑ : P × R → M generated by Y is
an isometry between M and the warped product P ×e−ψ R with metric

〈·, ·〉M = 〈·, ·〉P + e−2ψds⊗ ds

where s is the flow parameter and ψ = − log |Y |.
Let Ω ⊂ P be a possibly unbounded domain with regular boundary ∂Ω 6= ∅. The Killing

graph of a smooth function u : Ω̄ → R is the hypersurface Σ ⊂ M parametrized by the
map

X(x) = ϑ(x, u(x)), x ∈ Ω̄.

Obviously, if Y is a parallel vector field, then M is isometric with the Riemannian product
P × R and the notion of a Killing graph reduces to that of a usual vertical graph.

The above terminology, together with some existence results, was first introduced by M.
Dajczer, P.A. Hinojosa, and J.H. de Lira in [6]. Since then, Killing graphs have become
the subject of a systematic investigation both in order to understand their geometry and
as a tool to study different problems such as the existence of solutions of the asymptotic
Plateau problem in certain symmetric spaces; [4, 20].

The aim of this paper is to obtain quantitative height estimates for a smooth Killing
graph

Σ = GraphΩ̄ (u) ↪→M = P ×e−ψ R
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parametrized over (the closure of) a possibly unbounded domain Ω ⊂ P and whose smooth
boundary ∂Σ 6= ∅ is contained in the totally geodesic slice P × {0} of M .

When ψ(x) ≡ const and the ambient manifold is the Riemannian product P × R, it is
well understood that quantitative a-priori estimates can be deduced by assuming that the
mean curvature H of the graph is constant (CMC graphs for short). For bounded domains
into the Euclidean plane P = R2 this was first observed in seminal papers by E. Heinze,
[14], and J. Serrin, [23]. More precisely, assume that H > 0 with respect to the downward
pointing Gauss map N. Then, Σ is confined into the slab R2× [0, 1/H] regardless of the size
of the domain Ω. This type of estimates has been recently extended to unbounded domains
Ω ⊂ R2 by A. Ros and H. Rosenberg, [21]. Their technique, which is based on smooth
convergence of CMC surfaces, requires strongly that the base leaf P = R2 is homogeneous
and cannot be trivially adapted to general manifolds. In the case of a generic base manifold
P , and maintaining the assumption that the CMC vertical graph Σ is parametrized over a
bounded domain, the corresponding height estimates have been obtained by D. Hoffman,
J.H. de Lira and H. Rosenberg, [15], J.A. Aledo, J.M. Espinar and J.A. Galvez, [1], L.
Aĺıas and M. Dajczer, [2] etc. The geometry of P enters the game in the form of curvature
conditions, namely, the Ricci curvature of P cannot be too much negative when compared
with H. In particular, for non-negatively Ricci curved bases the height estimates hold with
respect to any choice of H > 0. In the very recent [16], the boundedness assumption on
the domain Ω has been replaced by a quadratic volume growth condition, thus obtaining
a complete extension of the Ros-Rosenberg result to any complete manifold P with non-
negative sectional curvature and dimensions n ≤ 4. The restriction on the dimension is
due to the fact that, up to now, it is not known whether CMC graphs over non-negatively
curved manifolds P are necessarily contained in a vertical slab. Granted this, the desired
estimates can be obtained.

In a slightly different perspective, qualitative bounds of the height of CMC vertical
graphs on bounded domains have been obtained by J. Spruck, [24]. It is worth to observe
that his technique, based on Serrin-type gradient estimates and Harnack inequalities, is
robust enough to give a-priori bounds even in the case where the mean curvature is non-
constant. Actually, it works even for Killing graphs up to using the work by M. Dajczer
and J.H. de Lira, [5]; see also [7]. However, in the Killing setting, the problem of obtaining
quantitative bounds both on bounded and on unbounded domains remained open.

Due to the structure of the ambient space, it is reasonable to expect that an a-priori
estimate for the height function of a CMC Killing graph is sensitive of the deformation
function ψ. In fact, since the length element of the fibre {x} ×R is weighted by the factor

e−ψ(x), a reasonable pointwise bound should be of the form

0 ≤ e−ψ(x)u(x) .
1

|H|
.

Actually, the same weight e−ψ(x) appears also in the expression of the volume element of Σ
thus suggesting the existence of an intriguing interplay between Killing graph and smooth
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metric measure spaces (also called weighted manifolds). Since this interplay represents the
leading idea of the entire paper we are going to take a closer look at how it arises.

In view of the fact that we are considering graphical hypersurfaces, weighted structures
should appear both at the level of the base manifold P , where Σ is parametrised, and at
the level of the ambient space M , where Σ is realised. In fact, these two weighted contexts
will interact in the formulation of the main result. To begin with, we note that the induced
metric on Σ = GraphΩ̄(u) is given by

(1) 〈·, ·〉Σ = 〈·, ·〉P + e−2ψdu⊗ du.

Thus, the corresponding Riemannian volume element dΣ has the expression

(2) dΣ = We−ψdP,

where W =
√
e2ψ + |∇Pu|2 and dP is the volume element of P . As alluded to above, the

special form of (2), when compared with the case of a product ambient space, suggests
to switch the viewpoint from that of the Riemannian manifold (P, 〈·, ·〉P ) to that of the
smooth metric measure space

Pψ := (P, 〈·, ·〉P , dPψ)

where we are using the standard notation

dPψ = e−ψdP.

In particular,

dΣ = WdPψ

and we are naturally led to investigate to what extent the geometry of Σ is influenced by
the geometry of the weighted space Pψ. As we shall see momentarily, the geometry of
Pψ will enter the game in the form of a growth condition on the weighted volume of its

geodesic balls BP
R(o):

volψ(BP
R(o)) =

∫
BPR (o)

dPψ.

In a different direction, we observe that the smooth metric measure space structure of
Pψ extends to the whole ambient space up to identifying ψ : P → R with the function
ψ̄ : P ×e−ψ R→ R given by

ψ̄(x, s) = ψ(x).

With a slight abuse of notation, we write

(3) Mψ := (M, 〈·, ·〉M , dψM) = (P ×e−ψ R, e−ψdM)

and we can consider the original Killing graph as an hypersurface

Σ = GraphΩ̄(u) ↪→Mψ.

Previous works on classical height estimates for CMC graphs show that the relevant ge-
ometry of the ambient space is subsumed to a condition on its Ricci tensor. Thus, if we
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think of realizing Σ inside Mψ we can expect that height estimates need a condition on its

Bakry-Émery Ricci tensor defined by

RicMψ = RicM + HessM (ψ).

We shall come back to this later on. Following [6], we now orient Σ using the upward
pointing unit normal

(4) N =
e2ψY − ϑ∗∇Pu√
e2ψ + |∇Pu|2

=
1

W

(
e2ψY − ϑ∗∇Pu

)
.

Note that N is upward pointing in the sense that

(5) 〈N, Y 〉M =
1

W
> 0.

Let H : Ω ⊆ P → R be the corresponding mean curvature function. The weighted n-volume
associated to (the restriction of) ψ (to Σ) is defined by

(6) Aψ[Σ] :=

∫
Σ

dΣψ.

We are not concerned with the convergence of the integral. Given a compactly supported
variational vector field Z along Σ the first variation formula reads

(7) δZAψ =

∫
Σ

(
divΣZ − 〈∇Mψ,Z〉M

)
dΣψ.

In particular, if Z = vN for some v ∈ C∞c (Σ) we have

(8) δZAψ =

∫
Σ

(
−nH − 〈∇Mψ,N〉M

)
v dΣψ = −n

∫
Σ
Hψv dΣψ,

where, using the definition proposed by M. Gromov, [12],

(9) Hψ = H +
1

n
〈∇Mψ,N〉M

is the ψ-weighted mean curvature of Σ.

The way we have followed to introduce the weighted structure on the ambient space
M may look the most natural: it is trivially compatible with the weighted structure of
the base space Pψ and with the weighted height function of Σ. Moreover, the weight ψ
appears in the volume element of Σ. However, it is worth to note that this is not the only
“natural” choice. This becomes clear as soon as we express the mean curvature (and its
modified version) of Σ = GraphΩ(u) in the classical form of a capillarity equation. Indeed,
it is shown in [5, 6] that

(10) divP
(∇Pu
W

)
= nH−ψ.

which, in view of (9), is completely equivalent to

(11) divPψ

(
∇Pu
W

)
= nH.
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Here, we are using the standard notation for the weighted divergence in Pψ:

divPψX = eψdiv(e−ψX) = divPX − 〈X,∇ψ〉P .

Thus, with respect to the capillarity type equation (10), the natural and relevant weighted
structure on M arises from the weight −ψ and we might be led to consider Σ as an
hypersurface in M−ψ. On the other hand, the original choice ψ fits very well into the
capillarity type equation (11). Both these weighted structures are relevant and a choice
has to be made. To give an idea of this kind of duality between ψ and −ψ structures, we
extend, in the setting of Killing graphs, the classical relation between the mean curvature
of the graph and the isoperimetric properties of the parametrization domain. This is the
content of the following weighted versions of a result by E. Heinz, [13], S.S. Chern, [3],
H. Flanders, [9], and I. Salavessa [22]. Define the “standard” and the“weighted” Cheeger
constants of a domain Ω by, respectively,

b(Ω) = inf
D

vol(∂D)

vol(D)
, bψ(Ω) = inf

D

volψ(∂D)

volψ(D)
,

where D is a bounded subdomain with compact closure in Ω and with regular boundary
∂D 6= ∅.

Proposition. Let Σ = GraphΩ(u) ↪→ P ×e−ψ R be an n-dimensional Killing graph defined
over the domain Ω ⊂ P . Then, the mean curvature H of Σ, and its weighted version H−ψ,
satisfy the following inequalities:

(12) n inf
Ω
|H−ψ| ≤ b(Ω), n inf

Ω
|H| ≤ bψ(Ω).

In particular:

(i) If Ω ⊂ Pψ has zero weighted Cheeger constant, and Σ has constant mean curvature
H, then Σ is a minimal graph.

(ii) If Ω ⊂ P has zero Cheeger constant, and Σ ↪→ M−ψ has constant weighted mean
curvature H−ψ, then Σ is a (−ψ)-minimal graph.

Indeed, if D b P is a relatively compact domain in P with boundary ∂D = Γ and
outward pointing unit normal ν0 ∈ TP , integrating (11) and using the weighted version of
the divergence theorem ∫

D
divψZ dPψ =

∫
Γ
〈Z, ν0〉P dΓψ

we obtain ∫
D
nHdPψ =

∫
Γ

〈
∇Pu
W

, ν0

〉
P

dΓψ

If H has constant sign, multiplying by −1 if necessary, we deduce that∫
D
n|H|dPψ ≤

∫
Γ

∣∣∣∣〈∇PuW
, ν0

〉∣∣∣∣dΓψ
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and recalling that |∇Pu|/W ≤ 1, we conclude that

n inf
D
|H|

∫
D

dPψ ≤
∫

Γ
dΓψ.

that is

(13) n inf
D
|H|volψ(D) ≤ volψ(∂D).

Note that (13) certainly holds even if H has not constant sign, for then inf |H| = 0. In a
completely similar way, starting from equation (10), we obtain

n inf
D
|Hψ|vol(D) ≤ vol(∂D).

The desired conclusions now follow trivially.

This brief discussion should help to put in the appropriate perspective the following
theorem which represents the main result of the paper.

Theorem A. Let (M, 〈·, ·〉M ) be a complete, (n + 1)-dimensional Riemannian manifold
endowed with a complete Killing vector field Y whose orthogonal distribution has constant
rank n and it is integrable. Let (P, 〈·, ·〉P ) be an integral leaf of that distribution and let
Ω ⊂ P be a smooth domain. Set ψ = − log(|Y |) and assume that:

(a) −∞ < infΩ ψ ≤ supΩ ψ < +∞;
(b) volψ

(
BP
R ∩ Ω

)
= O(R2), as R→ +∞;

(c) RicMψ ≥ 0 in a neighborhood of Ω× R ⊂Mψ.

Let Σ = GraphΩ̄(u) be a Killing graph over Ω̄ with weighted mean curvature Hψ ≡ const < 0
with respect to the upward pointing Gauss map N. Assume that:

(d) The boundary ∂Σ of Σ lies in the slice P × {0};
(e) The weighted height function of Σ is bounded: supΣ |ue−ψ| < +∞.

Then

(14) 0 ≤ u(x)e−ψ(x) ≤ C

|Hψ|
,

where C := e2(supΩ ψ−infΩ ψ) ≥ 1.

It is worth pointing out that the constant C in (14) depends only on the variation of ψ .
The strategy of proof follows the main steps in [16]. For instance, in order to to get the

upper estimate, we will use potential theoretic properties of the weighted manifold with
boundary Σψ = (Σ, 〈·, ·〉Σ, dΣψ). The idea is to show that, thanks to the capillarity equation
(10), the moderate volume growth assumption (b) on Ω is inherited by Σψ. Therefore, the
weighted Laplacian, defined on a smooth function w : Σ→ R by

∆Σ
ψw = divΣ

ψ(∇Σw) = ∆Σw − 〈∇Σψ,∇Σw〉Σ,
satisfies a global maximum principle similar to that valid on a compact set. And it is
precisely in the compact setting that, throughout the construction of explicit examples, we
shall show that our height estimate is essentially sharp. Moreover, in the spirit of known
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results in the product case (see above), since we do not impose any restriction on the size of
the mean curvature, the ambient space Mψ is assumed to have non-negative weighted (i.e.

Bakry-Émery) Ricci curvature. Note however, see Remark 10, that the result extends to
the case where RicMψ is bounded below by a negative constant, provided a suitable bound

on H2 is imposed.
On the other hand, to show that u ≥ 0 one uses the parabolicity of ∆Σ

3ψ. This provides
further instance of the interplay between different weight structures on M.

It is worth to point out that, as it often happens in submanifolds theory, the case n = 2
is very special. In fact, for two dimensional Killing graphs, one can show that the curvature
assumption (c) implies the boundedness condition (e). Therefore, the previous result takes
the following striking form.

Corollary B. Let (M, 〈·, ·〉M ) be a complete, 3-dimensional Riemannian manifold endowed
with a complete Killing vector field Y whose orthogonal distribution has constant rank 2
and it is integrable. Let (P, 〈·, ·〉P ) be an integral leaf of that distribution and let Ω ⊂ P be
a smooth domain. Set ψ = − log(|Y |) and assume that:

(a) −∞ < infΩ ψ ≤ supΩ ψ < +∞;
(b) volψ

(
BP
R ∩ Ω

)
= O(R2), as R→ +∞;

(c) RicMψ ≥ 0 in a neighborhood of Ω× R.

Let Σ = GraphΩ(u) a be a 2-dimensional Killing graph over Ω with constant weighted
mean curvature Hψ ≡ const < 0 with respect to the upward pointing Gauss map and with
boundary ∂Σ ⊂ P × {0}.
Then

0 ≤ ue−ψ(x) ≤ C

|Hψ|
,

where C := e2(supΩ ψ−infΩ ψ) ≥ 1.

The organization of the paper is as follows:

In Section 1 we prove some potential theoretic properties of weighted manifolds with bound-
ary, related to global maximum principles for the weighted Laplacian. These results, using
new direct arguments, extend to the weighted context previous investigation in [16].

Section 2 contains the proof of the quantitative height estimates for Killing graphs over
possibly unbounded domains. To this end, we shall introduce: (i) some basic formulas
for the weighted Laplacian of the height and the angle functions of the Killing graph and
(ii) weighted volume growth estimate that will enable us to apply the global maximum
principles obtained in Section 1.

In Section 3 we construct concrete examples of Killing graphs with constant weighted mean
curvature which, in particular, show that the constant C in our estimate has the correct
functional dependence on the variation supψ − inf ψ of ψ.
Acknowledgments. It is our pleasure to thank the anonymous referee for a very care-
ful reading of the manuscript and for important suggestions that greatly improved the
exposition.
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1. Some potential theory on weighted manifolds

The aim of this section is to study potential theoretic properties, and, more precisely,
parabolicity with respect to the weighted Laplacian, of a weighted Riemannian manifold
with possibly empty boundary. This relies on the notion of weak sub (super) solution
subject to Neumann boundary conditions that we are going to introduce. In order to avoid
confusion, and since we are dealing with general results valid on any weighted manifold,
throughout this Section we shall call f : M → R the weight function. The symbol ψ is
thus reserved to the peculiar weight related to Killing graphs.

LetMf = (M, 〈·, ·〉, e−fdM) be a smooth, n-dimensional, weighted manifold with smooth
boundary ∂M 6= ∅ oriented by the exterior unit normal ν. The interior of M is denoted
by intM = M \ ∂M . By a domain in M we mean a non-necessarily connected open set
D ⊆M . We say that the domain D is smooth if its topological boundary ∂D is a smooth
hypersurface Γ with boundary ∂Γ = ∂D ∩ ∂M . Adopting the notation in [16], for any
domain D ⊆M we define

∂0D = ∂D ∩ intM,

∂1D = ∂M ∩D

We will refer to ∂0D and to ∂1D respectively as the Dirichlet boundary and the Neumann
boundary of the domain D. Finally, the interior part of D, in the sense of manifolds with
boundary, is defined as

intD = D ∩ intM,

so that, in particular,

D = intD ∪ ∂1D.

We recall that the Sobolev space W 1,2(intDf ) is defined as the Banach space of functions
u ∈ L2(intDf ) whose distributional gradient satisfies ∇u ∈ L2(intDf ). Here we are using
the notation

L2(intDf ) := {w :

∫
D
w2dMf < +∞}.

By the Meyers-Serrin density result, this space coincides with the closure of C∞(intD)
with respect to the Sobolev norm ‖u‖W 1,2(Mf ) = ‖u‖L2(Mf ) +‖∇u‖L2(Mf ). Moreover, when

D = M and M is complete, W 1,2(intMf ) can be also realised as the W 1,2(Mf )-closure of
C∞c (M).

Finally, the space W 1,2
loc (intDf ) is defined by the condition that u · χ ∈ W 1,2(intDf ) for

every cut-off function χ ∈ C∞c (intD). We extend this notion by including the Neumann
boundary of the domain as follows

W 1,2
loc (Df ) = {u ∈W 1,2(intΩf ), ∀domain Ω b D = intD ∪ ∂1D}.

Now, suppose D ⊆M is any domain. We put the following Definition. Recall from the
Introduction that the f -Laplacian of Mf is the second order differential operator defined



HEIGHT ESTIMATES FOR KILLING GRAPHS 9

by

∆fw = efdiv(e−f∇w) = ∆w − 〈∇f,∇w〉,
where ∆ denotes the Laplace-Beltrami operator of (M, 〈·, ·〉). Clearly, as one can verify
from the weighted divergence theorem, −∆f is a non-negative, symmetric operator on
L2(Mf ).

Definition 1. By a weak Neumann sub-solution u ∈W 1,2
loc (Df ) of the f -Laplace equation,

i.e., a weak solution of the problem

(15)

{
∆fu ≥ 0 on intD
∂u

∂ν
≤ 0 on ∂1D,

we mean that the following inequality

(16) −
∫
D
〈∇u,∇ϕ〉dMf ≥ 0

holds for every 0 ≤ ϕ ∈ C∞c (D). Similarly, by taking D = M , one defines the notion of

weak Neumann subsolution of the f - Laplace equation on Mf as a function u ∈W 1,2
loc (Mf )

which satisfies (16) for every 0 ≤ ϕ ∈ C∞c (M). As usual, the notion of weak supersolution
can be obtained by reversing the inequality and, finally, we speak of a weak solution when
the equality holds in (16) without any sign condition on ϕ.

Remark 2. Analogously to the classical case, in the above definition, it is equivalent to
require that (16) holds for every 0 ≤ ϕ ∈ Lipc (D).

Following the terminology introduced in [16], we are now ready to give the following

Definition 3. A weighted manifold Mf with boundary ∂M 6= ∅ oriented by the exterior unit
normal ν is said to be f -parabolic if any bounded above, weak Neumann subsolution of the
f -Laplace equation on Mf must be constant. Namely, for every u ∈ C0 (M) ∩W 1,2

loc (Mf ),

(17)


∆fu ≥ 0 on intM
∂u

∂ν
≤ 0 on ∂M

supM u < +∞
⇒ u ≡ const.

In the boundary-less setting it is by now well-known that f–parabolicity is related to
a wide class of equivalent properties involving the recurrence of the Brownian motion,
f–capacities of condensers, the heat kernel associated to the drifted laplacian, weighted
volume growth, function theoretic tests, global divergence theorems and many other geo-
metric and potential-analytic properties. All these characterization can be proven to hold
true also in case of weighted manifolds with non-empty boundaries. However, here we limit
ourselves to pointing out the following characterization.

Theorem 4. A weighted manifold Mf is f -parabolic if and only the following maximum

principle holds. For every domain D ⊆ M with ∂0D 6= ∅ and for every u ∈ C0
(
D
)
∩
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W 1,2
loc (Df ) satisfying 

∆fu ≥ 0 on intD
∂u

∂ν
≤ 0 on ∂1D

sup
D
u < +∞

in the weak sense, it holds
sup
D
u = sup

∂0D
u.

Moreover, if Mf is a f -parabolic manifold with boundary ∂M 6= ∅ and if u ∈ C0 (M) ∩
W 1,2
loc (intMf ) satisfies {

∆fu ≥ 0 on intM
supM u < +∞

then
sup
M

u = sup
∂M

u.

We refer the reader to [16, Theorem 0.9] for a detailed proof of the previous result in
the unweighted setting. Although the proof of this theorem can be deduced adapting to
the weighted laplacian ∆f the arguments in [16] (indeed, all results obtained there can
be adapted to the weighted case with only minor modifications of the proofs), we provide
here a shorter and more elegant argument. In order to do this we will need the following
preliminary fact that will be proved without the use of any capacitary argument and,
therefore, can be adapted to deal also with the f -parabolicity under Dirichlet boundary
conditions; see [19] for old results and recent advances on the Dirichlet parabolicity of
(unweighted) Riemannian manifolds.

Proposition 5. Let Mf be a weighted manifold with boundary ∂M oriented by the exterior

unit normal ν and consider the warped product manifold M̂ = M ×e−f T, with boundary

∂M̂ = ∂M × T oriented by the exterior unit normal ν̂(x, θ) = (ν(x), 0). Here we are

setting T = R/Z, normalized so that vol(T) = 1. Then Mf is f -parabolic if and only if M̂
is parabolic.

Proof. To illustrate the argument we are going use pointwise computations for C2 functions
which however can be easily formulated in weak sense for functions in C0 ∩W 1,2

loc . We also

recall that the f -Laplacian ∆f on M is related to the Laplace-Beltrami operator ∆̂ of M̂
by the formula

∆̂ = ∆f + f−2∆T.

With this preparation, assume first that M̂ is parabolic. We have to show that any (regular
enough) solution of the problem

∆fu ≥ 0 on intM
∂u

∂ν
≤ 0 on ∂M

supM u < +∞
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must be constant. To this end, having selected u we simply define û(x, t) = u(x), (x, t) ∈ M̂ ,

and we observe that û satisfies the analogous problem on M̂ . Since M̂ is parabolic, û and
hence u must be constant, as required.

Conversely, assume that Mf is f -parabolic and let u be a (regular enough) solution of
the problem

(18)


∆̂u ≥ 0 on intM̂
∂u

∂ν̂
≤ 0 on ∂M̂ = ∂M × T

supM̂ u < +∞.

By translating and scaling we may assume that supu = 1 and since max{u, 0} is again a
solution of (18), we may in fact assume that 0 ≤ u ≤ 1. Let

ū(x) =

∫
T
u(x, t)dt.

Recalling that rotations in T are isometries of M̂ , and therefore commute with the Laplacian
∆̂, we deduce that

∆f ū(x) = ∆̂ū(x) =

∫
T

∆̂u(x, t)dt ≥ 0

and
∂ū

∂ν
≤ 0,

so, by the assumed f -parabolicity of Mf , ū is constant, and

0 = ∆f ū =

∫
T

∆̂u(x, t).

Since ∆̂u ≥ 0 we conclude that ∆̂u = 0 in int M̂ . Applying the above argument to u2,
which is again a solution of (18), we obtain that

0 = ∆̂u2 = 2u∆̂u+ 2|∇̂u|2 = 2|∇̂u|2 in int M̂,

and therefore u is constant, as required.

We are now ready to present the

Proof of Theorem 4. Assume first that Mf is f -parabolic. As a consequence of Proposition

5 this is equivalent to the parabolicity of M̂ which, in turns, is equivalent to the validity of
the following Ahlfors-type maximum principle (see [16, Theorem 0.9]). For every domain

D̂ ⊆ M̂ with ∂0D̂ 6= ∅ and for every u ∈ C0(D̂) ∩W 1,2
loc (D̂) satisfying

(19)


∆̂u ≥ 0 on intD̂
∂u

∂ν̂
≤ 0 on ∂1D̂

sup
D̂

u < +∞
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in the weak sense, it holds

sup
D̂

u = sup
∂0D̂

u.

Furthermore, in case D̂ = M̂ , for every u ∈ C0(D̂) ∩W 1,2
loc (D̂) satisfying{

∆̂u ≥ 0 on intM̂
sup
M̂

u < +∞

in the weak sense, it holds

sup
M̂

u = sup
∂0M̂

u.

In particular, if D ⊂M is any smooth domain with ∂0D 6= ∅ and if u ∈ C0
(
D
)
∩W 1,2

loc (D)
satisfies 

∆fu ≥ 0 on intD
∂u

∂ν
≤ 0 on ∂1D

sup
D
u < +∞

in the weak sense, then û(x, t) = u(x) is a solution of (19) on D̂×T. Hence, the parabolicity

M̂ in the form of the Ahlfors-type maximum principle implies that

sup
D
u = sup

D̂

û = sup
∂0D̂=∂0D×T

û = sup
∂0D

u.

The same reasoning applies in case D = M .
Conversely, assume that for every domain D ⊆ M with ∂0D 6= ∅ and for every u ∈

C0
(
D̄
)
∩W 1,2

loc (Df ) satisfying 
∆fu ≥ 0 on intD
∂u

∂ν
≤ 0 on ∂1D

sup
D
u < +∞

in the weak sense, it holds

sup
D
u = sup

∂0D
u.

Suppose by contradiction that Mf is not f -parabolic. Then there exists a non-constant

function v ∈ C0 (M) ∩W 1,2
loc (Mf ) satisfying

∆fv ≥ 0 on intM
∂v

∂ν
≤ 0 on ∂1M

sup
M

v < +∞

in the weak sense. Given η < supM v consider the domain Dη = {x ∈ M : v(x) > η} 6= ∅.
We can choose η sufficiently close to supM v in such a way that intM 6⊆ Dη. In particular,
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∂Dη ⊆ {v = η} and ∂0Dη 6= ∅. Now, v ∈ C0
(
Dη

)
∩W 1,2

loc ((Dη)f ) is a bounded above weak
Neumann subsolution of the f -Laplacian equation on Dη. Moreover,

sup
∂0Dη

v = η < sup
Dη

v,

contradicting our assumptions.

From the geometric point of view, it can be proved that f–parabolicity is related to
the growth rate of the weighted volume of intrinsic metric objects. Indeed, exploiting a
result due to A. Grigor’yan, [11], one can prove the following result; see also Theorem 0.7
and Remark 0.8 in [16]). For the sake of clarity, we recall from the Introduction that the
weighted volume of the metric ball BM

R (o) = {x ∈ M : distM (x, o) < R} of Mf is defined

by volf (BM
R (o)) =

∫
BMR (o) dMf .

Proposition 6. Let Mf be a complete weighted manifold with boundary ∂M 6= ∅. If, for
some reference point o ∈M ,

volf (BM
R (o)) = O(R2), as R→ +∞.

then Mf is f -parabolic.

Proof. Set ΩR := BM
R (o)× T. Then, as a consequence of Fubini’s Theorem,

volf (BM
R (o)) =

∫
BMR (o)

dMf =

∫
ΩR

dM̂ = vol(ΩR).

Denote by BM̂
R (ô) the geodesic ball in M̂ with reference point ô = (o, t̂). Given an arbitrary

point x̂ = (x, t) ∈ M̂ , let α̂ = (α, β) : [0, 1] → M̂ be a curve in M̂ such that α̂(0) = ô and
α̂(1) = x̂. Then

`(α̂) =

∫ 1

0
‖α̂′(s)‖ds

=

∫ 1

0

√
(α′(s))2 + e−2f(α(s))(β′(s))2ds

≥
∫ 1

0
‖α′(s)‖ds

≥distM (x, o).

Hence, as a consequence of the previous chain of inequalities, if x̂ ∈ BM̂
R (ô), then x ∈ BM

R (o),
which in turns implies that

BM̂
R (ô) ⊆ ΩR.

In particular,

vol(BM̂
R (ô)) ≤ vol(ΩR) ≤ CR2

for R sufficiently large. The conclusion now follows from the above mentioned result by
Grigor’yan and from the fact that, as proven in Proposition 5, the parabolicity of M̂ is
equivalent to the f -parabolicity of Mf .
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2. The height estimates

In this section we prove the main result of the paper, Theorem A, and show how the
boundedness assumption can be dropped in dimension 2; Corollary B. To this end, we need
some preparation: first we derive some basic formulas concerning the weighted Laplacian of
the height function and the angle function of the Killing graph; see Proposition 7. Next we
extend to the weighted setting and for Killing graphs a crucial volume estimate obtained
in [16, 17]; see Lemma 8. This estimate will allow us to use the global maximum principles
introduced in Section 1. The proofs of Theorem A and of its Corollary B will be provided
in Section 2.3.

2.1. Some basic formulas. This section aims to prove the following

Proposition 7. Let (M, 〈·, ·〉M ) be a complete (n+ 1)-dimensional Riemannian manifold
endowed with a complete Killing vector field Y whose orthogonal distribution has constant
rank n and is integrable. Let (P, 〈·, ·〉P ) be an integral leaf of that distribution and let
Σ = GraphΩ(u) be a Killing graph over a smooth domain Ω ⊂ P , with upward unit normal
N. Set ψ = − log |Y |. Then, for any constant C ∈ R the following equations hold on
(Σ, 〈·, ·〉):

∆Σ
Cψu =

(
nH + (C − 2)〈∇Mψ,N〉M

)
e2ψ〈Y,N〉M ,(20)

∆Σ
Cψ〈Y,N〉M = −〈Y,N〉M

(
|A|2 + RicMCψ(N,N)

)
− nY T (HCψ),(21)

where RicMCψ is the Bakry-Émery Ricci tensor of the weighted manifold MCψ, |A| is the
norm of the second fundamental form of Σ and H, HCψ denote respectively the mean
curvature of Σ and its Cψ-weighted modified version.

Proof. Observe that

u = s|Σ,

where, we recall, s is the flow parameter of Y . Using ∇s = e2ψY , we have

∇Σu = ∇Σs = e2ψY T .
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Thus, letting {ei} be an orthonormal basis of TΣ, and recalling that, since Y is Killing,
〈∇MV Y, V 〉M = 0 for every vector V , we compute

∆Σu =
n∑
i=1

〈∇Σ
ei∇

Σu, ei〉

=
n∑
i=1

〈∇Σ
eie

2ψY T , ei〉

= e2ψ
n∑
i=1

〈∇Mei (Y − 〈Y,N〉MN), ei〉M + 2

n∑
i=1

〈ei,∇Σψ〉〈ei,∇Σs〉

= e2ψ
n∑
i=1

〈∇Mei Y, ei〉M − 〈Y,N〉Me
2ψ

n∑
i=1

〈∇Mei N, ei〉M + 2

n∑
i=1

〈ei,∇Σψ〉〈ei,∇Σu〉

= nHe2ψ〈Y,N〉M + 2〈∇Σψ,∇Σu〉.

Equation (20) follows since, by definition,

∆Σ
Cψu = ∆Σu− C〈∇Σψ,∇Σu〉.

As for equation (21), note that, since N is a unit normal and Y is a Killing vector field
∇MN Y is tangent to Σ and, for every vector X tangent to Σ,

〈∇MXN, Y 〉M = 〈∇MXN, Y T + 〈Y,N〉MN〉M = 〈∇MXN, Y T 〉M = −〈AN Y
T , X〉,

so that

〈∇Σ〈Y,N〉M , X〉 = X〈Y,N〉M = −〈∇MN Y,X〉M + 〈Y,∇MXN〉M = −〈∇MN Y +AN Y
T , X〉M

and therefore

∇Σ〈Y,N〉M = −∇MN Y −ANY
T .

Moreover, using the Codazzi equations, it is not difficult to prove that

∆Σ〈Y,N〉M = −
(
|A|2 + RicM (N,N)

)
〈Y,N〉M − nY T (H),

see, e.g., [10, Prop. 1]. Using the definition of HCψ = H + 1
n〈∇

M (Cψ),N〉M we also have

−nY T (H) = −nY T (HCψ) + CY T 〈∇Mψ,N〉M
= −nY T (HCψ) + C〈∇MY ∇Mψ,N〉M − C〈Y,N〉MHessM (ψ)(N,N) + C〈∇Mψ,∇MY TN〉M
= −nY T (HCψ) + C〈∇M∇ψY,N〉M − C〈Y,N〉MHessM (ψ)(N,N) + C〈∇Σψ, (∇MY TN)T 〉
= −nY T (HCψ) + C〈∇Σψ,∇Σ〈Y,N〉M 〉 − C〈Y,N〉MHessM (ψ)(N,N),

where we have used that:

- ∇MY ∇Mψ = ∇M∇MψY, since ψ depends only on the P -variables and Y = ∂s;

- 〈∇M∇MψY,N〉M = −〈∇MN Y,∇Mψ〉M and 〈∇MN Y,N〉M = 0, since Y is Killing;;
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- 〈∇Mψ,∇M
Y T

N〉M = 〈∇Σψ, (∇M
Y T

N)T 〉, since 〈N,∇M
Y T

N〉M = 1
2Y

T 〈N,N〉M = 0;

- the identity

∇Σψ〈Y,N〉M = 〈∇M∇ΣψY,N〉M + 〈Y,∇M∇ΣψN〉M
= 〈∇M∇MψY,N〉M − 〈N,∇

Mψ〉M 〈∇MN Y,N〉M
+ 〈Y T , (∇∇ΣψN)T 〉+ 〈N, Y 〉M 〈N,∇M∇ΣψN〉M

= 〈∇M∇MψY,N〉M + 〈Y T , (∇M∇ΣψN)T 〉

= 〈∇M∇MψY,N〉M + 〈∇Σψ, (∇MY TN)T 〉.

Inserting the above identities into

∆Σ
Cψ〈Y,N〉M = ∆Σ〈Y,N〉M − C〈∇Σψ,∇Σ〈Y,N〉〉

and recalling that

RicMCψ = RicM + C HessM (ψ)

yield the validity of (21).

2.2. Weighted volume estimates. In this section we extend to the weighted setting of
Killing graphs, with prescribed (weighted) mean curvature, an estimate of the extrinsic
volume originally obtained in [17] and later extended in [16].

Lemma 8. Let (M, 〈·, ·〉M ) be a complete (n + 1)-dimensional Riemannian manifold en-
dowed with a complete Killing vector field Y whose orthogonal distribution has constant
rank n and is integrable. Let (P, 〈·, ·〉P ) be an integral leaf of that distribution so that M
can be identified with P ×e−ψ R, where ψ = − log |Y |. Let Σ = GraphΩ(u) be a Killing
graph over a smooth domain Ω ⊂ P , with mean curvature H with respect to the upward unit
normal N and let π : Σ → P be the projection map. Then, for any y0 = (x0, u(x0)) ∈ Σ
and for every R > 0,

π(BΣ
R(y0)) ⊆ ΩR (x0)

where we have set

ΩR (x0) = BP
R(x0) ∩ Ω.

Moreover, assume that given D ∈ R,

(22) A := sup
Ω

∣∣∣u(x)e−ψ(x)
∣∣∣+ sup

Ω
|HDψ(x)| < +∞, .

Then, there exists a constant C > 0, depending on n and A, such that, for every δ,R > 0,
the corresponding Dψ-volume of the intrinsic ball of Σ satisfies

(23) volDψB
Σ
R (y0) ≤ C

(
1 +

1

δR

)
volDψ

(
Ω(1+δ)R (x0)

)
,

where y0 = (x0, u(x0)) ∈ Σ is a reference origin.
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Proof. The Riemannian metric of M writes as 〈·, ·〉M = 〈·, ·〉P + e−2ψds ⊗ ds. Let y0 =
(x0, u(x0)) and y = (x, u(x)) be points in Σ connected by the curve (α(t), u(α(t)), where
α(t), t ∈ [0, 1], is an arbitrary path connecting x0 and x in Ω ⊆ P . Writing s(t) = u(α(t))
we have

∫ 1

0

{
|α′ (t)2 + e−2ψ(α(t))s′(t)2

} 1
2
dt ≥

∫ 1

0
|α′(t)|dt ≥ dP (x0, x).

Thus, if y ∈ BΣ
R(y0) we deduce that x ∈ ΩR (x0), proving the first half of the lemma.

Now we compute the volume of BΣ
R(y0). Since π(BΣ

R(y0)) ⊂ ΩR (x0) we have

volDψ(BΣ
R(y0)) =

∫
π(BΣ

R(y0))

√
e2ψ + |∇Pu|2e−(D+1)ψ dP(24)

≤
∫

ΩR(x0)

√
e2ψ + |∇Pu|2e−(D+1)ψdP

=

∫
ΩR(x0)

|∇Pu|2√
e2ψ + |∇Pu|2

e−(D+1)ψ dP

+

∫
ΩR(x0)

e2ψ√
e2ψ(x) + |∇Pu|2

e−(D+1)ψdP.

We then consider the vector field

Z = ρu
e−(D+1)ψ∇Pu√
e2ψ + |∇Pu|2

,

where the function ρ is given by

ρ(x) =


1 on BR(x0)
(1+δ)R−r(x)

δR on B(1+δ)R(x0)\BR(x0)

0 elsewhere,

with r(x) = distP (x, x0). Recalling equation (10) in the Introduction, i.e.,

divP

 ∇Pu√
e2ψ + |∇Pu|2

 = nH +

〈
∇Pu,∇Pψ

〉√
e2ψ + |∇Pu|2
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we compute

divZ = e−(D+1)ψ

u
〈
∇Pρ,∇Pu

〉√
e2ψ + |∇Pu|2

+ ρ

∣∣∇Pu∣∣2√
e2ψ + |∇Pu|2

+ nρuHDψ


= e−Dψ

ue−ψ
〈
∇Pρ,∇Pu

〉√
e2ψ + |∇Pu|2

+ ρe−ψ
∣∣∇Pu∣∣2√

e2ψ + |∇Pu|2
+ nρue−ψHDψ


≥ e−Dψ

− ∣∣∣ue−ψ∣∣∣ ∣∣∇Pρ∣∣+ ρe−ψ
∣∣∇Pu∣∣2√

e2ψ + |∇Pu|2
− nρ

∣∣∣ue−ψ∣∣∣ |HDψ|

 .

Since Z has compact support in Ω(1+δ)R, applying the divergence theorem and using the
properties of ρ, from the above inequality we obtain∫

ΩR(x0)

∣∣∇Pu∣∣2√
e2ψ + |∇Pu|2

e−ψe−Dψ dP ≤ 1

δR

∫
Ω(1+δ)R(x0)

∣∣∣ue−ψ∣∣∣ e−Dψ dP
+ n

∫
Ω(1+δ)R(x0)

∣∣∣ue−ψ∣∣∣ |HDψ| e−Dψ dP.

Inserting this latter into (24) we get

volDψ(BΣ
R(y0)) ≤ 1

δR

∫
Ω(1+δ)R(x0)

∣∣∣ue−ψ∣∣∣ e−Dψ dP
+ n

∫
Ω(1+δ)R(x0)

∣∣∣ue−ψ∣∣∣ |HDψ| e−Dψ dP.

To conclude the desired volume estimate, we now recall that, by assumption,

sup
Ω

∣∣∣ue−ψ∣∣∣+ sup
Ω
|HDψ| < +∞.

The proof of the Lemma is completed.

Remark 9. We note for further use that if, in the previous Lemma, we assume that
infP ψ > −∞, then the following more general inequality holds:

volCψB
Σ
R(y0) ≤ AvolDψ(ΩR(x0)),

for any constant C > D and any R� 1.

2.3. Proofs of Theorem A and Corollary B. We are now in the position to give the
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Proof (of Theorem A). Since Hψ ≡ const, it follows by equation (20) that

∆Σ
ψ(Hψu) = nHψHe

2ψ〈Y,N〉M −Hψe
2ψ〈∇Mψ,N〉M 〈Y,N〉M

= nH2e2ψ〈Y,N〉M +He2ψ〈∇Mψ,N〉M 〈Y,N〉M

−He2ψ〈∇Mψ,N〉M 〈Y,N〉M −
1

n
e2ψ〈∇Mψ,N〉2M 〈Y,N〉M

≤ nH2e2ψ〈Y,N〉M .

Combining this inequality with equation (21), it is straightforward to prove that, under
our assumptions on RicMψ and Hψ, the function

ϕ(x) = Hψu(x)e−2 supΩ ψ + 〈Yx,Nx〉M

satisfies

∆Σ
ψϕ ≤ 0 on Σ.

On the other hand, using assumptions (b) and (e) we can apply Lemma 8 to deduce that

volψ(BΣ
R) = O(R2), as R→ +∞.

In particular, by Proposition 6, Σ is parabolic with respect to the weighted Laplacian ∆Σ
ψ .

Since, again by (e), ϕ is a bounded function and, according to (d), u ≡ 0 on ∂Ω, an
application of the Ahlfors maximum principle stated in Theorem 4 gives

inf
Ω

(
Hψue

−2 supΩ ψ + 〈Y,N〉M
)

= inf
∂Ω
〈Y,N〉M ≥ 0.

Combining this latter with the fact that 〈Y,N〉M ≤ e−ψ we get the desired upper estimate
on u.

Finally, note that equation (20) can also be written in the form:

∆Σ
3ψu = Hψe

2ψ〈Y,N〉M .

Since, according to Remark 9, Σ is also parabolic with respect to the weighted laplacian
∆Σ

3ψ and u is a bounded 3ψ-superharmonic function, the desired lower estimate on u follows
again as an application of Theorem 4.

Remark 10. It is clear from the proof that if we consider, as in [15], the function ϕ =
cHψe

−2ψu+〈Y,N〉M , for some 0 < c ≤ 1, it is possible to extend the height estimate to the

case where RicMψ ≥ −G2(x) in a neighborhood of Ω×R, provided (1−c)H2(x)/n ≥ G2(x).
The resulting estimate becomes

0 ≤ ue−ψ ≤ e2(supΩ ψ−infΩ ψ)

c|Hψ|
.

To conclude this section, we show how the boundedness assumption (e) can be dropped
in the case of 2-dimensional graphs.
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Proof (of Corollary B). Let Σ be a 2-dimensional Killing graph over a domain Ω ⊂ P of
constant weighted mean curvature Hψ < 0. Recall that the Perelman scalar curvature of
Rψ of M = P ×e−ψ R is defined by

RMψ = R+ 2∆ψ − |∇ψ|2 = Tr(RicMψ ) + ∆ψψ.

Assume that RMψ ≥ 0. Then, as a consequence of a result due to Espinar [8, Theorem 4.2],

for every y = (x, u(x)) ∈ Σ it holds

|u(x)e−ψ| ≤ dist(y, ∂Σ) ≤ C(|Hψ|) < +∞.

On the other hand, a straightforward calculation shows that

∆ψψ = e2ψRicMψ (Y, Y ).

Hence, RMψ ≥ 0 provided RicMψ ≥ 0. Putting everything together, it follows that condition

(e) in Theorem A is automatically satisfied.

3. Height estimates in model manifolds

In this section we construct rotationally symmetric examples of Killing graphs with
constant weighted mean curvature and exhibit explicit estimates on the maximum of their
weighted height in terms of the weighted mean curvature. When the base space is Rn and
the Killing vector field has constant length 1 (hence the ambient space is Rn × R) these
graphs are standard half-spheres and the estimate on their maximal height is precisely the
reciprocal of the mean curvature; [14, 23].

We shall assume that the induced metric 〈·, ·〉P on P is rotationally invariant. More
precisely, we suppose that P is a model space with pole at o and Gaussian coordinates
(r, θ) ∈ (0, R)× Sn−1, R ∈ (0,+∞], in terms of which gP is expressed by

gP = dr2 + ξ2(r)dθ2,

for some ξ ∈ C∞([0, R)) satisfying
ξ > 0 on (0, R)

ξ(2k) (0) = 0, k ∈ N
ξ′ (0) = 1

and where dθ2 denotes the usual metric in Sn−1. We also assume that the norm of the
Killing field does not depend on θ, so that

|Y |2 = e−2ψ(r),

In this case, the ambient metric 〈·, ·〉M of M = P ×e−ψ R is written in terms of cylindrical
coordinates (s, r, θ) as

〈·, ·〉M = e−2ψ(r)ds2 + dr2 + ξ2(r)dθ2.
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and M is a doubly-warped product with respect to warping functions of the coordinate r.
The smoothness of ψ implies that the pole o is a critical point for e−ψ, namely

de−ψ(r)

dr
(0) = −e−ψ(r)dψ(r)

dr
= 0.

A rotationally invariant Killing graph Σ0 ⊂ M is defined by a function u that depends
only on the radial coordinate r. In this case (11) becomes

(25)

(
u′(r)

W

)′
+
u′

W

(
∆P r − 〈∇Pψ,∇P r〉

)
= nH,

where

W =
√
e2ψ(r) + u′2(r)

and ′ denotes derivatives with respect to r. Note that the weighted Laplacian of r is given
by

∆P r − 〈∇Pψ,∇P r〉 = −ψ′(r) + (n− 1)
ξ′(r)

ξ(r)
=
|Y |′(r)
|Y |(r)

+ (n− 1)
ξ′(r)

ξ(r)
,

which is, up to a factor 1/n, the mean curvature Hcyl(r) of the cylinder over the geodesic
sphere of radius r centered at o and ruled by the flow lines of Y over that sphere. We also
have

(26) nHψ = nH − u′(r)

W
〈∇Pψ,∇P r〉 = nH − ψ′(r)u

′(r)

W
= divP2ψ

(
u′(r)

W
∇P r

)
·

It follows from (25) that both H and Hψ depend only on r. Integrating both extremes in

(26) against the weighted measure dPψ = e−ψdP one obtains in this particular setting a
first-order equation involving u(r), namely

(27)
u′(r)

W
e−2ψ(r)ξn−1(r) =

∫ r

0
nHψe

−2ψ(τ)ξn−1(τ) dτ.

Denoting the right hand side in (27) by I(r) and solving it for u′(r) yields

(28) u′2 = e2ψ I2

e−4ψξ2(n−1) − I2

We assume that u′(r) ≤ 0 and denote

(29) Vψ(r) =
1

|Sn−1|
volψ(Br(o)) =

∫ r

0
e−2ψ(τ)ξn−1(τ) dτ

and

Aψ(r) =
1

|Sn−1|
volψ(∂Br(o)) = e−2ψ(r)ξn−1(r).

Fixed this geometric setting, we prove the existence of compact rotationally symmetric
Killing graphs with constant weighted mean curvature.
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Theorem 11. Suppose that the ratio
Aψ(r)
Vψ(r) is non-increasing for r ∈ (0, R). Let H0 be a

constant with

(30) n|H0| =
Aψ(r0)

Vψ(r0)

for some r0 ∈ (0, R). Then there exists a compact rotationally symmetric Killing graph
Σ0 ⊂ P ×e−ψ R of a radial function u(r), r ∈ [0, r0], given by

(31) u(r) =

∫ r

r0

eψ(τ) I(τ)√
e−4ψ(τ)ξ2(n−1)(τ)− I2(τ)

dτ.

with constant weighted mean curvature Hψ = H0 and boundary ∂Br0(o) ⊂ P . The weighted
height function in this graph is bounded as follows

(32) e−ψ(r)u(r) ≤ esupBr(o) ψ−infBr(o) ψ

∫ r0

0

−nH0√
A2
ψ(τ)

V 2
ψ (τ)
− n2H2

0

dτ.

Proof. Since Aψ(r)/Vψ(r) is non-increasing it follows from (37) that

e−4ψ(r)ξ2(n−1)(r)− I2(r) ≥ A2
ψ(r)− n2H2

ψV
2
ψ (r) ≥ 0

for r ∈ (0, r0] what guarantees that the expression

(33) u(r) =

∫ r

r0

eψ(τ) I(τ)√
e−4ψ(τ)ξ2(n−1)(τ)− I2(τ)

dτ

is well-defined for r ∈ [0, r0] with u′(r) ≤ 0. For further reference, we remark an application
of L’Hôpital’s rule shows that

(34) lim
r→0

Aψ(r)

Vψ(r)
= lim

r→0

(
2
|Y |′(r)
|Y |(r)

+ (n− 1)
ξ′(r)

ξ(r)

)
·

In order to get a more detailed analysis at r = r0 we consider a parametrization of Σ0 in
terms of cylindrical coordinates as

(t, θ) 7→ (r(t), s(t), θ),

where t is the arc-lenght parameter defined by

ṙ2(t) + e−2ψ(r(t))ṡ2(t) = 1

and · denotes derivatives with respect to s. Since

u′(r(t)) =
ṡ(t)

ṙ(t)

we impose ṡ ≥ 0 and ṙ ≤ 0. Hence W = −eψ/ṙ whenever ṙ(s) 6= 0 and (27) is written as

(35) ṡe−3ψ(r)ξn−1(r) = −
∫ r

0
nHψe

−2ψ(τ)ξn−1(τ) dτ
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Since ξ(0) = 0, ξ′(0) = 1 and ψ′(0) = 0, applying L’Hôpital’s rule as above shows that

lim
r→0

∫ r
0 nHψe

−2ψ(τ)ξn−1(τ) dτ

e−3ψ(r)ξn−1(r)
= lim

r→0

nHψe
ψ(r)

−3ψ′(r) + (n− 1) ξ
′(r)
ξ(r)

= 0

and we conclude that e−ψ(r)ṡ → 0 as r → 0. Therefore ṡ → 0 as r → 0 what implies that
Σ0 is smooth at its intersection with the vertical axis of revolution.

Now, we have from (35) and (37) that ṙ = 0 at r = r0 since e−ψ(r0)ṡ(r0) = 1. Finally,
let φ be the angle between a meridian θ = cte. in Σ0 and and radial vector field ∂r. We
have

u′(r)

W
= − ṡ

eψ(r)
= − sinφ.

Hence (
u′(r)

W

)′
= − cosφ φ̇(t)

1

ṙ(t)
= −φ̇(t).

On the other hand(
u′(r)

W

)′
= nH − u′(r)

W

(
|Y |′(r)
|Y |(r)

+ (n− 1)
ξ′(r)

ξ(r)

)
= nHψ + sinφ

(
2
|Y |′(r)
|Y |(r)

+ (n− 1)
ξ′(r)

ξ(r)

)
In sum, Σ0 is parameterized by the solution of the first order system

(36)


ṙ = cosφ

e−ψ(r)ṡ = sinφ

φ̇ = −nH0 − sinφ
(

2 |Y |
′(r)

|Y |(r) + (n− 1) ξ
′(r)
ξ(r)

)
,

with initial conditions r(0) = r0, s(0) = 0, φ(0) = π
2 . The height estimate follows directly

from (38). This finishes the proof.

It is worth to point out that, in the classical situation of the Euclidean space where
e−ψ = |Y | ≡ 1 and ξ (r) = r, the Killing graph defined by u(r) reduces to the standard
sphere and (39) gives rise to the expected sharp bound

u(r) ≤ 1

|H|
.

Actually, a similar conclusion can be achieved if we choose ψ (r) in such a way that

e−2ψ(r)ξn−1 (r) = rn−1.

Note that this choice is possible and compatible with the request dψ/dr (0) = 0 because
ξ (r) is odd at the origin. This choice corresponds to the case when

Aψ(r)

Vψ(r)
=
n

r

as in the Euclidean space. We have thus obtained the following height estimate
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Corollary 12. Let P = [0, R)×ξ Sn−1 be an n-dimensional model manifold with warping
function ξ and let ψ : [0, R)→ R>0 be the smooth, even function defined by

ψ(r) = c ·

{
(n−1)

2 log ξ(r)
r r 6= 0

1 r = 0,

where c > 0 is a given constant. Fix 0 < r0 < R, let H0 = −1/r0 and define

u(r) =

∫ r0

r

−H0τ√
1−H2

0τ
2
eψ(τ)dτ.

Then, in the ambient manifold M = P ×e−ψ R, the Killing graph of u over Ω = BP
r0(o) ⊂ P

has constant weighted mean curvature Hψ = H0 with respect to the upward pointing Gauss
map. Moreover,

0 ≤ e−ψ(r)u(r) ≤
max[0,r0] e

−ψ

min[0,r0] e−ψ
· 1

|H0|
= esupΩ ψ−infΩ ψ

1

|H0|
.

The counterpart of Theorem 11 and Corollary 12 in the case of constant mean curvature
can be obtained along the same lines by integrating both sides in (11) instead of (26).
Denoting

V (r) =
1

|Sn−1|
vol(Br(o)) =

∫ r

0
e−ψ(τ)ξn−1(τ) dτ

and

A(r) =
1

|Sn−1|
vol(∂Br(o)) = e−ψ(r)ξn−1(r)

one obtains

Theorem 13. Suppose that the ratio A(r)
V (r) is non-increasing for r ∈ (0, R). Let H0 be a

non-positive constant with

(37) n|H0| =
A(r0)

V (r0)

for some r0 ∈ (0, R). Then there exists a compact rotationally symmetric Killing graph
Σ0 ⊂ P ×e−ψ R of a radial function u(r), r ∈ [0, r0], given by

(38) u(r) =

∫ r

r0

nH0V (τ)√
A2(τ)− n2H2

0V
2(τ)

dτ.

with constant mean curvature H = H0 and boundary ∂Br0(o) ⊂ P . The height function in
this graph is bounded as follows

(39) e−ψ(r)u(r) ≤ esupBr(o) ψ−infBr(o) ψ

∫ r0

0

−nH0√
A2(τ)
V 2(τ)

− n2H2
0

dτ.

The analog of Corollary 12 in the case of constant mean curvature is
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Corollary 14. Let P = [0, R)×ξ Sn−1 be an n-dimensional model manifold with warping
function ξ and let ψ : [0, R)→ R>0 be the smooth, even function defined by

ψ(r) = c ·

{
(n− 1) log ξ(r)

r r 6= 0

1 r = 0,

where c > 0 is a given constant. Fix 0 < r0 < R, let H0 = −1/r0 and define

u(r) =

∫ r

r0

H0τ√
1−H2

0τ
2
dτ.

Then, in the ambient manifold M = P ×e−ψ R, the Killing graph of u over Ω = BP
r0(o) ⊂ P

has constant mean curvature H0 with respect to the upward pointing Gauss map. Moreover,

0 ≤ e−ψ(r)u(r) ≤
max[0,r0] e

−ψ

min[0,r0] e−ψ
· 1

|H0|
= esupΩ ψ−infΩ ψ

1

|H0|
.

Remark 15. Up to the factor 2 in the exponential, this is the estimate obtained in Theorem
A above. We suspect that the high rotational symmetry considered in the example prevents
to achieve the maximum height predicted by the theorem. On the other hand we conjecture
that the rotationally symmetric graphs can be used as barriers to obtain sharp estimates in
the case of general warped spaces P ×e−ψR in the case when the radial sectional curvatures
of P are bounded from above by some radial function.
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