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Abstract

The accurate estimation of aeolian saltation events is a fundamental requirement in the modelling of wind erosion,
dust emission, dune movement and aeolian hazard prediction. A large number of semi-empirical sand transport rate
models exist, with many relying on a single value for a shear velocity threshold above which saltation is initiated.
However, measuring and modelling the sand transport rate suffers from the effects of a number of epistemic and
aleatory uncertainties which make the identification of a single threshold value for shear velocity problematic. This
paper focuses on the uncertainty propagation evident in calculations that use a threshold shear velocity to estimate
sand transport rate. Probability density functions of threshold shear velocity are provided from the authors’ previous
studies. Grain diameter and shear velocity are considered as deterministically varying parameters. Several sand
transport rate statistical metrics are estimated via the Monte Carlo approach adopting four different sand transport
models. The sand transport rate estimation in probabilistic terms allows us to assess the amplification/reduction in
the uncertainty and to provide a deeper insight into established transport rate models. We find that if the wind speed
is close to the erosion threshold, every tested model amplifies the variability of the resulting estimated sand transport
rate, especially in the case of coarse sand. If the wind speed is large, the adopted models present substantial differences
in uncertainty. An interpretation of these differences is given by conditioning the sand transport rate models to the
type of erosion threshold adopted, the fluid or impact threshold.

Keywords: windblown sand saltation, sand transport rate, threshold shear velocity, uncertainty quantification

1. Introduction1

The study of aeolian sand transport belongs to several research fields, from fundamental earth sciences to applied2

sciences such as civil and environmental engineering. From the scientific perspective, explaining and analysing wind-3

blown sand represents a challenging task due to the complex interactions between saltating particles, bed load and4

the wind field. Nevertheless, such analysis is an essential requirement in investigations of desert dust emissions (e.g.5

Haustein et al., 2015), dune dynamics (e.g. Wiggs and Weaver, 2012), agricultural wind erosion (e.g. Zobeck et al.,6

2003), land degradation (e.g. Mayaud et al., 2016), and planetary geomorphology (e.g. Kok et al., 2012). From the7

engineering perspective, windblown sand can have deleterious impacts on built structures and human activities (e.g.8

Zhang et al., 2010; Xie et al., 2015). For these reasons, the accurate prediction of sand transport events is a significant9

goal.10

Saltation is the dominant mechanism of windblown sand transport. The total saltating load can be quantified by11

estimating the sand transport rate, i.e. by vertically integrating the horizontal flux of saltating particles. Since this12

physical quantity represents a straightforward measure to estimate wind erosion, sand transport, and deposition, a13

number of semi-empirical models to predict sand transport rate (Q-models) have been formulated (e.g. Kawamura,14
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1951; Owen, 1964; Lettau and Lettau, 1978; Kok et al., 2012).15

Dong et al. (2003) classified sand transport models into four categories defined by their basic form. Bagnold type16

equations (e.g. Bagnold, 1941; Zingg, 1953) relate sand transport rate to the cube of shear velocity u3
∗ but do not17

explicitly consider the excess of shear velocity compared to a threshold value u∗t. This results in unrealistic sand18

transport rates when u∗ is less than u∗t. Modified Bagnold type equations (e.g. Kawamura, 1951; Owen, 1964; Lettau19

and Lettau, 1978; Kok et al., 2012) relate sand transport rate to the cube of an effective shear velocity that is defined as20

a function of both the shear velocity and the threshold value. O’Brien-Rindlaub type and modified O’Brien-Rindlaub21

type equations (e.g. O’Brien and Rindlaub, 1936; Dong et al., 2003) relate transport rate to wind speed instead of22

shear velocity. These first three categories usually take into account the particle size directly through the sand grain23

diameter, d. The remaining models may be categorized as complex. These include physical models that account for24

additional phenomena in the saltation process such as inertial effects (Mayaud et al., 2017) or hysteresis (Kok, 2010).25

These models include multiple empirical fitting parameters usually related to quantities other than simply sand grain26

diameter.27

Because of their ease of use and their sound physical basis, modified Bagnold type models are widespread in28

the literature and popularly employed in practice, see for example the field studies by Fryberger and Dean (1979),29

Al-Awadhi and Al-Awadhi (2009), Barchyn and Hugenholtz (2011), Sherman and Li (2012), Sherman et al. (2013),30

Yang et al. (2014) and Liu et al. (2015). However, modified Bagnold type models lead to significant variability in their31

prediction, despite belonging to the same conceptual form (e.g. Sarre, 1987; Sherman et al., 1998, 2013; Sherman and32

Li, 2012). These discrepancies follow from differences in the structure of models and can be related to the way the33

effective shear velocity and the grain diameter are treated in the model. For example, whilst some models explicitly34

account for changes in d (e.g. Lettau and Lettau, 1978), others do not (e.g. Kawamura, 1951), and still others account35

for the effect of d by introducing other related variables, such as the particle terminal velocity in the model of Owen36

(1964).37

These differences can be regarded as the result of the inherent uncertainty in the saltation phenomenon. To our38

knowledge, a comprehensive description of uncertainties concerning the prediction of aeolian sand transport rate is39

not available in the literature. A useful approach is to consider a general classification of uncertainty in sand transport40

rate predictions that distinguishes between aleatory and epistemic uncertainty (Zio and Pedroni, 2013), both of which41

are relevant to the sand transport case.42

Aleatory uncertainty refers to the inherent randomness in many physical phenomena (e.g. Sørensen, 1993). It43

arises not only in nature but also in the laboratory environment, where the properties of aeolian processes can be44

nominally controlled in both space and time.45

Epistemic uncertainty is associated with the lack of knowledge about the properties and conditions of the phenom-46

ena to be modeled, i.e. model, measurement and parameter uncertainties (see Shao, 2008; Barchyn et al., 2014). We47

believe that the uncertainty concerning the mode of u∗t to be used in sand transport equations can be considered as an48

epistemic model uncertainty too because it is related to the lack of knowledge about the Q-model. Indeed, the mode49

of u∗t to be adopted is not unequivocally established in the literature. Two threshold velocities have been recognized:50

the fluid (or static) threshold, i.e. the minimum wind speed for initiation of sediment transport without antecedent51

transport; and the impact (or dynamic) threshold, i.e. the minimum wind speed for sustaining sediment transport52

with antecedent transport. There is no unanimity in the literature as to which threshold is the most appropriate for53

modelling sand transport rate: some authors prefer the impact threshold, others suggest the fluid threshold, and still54

others recommend a combination of the two. Pye and Tsoar (2009) and Kok et al. (2012) recommend the impact55

threshold defined as a linear function of the fluid threshold (85% and 80% of the fluid threshold, respectively). Simi-56

larly, Andreotti (2004) and Pahtz et al. (2012) also prefer the impact threshold and provide models for its estimation.57

Conversely, Shao (2008) refers to the fluid threshold only, whilst Sherman et al. (2013) adopt the fluid threshold for58

small Q and, for increasing Q, an exponential decreasing u∗t to a minimum equal to the impact threshold (85% of59

the fluid threshold). Kok (2010) provides a more sophisticated model for sand transport which considers a hysteretic60

threshold between the impact and fluid threshold that depends on the history of the system.61

The uncertainties reviewed up to this point are innate in Q-models. We expect that the uncertainty propagation62

to Q from other models also occurs, also due to the uncertainty in u∗t. A few authors have recently raised this issue.63

Shao (2008) attributes the Q-model randomness not only to their empirical parameters but also to variability in the64

threshold shear velocity. Moreover, since a method to determine a single quantitative definition of u∗t is not agreed65

upon (see Stout, 2004), Shao (2008) notes that any estimate of u∗t must involve a degree of subjectivity. In particular,66
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he conjectured that such uncertainties in defining u∗t could outweigh the differences inherent in the functional forms67

of the sand transport rate models. The quantification of uncertainty in u∗t has recently been assessed by Raffaele et al.68

(2016), and Edwards and Namikas (2015) and Webb et al. (2016) note that such uncertainty in threshold estimates69

can be expected to propagate to sand transport rate predictions.70

Given these points, two main questions are pertinent: i. How does the degree of uncertainty in sand transport rate71

(Q) vary with respect to the uncertainty in estimates for the threshold shear velocity (u∗t)? ii. How do different sand72

transport rate models behave when threshold shear velocity is considered as a statistically random variable?73

The present study aims to contribute to a solution to these issues. Four key, semi-empirical models of sand trans-74

port rate are adopted to evaluate the impact of uncertainty propagation. Threshold shear velocity is assumed as the75

only random variable affecting sand transport rate and, as a result, instead of having a single deterministic value of76

sand transport rate for given values of u∗ and d, a range of different values describing a probability distribution are77

obtained.78

2. Methods79

Here we describe the method for evaluating uncertainty propagation from the parametric uncertainty of the thresh-80

old shear velocity to the model prediction of sand transport rate. First, the general approach is described and justified.81

Secondly, the adopted sand transport rate models and threshold shear velocity probability density functions are given.82

In this and following sections, the threshold shear velocity conditional probability density function f (u∗t | d) is ex-83

pressed as fu∗t for the sake of conciseness.84

Uncertainty propagation from threshold shear velocity to predictions of sand transport rate is investigated by com-85

paring dimensionless statistical metrics of both Q and u∗t. Both numerical and analytical solutions could be applied86

to evaluate uncertainty propagation (Smith, 2014). Analytically, for a given grain diameter and shear velocity, the87

cumulative distribution functions FQ for sand transport rate can be obtained from the following procedure:88

FQ (s) = P [Q ≤ s] = P [Q (u∗t) ≤ s] = P
[
u∗t ≤ Q−1(s)

]
= Fu∗t

[
Q−1(s)

]
, ∀d, u∗ (1)

So, deriving each term, one can find the probability density functions fQ:89

fQ (s) = fu∗t
[
Q−1(s)

]
·
[
Q−1(s)

]′
, ∀d, u∗ (2)

It is worth noting from Equation 2 that the inversion of most of the sand transport rate models can only be performed90

numerically. Hence, we prefer a numerical approach because a fully analytical solution is not achievable. A classical91

Monte Carlo (MC) sampling based method (Caflisch, 1998) was preferred to other numerical approaches because92

of its very low computational cost. Furthermore, other numerical approaches (such as functional expansion-based93

methods like Karhunen-Loeve or polynomial chaos expansions) offer results that are too sophisticated for the rela-94

tively simple task covered by the present study. The MC method relies on repeated random sampling in order to95

obtain numerical probabilistic results. Hence, a set of numerical realizations of the random prediction Q(u∗, u∗t) was96

evaluated by varying u∗ ∈ [0.1, 2] m/s and by sampling the random parameter u∗t according to fu∗t . In applying the97

MC method, it is important to check the convergence of the numerical realizations. Indeed, the rate of convergence98

of MC is always 1/n0.5, where n is the number of numerical realizations. It follows that the cardinality # of Q and99

u∗t affects the obtained results and must be chosen in order to reach the convergence of the first statistical moments100

of Q. Convergence can be checked by means of the weighted absolute error ϕabs as well as the weighted residual101

ϕres of the generic parameter ϕ. They are respectively defined for growing cardinality n as ϕabs = |ϕ# − ϕn| /ϕ# and102

ϕres,n = |ϕn − ϕn−1| /ϕn.103

In the framework of the MC method, sand transport rate is obtained by referring to some well-known modified104

Bagnold sand transport models reported in the literature. Semi-empirical modified Bagnold-type sand transport mod-105

els proposed by Kawamura (1951), Owen (1964), Lettau and Lettau (1978) and Kok et al. (2012) were evaluated106

to assess the effects of uncertainty on transport predictions. These models are reported in Table 1, where ρa is the107

air density, g is the gravitational acceleration, d is the sand grain diameter, dr is a reference sand grain diameter108

(dr = 0.25mm) and K, O, L, C are semi-empirical parameters. For the model of Owen (1964), υt is the parti-109

cle’s terminal velocity. Chen and Fryrear (2001) parametrized this as a function of the sand grain diameter getting110
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υt = −0.775352 + 4.52645d0.5, where υt is expressed in m/s and d in mm.

Table 1: Summary of the adopted sand transport rate models

Reference Equation Semi-empirical parameter

Kawamura (1951) Q = K ρa
g u3
∗

(
1 − u2

∗t

u2
∗

) (
1 + u∗t

u∗

)
K = 2.78

Owen (1964) Q = O ρa
g u3
∗

(
1 − u2

∗t

u2
∗

)
O = 0.25 + υt

3u∗

Lettau and Lettau (1978) Q = L
√

d
dr

ρa
g u3
∗

(
1 − u∗t

u∗

)
L = 6.7

Kok et al. (2012) Q = C ρa
g u∗tu2

∗

(
1 − u2

∗t

u2
∗

)
C = 5

111

It is worth stressing that the models proposed by Kawamura (1951) and Kok et al. (2012) do not explicitly take into112

account the grain diameter only because their semi-empirical parameter refers to d ≈ 0.25mm. In this study their113

semi-empirical parameter is considered constant as an approximation. In fact, Kawamura (1951) does not define the114

relation between K and d, while Kok et al. (2012) provide a relation that cannot be easily computed. However, this115

assumption doesn’t reflect on the uncertainty propagation to Q when expressed in dimensionless statistics such as116

coefficient of variation and skewness.117

In this study, the fluid (or static) threshold shear velocity is adopted for several reasons. First, since it represents118

the starting point for erosion it is considered highly relevant for modelling purposes and application of model results.119

Secondly, unlike the impact threshold, appropriate probability density functions for the fluid threshold shear velocity120

are available from the literature (e.g. Duan et al., 2013; Raffaele et al., 2016). Thirdly, the fluid threshold is likely121

to be more variable than the impact threshold because it is more dependent upon variability in surface properties.122

Therefore, the analysis carried out in this paper will provide estimates of the maximum likely uncertainty propaga-123

tion. Fourthly, when assuming the impact threshold as a linear function of the fluid threshold (i.e. 80% − 85% of the124

fluid threshold), the adoption of the fluid rather than the impact threshold doesn’t affect the uncertainty propagation125

to Q when expressed in dimensionless statistics.126

In order to account for the uncertainty in u∗t, conditional probability density functions of threshold shear velocity,127

fu∗t were taken from Raffaele et al. (2016). Given that u∗t varies as a function of d, one fu∗t exists for each value of128

d. We investigated a range of d ∈ [0.063, 1.2] mm (i.e. from fine to coarse sand) by means of fifty linearly spaced129

non-parametric conditional probability density functions fu∗t . Fig. 1 summarizes the statistics of the threshold shear130

velocity against d using suitable percentiles and statistical metrics. In Fig. 1(a), the trends of mean values µ(u∗t) and131

the 1st, 5th, 25th, 75th, 95th and 99th percentiles p(u∗t) are plotted against the diameter d. In Fig. 1(b,c,d), the trends of132

the coefficient of variation c.o.v., skewness sk and p95/p50 ratio are plotted, respectively.133

3. Results134

The section is organized as follows. Sub-section 3.1 provides preliminary results of the MC method. In Sub-135

section 3.2 the trend of the obtained statistical metrics is explored in order to clarify the complex graphs resulting136

from the three-dimensional surfaces of Q statistics.137

3.1. Preliminary findings138

First, we discuss the convergence of the first three Q statistical moments for an increasing cardinality n of139

Q(u∗, u∗t).140

The weighted absolute error ϕabs as well as the weighted residual ϕres of the generic parameter ϕ were averaged over141

100 random permutations of the order of Q(u∗, u∗t) for an assigned value of u∗/µ(u∗t).142

The rate of convergence is the same for each grain diameter, shear velocity and Q-model tested. However, the residuals143

differ with different Q-models and parameters. For example, in Fig. 2 the convergence of absolute and residual error144

is given with reference to the Kawamura (1951) model for u∗/µ(u∗t) = 1.5 and d = 0.25 mm. Fig. 2(a) confirms that145

the rate of convergence of the absolute error clearly follows the slope 1/n0.5, in agreement with MC theory (Caflisch,146
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1998). Fig. 2(b) plots the weighted residual to evaluate the total number of realizations # required to reach a desired147

accuracy. For the set-up above, even a modest cardinality n = 5e+2 allows µres,n ≈ σres,n ≈ 10−3 for the mean value148

and standard deviation of Q. This is a low residual error if compared with common engineering applications. As149

regards sk, n = 2e+3 allows a transport rate of about skres,n ≈ 10−3. Having in mind the low computational cost of a150

single realization and for the sake of precision, a cardinality # = 1e+6 is adopted in this study.151

Overall, a probability density function of Q can be determined for each sand transport rate model and for each152

value of d and u∗. By way of example, two estimates of fQ result from varying the Q-models, u∗ and d are shown in153

Fig. 3(a),(b) and (c), respectively. The adopted fu∗t (dotted line) is also shown for each fQ. The probability density154

functions are plotted over the normalized axis φ/p50(φ) of the generic variable φ. From Fig. 3, it is clear that different155

models, as well as different values of u∗ and d, induce a significant variation in both variance and skewness of Q.156

As a result, the range of predicted values of Q also changes considerably. An increasing or decreasing variance with157

respect to the mean value of Q represents an amplification or reduction in the uncertainty, respectively. The skewness158

quantifies the degree of non-Gaussianity in that uncertainty.159
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3.2. Sensitivity analysis160

For a given Q-model, a probability density function of Q corresponds to any point in the parameter plane d − u∗.161

In this study, this plane is sampled by 50 linearly spaced values of d ∈ [0.063, 1.2] mm and 50 linearly spaced values162

of u∗ ∈ [0.1, 2] m/s. This results in as many as 2500 numerical estimates of fQ for each Q-model, and in 10 billion163

realizations of Q in total. Given the considerable number of estimated densities fQ, the uncertainty in sand transport164

rate is represented by means of its statistical moments, for the sake of brevity and clarity. The mean value µ, the 95th
165

percentile p95, the standard deviation σ and the skewness sk of Q [kg m−1s−1] for each Q-model are plotted using166

contour plots in the parameter plane in Fig. 4.167

Qualitatively, the results do not appear to differ significantly in average terms. The general trend of µ(Q) is the168

same for each sand transport model and also similar to p95(Q). µ(Q) monotonically increases with increasing u∗169

for a given d. Conversely, the trend over d for a given u∗ is no more globally monotonic except for results from170

the Kawamura (1951) model. Here µ(Q) decreases with increasing d for small u∗ even if the trend may be locally171

non-monotonic, while µ(Q) increases with increasing d for large u∗. Strong discrepancies between the models arise172

for higher order statistics σ(Q) and sk(Q), both qualitatively and quantitatively. However, some similarities in model173

behaviours can be recognized. First, results from Kawamura (1951) and Kok et al. (2012) are qualitatively similar174

(Fig. 4c,d and Fig. 4o,p, respectively). Indeed, both σ(Q) and sk(Q) show local maxima and minima. Secondly,175

high moments from Owen (1964) and Lettau and Lettau (1978) (Fig. 4g,h and Fig. 4k,l, respectively) reveal com-176

mon trends. In particular, it is worth noting that sk(Q) remains constant for increasing values of u∗ above a common177

threshold of u∗ for each grain size. In sum, while the model proposed by Owen (1964) behaves qualitatively like the178

one of Lettau and Lettau (1978), the model proposed by Kawamura (1951) behaves qualitatively like the one of Kok179

et al. (2012). Whilst some similarities can be identified in the qualitative general trend, the quantitative discrepancies180

remain significant.181

In order to systematically discuss uncertainty propagation from u∗t to Q, Q statistics are compared to those of u∗t.182

We condense µ and σ into the coefficient of variation c.o.v., and normalize p95 with respect to p50 in order to deal with183

dimensionless statistical metrics. In this way, metrics referring to u∗t can be directly compared with those of Q. For184

the sake of graphical clarity, the comparison is made by reducing the 3D plots in Fig. 4 to 2D plots, where the generic185

statistical metric ϕ is plotted versus one parameter for given values of the other.186

In Fig. 5, ϕ(Q) are plotted over d for each Q-model and for some sampled values of u∗ (black continuous lines).187

The corresponding statistical metrics of u∗t versus d are plotted for comparison (dash dot lines). It is worth recalling188

that ϕ(u∗t) does not depend on u∗ or the Q-model. Even if Q has a first order dependency on u∗, a stronger determinant189

is the effective shear velocity (Eq. 3), which takes into account the threshold value u∗t. Hence, in Fig. 5 the statistical190

metrics of Q are also plotted for given values of the averaged effective ratio u∗/µ(u∗t) (dashed lines).191

The variability of the sand transport rate over d with respect to its mean value, i.e. c.o.v.(Q), is controlled by u∗192
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Figure 4: Contour plots of the first three statistical moments and 95th percentile of Q. Mean value µ, 95th percentile p95, standard deviation σ and
skewness sk according to different Q-models

(Fig. 5a,d). For slow winds (small u∗), the variability of Q is shown to increase with grain size for a given shear193

velocity for all the examined Q-models. For fast winds (large u∗), the results vary substantially depending on the194

Q-model. The influence of grain diameter on the variability of Q (c.o.v.(Q)) decreases considerably for the Owen195

(1964) and Lettau and Lettau (1978) models, while d strongly affects the variability of Q in the Kawamura (1951) and196

Kok et al. (2012) models. The c.o.v.(Q) dependence on d is much clearer for fixed u∗/µ(u∗t) ratios. Three fundamental197

states of the threshold shear velocity can be identified. First, when u∗ > µ(u∗t) the variability of Q decreases with198

increasing particle size, i.e. the low variability applies for coarse sands and large effective shear velocity. Secondly,199
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Figure 5: Uncertainty propagation from u∗t to Q. Q and u∗t statistical metrics versus d according to each Q-model

when u∗ ≈ µ(u∗t) the variability of Q is not particularly affected by d. Thirdly, when u∗ < µ(u∗t) the variability200

increases with increasing grain diameter d. For a given value of d, the typical relationship is lower variability in Q at201

higher values of u∗, except in the case of the Kok et al. (2012) model (Fig. 5d).202

The trend of p95/p50(Q) versus d and u∗ qualitatively follows the trend of c.o.v.(Q) (Fig. 5e-h). Indeed, p95/p50(Q)203

describes the variability of Q as a function of the tail event p95(Q), i.e. a large sand transport rate with a low204

chance of occurrence. Curves are simply stretched in the ordinate direction because p95/p50(Q) address a char-205

acteristic variability rather than the standard variation as measured by c.o.v. Analogously to c.o.v., all the models206

approach p95/p50(Q) = 1 with increasing u∗/µ(u∗t), except for the Kok et al. (2012) model where p95/p50(Q) tends to207

p95/p50(u∗t).208

Turning to the skewness (Fig. 5i-l), the behaviour of the models is qualitatively the same up to u∗ ≈ 0.5 m/s: sk(Q)209

increases over d, changing sign for 0.3 ≤ u∗ ≤ 0.5. Conversely, the trend of sk(Q) over d for about u∗ > 0.5 m/s210

varies significantly between the models and this is difficult to interpret. It is worth pointing out that sk(Q) versus d211

for the Owen (1964) and Lettau and Lettau (1978) models does not vary for u∗ > 0.5 m/s. Conversely, sk(Q) for the212

Kawamura (1951) and Kok et al. (2012) models changes its trend leading to local minima.213

To better understand the behaviour of the models with varying u∗, statistical metrics are evaluated over u∗/µ(u∗t)214

ratios for three fixed values of the sand grain diameter. In Fig. 6, c.o.v., p95/p50 and sk for Q are plotted over215
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u∗/µ(u∗t) ∈ [0.5, 50] at d = {0.1, 0.25, 0.5}mm. Values of u∗ equal to fifty times the mean threshold shear velocity216

are out of scope for real world saltation phenomena. In fact, u∗ ≈ 1 ÷ 2 m/s for extreme winds and this equates to217

u∗/µ(u∗t) ≈ 2 ÷ 10 in Fig. 6. However, large u∗ values are considered herein to assess the asymptotic behaviour of the218

statistical metrics. The values of the corresponding statistical metrics for u∗t are also reported for comparison.
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Figure 6: Uncertainty propagation from u∗t to Q. Q statistical metrics versus u∗/µ(u∗t) ratio for each Q-model

219

Generally, all the Q-models show approximately the same trend for all statistical metrics up to u∗/µ(u∗t) ≈ 1 (i.e.220

small or null Q). Conversely, each model shows a different behaviour at larger ratios at higher wind speeds. Hence,221

the uncertainty will propagate differently for u∗/µ(u∗t) > 1. c.o.v.(Q) and p95/p50(Q) (Fig. 6a-f) provide a reasonable222

measure of the variability of Q, and some information on the uncertainty propagation from u∗t to Q, i.e. if variability223

is damped or amplified. Focusing on c.o.v.(Q), the uncertainty in u∗t is amplified where u∗/µ(u∗t) < 1.5. Conversely,224
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the uncertainty is damped where u∗/µ(u∗t) > 1.5, except in the case of the Kok et al. (2012) model. In the case of225

u∗/µ(u∗t) > 1.5, the variability resulting from the Owen (1964) and Lettau and Lettau (1978) models decreases and226

tends monotonically to zero, while the variability resulting from the Kawamura (1951) and Kok et al. (2012) models227

exhibit local minima before tending to the curve of Lettau and Lettau (1978) and c.o.v.(u∗t), respectively. The model228

that shows the fastest convergence rate to zero is the one proposed by Owen (1964). The trend of p95/p50(Q) high-229

lights once again that the variability in Q decreases for increasing values of u∗, except for data derived from the model230

of Kok et al. (2012).231

The skewness values (Fig. 6g-i) better highlight the different behaviour of each model against u∗/µ(u∗t). In gen-232

eral, the sand transport rate predictions are non-Gaussian. For small u∗/µ(u∗t), they are all highly positively skewed.233

Indeed, fQ will show an extremely large frequency of null transport (i.e. a peak for Q = 0) and very low frequencies234

of non-null transport (i.e. right-tailed distribution). For intermediate u∗/µ(u∗t), the results from the Kawamura (1951)235

and Kok et al. (2012) models are highly negatively skewed, while the skewness from the Lettau and Lettau (1978)236

and Owen (1964) models is related to sk(u∗t). For large u∗/µ(u∗t), the degree of non-Gaussianity decreases to values237

related to sk(u∗t).238

The above results are determined by MC-based numerical experiments. The non-trivial trends observed suggest239

there is value in interpreting them in analytical terms by basic a-posteriori uncertainty propagation analysis. In order240

to do so, we generalized the adopted modified Bagnold type models to the same basic form:241

Q = Φ
ρa

g
u3
∗,e f f (u∗, u∗t) (3)

where Φ is the dimensionless semi-empirical parameter and u3
∗,e f f is the effective shear velocity determined as a242

function of u∗ and u∗t. The expressions of u3
∗,e f f is given in the second column of Table 2, for each Q-model.243

In deterministic terms, u3
∗,e f f is a third order polynomial of the variables u∗ and u∗t. Although, the analytical study of244

the function u3
∗,e f f is feasible, it is out of scope of the present study. In probabilistic terms, u3

∗,e f f is a transformation of245

the random variable u∗t and a function of the deterministic variable u∗. The analytical study of the statistical metrics246

of Q is unfeasible, since uncertainty propagation depends on the combination of u∗ and u∗t in a non-trivial way. Some247

light can be shed by the analytical evaluation of the limits of the statistical metrics of Q for u∗ → +∞. Given Equation248

3, the limit of Q metrics is equivalent to the one of u3
∗,e f f (u∗, u∗t). The limits of c.o.v.(Q), sk(Q) and p95/p50(Q) are249

obtained having in mind the basic properties of the same statistical metrics. For example, by referring to the c.o.v.(Q)250

resulting from the Kok et al. (2012) model we have:251

lim
u∗→+∞

c.o.v.(Q) = lim
u∗→+∞

σ(Q)
µ(Q)

= lim
u∗→+∞

σ
(
u3
∗,e f f

)
µ
(
u3
∗,e f f

) = lim
u∗→+∞

u2
∗σ (u∗t)

u2
∗µ (u∗t)

=
σ(u∗t)
µ(u∗t)

= c.o.v.(u∗t) (4)

Conversely, by referring to the c.o.v.(Q) resulting from all the other models:252

lim
u∗→+∞

c.o.v.(Q) = lim
u∗→+∞

σ(Q)
µ(Q)

= lim
u∗→+∞

σ
(
u3
∗,e f f

)
µ
(
u3
∗,e f f

) = lim
u∗→+∞

σ
(
u3
∗

)
µ
(
u3
∗

) = 0 (5)

Table 2 reports the full list of the analytical limits for each Q-model and statistical metric. In particular, they confirm253

the right-sided asymptotic tendencies of Fig. 6.254

Previously, we explored the asymptotic behaviour of the statistical metrics of Q. However, the limits for u∗ → +∞255

are not relevant in the practice. Hence, we reduced the range of the shear velocity under investigation so to assess256

realistic values of the coefficient of variation. In doing this we set the roughness length z0 = 0.003 m and the interval257

u∗ ∈ [0.1, 1] m/s. Such an interval corresponds to approximate wind speed values between 2 (light breeze) and 8 (gale)258

on the Beaufort scale, i.e. a scale that relates wind speed to observed weather conditions (Hasse, 2015). Furthermore,259

we adopted an additional condition on the mean value of Q in order to discard very large c.o.v. which correspond to260

very low sand transport rates. Hence, values of µ(Q) ≥ 10−3kg m−1s−1 are used in the analysis. The resulting values261

of the ratio c.o.v.(Q)/c.o.v.(u∗t) are reported in Fig. 7 for each model, and for three values of the sand grain diameter,262

namely d ∈ {0.1, 0.25, 0.50} mm.263
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Table 2: Limits of dimensionless statistical metrics of Q for u∗ → +∞

Reference u3
∗,e f f (u∗, u∗t) limu∗→+∞ c.o.v.(Q) limu∗→+∞ p95/p50(Q) limu∗→+∞ sk(Q)

Kawamura (1951) u3
∗

(
1 − u2

∗t

u2
∗

) (
1 + u∗t

u∗

)
0 0 sk(u∗t)

Owen (1964) u3
∗

(
1 − u2

∗t

u2
∗

)
0 0 −sk(u2

∗t)

Lettau and Lettau (1978) u3
∗

(
1 − u∗t

u∗

)
0 0 −sk(u∗t)

Kok et al. (2012) u2
∗u∗t

(
1 − u2

∗t

u2
∗

)
c.o.v.(u∗t) p95/p50(u∗t) sk(u∗t)

(a) (b) (c)
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Figure 7: Uncertainty propagation from u∗t to Q for realistic values of u∗. c.o.v.(Q)/c.o.v.(u∗t) versus u∗/µ(u∗t) for each Q-model and u∗ ∈
[0.1, 1] m/s

Fig. 7 quantifies the actual magnitude of the uncertainty propagation. In particular, c.o.v.(Q)/c.o.v.(u∗t) > 1 reflects264

uncertainty amplification, while c.o.v.(Q)/c.o.v.(u∗t) < 1 reflects uncertainty damping. Generally, c.o.v.(Q)/c.o.v.(u∗t)265

covers a range from 1 to 2 orders of magnitude. The variability in Q changes significantly in the adopted range of266

wind speed, ranging from small values below unity for gales (damped uncertainty from u∗t to Q) to very high values267

above unity and up to 20 for breezes (amplified uncertainty), notably for coarser sands. Indeed, c.o.v.(Q)/c.o.v.(u∗t)268

increases with increasing d for small values of u∗/µ(u∗t). Conversely, c.o.v.(Q)/c.o.v.(u∗t) remains almost constant269

with increasing d for large values of u∗/µ(u∗t). Hence, the variation in particle size mostly affects the uncertainty270

propagation when u∗ is close to µ(u∗t).271

4. Discussion272

Our results indicate that the uncertainty in threshold shear velocity u∗t propagates into predictions of sand transport273

rate Q. The numerical uncertainty propagation investigated in this study can be viewed as a reflection of both physical274

and statistical processes. From a physical point of view, the variability of u∗t affects the mechanics of the sand275

saltation. From a statistical point of view, the modelling, measurement, and parametric uncertainty in u∗t propagates276

to Q. However, the characteristics of this propagation vary depending upon the Q-model, the sand grain diameter d,277

and the wind shear velocity u∗.278

The discrepancies in uncertainty propagation among Q-models can be ascribed to the general form of u3
∗,e f f . For279

the sake of clarity, the effective shear velocity was split between u3
∗,e f f = U∗Ψ∗, where U∗ representing sustained280

saltation and Ψ∗ representing triggering of saltation. In particular, U∗ express the scaling of the particle speed, while281
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Ψ∗ express the effective shear velocity translation as a function of u∗t. The resulting values of U∗ and Ψ∗ for each282

Q-model are reported in Table 3.

Table 3: General form of the effective shear velocity u3
∗,e f f = U∗Ψ∗. Saltation sustainingU∗ and saltation triggering Ψ∗ according to each sand

transport rate model

Reference U∗ Ψ∗
Kawamura (1951) u∗ + u∗t u2

∗ − u2
∗t

Owen (1964) u∗ u2
∗ − u2

∗t
Lettau and Lettau (1978) u2

∗ u∗ − u∗t
Kok et al. (2012) u∗t u2

∗ − u2
∗t

283

The physical interpretation of our results is clear from Table 3. The Kok et al. (2012) model propagates the same284

amount of uncertainty of u∗t to Q for strong winds. In formulas, for the generic dimensionless statistical metric ϕ, it285

holds that limu∗→+∞ ϕ(Q) = ϕ(u∗t). Conversely, the other models behave differently: the uncertainty is damped from286

u∗t to Q for strong winds and the variation tends to zero. An interpretation of these marked differences in behaviour287

of the models can be obtained with reference to the saltation sustaining U∗ and the saltation triggering Ψ∗.288

U∗ drives the uncertainty propagation for strong winds since limu∗→+∞ ϕ(Ψ∗) = 0. Kok et al. (2012) explicitly adopt289

the impact threshold for U∗. Under this assumption the asymptotic trend of Q statistical metrics looks physically290

sound since saltation is carried out by grain impacts and the particle terminal velocity does not depend on u∗ (see Kok291

et al., 2012, and related references). Owen (1964) and Lettau and Lettau (1978) adopt u∗ and u2
∗, respectively. Hence,292

saltation is sustained purely by wind entrainment. Kawamura (1951) adopts the sum of u∗ and u∗t. However, the293

statistical metrics of the Kawamura (1951) model tend to the ones of Owen (1964) and Lettau and Lettau (1978) for294

strong winds. In this sense, the models of Kawamura (1951), Owen (1964) and Lettau and Lettau (1978) are consistent295

with the adoption of the fluid threshold. Under this assumption saltation is initiated purely by wind entrainment and296

uncertainty in the fluid threshold has a greater impact at wind speeds close to the threshold. This issue represents a297

source of epistemic model uncertainty since uncertainty in threshold choice is not a resolved debate in the scientific298

literature. We hope that the present study contributes to the discussion on this open issue and stimulates debate. It299

is worth pointing out that the effective shear velocity in Kawamura (1951) is the summation of the u3
∗,e f f from Owen300

(1964) and Kok et al. (2012). Indeed, the statistical metrics of Q resulting from the Kawamura (1951) model are301

hybrid (see Fig. 6).302

As regards Ψ∗, it is the same for all the Q-models except for Lettau and Lettau (1978). Indeed, for the Kawamura303

(1951), Owen (1964) and Kok et al. (2012) models Ψ∗ reflects the general physical scaling Q ∝ τe f f = ρa(u2
∗ − u2

∗t),304

where τe f f is the effective shear stress. Conversely, the Lettau and Lettau (1978) model shows a linear translation. We305

believe that the reasons for this discrepancy could be ascribed to the empirical fitting of the Q-model.306

In light of our results, three main observations can be made:307

1. Differences in the propagation of uncertainty between different sand transport models are significant and can308

reach an order of magnitude. Sarre (1987), Sherman et al. (1998, 2013) and Sherman and Li (2012) have309

highlighted the discrepancies between models in deterministic terms. The adoption of one model over another310

gives rise to differences not only in the mean values, but also much larger differences in terms of variance,311

skewness and extreme percentiles (see Fig. 4). These kinds of discrepancies between model predictions become312

more noticeable in the range u∗/µ(u∗t) ∈ [2, 5] (see Fig. 6). This range is of practical interest for real world313

windblown sand events;314

2. Differences in uncertainty propagation caused by varying u∗ show that for slow wind speeds the uncertainty315

in Q is amplified with respect to the uncertainty in u∗t. Slow wind speeds occur frequently in nature due to316

the Weibull probability density function of wind speed. Hence, amplification in Q uncertainty is a potentially317

large practical issue if not accounted for correctly. In contrast, in strong winds the uncertainty of u∗t does not318

significantly affect Q, except in the model results of Kok et al. (2012) (see Fig. 6a-c). The physical interpretation319

of the local and global minima of the statistical metrics occurring for intermediate values of u∗/µ(u∗t) ∈ [2, 3]320

in Kawamura (1951) and Kok et al. (2012) is not straightforward (Fig. 6). Analytically, they result from the321
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presence of u∗t in the saltation sustaining term U∗. In the practice, the global minima of the skewness imply an322

underestimation of Q for related wind speeds by employing the Kawamura (1951) and Kok et al. (2012) models323

with respect to the Owen (1964) and Lettau and Lettau (1978) models;324

3. Differences in uncertainty propagation caused by varying the sand grain diameter, d, highlight that, for slow325

winds the variability in Q increases for coarse sands whilst, for strong winds, the variability in Q is less affected326

by d, except in the model results of Kok et al. (2012) (see Fig. 5a-d). For realistic values of u∗, errors in the327

estimation of d propagate to Q prediction primarily for slow winds (Fig. 7). However, it is worth pointing out328

that the effect of d on the nominal sand transport rate remains an open issue (Dong et al., 2003; Valence, 2015).329

In light of the above observations, the choice of a Q-model should be performed not only to achieve the best prediction330

of the mean sand transport rate, but also in consideration of the uncertainty propagation in practical estimation of331

probabilistic sand transport rate. However, care must be taken since the choice of the model considerably affects the332

uncertainty of Q predictions. Further experimental investigations on sand transport rate uncertainty could shed some333

light on these issues.334

5. Conclusions335

The present study critically investigated the uncertainty propagation from threshold shear velocity to sand trans-336

port rate. In particular, threshold shear velocity was considered as the only source of randomness in sand transport337

rate models, while the other parameters were assumed to be deterministic. Statistical moments and metrics of Q were338

assessed via the Monte Carlo method by varying the adopted sand transport model and the values of u∗ and d.339

Our results have allowed us to assess the amplification or reduction in the uncertainty of sand transport rate with340

respect to the uncertainty in threshold shear velocity. The strong differences in uncertainty propagation between exam-341

ined sand transport rate models led us to ascribe them to the general form of the effective shear velocity. In particular,342

in the case of slow speed winds close to the erosion threshold, every model we have tested tends to amplify the vari-343

ability of Q, in some cases up to 20 times the variability of u∗t. In addition, the variability of Q is seen to increase for344

coarse sand. These results allow further insight into the behaviour of the sand transport rate models. In the case of345

strong winds, Q-models present two substantial differences. The models of Kawamura (1951); Owen (1964); Lettau346

and Lettau (1978) dampen the uncertainty in u∗t and the effect of d on Q uncertainty, while the model of Kok et al.347

(2012) propagates the exact amount of uncertainty in u∗t to Q. The adoption of a particular sand transport model348

therefore has implications not only on the mean value of Q but also on Q uncertainty.349

In light of these results, we highlight three research opportunities:350

First, considering the large discrepancies in statistical terms between different models belonging to the same basic351

form of modified Bagnold type models, it would be worth assessing by means of experimental measurements how the352

uncertainty physically propagates from u∗t to Q.353

Second, the development of a generalized probabilistic model for sand transport rate would be worth further investi-354

gation.355

Third, since our results refer to the uncertainty evident in the instantaneous sand transport rate, it might be worth356

investigating how the uncertainty propagates when evaluating the drift potential (DP), i.e. the cumulative value of the357

sand transport rate over time (Fryberger and Dean, 1979). We conjecture that the uncertainty in DP will be damped.358

Indeed, the sum of independent and identically distributed random variables is expected from theory to reduce the359

resultant coefficient of variation. However, the entity of the uncertainty in DP should be quantified and, if significant,360

considered in practice.361
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