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Abstract 

Studies have suggested a degeneration of lower motoneurons in muscles affected 

after stroke, with a possible collateral reinnervation from the surviving 

motoneurons to the denervated muscle fibers.  If this assumption holds, each 

surviving motoneuron would innervate a greater amount of muscle fibers following 

stroke, i.e., motor units’ size would increase in muscles affected after stroke.  By 

combining neuromuscular electrical stimulation with surface electromyography, 

the present PhD thesis aimed at investigating whether muscle reinnervation 

following stroke leads to greater variations in the amplitude of M waves elicited in 

muscles of the affected side of stroke patients, with respect to the contralateral, 

unaffected side. This issue was verified by applying current pulses at progressively 

greater intensities in the motoneurons that supply the biceps brachii muscle. Then, 

the size of increases in the amplitude of M waves elicited consecutively, hereafter 

defined as increments, was considered to evaluate structural adaptations in biceps 

brachii motor units following stroke. Changes in the amplitude of M waves evoked 

in a muscle is usually assumed to reflect changes in the number of motoneurons 

and, consequently, of muscle fibers activated. Hence, we hypothesized that for 

similar, relative increases in current intensity, greater increments in the M-waves 

amplitude would be observed in muscles of the affected than unaffected side of 

stroke patients. Before verifying this hypothesis, however, we investigated whether 

the size of increments in biceps brachii M waves differ between arms of healthy 

subjects. This question was motivated by the fact that, usually, humans tend to 

control more finely the muscle force production in dominant than non-dominant 

upper limbs. Once it is well established the recruitment of motor units is a key 

mechanism for which muscle force is controlled, we hypothesized that a relatively 

smaller number of motor units maybe recruited in muscles of dominant than non-

dominant limbs, for any given increase in synaptic input.  Hence, we expected to 

observe smaller increments in the amplitude of M waves evoked in biceps brachii 

of dominant than non-dominant arms.  This PhD thesis was, therefore, based on two



  

 

main researches, entitled: (1) “Does the biceps brachii muscle respond similarly in 

both limbs during staircase, electrically elicited contractions?” and (2) “Assessing 

structural adaptation of biceps brachii motor units after stroke”.  Both studies were 

investigated with the same methodological approach mentioned above. Our main 

findings showed that: (1) increments were significantly smaller in biceps brachii of 

dominant than non-dominant arms. These results suggest there was a more gradual 

motor units’ recruitment and, therefore, a broader spectrum of motor units’ 

recruitment thresholds in muscles of dominant than non-dominant arms, which may 

contribute for a finer regulation of force production; (2) there was a clear trend 

towards greater increments in the amplitude of M waves elicited in biceps brachii 

of the affected than unaffected arms of most of the stroke patients evaluated. 

Although for few of these patients it was not clear whether side-differences in the 

increments magnitude were an outcome of dominance or stroke, the results found 

corroborate with the notion that collateral reinnervation takes place after stroke, 

increasing the number of muscle fibers per unit and, therefore, the magnitude of the 

muscle responses. Overall, the findings of this PhD thesis strengthen the idea that 

the organization of the neuromuscular system may contribute to accounting for 

upper limb dominance and that stroke may lead to structural adaptations in motor 

units of affected muscles. 
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Chapter 1 

Stroke effects on the 

neuromuscular system 

1.1 What is the stroke? 

The cerebrovascular accident, also referred to as stroke, is defined as a disruption 

of the blood supply to the brain leading to a sudden death of brain cells due to a 

deprivation of oxygen and nutrients (National Stroke Association; World Health 

Organization).  The stroke is one of the types of cardiovascular diseases that most 

affects the world population, mainly aging people.  Every year, about six million 

people worldwide die following stroke, and another five million remain disable.  

Indeed, according to the Word Heart Federation, the stroke is considered the second 

leading cause of disability in the world.  Depending on the area affected in the brain, 

the stroke may cause a complete or partial paralysis of one side of the body 

(hemiplegia and hemiparesis, respectively), loss of vision and/or speech, confusion 

and many other problems. 

The disruption of the blood supply to the brain may be caused either by a blockage 

or by a rupture of a blood vessel.  In the first case, the cerebrovascular accident is 

defined as ischemic stroke and, in the second one, it is defined as hemorrhagic 

stroke.  The ischemic stroke is the most common type of stroke, where the blood 

vessel in the brain is blocked by a blood clot generated either within the brain 

(thrombotic stroke) or in somewhere else in the body and traveled through the 
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circulation until lodge in the brain (embolic stroke).  In the hemorrhagic stroke, the 

blood vessel in the brain may rupture when a brain aneurysm bursts or when a 

weakened blood vessel leaks (National Stroke Association).  Regardless the type of 

stroke and the way it happens, the death of brain cells seems to be inevitable, 

leading to many other consequences in the body of stroke survivors. 

1.2 Motoneurons degeneration in stroke survivors 

Studies have suggested that after stroke there is a degeneration of the lower 

motoneurons that innervate muscles in the affected side of stroke survivors 

(McComas et al. 1973; Hara et al. 2004; Lukács 2005; Kouzi et al. 2014).  This 

degeneration has been associated with a process called "anterograde transneural 

degeneration" or “trans-synaptic degeneration”, which according to Cowan (1970), 

denotes the death of neurons due to the interruption of the transmission of afferents 

synaptic impulses (deafferentation).  Briefly, the terms “transneural degeneration” 

refer to the death of a second order neuron, i.e. there is a cell loss of postsynaptic 

neurons associated with presynaptic neurons which was damaged, and the term 

“anterograde” refers to the direction of the degenerative change, which in this case 

means that degeneration is secondary to deafferentation (Cowan 1970; pages 217-

218).   

Interesting, Terao et al. (1997) reported that lesions in the corticospinal tract due to 

stroke did not result in "anterograde transneural degeneration" of spinal anterior 

horn cells.  The authors performed autopsies in the fourth lumbar segment of the 

spinal cord of four subjects who had severe spastic hemiplegia.  The time elapsed 

since the stroke onset varied among subjects in a range from one to eight years.  

Although the authors have observed, for all subjects, an extensive loss of axons in 

the lateral corticospinal tract in the left dorsolateral column on both spinal segments 

analyzed, they did not find differences between affected and unaffected sides 

related to the amount, the diameter and the size distribution patterns of neurons in 

the ventral horn.  Their results do not necessarily indicate, however, that lower 

motoneurons degeneration do not occur after stroke onset.  As stated by McComas 

et al. (1973), the evidence of axonal degeneration in the presence of an apparently 

intact soma may be explained by a process called “dying back”.  In this case, there 

is a distal to proximal gradient of degeneration, i.e., neurons die back gradually 

from the periphery to the cell body (Turner and Kiernan 2015; page 413). 

Motoneurons degeneration in stroke survivors has been mainly suggested by studies 

which investigated the number of motor units in different muscles affected after 
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stroke (McComas et al. 1973; Hara et al. 2004; Li et al. 2011, 2014a; Kouzi et al. 

2014), through techniques of “motor unit number estimation” (see chapter 2).  Table 

1 shows the specific techniques applied by each study, the respective muscle(s) 

assessed and the results found.  In general, studies reported significant minor 

amount of motor units in muscles affected after stroke with respect to healthy 

muscles (i.e., muscles of healthy subjects or unaffected muscles of stroke 

survivors).  Considering only the studies’ results with significant difference 

between muscles (P < 0.05; cf. Table 1), the number of motor units was on average 

23-57% smaller in affected than healthy or unaffected muscles.   Li et al. (2014a), 

however, did not observe significant difference between the number of motor units 

in the affected and unaffected abductor digit minimi and abductor pollicis brevis 

muscles of 12 stroke patients. 

Previous accounts have also suggested that degeneration mainly affects 

motoneurons of larger sizes.  The first evidence of such statement seems to have 

been reported by McComas et al. (1973).  By analyzing the contraction time of 

maximal isometric twitches electrically elicited in the extensor halluces brevis 

muscles, the authors observed a mean contraction time significantly slower in 

muscles of affected than unaffected sides of nine stroke patients, suggesting the 

surviving motoneurons in the affected side tended to innervate relatively slow 

twitch muscle fibers.  Usually, the muscle fiber type is related to the size of 

motoneurons innervating the muscle fibers, where relatively small and large 

motoneurons innervate slow and fast twitch muscle fibers, respectively (McPhedran 

et al. 1965a, b).  Thus, McComas et al. (1973) findings may indicate that there were 

motoneurons with relatively larger sizes in the unaffected with respect to the 

affected muscles of the stroke patients evaluated.  Hence, their results may be 

evidence of a predominant degeneration of motoneurons with relatively larger sizes 

in muscles affected after stroke.   
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Table 1: Studies which compared the number of motor units between unaffected and 

affected muscles of stroke survivors. 

Reference 

Technique applied to 

estimate the number of 

motor units 

Muscle(s) 

analyzed 

Average number of 

motor units estimated  

McComas 

et al. (1973) 

MUNE  

(incremental method) 

Extensor 

digitorum 

brevis 

Unaffected: 216.7 ± 7.9 

Affected: 93.7 ± 8.4 

 (N = 27; P < 0.001) 

Hara et al. 

(2004) 

MUNE  

(F-wave method) 

Abductor 

pollicis brevis 

Unaffected: 316 ± 43 

Affected: 237 ± 50 

 (N = 14; P < 0.05) 

Li et al. 

(2011) 
MUNIX 

First dorsal 

interosseous 

Unaffected: 153 ± 38 

Affected: 109 ± 53 

 (N = 9; P < 0.01) 

Kouzi et al. 

(2014) 

MUNE 

(multiple point method) 

Abductor digit 

minimi 

Unaffected: 363 ± 135 

Affected: 227 ± 88 

 (N = 46; P < 0.001) 

Li et al. 

(2014a)  

 

MUNIX 

First dorsal 

interosseous  

 

 

Abductor 

pollicis brevis 

 

 

Abductor digit 

minimi 

Unaffected: 191 ± 17 

Affected: 147 ± 21 

 (N = 12; P < 0.05) 

 

Unaffected: 135 ± 14 

Affected: 112 ± 10 

 (N = 12; P > 0.2) 

 

Unaffected: 138 ± 10 

Affected: 140 ± 21 

 (N = 12; P > 0.9) 
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The assumption above has been reinforced by more recent studies, which analyzed 

motor units’ responses at time and frequency domain during voluntary isometric 

contractions.  Lukács et al. (2008), for instance, recorded macro-electromyographic 

(macro-EMG) signals from the abductor digit minimi of 45 stroke patients and 40 

healthy subjects (control group), during isometric contractions at two different force 

levels: 10 and 50 % of the maximal voluntary contraction (MVC).  At the lower 

force level, median amplitude of action potentials was similar among muscles of 

the control group and of unaffected and affect limbs of stroke patients.  

Nevertheless, at the higher force level, the median amplitude of potentials recorded 

in affected muscles was smaller than muscles of unaffected and control groups and 

did not differ from the amplitude recorded at the low force level.  According to the 

Henneman’s size principle (Henneman 1957; Henneman et al. 1965a), the authors 

presumed that at low and high force levels would be activated, respectively, small 

and large motor units in the muscles evaluated.  Consequently, the amplitude of 

macro motor unit potential should be larger at the high force levels.  From that, 

Lukács et al. (2008) suggested the degeneration of large motoneurons as one 

possible reason for the results found in the abductor digit minimi muscles of 

affected limbs of the stroke patients, i.e., no changes in the amplitude of macro 

motor unit potentials for increase in the force level.  Additionally, through the 

surface EMG (see chapter 2), Kallenberg and Hermens (2009) and Li et al. (2014b) 

detected EMG signals from biceps brachii and first dorsal interosseous muscles, 

respectively, in both affected and unaffected sides of stroke patients.  By evaluating 

the power spectrum of the EMG signals detected in these muscles during isometric 

contractions at different force levels [5 to 50% of the muscle’s MVC, with steps of 

5% (Kallenberg and Hermens 2009); 30 to 70% of muscles’ MVC, with steps of 

10% (Li et al. 2014b)], both studies reported significantly lower mean power 

frequency in affected than unaffected muscles.  Considering that a lower mean 

power frequency is associated with a lower muscle fiber conduction velocity, the 

authors of both studies suggested the muscles affected after stroke had a greater 

predominance of type I motor units, which are generally characterized by 

innervating slow twitch muscle fibers, with lower conduction velocity.  

Furthermore, since type I motor units have lower thresholds and smaller sizes, the 

authors also suggested a predominant degeneration of large motoneurons in 

muscles affected after stroke. 



6 Stroke effects on the neuromuscular system 

 

  

1.2.1 How long does motoneuron degeneration last in stroke 

survivors?  

Results related to when motoneurons degeneration begins and ends after the stroke 

onset are controversial in the literature.  Through the incremental MUNE method 

(see chapter 2), McComas et al. (1973) observed the number of motor units in 

extensor digitorum brevis muscles seems to have not been affected in stroke 

patients with less than two months since the stroke onset, while for patients who 

stroke happened longer than two months, there was a significantly reduction in the 

number of motor units in affected with respect to the unaffected muscles.  After six 

months from the stroke onset, however, the authors did not observe a correlation 

between the time elapsed and the number of surviving motor units, suggesting the 

loss of motor unit occurred until six months from the stroke onset.  Hara et al. 

(2004), however, reported that the motor unit loss begins no later than nine days 

after the stroke onset.  By investigating the number of motor units in abductor 

pollicis brevis muscles of 14 stroke patients, through the F-wave MUNE method, 

the authors observed amounts of motor units significantly smaller in affected than 

unaffected muscles of stroke patients who the time elapse since the stroke onset 

ranged from 9 to 28 days.  Additionally, to investigate the progress of the loss of 

motor units, Hara et al. (2004) reevaluated nine patients at three/four months and 

one year after their stroke onset.  In both periods of reevaluation, the number of 

motor units remained significantly smaller in affected than unaffected muscles, 

however, no statistical difference were observed when comparing the number of 

motor units between the periods of reevaluation.  The authors suggest therefore 

there was no progress in the loss of motor units after three/four months from the 

stroke onset.   

1.2.2 Motoneurons degeneration and severity of stroke  

A higher degree of motor impairment following stroke seems to lead to further 

lower motoneurons degeneration in stroke survivors.  Hara et al. (2004), for 

instance, observed the greater was the hemiparetic severity in abductor pollicis 

brevis muscles of 14 stroke patients, evaluated through the Stroke Impairment 

Assessment Set (SIAS), the lower was the number of motor units estimated with F-

wave MUNE method in affected than unaffected muscles.  The authors suggested, 

therefore, further motor unit loss in patients with severe hemiparesis.  Combining 

supramaximal electrical stimulation with surface EMG, Lukács (2005) investigated 

the maximal M-wave (see chapter 2) amplitude recorded in the abductor digiti 



1.2 Motoneurons degeneration in stroke survivors 7 

 

minimi muscles of 48 stroke patients.  The author reported that for patients in the 

acute phase, smaller M-wave amplitude were more explicit in the cases with higher 

severity of the hemiparesis, evaluated through the Scandinavian Stroke Scale.  

Lukács (2005) suggested therefore that the inactivity or degeneration of lower 

motoneurons was more evident for higher stroke severity.  By using a different 

approach to investigate changes in motor units following stroke, Lukács et al. 

(2008) evaluated the amplitude of macro motor unit potentials (macro-MUP) in the 

abductor digit minimi of 45 stroke patients, at a low (10% MVC) and a high (50% 

MVC) force level of voluntary isometric contractions.  The authors correlated the 

ratio between the macro-MUP amplitudes at high and low force levels with the 

degree of stroke severity assessed with the Scandinavian Stroke Scale.  The greater 

was the degree of stroke severity in the patients evaluated, more similar were the 

macro-MUP amplitudes measured in the affected muscles between the force levels.  

Considering the degeneration of large motoneurons as a possible reason for no 

changes in the macro-MUP amplitudes for increase in the force level, the authors 

suggested the higher degree of stroke severity seems to lead a greater loss of 

motoneurons in muscles affected after stroke.  Kallenberg and Hermens (2009) 

found similar results by measuring the root mean square (RMS) amplitude of 

MUAPs detected on biceps brachii muscles of 15 stroke patients, during isometric 

voluntary contractions performed at ten different force levels (5 to 50% of the 

muscle’s MVC, with steps of 5%).  The authors observed a significant positive 

correlation between the degree of motor recovery, evaluated through the Fugl-

Meyer scale, and the ratio of RMS amplitudes measured on affected divided by 

unaffected muscles.  In other words, the higher was the stroke severity of the 

patients evaluated, the lower was the amplitude of MUAPs detected in muscles of 

affected with respect to unaffected sides.  Although the authors have not discussed 

about this, the lower MUAP amplitude observed in the affected muscles of five out 

of 15 patients, for the different force levels, may indicate a loss of large 

motoneurons in these muscles.  Interesting, these subjects were those with the lower 

Fugl-Meyer score and, therefore, the degeneration of motoneurons seems to be 

influenced by the degree of stroke severity. 

1.2.3 What comes after the motoneuron degeneration in stroke 

survivors? 

It is still uncertain what happens after the degeneration of motoneurons in muscles 

affected following the stroke.  There is some evidence that a reinnervation process 

takes place after stroke, through collateral reinnervation by the surviving 
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motoneurons into the muscle fibers denervated due to the “anterograde transneural 

degeneration” of the affected motoneurons.  The amplitude of motor units’ 

potentials, evaluated either in voluntary or in electrically elicited contractions, have 

been the main indicator of the occurrence of collateral reinnervation in muscles 

affected after stroke.  McComas et al. (1973), for instance, showed the amplitude 

of M waves, elicited in extensor digitorum brevis muscles of stroke patients, remain 

similar between affected and unaffected legs of patients who the time elapsed since 

the stroke onset ranged between six and 19 months.  However, for patients who the 

length of the illness was above 19 months, M-waves amplitude was greater in 

affected than unaffected muscles, suggesting, according to the authors, either a 

reinnervation of denervated fibers or a muscle fiber hypertrophy.  During voluntary 

isometric contractions performed at different force levels, Kallenberg and Hermens 

(2009) reported higher RMS amplitudes of MUAPs detected on affected with 

respect to unaffected biceps brachii muscles of seven out of 15 stroke patients.  

Although there was no statistical difference between subjects’ limbs, considering 

that larger RMS amplitudes indicate the presence of larger motor units in the 

muscle, the authors suggested that muscle fibers of affected muscles were 

reinnervated by collateral sprouting and branching, leading to an increase in the 

MUAPs’ amplitude.  Additionally, Lukács et al. (2009) evaluated the fiber density 

of abductor digiti minimi muscles of 42 healthy subjects and 59 stroke patients, and 

observed higher fiber density in muscles affected after stroke with respect to those 

of healthy subjects.  Although the method used by the authors likely allowed the 

evaluation of a relatively small portion of the entire pool of motor units in the 

muscle, Lukács et al. (2009) believed the greater number of muscle fibers innervate 

by single motor unit in a given area of the affected muscles (i.e., greater fiber 

density) may be explain by a collateral reinnervation originating from the survivors 

motoneurons.  Finally, Li et al. (2013) analyzed surface EMG signals from the first 

dorsal interosseous muscle while 14 stroke patients performed isometric 

contractions at different force levels (20-80% MVC with 10% of step).  The authors 

found that, for all force levels evaluated, the amplitude distribution of the EMG 

signals detected shift toward larger amplitude peaks over the affected than 

unaffected muscles of nine out of 14 subjects.  Although there was no significant 

difference between sides, Li et al. (2013) interpreted these results as a possible 

occurrence of muscle fiber reinnervation due to spinal motoneuron degeneration in 

muscles affected after stroke. 

If a reinnervation process really happens after stroke, each surviving motoneuron 

may innervate a greater amount of muscle fibers in the affected limb of stroke 

patients, i.e. the number of muscle fibers per motor unit (innervation ratio) of the 



1.2 Motoneurons degeneration in stroke survivors 9 

 

affected muscle would increase after stroke.  Such alleged change in the innervation 

ratio of muscles affected after stroke likely accounts for the inability of stroke 

survivors in finely controlling movements with the affected limb.  The force 

generated by single motor units in relation to the total muscle force reflects the 

quantal increment in muscle force, thereby indicating how finely force maybe 

regulated.  In addition, the amount of force produced by individual units is 

proportional to the number of muscle fibers they supply.  Hence, given similar 

synaptic inputs, a muscle with relatively low innervation ratio (i.e. few muscle 

fibers per motor unit) would be able to produce finer increments in force, with 

respect to muscles with higher innervation ratios. This implies that, if the 

innervation ratio of muscles affected after stroke increases due to a collateral 

reinnervation, the muscles affected would be expected to do not produce increments 

in twitch force as finely as healthy muscles.  Indeed, a recent systematic review of 

Kang and Cauraugh (2015) reported evidence of impaired accuracy of force 

production in muscles of stroke survivors. 
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Chapter 2 

Incremental electrical stimulation 

and surface EMG for indirectly 

assessing neuromuscular 

adaptations in stroke 

2.1 Surface EMG 

The functional unit of the neuromuscular system is the motor unit, which consist of 

two components: a single motoneuron, comprising it dendrites and axon, and the 

muscle fibers innervated by its axon, also referred to as the muscle unit.  When a 

motoneuron fires, it triggers, through the neuromuscular junction, a depolarization 

in the sarcolemma of the muscle fibers innervated by its axon, that propagates in 

opposite directions towards the two ends of the muscle fibers.  Such depolarization 

generates an electric potential, called action potential, which can be recorded 

through electrodes placed on the skin over the muscle; technique known as surface 

electromyography.  The signal detected by surface electrodes (electromyogram; 

EMG) reflect the summation of multiple motor unit action potentials (MUAPs) 

generated by the depolarization of the sarcolemma of their muscle fibers (Heckman 

and Enoka 2012; Merletti and Farina 2016).  
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Typically, a single pair of surface electrodes is used for the sampling of EMGs from 

individual muscles. This type of EMG recording is known as a bipolar surface 

EMG. Briefly, the bipolar EMG corresponds to the difference between the voltage 

measured through the couple of electrodes and that measured by the reference 

electrode (presumably zero), often located at bony regions on the skin. Due to the 

short inter-electrode distance usually adopted, bipolar EMG reflects muscle activity 

locally. More recent detection systems enable the sampling of surface EMGs from 

different regions of a single muscle. High-density surface EMG is the general 

terminology used to indicate the sampling of muscle activity with multiple (more 

than two) closely spaced electrodes from an individual muscle.  Two electrode 

configurations are usually available to collect multiple surface EMGs; monopolar 

or bipolar configuration. Briefly, in the monopolar configuration, the EMG signal 

correspond to the difference between the electrical potential measured by one 

surface electrode and that measured by the reference electrode (Merletti and Farina 

2016).  Even though monopolar configuration ensures the recording of the actual 

electrical potential, interferences from outside sources (e.g., power line interference 

due to parasitic capacitance) and/or the activity of muscles located closer to the 

targeted muscle (crosstalk) might be recorded from this configuration (Vieira and 

Garcia 2011).  Given that the bipolar or differential EMG consists in the difference 

between two monopolar EMGs, the common-mode embedded in both monopolar 

signals, due to crosstalk or to power line interference, is fairly attenuated in the 

differential EMG.  However, the contribution of deep motor units might be reduced 

in bipolar EMGs, since the motor unit action potentials generated by deep units 

normally appear with equal amplitudes in the monopolar EMGs (Roeleveld et al. 

1997a; Rodriguez-Falces and Place 2016).  Then, depending on the type of 

electrode recording, the contribution of deep motor units within the muscle or the 

contribution of interference sources can be attenuated to the surface EMGs.  

2.2 Electrical stimulation of the peripheral nervous system 

Neuromuscular electrical stimulation consists in the application of electrical stimuli 

to superficial skeletal muscles, with the main purpose of generate visible muscle 

contractions by activating the motoneuron axons or the intramuscular nerve 

branches (Hultman et al. 1983).  Differently from voluntary contractions, the 

neuromuscular electrical stimulation enables to control the discharge frequency and 

the number of motor units activated in a muscle, through the frequency and the 

amplitude of the stimulation pulses, respectively.  Hence, as a research tool, the 

neuromuscular electrical stimulation allows the in vivo evaluation of the 
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neuromuscular function, inducing muscle contractions in a more standardized way 

with respect to voluntary contractions.   

Muscle contractions may be electrically induced by positioning superficial 

stimulation electrodes either in the nerve trunk or in the muscle motor point [i.e., 

the location where the motor branches of a nerve enter the muscle belly (Botter et 

al. 2011; Merletti and Farina 2016)], hereafter named as nerve and muscle 

stimulation, respectively.  Usually, at the level of the nerve trunk, axons beneath 

the stimulation electrodes are located in close proximity to one another and, 

therefore, nerve stimulation allows to delivery electrical charges to most, if not all, 

of the motor fibers innervating a muscle.  At the level of the muscle, however, axon 

terminal branches may be distinctly distributed within muscles.  Recent findings of 

Rodriguez-Falces and colleagues (Rodriguez-Falces et al. 2013a; Rodriguez-Falces 

and Place 2013), for instance, suggested the motor nerve endings of the vastus 

medialis muscle are distributed over a small portion of the muscle cross-section, 

while motor branches of the vastus lateralis muscle would be more spread out 

within the muscle.  The authors suggested, therefore, that muscle stimulation 

depends on the spatial organization of the axonal terminal branches within the 

muscle.  

Regardless of where electrical stimulation is applied, over the nerve trunk or the 

muscle motor point, the activation of the motor axons innervating a muscle depends 

on the amount of electrical charges required to reach their excitability thresholds 

(i.e., to depolarized the axon membrane). Specifically, large-diameter axons have a 

lower threshold of electrical excitability than small-diameter axons and, therefore, 

are more easily excited by imposed electrical fields (Stephens et al. 1978).  This is 

explained by the inverse relation between axon diameter and axial resistance, which 

allows the flow of current across the axon to occur at a lower transmembrane current 

for axons with large-diameter (Enoka 2002).  Based on that, one could think that 

motor units are electrically elicited in a reverse order as the one observed for 

voluntary contractions [Henneman’s size principle (Henneman 1957; Henneman et 

al. 1965a)], i.e. that motor units are activated in order of decreasing size when 

electrically stimulated.  However, during electrical stimulation of increasing 

intensity, the recruitment order of motor units within a muscle depends not only on 

the diameter of the axon, but also on its distance from the stimulation electrode and 

its orientation with respect to the current field.  Contradictory results have been 

reported with respect to the motor unit recruitment order during electrical 

stimulation of increasing intensity.  The recruitment order according to the 
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Henneman’s size principle was proposed by studies which stimulated either the 

nerve trunk (Rodriguez-Falces and Place 2013) or the muscle (Knaflitz et al. 1990; 

Farina et al. 2004; Rodriguez-Falces and Place 2013).  Other studies, however, 

suggested a reverse recruitment order during nerve (Stephens et al. 1978; Heyters 

et al. 1994; Hennings et al. 2007) or muscle (Heyters et al. 1994) stimulation. And 

finally, some studies observed a nonselective or random motor unit recruitment 

when stimulating at the level of the muscle (Gregory and Bickel 2005; Jubeau et al. 

2007; Rodriguez-Falces and Place 2013).  Since motor fibers are usually more 

spatially localized (i.e., located in close proximity to one another) in the nerve trunk 

with respect to the muscle motor point, during nerve stimulation motor units seem 

to be mainly recruited according to their electrical excitability threshold, while for 

the muscle stimulation recruitment seems to be determined by the geometrical 

distribution of axonal branches. 

2.2.1 Stimulation techniques 

Usually, two distinct stimulation techniques, defined as monopolar and bipolar 

stimulation, are used for the neuromuscular electrical stimulation.  One of the 

differences between these techniques is with respect to the size of the stimulation 

electrodes and their relative position over the skin.  In monopolar configuration two 

electrodes of different sizes are used; the electrode of smaller dimension (also 

known as “negative” or “cathode” or “reference” or “return” electrode) may be 

positioned near the nerve trunk or above a muscle motor point, and it is defined as 

the active stimulation electrode since electrical stimulation occurs in its vicinity.  

The other electrode (also known as “positive” or “anode” electrode) has a larger 

size with respect the active electrode and it is usually positioned on the opposite 

side of the active electrode.  In bipolar configuration, however, two electrodes with 

similar size are positioned over the tissue to be electrically stimulated (Figure 1).  

The second difference between these techniques is related to the current 

distribution. In monopolar configuration, current density is greater in the proximity 

of the active electrode and smaller near the return electrode.  In this way, excitation 

threshold of motor fibers located close to the active electrode is exceed, while for 

motor fibers located near the return electrode the current density is probably not 

enough to reach their excitation threshold.  In bipolar configuration, however, the 

current distribution is more confined in the area where stimulation electrodes are 

applied and the current density is more uniform in the current field (Merletti et al. 

1992; Botter et al. 2011). 
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Figure 1: Schematic representation of monopolar and bipolar stimulation electrode 

configuration applied during nerve and muscle stimulations. 

 

2.2.2 M wave 

Differently from voluntary contractions, during the electrical stimulation of the 

axons of motoneurons or of their terminal branches, MUAPs are synchronously 

evoked by the external stimuli, generating an electrophysiological response defined 

as compound muscle action potentials (CMAPs) or massed action potentials (M 

waves) which is recorded from the surface electromyography.  In order words, the 

M wave is the summation of action potentials of the synchronously activated 

muscle fibers in a muscle (Merletti et al. 1992).  Therefore, the maximum M wave 

evoked in a muscle through the supramaximal electrical stimulation represent the 

recruitment of all motor units corresponding to the pool of motoneurons activated. 
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2.3 Physiological and clinical information obtained by 

combining incremental electrical stimulation and surface 

EMG 

2.3.1 Incremental stimulation 

The incremental stimulation technique consists in gradually increase the stimulus 

intensity applied to a peripheral nerve in order to recruit successive motor units 

(McComas et al. 1971). Since the motoneurons that innervate a muscle have 

different diameter sizes and, therefore, different excitation threshold (McPhedran 

et al. 1965a, b), as the stimulation intensity increases additional motor units are 

recruited and M-waves amplitude grows.  If no variations in the M-wave amplitude 

are observed when stimulation intensity is increased, this indicates that a maximum 

M-wave response was evoked in the muscle, i.e., motor units corresponding to the 

pool of motoneurons stimulated in the peripheral nerve were fully recruited (Figure 

2).  Hence, variations in the M-wave amplitude is usually assumed to reflect a 

change in the number of motor units activated (McComas et al. 1971).  Based on 

that, different methods involving the incremental stimulation, such as the “motor 

unit number estimation – MUNE” (McComas et al. 1971) and the 

“electrophysiological muscle scan” (Blok et al. 2007), have been proposed to 

indirectly assess structural adaptations on the neuromuscular system.  

 

 

Figure 2: Schematic representation of M-waves responses during an incremental 

electrical stimulation. 
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2.3.2 MUNE 

The incremental stimulation seemed to have been firstly proposed by McComas et 

al. (1971), with the aim of give an estimate of the number of motor units within a 

human muscle.  Briefly, this pioneer method, known as incremental MUNE, 

consists in applying electrical stimuli over a peripheral nerve and gradually 

increased the intensity, from a subthreshold value until ten or more increments in 

the M-wave peak-to-peak amplitude are obtained. An increment refers to an 

increase in the M-wave amplitude and it is assumed that each increment reflects the 

activation of an additional motor unit.  Then, the amplitude of the M wave evoked 

with all the increments is divided by the number of increments, resulting in a mean 

motor unit potential, also defined as single motor unit potential (SMUP).  The 

number of motor units in the muscle is therefore defined dividing the M-wave 

amplitude obtained during a supramaximal stimulation of the muscle by the SMUP.  

The limitation of this method proposed by McComas et al. (1971) is that it samples 

a small population of motor units within the muscle, which may not represent the 

whole pools of motor units in this muscle.  In other words, the estimation of the 

number of motor units is only based on the responses of the first units elicited in 

the muscle and on the assumption that such responses would represent those from 

the other motor units not recruited in this muscle, which may not be true.  Therefore, 

other MUNE methods have been proposed with the aim of increase the 

representation of motor units in the sample, by evaluating SMUPs at different 

muscle contraction levels (Gooch et al. 2014).  In addition, the MUNE methods 

have been extensively used as a research tool to investigate axonal loss caused by 

a number of disorders, such as amyotrophic lateral sclerosis, spinal muscle atrophy, 

stroke, among others (McComas et al. 1973; Hara et al. 2004; Bromberg 2007; 

Arasaki et al. 2009; Nandedkar et al. 2010; Li et al. 2011; Kouzi et al. 2014).  

Concerning the stroke, specifically, studies have mainly used the methods which 

sample small populations of motor units, such as the traditional incremental MUNE 

(McComas et al. 1973), the F-wave MUNE (Hara et al. 2004) and the multiple point 

stimulation MUNE  (Arasaki et al. 2009; Kouzi et al. 2014), to investigate motor 

unit loss in muscles of stroke survivors.   
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2.3.3 Electrophysiological muscle scan 

In 2007,  Blok et al. proposed a method denominated “electrophysiological muscle 

scan” as an alternative evaluation tool to extract clinically relevant information 

regarding the effects of a variety of neurogenic disorders on the neuromuscular 

system, such as motor unit loss and muscle reinnervation.  This method is also based 

on the incremental stimulation technique and it consists in evaluate the stimulus-

response curve of a muscle, by plotting the response size against the stimulus 

intensity.  Briefly, the initially proposed muscle scan consists in applying over a 

peripheral nerve 300 electrical stimuli, equidistant in intensity, from the threshold 

of the lowest-threshold motor unit until the lowest intensity at which a maximal M 

wave is evoked.  Then, the amplitude of the M wave recorded for each stimulation 

intensity is plotted against the stimulus number.  By analyzing several parameters 

from the scan (e.g. steps, maximum response, variability, decrements, stimulus 

intensity), the following clinical information may be obtained according to Blok et 

al. (2007): motor unit number, size and stability; neuromuscular transmission; and 

axonal excitability.  The parameter steps, specifically, has been used as an indicator 

of motor unit loss and muscle reinnervation.  Steps are calculated as follow: after 

performing the full muscle scan, M waves are sorted according to their size, and 

consecutive differences between their amplitudes are calculated.  Then, steps are 

defined as consecutive differences exceeding a subject-dependent threshold, 

adjusted by the operator to agree with visual estimates of step number and location.  

Steps are therefore quantified by their size and their summed size as a percentage 

of the maximum M wave. They represent discontinuities in the stimulus-response 

curve that, in the case of impaired muscles, may reflect motor unit loss and muscle 

reinnervation.  Thus, Blok et al. (2007) suggest that the number of steps observed 

in the muscle scan provides a good indication of the number of remaining motor 

units in an impaired muscle.  Unlike the MUNE methods, the muscle scan seems to 

provide a more global evaluation of the motor units constituting a muscle.  As far 

as we know, muscle scan assessment in stroke survivors seems to not be reported 

in the scientific literature.  
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Chapter 3 

Does the biceps brachii muscle 

respond similarly in both limbs 

during staircase, electrically elicited 

contractions? 1 

3.1 Introduction 

Regardless of age and sex, people use preferentially their left or right upper limb in 

daily activities, likely because they tend to perform better with either limb.  

Differences in the ability to use both limbs, hereafter termed dominance, are more 

clearly appreciated in tasks requiring the fine control of movements.  Triggs et al. 

(2000), for instance, observed that healthy subjects, right- and left-handers, 

performed better manual tasks requiring a fine motor control with their dominant 

than non-dominant hands.  Specifically, the authors evaluated how many times 

subjects performed correctly a finger tapping task (tapping a specific key of a 

computer with the index finger as rapidly as possible) and a pegboard dexterity task 

(removing small metal pegs from a well and placing them into a vertically oriented 

                                                 
1 Scientific paper to be submitted to an international journal. Authors: Pinto TP, Gazzoni M, 

Botter A, Vieira, TM. 
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row of holes).  Right- and left-handers showed scores significantly higher when 

performing the tasks with their right and left hands, respectively.   

Interesting, asymmetries in the use of the upper limbs are apparently manifesting 

since the early stages of gestation.  By analyzing the number of right- and left-arm 

movements of fetuses at different weeks gestation through ultrasound recordings, 

Hepper et al. (1998) and Hepper (2013) observed that fetuses performed 

significantly greater number of movements with their right than left arms.  Such 

upper limbs asymmetry seems to have its origin within the organization of the 

nervous system.  Anatomical studies reported indeed left-right differences in brain 

morphologies.  Through magnetic resonance morphometry, Amunts et al. (1996) 

observed that the brain area where hand representation occurs is deeper in the left 

and right hemispheres of right- and left-handers, respectively.  By means of a 

cytoarchitecture analysis, the authors also found a larger volume of cells occupied 

by dendrites, axons, and synapses in the left than right primary motor cortex of each 

subject evaluated.  Additionally, through the magnetoencephalography technique, 

Volkmann et al. (1998) evaluated the hand area size activated while subjects 

performed different movements with the hands and fingers.  The authors observed 

the brain area size where occurs hand representation was larger in the primary motor 

cortex opposite to the preferred hand side of the left- and right-handed subjects 

evaluated.  These pieces of evidence suggest the upper limb dominance may be 

accounted for by asymmetries in the central structures of the nervous system. 

The organization of the neuromuscular system may contribute as well to upper limb 

dominance. Through needle electromyographic (EMG) recordings during isometric 

voluntary contractions at 30% of maximal voluntary contraction (MVC), Adam et 

al. (1998) observed the recruitment and firing rate of motor units in the first dorsal 

interosseous muscle of both limbs.  Motor units in the dominant hand showed lower 

average firing rates and lower recruitment thresholds than those in the non-

dominant hand.  Since slow-twitch muscle fibers are usually innervated by small 

motoneurons, with low recruitment thresholds (McPhedran et al. 1965a, b), these 

results may indicate a higher percentage of slow-twitch fibers in muscles in 

dominant than non-dominant limbs.  Evidence from ten cadavers further revealed 

larger perikaryions in the right side of the C8-Th1 spinal cord segment, where 

motoneurons parenting muscles in the hands and arms are located (Melsbach et al. 

1996).  Collectively, these findings suggest differences may exist in the 

mechanisms underpinning motor units’ recruitment between dominant and non-

dominant limbs.   
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While it is well established the recruitment of motor units is a key mechanism for 

which muscle force is controlled (Clamann 1993; Kernell 2003), reports on the 

systematic association between motor units’ recruitment and dominance are 

uncommon.  Given dominance is related to fine motor control, it is therefore 

reasonable to expect muscle force to be more finely regulated in dominant than non-

dominant arms.  Such finer regulation may be related to a more gradual motor units’ 

recruitment in muscles of dominant than non-dominant arm (the smaller the relative 

number of motor units recruited for a given increase in synaptic input, the smaller 

the muscle force production), implying a larger spectrum of recruitment thresholds 

in motoneurons serving muscles of dominant than non-dominant arms.  To our 

knowledge, the association between dominance and variations in the relative 

number of motor units recruited remains an unexplored issue. 

In this study we use incremental, neuromuscular electrical stimulation (Botter et al. 

2009; Botter and Merletti 2016) to indirectly assess differences in motor unit 

recruitment between limbs.  We specifically ask: does the amplitude of massed 

action potentials (M waves) and force twitches increase similarly when current 

pulses at progressively greater intensities are delivered to the biceps brachii muscle 

of both arms?  If there is a broader spectrum of motor unit recruitment thresholds 

in the dominant arm then, for relative similar increases in current intensity, the 

amplitude of M waves and force twitches is expected to increase more gradually in 

the dominant than non-dominant arms; that is, a relatively smaller number of motor 

units is expected to be elicited for similar, relative increases in current intensity.  

We address our question for biceps brachii muscle because, differently from the 

small hand muscles for which dominance is typically assessed (Kamen et al. 1992; 

Adam et al. 1998; Li et al. 2015), the biceps brachii may be electrically elicited and 

assessed selectively from the skin.  Furthermore, biceps brachii has a quite 

contribution for most of the humans’ daily activities, including those requiring fine 

motor skills.  Finally, understanding whether the control mechanisms underpinning 

the motor units’ recruitment are distinct between limbs, may assist the evaluation 

and treatment of biceps muscles compromised by neuromuscular injuries and 

disorders, such as brachial plexus injury and stroke. 
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3.2 Methods 

3.2.1 Participants 

Twenty healthy subjects (14 men; range values; age: 19÷35 years; body mass: 

50÷82 kg; height: 1.57÷1.87 m) participated in this study after providing written 

informed consent.  The protocol and consent procedures were conducted in 

accordance with the Declaration of Helsinki and were approved by the Local Ethic 

Committee.  Criteria for participation included no history of orthopedic or 

neurological injury that could affect upper-extremity muscle function. 

3.2.2 Dominance evaluation 

Arm preference was evaluated for each individual through the laterality quotient 

from the Edinburgh Handedness Inventory (Oldfield 1971); the laterality quotient 

may range between -100 (fully left-handed) and +100 (fully right-handed) and it is 

calculated based on the side preference of the subject when using hands in ten 

different activities. Specifically, subjects should indicate their preference by putting 

a + in the column referring the limb side used to perform the task, right or left.  If 

subject’s preference was very strong that he would never try to use the other hand 

to perform the task unless forced, then he should put two + (i.e., ++) in the 

respective column.  If he was indifferent about which hand prefer to use to perform 

the task, he should put one + in both columns.  Finally, the number of + on each 

column were considered to calculate the laterality quotient as follow: 

 

𝐿𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑡𝑦 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 =  
∑ 𝑋(𝑖, 𝑅) 10

𝑖=1  −   ∑ 𝑋(𝑖, 𝐿) 10
𝑖=1

∑ 𝑋(𝑖, 𝑅) 10
𝑖=1 +   ∑ 𝑋(𝑖, 𝐿) 10

𝑖=1

  × 100  

 

where X(I,R) and X(I,L) are the numbers of + for the ith task in the right and left 

columns, respectively. 

3.2.3 Stimulation protocol 

Participants were comfortably seated with both upper limbs secured to an isometric 

brace (Figure 3A), each at a time.  The forearm of the limb under investigation was 

held in neutral position, the elbow joint flexed at 110˚ (180˚ being full extension) 
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and the shoulder joint slightly abducted.  Shoulder abduction ranged from 10˚ to 

25˚ across subjects. 

A staircase, stimulation profile was considered to deliver current pulses to biceps 

brachii. Starting from the minimal current delivered by the stimulator (2 mA; 

Rehastim Science Mode, Hasomed, Germany), current intensity was increased 

automatically gradually up to the maximal intensity tolerated by each subject, at the 

smallest possible current step (2 mA) allowed by the stimulation device.  For each 

stimulation intensity, four biphasic, rectangular current pulses (100 µs per phase) 

were applied at 1 pps.  The experimental protocol was conducted consecutively for 

each arm, at random order and with at least 5 min interval in-between.  The duration 

of the stimulation protocol depended on the maximal current intensity tolerated by 

each subject; it lasted 3.4 minutes at most. 

 

 

Figure 3: Schematic illustration showing the experimental setup (A) and the position 

of detection and stimulation electrodes in relation to the biceps brachii muscle (B).  M 

waves were sampled with a grid of 32 surface electrodes, positioned below the most distal 

innervation zone identified and with the junction between the muscle short and long heads 

located in-between the fourth and fifth columns of electrodes. Stimulation electrodes 

positioned as proximal as possible over biceps brachii, with care to do not cover the deltoid 

muscle (see text).  Force signals were acquired with a biaxial load cell positioned over the 

subject’s wrist. 
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3.2.4 Positioning of detection electrodes 

The innervation zone positions were identified for both short and long head of the 

biceps brachii using an array of 16 dry electrodes (5 mm inter-electrode distance). 

The innervation zone was identified as the location corresponding to the pair of 

electrodes where phase opposition could be observed for consecutive rows of single 

differential EMGs detected during moderate level, isometric contractions (Merletti 

et al. 2003).  Given the location of innervation zones in relation to electrodes change 

with the elbow and shoulder joints’ angle (Martin and MacIsaac 2006), innervation 

zones were identified with subjects positioned as shown in Figure 3A.  Ultrasound 

imaging (Echo Blaster 128, Telemed Ltd., Vilnius, Lithuania) was used to identify 

the junction between the biceps short and long heads. A grid of 32 surface 

electrodes (4x8 arrangement; 3 mm diameter; 10 mm inter-electrode distance; 

Figure 3) was used to detect EMGs from both heads of biceps brachii thus including 

as much muscle fibers as possible into the electrodes’ pick-up volume.  Columns of 

electrodes were aligned parallel to the muscle longitudinal axis, with the most 

proximal row positioned, whenever possible, just distal to the most distal 

innervation zone identified for both heads (Figure 3B). 

3.2.5 Positioning of stimulation electrodes 

A pair of stimulation electrodes (size 35x45mm) was positioned proximally and 

arranged orthogonally to the muscle longitudinal axis (Figure 3B) as described in 

the following.  First, with the participant’s arm secured to the isometric brace, the 

lateral and medial borders of biceps brachii were identified with ultrasound imaging 

(Echo Blaster 128, Telemed Ltd., Vilnius, Lithuania) and marked on the skin.  

Similarly, the deltoid contour was identified and marked.  Then, in relation to the 

biceps longitudinal axis, the external edges of the cathode and anode electrodes 

were positioned at or just internally to the borders of the biceps short and long 

heads, respectively.  The superior edge of both electrodes was positioned at or just 

distally to the deltoid inferior border (Figure 3B).  EMGs and stimulation electrodes 

were positioned after cleaning the skin with abrasive paste (Nuprep, Weaver and 

company, USA). 

3.2.6 Signal recordings 

Surface EMGs were recorded in monopolar derivation (192 V/V gain; 10–750 Hz 

bandwidth amplifier; W-EMG LISiN-Politecnico di Torino, Turin, Italy).  EMGs 

were digitized at 2441.4 Hz with a 24 bits A/D converter.  Elbow flexion and 
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forearm supination forces (Fflexion and Fsupination, respectively) were measured with a 

biaxial load cell (50 Kg full-scale; 2.596 mV/V sensitivity; CCT transducers, Italy) 

positioned over the subject’s wrist (Figure 3A).  Force signals were amplified either 

500 or 1.000 times, whichever provided the highest signal-to-noise ratio without 

saturation (0–33 Hz bandwidth amplifier; Forza; OT-Bioelettronica, Turin, Italy) 

and acquired as auxiliary signals with the W-EMG amplifier.  An output digital 

signal from the stimulator synchronous with the stimulation pulses was recorded as 

an auxiliary signal with the W-EMG amplifier and used for the identification of M 

waves and force twitches. 

3.2.7 Data analysis 

The quality of EMGs and force signals was first evaluated through visual analysis. 

Low quality monopolar EMG signals likely associated with electrode-skin contact 

problems were occasionally observed.  In cases where low-quality signals were 

isolated, they were replaced using a linear interpolation of the neighboring channels 

(4 point connectivity), otherwise they were excluded from analysis.  After visual 

inspection, monopolar EMGs and force signals were band-pass (10-400 Hz cutoff; 

bidirectional filter) and low-pass filtered (10 Hz cutoff; bidirectional filter) with a 

fourth order Butterworth filter, respectively.  Data of three subjects were excluded 

from analysis because stimulation artifact could not be removed by offline blanking 

(Botter et al. 2009; 4 to 5 ms from the stimulation onset).  For the remaining 34 

muscles, the channels where stimulation artifact greatly overlapped M waves were 

not considered for analysis.  Figure 4 shows an example of M waves and stimulation 

artifacts recorded from one muscle evaluated.  
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Figure 4: Representative example of monopolar (left panel) and differential (right 

panel) M waves recorded in the fourth column of a matrix applied to one biceps brachii 

evaluated, at increasing stimulation intensities from 22 to 70 mA (with steps of 2 mA).  

Note that stimulation artifact overlapped the first samples of monopolar M waves recorded 

in the first row of the column. 

 

  

M-wave amplitude 

Single-differential EMGs were calculated by differentiating monopolar signals 

along consecutive rows.  M waves for each stimulation intensity were obtained by 

averaging EMGs across the four stimulation pulses using an epoch 30 ms long.  

Then, the M-wave peak-to-peak amplitude was computed for each channel and for 

each stimulation intensity (Figure 5C). Notwithstanding the careful procedure we 

considered for electrodes’ positioning, innervation zone of at least one biceps head 

could not be avoided for 12 out of 34 muscles.  In all these instances, innervation 

zone was located either in the first or between the first and second rows (Figure 

5B).  Thus, to avoid the influence of the innervation zone on the M-waves amplitude 

(Merletti et al. 2003) and considering previous account which reported variations 

in the amplitude of bipolar motor units potentials in the biceps’ region between 

innervation zone and tendons (Rodriguez-Falces et al. 2013b), the greatest peak-to-

peak amplitude obtained for each column in the grid was considered for analysis.  

Then, amplitude values were averaged across columns, producing a single, 
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representative response per stimulation intensity.  With the grid of electrodes we 

were therefore able to obtain representative responses of most motor units of the 

whole biceps brachii muscle, while minimizing the influence of sustained 

confounding factors. 

 

 

 

Figure 5: (A) Example of single-differential M waves provided by one column (7) of 

channels, elicited for current intensities ranging from 30 to 98 mA in 2 mA steps.  Four M 

waves were evoked per current intensity. (B) Expanded view of M waves within the shaded 

rectangles shown in (A).  Note the phase opposition between M waves in the first and 

second rows, indicating the presence of an innervation zone between these rows. (C) Peak-

to-peak amplitude averaged across the four M waves shown in A, separately for each 

current intensity. 

 

 

Force twitch 

Twitch forces were obtained by triggering (300 ms epochs) the force signals 

identified as Fflexion and Fsupination.  Twitches were averaged across stimulation 

pulses, separately for each current intensity and, then, peak-to-peak amplitudes of 
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the average twitches from Fflexion and Fsupination were computed.  A resultant force 

was obtained for each current intensity as follow: 

 

𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑓𝑜𝑟𝑐𝑒(𝑖) =  √𝐴𝑚𝑝_𝐹𝑓𝑙𝑒𝑥𝑖𝑜𝑛(𝑖)2 + 𝐴𝑚𝑝_𝐹𝑠𝑢𝑝𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑖)2  

 

where I corresponds to the ith current intensity and Amp_Fflexion and Amp_Fsupination 

correspond to the amplitude of the average twitch calculated from Fflexion and 

Fsupination, respectively. 

 

3.2.8 Assessment of variations in muscle responses of dominant and 

non-dominant arms 

When analyzing the stimulus-response curves for M-waves amplitudes and force 

twitch, we observed that, for 22 out of 34 arms, force amplitude continued to 

increase after M-waves amplitude have reached a plateau in a given current 

intensity (Figure 6).  This suggests the biceps brachii may not have been the only 

muscle contributing to force signals.  Such findings were already expected, since 

the arm region where stimulation was applied may have nerve fibers which supply 

other muscles besides biceps brachii, such as the brachialis and the supinator 

muscles.  Therefore, in order to obtain selective results about the recruitment of 

biceps brachii motor units, we decided to disregard the analysis of force signals 

from the study. 
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Figure 6: Stimulus-response curves obtained from EMG and force signals of one of 

the arms of two subjects evaluated (panels A and B).  Circles correspond to M-waves 

amplitudes averaged across stimulation pulses and channels.  Squares correspond to the 

amplitudes of resultant forces obtained from the twitches identified in Fflexion and Fsupination 

and averaged across stimulation pulses.  For the example in panel (A), M-wave amplitude 

reached a plateau at about 38 mA, while force amplitude increased up to the current 

tolerated by the subjects (72 mA).  For the example in panel (B), both M-wave and force 

amplitudes reached a plateau, but at different current intensities: 72 mA and 90 mA, 

respectively. 

 

Differences in the mean peak-to-peak amplitude were considered to evaluate how 

gradually biceps brachii responded to stimulation increments in both arms.  First, 

the range of current intensities leading to the smallest and greatest M waves was 

identified as follow:  the distribution of peak-to-peak amplitudes obtained for all 

stimulation intensities was computed (Figure 7).  This distribution was clearly 

bimodal for 27 out of 34 muscles tested, with the first and second modes 

respectively indicating the absence of M waves and the maximal muscle response 

(Figure 7A).  When the distribution of peak-to-peak values was multimodal (five 

out of 34 muscles; Figure 7B), only the first and the last modes were considered for 

analysis.  Data from one participant was discarded from analysis because M-waves’ 

amplitude increased indefinitely with stimulation intensity, producing a unimodal 

distribution of peak-to-peak values (Figure 7C). Therefore, 16 subjects (32 

muscles) remained for analysis.  The highest current below which the peak-to-peak 

amplitude was smaller or equal than the first amplitude mode was then identified 

and defined as the motor threshold.  Similarly, the smallest current over which 

peak-to-peak amplitude equaled or exceeded the second or last amplitude mode was 

identified.  These values define the current range (cf. shaded rectangles in Figure 
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8A and Figure 8D) within which increases in stimulation intensity resulted in 

increased muscle response; i.e., increased M-wave amplitude.  The number of 

stimulation steps within the current range can be determined by dividing the 

current range by the current step (2 mA) and subtracting the result by one.  There 

are other methods used by previous studies to determine the motor threshold and 

the current range (Blok et al. 2007; Rodriguez-Falces et al. 2013a). 

Only two of the 16 participants retained for analysis showed the same current range 

for both arms, indicating the 2 mA step represented different, relative stimulation 

intensity between arms for most subjects.  Therefore, to ensure like-with-like 

comparisons, the amplitude of M waves obtained from the side with the 

smaller current range was linearly interpolated considering a fixed, stimulation 

step smaller than 2 mA. This new stimulation step was computed as the value of 

the smaller current range divided by the number of stimulation levels comprised 

within the greater current range.  As outlined in Figure 8, this procedure provided 

an equal number of peak-to-peak values for the biceps brachi muscle in both sides.  

Afterward, we computed the difference between peak-to-peak values obtained for 

consecutive stimulation levels, hereafter referred to as increment.  Increments were 

normalized in relation to the difference between the maximal and minimal peak-to-

peak values for each muscle (Figure 8C and Figure 8F).  Then, the median value of 

the increments was calculated producing a single, representative value per muscle.  

Median increments values were therefore considered to assess side-differences in 

electrically elicited, motor unit recruitment. 
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Figure 7: Example of different distribution profiles of peak-to-peak amplitudes 

obtained for three distinct muscles evaluated (panels A, B and C).  Circles correspond to 

amplitude values averaged across stimulation pulses and channels.  Panel (A) shows a 

bimodal profile, in panel (B) the distribution shows more than two modes and in panel (C) 

a single mode is observed. 

 

 

3.2.9 Statistics 

Given the data distribution was not Gaussian (Shapiro-Wilk’s W test, p < 0.05) for 

part of the parameters evaluated (i.e., current range and median increment of 

dominant and non-dominant arms), both parametric and non-parametric statistics 

were used to test our hypothesis.  The paired Wilcoxon test and the Student’s t-test 

for dependent samples were applied to evaluate side differences in the median 

increments and current ranges, respectively.  The level of statistical significance 

was set at 5 % and data were reported using both parametric and non-parametric 

descriptors. 
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3.3 Results 

All 16 participants considered for analysis had the right arm as the dominant one, 

according to the median, laterality quotient score of 86.2 % (interquartile interval: 

62.1-100 %).  Subjects whose laterality quotient was < 50 or > -50 would have been 

excluded from analysis.  We defined these thresholds based on previous results 

reported by Triggs et al. (2000), where subjects with laterality quotients within 

these ranges (< 50 or > -50) showed significantly greater ability to perform tasks 

requiring a finer control of movements with dominant than non-dominant hands.  

Stimulation intensity values corresponding to the motor threshold and the maximal 

muscle response for the dominant and non-dominant arms are described in Table 2. 

 

Table 2: Stimulation intensities corresponding to the motor threshold and maximal 

muscle response for biceps brachii of dominant and non-dominant limbs.   

 Stimulation intensity (mA) 

 Motor threshold Maximal muscle response 

Dominant arm 18 (12-22) 67 (61.5-86) 

Non-dominant arm 17 (14-20) 62 (54-75) 

Values are median (interquartile interval). 

 

3.3.1 Side differences in electrically elicited, muscle responses 

Regardless of whether testing the dominant or non-dominant side, a clear sigmoidal 

profile was observed for most of the subjects when plotting M-wave amplitude vs. 

current intensity.  As illustrated for a representative participant in Figure 8, M-wave 

amplitude remained equally low for both arms when current intensity increased up 

to the motor threshold.  M-wave amplitude increased monotonically from the motor 

threshold, reaching a plateau respectively at 64 and 52 mA for the dominant and 

non-dominant arms (Figure 8A and Figure 8D).  For this participant, the current 

range and therefore the number of the stimulation steps between the motor 

threshold and the maximal M wave was smaller in the non-dominant (19 

stimulation levels) than in the dominant arm (26 levels; cf. shaded rectangles in 

Figure 8A and Figure 8D).   
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When considering all participants, side differences were observed in the magnitude 

of muscle response for similar, relative increases in the current intensity.  The paired 

Wilcoxon test revealed significant, dominance effect on the median increment 

values calculated for biceps brachii of both arms (P = 0.017, N=32; 16 subjects x 2 

arms; Figure 9A).  Despite the inter-individual variability, smaller increments were 

observed in muscles of dominant than non-dominant arms for most of the subjects 

(11 out of 16), whose difference ranged from 0.1 to 2.5 %.  For the other five 

subjects, one showed similar increment values (3.4 %) between arms and the others 

had smaller median increments in non-dominant than dominant arms, differing 

from 0.2 to 0.6 %.  Additionally, the Student’s t-test revealed no significance 

difference between current range of dominant and non-dominant arms (P = 0.31, 

N=32; 16 subjects x 2 arms; Figure 9B).  For half of subjects (eight out of 16), 

current range was greater in biceps brachii of the dominant arm, with differences 

ranging from 2 to 42 mA.  While for six out of 16 subjects current range was greater 

in non-dominant arms, differing from 2 to 28 mA. 

 

 

 



3.3 Results 33 

 

 

Figure 8: Variations in the M-waves amplitude for increases in current intensity are 

shown for the dominant (A) and non-dominant (D) arm of a single, representative 

participant.  Grey circles correspond to amplitude values averaged across stimulation 

pulses and channels. Black circles correspond to the interpolated amplitude values within 

the current range (shaded rectangle) of the non-dominant arm. After linear interpolation, 

the number of increments within the current range of the non-dominant arm increases from 

19 to 26, to match the number of stimulation levels of the dominant arm. (B) and (E) show 

the first and second modes of the distribution of amplitude values obtained for each limb 

(cf. dashed lines).  The current intensities below and over which the amplitude values were 

respectively smaller or equal and greater or equal than the first and second amplitude modes 

were identified; these current values define the current range within which increases in 

stimulation intensity elicited increments in M-wave amplitude (shaded rectangles). (C) and 

(F) show the amplitude of increments between consecutive stimulation levels for the 

dominant and non-dominant arms, respectively. Increments’ amplitude is normalized w.r.t 

the M-wave amplitude corresponding to the muscle’s motor threshold and maximal 

response. 
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Figure 9: Boxplots in panel (A) show the median increment amplitude calculated from 

the increments between consecutive M waves within the current range of dominant and 

non-dominant arms of subjects. Bars in panel (B) show the current range within which the 

amplitude of M waves increased from the smallest to the greatest value.  Circles connected 

through a line correspond to increments and current ranges for the dominant and non-

dominant arm of the same subject. Light and dark grey boxes respectively indicate values 

for the dominant and non-dominant arm. Asterisks indicate significant differences between 

arms (p < 0.05). 

 

 

3.4 Discussion 

The present study investigated whether the amplitude of M waves increase similarly 

in the dominant and non-dominant arms when current pulses at progressively 

greater intensities are delivered to the biceps brachii muscle of healthy, young 

subjects.  Surface EMGs were collected from the biceps brachii while current pulses 

were applied gradually increasing the current intensity up to the maximal intensity 

tolerated by each subject.  Our main results suggested that M-waves amplitude 

increased more gradually in muscles of dominant arms, likely due to a broader 



3.4 Discussion 35 

 

spectrum of recruitment thresholds in biceps brachii motor units of dominant than 

non-dominant arms. 

3.4.1 Methodological considerations 

The experimental protocol applied here aimed at obtaining representative and 

selective myoelectric responses of biceps brachii motor units.  Methodological 

issues related to the configuration of stimulation and sEMG electrodes were taken 

into account in this study. Specifically, the following procedures were performed: 

 

(i) the stimulation electrodes were positioned in the most proximal portion 

of biceps brachii, where the nerve trunk and primary motor branches 

that supply this muscle are localized (Pacha Vicente et al. 2005; Lee et 

al. 2010; Cambon-Binder and Leclercq 2015).  This electrodes’ 

positioning probably ensured the electrical current crossed most of 

axons that innervate biceps brachii since they are more clustered in this 

region;  

(ii) bipolar stimulation technique was used with stimulation electrodes 

positioned in the transverse direction of the muscle, maximizing their 

distance over the biceps. As compared to monopolar technique, in 

bipolar stimulation the current crosses muscle tissue with similar density 

(Botter and Merletti 2016), thus reducing the effects of geometrical 

factors (e.g. relative electrode-axon position) on MU recruitment;  

(iii) a grid of 32 electrodes was used to acquire biceps brachii responses.  

Since previous evidence have shown spatial variations in the EMG 

activity of biceps brachii during isometric contractions (Rodriguez-

Falces et al. 2013b; Staudenmann et al. 2013), the acquisition of action 

potentials from a wide muscle region  provides representative M waves 

of biceps muscles.  High-density surface EMG also assisted us to avoid 

unreliable amplitude estimations due to the occasional presence of the 

innervation zone (Merletti et al. 2003; see methods section).  

Additionally, the analysis of differential EMG signals recorded with a 

relative small inter-electrode distance likely attenuated a possible 

contribution of potentials coming from brachialis motor units that may 

have been activated during the stimulation protocol (Roeleveld et al. 

1997b; Rodriguez-Falces et al. 2013b).  Thus, we believe the results 

found in this study are mainly related to responses of biceps brachii 

motor units. 



36 Does the biceps brachii muscle respond similarly in both limbs during 

staircase, electrically elicited contractions? 

 

  

Finally, we would like to stress why we decided to evaluate the biceps brachii 

muscle instead of small hand muscles for which dominance is typically assessed 

(Kamen et al. 1992; Adam et al. 1998; Li et al. 2015).  First of all, the biceps brachii 

may be electrically elicited and assessed selectively from the skin.  Due to its 

relatively great size, it is possible to stimulate the motor branches that innervate the 

biceps brachii and acquire the EMG responses through surface electrodes 

positioned over the skin.  Hand muscles, on the other hand, are usually electrically 

elicited by stimulating the nerve which innervates them.  Since several hand 

muscles are usually innervated by the same nerve, it is difficult to obtain selective 

EMG responses from a single hand muscle through superficial detection electrodes.  

Indeed, previous studies used invasive techniques to investigate hand muscle 

responses during electrically elicited contractions through nerve stimulation 

(Kamen et al. 1992; Adam et al. 1998).  A second reason for which we did not 

evaluate a hand muscle was because the smallest possible current step delivered by 

our stimulator is 2 mA.  In a pilot experiment on one subject, we observed that such 

current step was relatively great to gradually elicited motor units of a hand muscle. 

 

3.4.2 M waves were elicited more gradually in biceps brachii of 

dominant arms 

Before interpreting our results, two considerations regarding the data analysis 

applied in this study are necessary.  First, we would like to point out how differences 

between the motor units’ recruitment in biceps brachii of dominant and non-

dominant arms may be identified through the analysis of increments in M-waves 

amplitude.  As the M wave represents the summation of the motor units’ action 

potentials synchronously evoked by an external electric stimuli (Merletti et al. 

1992), changes in the M-wave amplitude is usually assumed to reflect a change in 

the number of motor units activated (McComas et al. 1971).  Therefore, variations 

in the magnitude of the increments in the M-waves amplitude analyzed in this study 

reflect variations in the relative number of additional motor units elicited in the 

muscle, for increases in current intensity.  The smaller the increment in the M-

waves amplitude, the smaller the relative amount of motor units activated for 

increases in the current intensity applied to the muscle and, hence, more gradual is 

the recruitment of its motor units.  M-waves amplitude were normalized with 

respect to the minimal and maximal muscle responses (i.e., amplitudes 

corresponding to the motor threshold and the maximal M-wave amplitude, 
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respectively) to compensate the effect of anatomical differences between arms on 

the surface EMGs (Farina et al. 2002).   

The second consideration we would like to underline is related to our decision of 

equal the number of increments within the current range between arms, through the 

linear interpolation (see methods).  Previous studies have investigated motor units’ 

recruitment during involuntary elicited contractions through staircase stimulation 

protocols where the number of stimulation levels, between the muscle’s motor 

threshold and the maximal elicited M wave, was similar among muscles (McComas 

et al. 1971; Blok et al. 2007).  In our study, however, we could not apply similar, 

relative increases in current intensity between subjects’ arms because the smallest 

possible current step delivered by our stimulator is 2 mA.  Occasionally, current 

ranges were similar between arms of two subjects (cf. Figure 9B), which means 

that the number of stimulation levels and therefore of increments was similar 

between subjects’ arms.  Nevertheless, for the other 14 subjects evaluated current 

range differed between arms in a range of 2 to 42 mA.  Although statistical group 

analysis showed the current range was not significantly different when comparing 

arms, distinct number of increments between dominant and non-dominant arms 

could lead to biased interpretations of muscles’ responses.  Indeed, in previous 

analysis performed before we applied the linear interpolation, we observed that 

subjects whose current range was much greater in one arm than the other, usually 

the dominant arm, tended to have median increments much smaller in the arm with 

the larger current range, likely due to a higher number of increments.  Thus, the 

linear interpolation was applied to ensure like-with-like comparisons between 

dominant and non-dominant arms and to ensure that our findings (Figure 9A) were 

not influenced by methodological issues, such as distinct number of increments 

between limbs.  Additionally, when applying the linear interpolation in the 

stimulus-response curve of the subjects’ arm with the smaller current range, we 

assumed that motor units were recruited between consecutive current levels.  In the 

case this assumption was not true, i.e., that there was no motor unit recruitment 

between consecutive stimulation levels, median increments were probably 

underestimated in muscles which stimulus-response curve was interpolated.  

Although there was no consistency with respect to the subjects’ arm, dominant or 

non-dominant, which interpolation was performed, larger current ranges were 

mostly observed in dominant arms.  Therefore, the linear interpolation may have 

mainly affected median increments of non-dominant arms, i.e. median increments 

may have been mainly underestimated in biceps brachii of non-dominant arms. 
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Our findings showed that biceps brachii motor units seem to be recruited more 

gradually in dominant with respect to non-dominant arms of healthy, young 

subjects.  Indeed, for similar, relative increases in the current intensity, we observed 

increments in the M-waves amplitude significantly smaller in muscles of dominant 

than non-dominant arms (Figure 9A).  In other words, increases in M-waves 

amplitude were progressively larger in biceps brachii of non-dominant than 

dominant arms.  The average difference between increments of arms was about 

0.7%, however, such difference may have been even greater since median 

increments may have been mostly underestimated in non-dominant arms, as 

commented above.  Taking in consideration the methodological issues (i) and (ii)   

discussed in the previous subsection, we assumed that all biceps’ axons received 

similar electrical inputs (i.e. the same amount of electric charges) for a specific 

stimulation intensity.  Based on this assumption, we believe the activation of 

biceps’ axons likely depended on their diameter, where large-diameter axons would 

have been depolarized before small-diameter axons due to a lower threshold of 

electrical excitability (Stephens et al. 1978).  If motoneurons were more gradually 

elicited in dominant muscles, it suggests there was a greater variability among their 

thresholds of electrical excitability and therefore among their axons’ diameters, 

with respect to the motoneurons of non-dominant muscles.  Since previous evidence 

showed that the susceptibility of motoneurons to discharge during voluntary 

contractions (i.e. the motoneuron activation threshold) is a function of the size of 

their cell bodies and, consequently, of the diameter of their axons (Henneman 1957; 

Henneman et al. 1965b), a more gradual motor unit’s recruitment may indicate 

therefore a broader spectrum of activation thresholds among motoneurons of 

dominant than non-dominant arms.  Differences between limbs in the motoneurons 

recruitment threshold were also observed by Adam et al. (1998).  Through needle 

EMG, the authors investigated asymmetries in the recruitment of motor units in the 

first dorsal interosseous muscle of both limbs, during isometric voluntary 

contractions at 30% of maximal voluntary contraction (MVC).  They found a 

highest percentage of motor units recruited at lower force levels in dominant hands, 

while motor units from non-dominant hands revealed a more spread-out recruitment 

pattern with a progressive increase in force.  Although Adam et al. (1998) have 

analyzed only part of motor units of the first dorsal interosseous muscle (i.e., those 

activated until 30% of MVC), their findings point out to differences between limbs 

in the mechanisms underpinning the motor units’ recruitment. 
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3.4.3 Physiological and practical implications 

Distinct motor units’ recruitment strategy observed between biceps brachii of 

dominant and non-dominant arms may lead to differences in the ability of these 

muscles to regulate the force production.  Briefly, it is well established that 

variations in the number of motor units activated in a muscle is a key mechanism 

for the modulations of muscle force, with muscle force increasing progressively for 

increases in the number of motor units recruited (Clamann 1993; Kernell 2003).  

Therefore, the more gradual recruitment of biceps brachii motor units in the 

dominant arm, observed using incremental stimulation, is likely associated with the 

finer regulation of muscle force production in the dominant arm with respect to the 

non-dominant arm.  The median increments differed on averaged 0.7% between 

limbs (cf. Figure 9A). Such a value can be considered as indicative of the greater 

amount of additional motor units elicited in the non-dominant muscle with respect 

to the dominant muscle for similar, relative increases in the stimulation intensity.  

In this hypothesis, if we translate this side-difference in terms of incremental force, 

biceps brachii of dominant arms would produce smaller relative force increments 

with respect to non-dominant arms.  Moreover, considering the increment results 

separately for each subject (cf. Figure 9A), side differences in force production may 

be even greater.  Therefore, our findings point out to asymmetries in the 

organization of the neuromuscular system that may contribute to a more accurate 

muscle force control in biceps brachii of dominant than non-dominant arms. 

Our methodological approach could have relevant implications for clinical 

research.  For instance, neurodegenerative diseases, such as the stroke, seem to 

impact potentially the organization of the neuromuscular system.  Previous 

accounts have suggested the occurrence of collateral reinnervation in muscles 

compromised after stroke due to the degeneration of their motoneurons  (McComas 

et al. 1973; Lukács 2005; Lukács et al. 2009; Li et al. 2011, 2013).  If this 

assumption holds, it is reasonable to expect changes in the mechanisms 

underpinning the motor units’ recruitment in muscles affected by stroke, which 

could be somewhat investigated through the experimental protocol proposed in this 

study. 
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Chapter 4 

Assessing structural adaptation of 

biceps brachii motor units after 

stroke 

4.1 Introduction 

Neurophysiological studies (McComas et al. 1973; Hara et al. 2004; Lukács 2005; 

Kouzi et al. 2014) have suggested the occurrence of motoneurons degeneration 

following stroke is associated with a process called "trans-synaptic or transneuronal 

degeneration", which represents the death of neurons due to the interruption of the 

transmission of electrical impulses between neighboring neurons (Cowan 1970).  

The main evidence of such degeneration process came from studies which 

investigated the number of motor units in muscles of stroke survivors, through 

techniques of motor unit number estimation (MUNE) (McComas et al. 1973; Hara 

et al. 2004; Li et al. 2011, 2014a; Kouzi et al. 2014).  Findings from these studies 

indicate a significant decrease of about 20-60 % in the number of motor units of 

muscles affected after stroke with respect to healthy muscles (usually the 

contralateral, unaffected muscles).  As a consequence, such motor units’ loss may 

lead to changes in the organization of the neuromuscular system following stroke.  
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There is evidence that a reinnervation process takes place after stroke, through 

collateral reinnervation by the surviving motoneurons into the muscle fibers 

denervated (Martínez et al. 1982; Kallenberg and Hermens 2009; Lukács et al. 

2009; Li et al. 2013).  In such case, each surviving motoneuron may innervate a 

greater amount of muscle fibers after the stroke, i.e. the number of muscle fibers 

per motor unit (innervation ratio) would increase in muscles affected after stroke.  

Indeed, through an invasive analysis of single-fiber electromyography (EMG), 

Martínez et al. (1982) and Lukács et al. (2009) reported a significantly higher motor 

unit fiber density in hand muscles in the affected side of stroke patients, with respect 

to healthy muscles (either of the unaffected side of stroke patients or of a control 

group).  Since fiber density has been considered an indicator of muscle’s 

innervation ratio (Stålberg 1990), their results suggest an increase of the innervation 

ratio in muscles affected after stroke, likely due to a collateral reinnervation 

process.  Such structural change of motor units following stroke was also suggested 

by studies which investigated alterations in muscle responses due to stroke, through 

surface EMGs during voluntary contractions.   Kallenberg and Hermens (2009) and 

Li et al. (2013), for instance, observed larger amplitudes of EMG signals detected 

in muscles affected after stroke with respect to unaffected muscles, during 

voluntary isometric contractions performed at different force levels.  The authors 

suggested the muscle fiber reinnervation to explain the higher muscle responses 

observed in affected muscles, even if their results were not consistent among the 

stroke patients evaluated. 

Besides the fiber density analysis performed by previous studies through the single-

fiber EMG (Martínez et al. 1982; Lukács et al. 2009), changes in the size of motor 

units (i.e. in the muscle’s innervation ratio) following stroke may also be evaluated 

indirectly by combining surface EMG with the incremental, neuromuscular 

electrical stimulation (Blok et al. 2007).  Since the motoneurons that innervate a 

muscle have different diameter sizes and, therefore, different activation threshold 

(McPhedran et al. 1965a, b), it is possible to recruit them gradually by increasing 

gradually the stimulation intensity applied to their nerve fibers (McComas et al. 

1971).  As the stimulation intensity increases, more motoneurons are activated and, 

consequently, more muscle fibers are recruited.  Such progressive motor units 

recruitment can be observed through the increase in the M-waves amplitude for 

each increase in the stimulation intensity (McComas et al. 1971; Blok et al. 2007).  

The greater the number of muscle fibers activated for increases in the stimulation 

intensity, the greater the increment in the M-waves amplitude.  Therefore, if 

collateral reinnervation takes place in muscles affected after stroke, increasing their 

innervation ratio, it is reasonable to expect for similar, relative increases in current 
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intensity, greater variations in the M-waves amplitude of muscles affected after 

stroke than healthy muscles.  

Enlargements of muscles’ innervation ratio following stroke, however, likely 

accounts for the inability of stroke survivors in finely controlling movements with 

the affected limb.  The force generated by single motor units with respect to total 

muscle force reflects the quantal increment in muscle force, thereby indicating how 

finely force maybe regulated.  In addition, the amount of force produced by 

individual units is proportional to the number of muscle fibers they supply 

(Heckman and Enoka 2012), i.e. the smaller the number of muscle fibers innervated 

by a single motoneuron, the smaller is the force produced per motor unit.  Therefore, 

a muscle with relatively low innervation ratio would be able to produce finer 

increments in force than muscles with higher innervation ratios, for similar synaptic 

inputs.  This implies that, if the innervation ratio of muscles affected after stroke 

increases due to a collateral reinnervation, the muscles affected would be expected 

to do not produce increments in twitch force as finely as healthy muscles.   

The current study aim, therefore, at verifying whether an enlargement of the motor 

units’ size following stroke leads to greater variations in the amplitude of M waves 

elicited in affected rather than unaffected muscles of stroke patients, for similar, 

relative increases in the stimulation intensity.  We addressed this question for the 

biceps brachii, a muscle usually affected in stroke survivors.  Once confirmed our 

hypothesis, the analysis proposed in this study, combining surface EMG with 

incremental electrical stimulation, could be useful for clinicians, therapists and 

researchers to indirectly assess structural adaptations on the neuromuscular system 

of stroke survivors.  

4.2 Methods 

4.2.1 Participants 

Twenty stroke patients (14 men; range values; age: 42÷84 years; body mass: 

52÷102 kg; height: 1.52÷1.85 m) were recruited to participate in this study after 

providing written informed consent according to the Declaration of Helsinki.  The 

experimental protocol was approved by the Ethical Committee of the S.Camillo 

Hospital (Lido di Venezia, Italy).  The stroke patients eligible for this study were 

identified according to the seventh edition of the Italian guideline for prevention, 

care and rehabilitation of stroke (Inzitari and Carlucci 2006). The patient was 

classified according to the Oxford Community Stroke Project (OCSP) criteria 
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(Bamford et al. 1991) and the diagnosis confirmed by computed tomography or 

magnetic resonance imaging examinations.  Both ischemic and hemorrhagic stroke 

were screened for this study and all the patients meeting the following inclusion 

criteria were considered eligible for enrolment: the stroke has affected a brain area 

involved in the motor system; no associated traumatic brain injury; no history of 

orthopedic or neurological injury that might affect upper-extremity muscle 

function.  The demographic information of the 20 stroke patients recruited is 

presented in Table 3.   

4.2.2 Motor function evaluation and dominance evaluation 

The Fugl-Meyer Assessment scale (Fugl-Meyer et al. 1975) was used to assess the 

motor function of the biceps brachii muscles of the patients recruited in this study 

and, therefore, ensure that these muscles were somewhat affected after stroke.  

Briefly, this scale provides a subjective evaluation of the degree of sensorimotor 

impairment in subjects who have had stroke.  It assesses the motor function of upper 

and lower limbs, balance, sensory function, range of motion of joints and joint pain. 

Nevertheless, for the present study, we considered for analysis only the items 

related to the motor function of biceps brachii.  Such items were:  

 

 Reflex activity of biceps brachii;  

 Flexor synergy - Elbow flexion; 

 Flexor synergy - Forearm supination; 

 Shoulder flexion 0˚ - 90˚ with elbow at 0˚ and pronation supination at 0˚; 

 Pronation-supination with elbow at 90˚ and shoulder at 0˚; 

 Pronation-supination with elbow at 0˚ and shoulder at 30˚- 90˚ of flexion. 

 

There were three possible points for each item evaluated: 0 (the task cannot be 

performed), 1 (the task is performed partially) and 2 (the task is performed fully) 

points.  For the evaluation of reflex activity, however, there were two possible 

points: 0 (absence of reflex) or 2 (presence of reflex).  The maximum possible score 

by subject was 12 points (Table 3).  Patients whose Fugl-Meyer (biceps brachii) 

evaluation was above 90 % of the maximum score, i.e., above 10 points (six out of 

20 patients; cf. Table 3), were excluded from the study. 

Since our previous study, reported in chapter 3, showed a significant dominance 

effect on the muscles responses evaluated in biceps brachii motor units of healthy 

young subjects, patients’ dominance was also took into consideration for this study.         

Arm preference was evaluated through the Oldfield questionnaire (see chapter 3, 
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Table 3: Demographic information of the stroke patients recruited. 

ID Sex 
Age 

(years) 
Stroke type Lesion location 

Time 

elapsed after 

stroke 

(months) 

Fugl-

Meyer 

(biceps 

brachii) 

1 M 63 Hemorrhagic Internal capsule and caudate nucleus (left hemisphere) 8 2/12 

2 F 57 Ischemic Parietal lobe (right hemisphere) 5 10/12 

3 M 48 Hemorrhagic Basal nuclei 19 5/12 

4 F 68 Ischemic Internal capsule (left hemisphere) 10 4/12 

5 M 70 Hemorrhagic Parietal lobe (right hemisphere) 2 12/12 

6 F 42 Hemorrhagic Frontal, temporal and parietal lobes (left hemisphere) 25 4/12 

7 M 60 Hemorrhagic Insular cortex (left hemisphere) 5 3/12 

8 M 77 Ischemic Frontal, temporal and parietal lobes (right hemisphere) 3 7/12 

9 M 46 Ischemic Frontal and parietal lobes (left hemisphere) 3 12/12 

10 M 51 Ischemic Territory of the internal carotid artery (left hemisphere) 3 10/12 

11 M 61 Hemorrhagic Internal capsule and caudate nucleus (right hemisphere) 39 10/12 

12 F 71 Ischemic Frontal and parietal lobes (left hemisphere) 1 3/12 

13 M 73 Ischemic Temporal and occipital lobes (right hemisphere) 1 12/12 

14 M 68 Ischemic Periventricular nucleus (bilateral) 8 11/12 

15 M 59 Ischemic Territory of the middle cerebral artery (left hemisphere) 2 2/12 

16 M 56 Ischemic Internal capsule and caudate nucleus (right hemisphere) 2 12/12 

17 F 84 Ischemic Internal capsule and caudate nucleus (left hemisphere) 24 days 12/12 

18 F 77 Ischemic Insular cortex, temporal and frontal lobes, putamen and caudate nucleus (right hemisphere) 7 9/12 

19 M 70 Ischemic Frontal and parietal lobes, internal capsule and caudate nucleus (right hemisphere) 43 6/12 

20 M 71 Ischemic Internal capsule and caudate nucleus (left hemisphere) 2 4/12 
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subsection 3.2.2, for more details), where patients were asked to answer the query 

according to the period before the stroke onset. 

4.2.3 Electrodes positioning, stimulation protocol and signal 

recording 

Patients were comfortably seated with the upper limb under investigation secured 

to an isometric brace (Figure 10).  For both affected and unaffected limbs, the 

forearm was held in pronated position, the elbow joint was flexed and the shoulder 

joint was slightly abducted.  The elbow and shoulder joint angles were measured 

with the subject’s arm in the most comfortable position.  For most of subjects (ten 

out of 14), joints’ angles were similar between affected and unaffected sides, but 

varied among patients.  Specifically, elbow flexion ranged from 100˚ to 120˚ (180˚ 

being full extension) and shoulder abduction ranged from 35˚ to 65˚ across subjects.   

The positioning of EMG and stimulation electrodes, the stimulation protocol and 

the signal recordings were conducted as described in the study of chapter 3 (cf. 

subsection 3.2).  The identification of biceps’ innervation zones with a dry array of 

electrodes, however, was not performed in order to limit the duration of the 

experiment.  The grid of surface EMG electrodes were, therefore, positioned as 

distal as possible from the stimulation electrodes, without covering the muscles’ 

tendon zone.  The possible presence of innervation zone(s) under the rows of the 

grid was investigated during signal visual analysis, in order to avoid unreliable 

muscles’ responses (Merletti et al. 2003).  The duration of the stimulation protocol 

depended on the maximal current intensity tolerated by each patient; it lasted 4.2 

minutes at most. Total duration of experiment was about one hour and a half. 
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Figure 10: Frontal (left image) and lateral (right image) views of the experimental 

setup performed with the affected arm of a patient.  Detection and stimulation electrodes 

were positioned in the distal and proximal portions of biceps brachii muscle, respectively.   

 

4.2.4 Assessment of muscle responses in affected and unaffected 

arms 

EMG signals’ processing was performed as described in the study of chapter 3 (cf. 

subsection 3.2.7); the presence of innervation zones, either in the first or between 

the first and second rows of the grid, was also observed for some patients’ muscles 

(9 out of 28 muscles).  Therefore, the same procedure of consider the greatest peak-

to-peak amplitude of each column in the grid and, then, calculate the average across 

them, was performed.  Such representative muscle response, obtained for each 

current intensity, was used to assess variations in the size of M waves elicited in the 

biceps brachii muscles.  Briefly, for each muscle evaluated, the current range 

between the muscle’s motor threshold and maximal response was identified by 

analyzing the distribution of peak-to-peak amplitudes (Figure 11).  Because current 

range was different between affected and unaffected sides, the increases of 2 mA 

steps in stimulation intensity represented different percentage of the current range 

for affected and unaffected muscles. Therefore, to ensure like-with-like 

comparisons, the amplitude of M waves obtained from the side with the 

smaller current range was linearly interpolated considering a fixed, stimulation 

step smaller than 2 mA (Figure 11D).  This new stimulation step was computed as 

the value of the smaller current range divided by the number of stimulation levels 

comprised within the greater current range.  Then, increases between the amplitude 
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of consecutive M waves (increments), normalized with respect to the difference 

between the M-waves amplitude corresponding to the motor threshold and the 

maximal muscle response (Figure 11C and Figure 11F), were calculated and their 

median value (median increment) was used to assess differences between biceps’ 

responses of affected and unaffected patients’ arms. 

 

 

 

Figure 11: Variations in the M-waves amplitude for increases in current intensity are 

shown for the unaffected (A) and affected (D) arm of a single, representative patient.  Grey 

circles correspond to amplitude values averaged across stimulation pulses and channels. 

Black circles correspond to the interpolated amplitude values within the current range 

(shaded rectangle) of the affected arm. After linear interpolation, the number of increments 

within the current range of the affected arm increases from 21 to 29, to match the number 

of stimulation levels of the unaffected arm. (B) and (E) show the first and second modes of 

the distribution of amplitude values obtained for each limb (cf. dashed lines).  The current 

intensities below and over which the amplitude values were respectively smaller or equal 

and greater or equal than the first and second amplitude modes were identified; these 

current values define the current range within which increases in stimulation intensity 

elicited increments in M-wave amplitude (shaded rectangles). (C) and (F) show the 

amplitude of increments between consecutive stimulation levels for the unaffected and 

affected arms, respectively. Increments’ amplitude is normalized w.r.t the M-wave 

amplitude corresponding to the muscle’s motor threshold and maximal response. 
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4.2.5 Statistics 

After verifying that the data distribution was not Gaussian (Shapiro-Wilk’s W test, 

p < 0.05) for part of the parameters evaluated (i.e., current range and median 

increment of affected and unaffected arms), both parametric and non-parametric 

statistics were used to test our hypothesis.  The Student’s t-test for dependent 

samples and the paired Wilcoxon test were applied to evaluate differences in the 

median increments and current ranges between affected and unaffected muscles, 

respectively.  In addition, Spearman’s rank-order correlation was applied to verify 

the relationship of the ratio between the median increment of unaffected and 

affected muscles (ratio of median increments) with the time elapsed since the stroke 

onset of patients.  The level of statistical significance was set at 5 % and data were 

reported using both parametric and non-parametric descriptors. 

4.3 Results 

Data of six out of the 14 patients evaluated were disregarded from analysis because 

the maximal muscle response was not reached in both subject’s arms. The eight 

patients considered for analysis had the right arm as the dominant one, according 

to the median, laterality quotient score of 81 % (interquartile interval: 63-88 %).   

Stimulation intensity values corresponding to the motor threshold and the maximal 

muscle response for the unaffected and affected arms are described in Table 4. 

 

Table 4: Stimulation intensities corresponding to the motor threshold and maximal 

muscle response for biceps brachii of unaffected and affected limbs. 

 Stimulation intensity (mA) 

 Motor threshold Maximal muscle response 

Unaffected arm 21 (19.5-26.5) 74 (68-98) 

Affected arm 24 (23-30) 83 (68-105.5) 

Values are median (interquartile interval). 
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4.3.1 Differences between muscle responses in affected and 

unaffected arms 

Figure 12 shows the curves profiles when plotting the normalized M-waves 

amplitudes and the stimulation levels within the current range for both affected and 

unaffected muscles of the patients.  A sigmoidal curve profile, as the one verified 

for most of the healthy, young subjects evaluated in the study of chapter 3 (c.f. 

subsection 3.3.1), can be observed in eight out of the 16 muscles analyzed: in both 

arms of patients 1, 3 and 12, in the affected arm of patient 11 and in the unaffected 

arm of patient 15.  Differences between the stimulus-response curves of affected 

and unaffected patients’ arms seemed to be more evident for patients 4, 11, 12, 15, 

19 and 20.  Specifically, for patients 11 and 20, the slope of the curve increased in 

the affected compared with the unaffected muscle from approximately half of the 

stimulation levels, while for patients 12 and 15 the slope was greater in the first half 

of the stimulation levels.  For patient 4, slope seemed to mainly differ between arms 

in the first stimulation levels, up to level 8, and between stimulation levels 14 and 

18.  For patient 19, although the curve for the unaffected muscle have shown a 

higher slope in the first eight stimulation levels, the curve of the affected muscle 

seemed to have been higher for most of the stimulation levels. 

Six out of the eight patients considered for analysis showed greater median 

increment values for affected than unaffected biceps brachii muscles, differing from 

0.1 to 1.3 % (Figure 13A); four of these six patients had the affected arm as the 

dominant one while the other two had the unaffected arm as the dominant one.  For 

the other two patients whose median increment values were smaller in affected than 

unaffected muscles, the affected arm was the dominant one and differences between 

arms ranged from 0.2 to 0.4 % (Figure 13A).  When comparing median increments 

between affected and unaffected arms, the Student’s t-test revealed a P value (P = 

0.08, N = 16; 8 subjects x 2 arms) close to the one used to define the statistical 

significance (P = 0.05).  Regarding the current range, half of the patients showed 

greater ranges in the unaffected than affected arm, differing from 2 to 16 mA (i.e., 

from one to eight stimulation levels).  For three patients, current range was 2 to 18 

mA (i.e., one to nine stimulation levels) greater in the affected arm, and for one 

patient it was similar between arms.  The paired Wilcoxon test revealed no 

significance difference between current range (i.e. the number of the stimulation 

steps between the motor threshold and the maximal response) of unaffected and 

affected arms (P = 0.73, N = 16; 8 subjects x 2 arms; Figure 13B).   
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Figure 12: Variations in the normalized M-waves amplitude of both affected (fine 

black line) and unaffected (thick gray line) muscles of the eight patients evaluated, for 

relatively, similar increases in current intensity (stimulation levels). 
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Figure 13: Bars in panel (A) show the median increment amplitude calculated from 

the increments between consecutive M waves within the current range of unaffected and 

affected arms of patients. Circles and squares connected through a line correspond to 

median increments for the unaffected and affected arm of the same subject. Circles and 

squares indicate the dominant and non-dominant arm of patient, respectively.  Boxplots in 

panel (B) show the current range within which the amplitude of M waves increased from 

the smallest to the greatest value.  Black circles connected through a line correspond to 

current ranges for the unaffected and affected arm of the same subject. Light and dark gray 

boxes respectively indicate values for the unaffected and affected arm. 

 

4.3.2 Correlation between side-differences in muscle responses and 

the time elapsed since the stroke onset 

No significant correlation was found between the ratio of median increments and 

the time elapsed since the stroke onset (R = -0.38; P = 0.36; N = 8; Figure 14).  

Figure 14 denotes that patients whose median increment was greater in affected 

than unaffected muscles (i.e., the ratio of median increments was bellow one), 

showed a great variability with respect to the time elapsed since the stroke onset, 

ranging from one to 43 months.  For the patients whose median increment was 

smaller in affected than unaffected muscles (i.e., the ratio of median increments was 

above one), time since the onset of stroke varied from two to eight months. 
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Figure 14: Correlation of the ratio between the median increments of the unaffected 

and affected arms with the time elapsed since the stroke onset (months).  Circles and 

squares indicate whether the dominant arm of the patient was the affected or the unaffected 

one, respectively.  Numbers close to circles and squares refers to the patients’ identification 

(see Table 3). 

 

4.4 Discussion 

In this study we investigated whether, during incremental stimulation of the biceps 

brachii in stroke patients, changes in the amplitude of M wave between consecutive 

stimulation levels are greater in the affected than in the unaffected side.  M waves 

were recorded through surface EMGs positioned in the distal portion of the muscle, 

while electrical stimulation was applied in the proximal portion.  Current intensity 

was increased gradually up to the maximal intensity tolerated by each subject.  Our 

findings showed a clear trend towards greater changes in the amplitude of M waves 

between consecutive stimulation intensities in the affected than in the unaffected 

arm of most of the stroke patients evaluated. 

4.4.1 Preliminary considerations 

First of all, to ensure that the biceps brachii muscles evaluated in this study were 

somewhat affected following stroke, we decided to disregard patients whose Fugl-

Meyer (biceps brachii) score was above 90% of the maximum score.  

Methodological considerations with respect to the experimental protocol applied 

here are the same discussed for the study of chapter 3 (see subsection 3.4.1).  

Similarly to this previous study, here we also applied the linear interpolation to 

match the number of stimulation levels and, therefore, of increments within the 
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current range between the arms of each patient.  The interpolation was performed 

to avoid a possible bias in the results found (Figure 13A) due to distinct number of 

increments between arms (see chapter 3, subsection 3.2.4 for more details) and to 

ensure like-with-like comparison between affected and unaffected muscles of each 

patient.  Although differences in the current range between arms seemed to have 

been negligible for most of the patients evaluated (for five out of eight patients 

current range differed between arms from 0 to 4 mA), as confirmed by the 

statistical analysis (cf. Figure 13B), for three patients the difference between arms 

was about 16 to 18 mA (i.e., eight to nine stimulation levels).  By performing the 

linear interpolation, however, we probably assumed that motor units were recruited 

between consecutive stimulation levels, which could not be true.  Thus, it is possible 

that median increments had been underestimated in patients’ arm which stimulus-

response curve was interpolated.   

4.4.2 Variations in M-waves amplitude differed between biceps 

brachii of affected and unaffected arms 

Structural adaptations in the motor units’ size of muscles affected after stroke were 

indirectly investigated by comparing the size of increments in the amplitude of M 

waves elicited in biceps brachii of affected and unaffected sides of stroke patients.  

Variations in the M-wave amplitude is usually assumed to reflect a change in the 

number of motor units activated (McComas et al. 1971) and, therefore, in the 

number of muscle fibers activated.  Assuming that collateral reinnervation takes 

place in muscles affected after stroke (Martínez et al. 1982; Lukács et al. 2009), we 

expected that increases in M-waves amplitude, evaluated by means of median 

increments, would be greater in affected rather than unaffected muscles for similar, 

relative increases in current intensity.  In this case, it is reasonable to expect a 

greater slope of the stimulus-response curve of affected muscles with respect to the 

curve of unaffected muscles.  Indeed, differences in the curve slope and, therefore, 

in the sizes of increments between affected and unaffected muscles were somewhat 

observed in the stimulus-response curves of most of the patients (cf. Figure 12).  

For patients 4, 12 and 15, for example, greater increments in affected than 

unaffected muscles seemed to be more evident in the low stimulation levels, while 

for patients 11, 19 and 20 differences appear in the high stimulation levels.  

Although statistical analysis did not show significant difference (p < 0.05), our 

findings showed a clear trend towards greater median increments in muscles of 

affected with respect to unaffected arms for most of the stroke patients evaluated 

(cf. Figure 13A).  In other words, increases in M-waves amplitude seemed to have 
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been progressively larger in affected than unaffected biceps brachii for similar, 

relative increases in the current intensity.  Indeed, P value (0.08) was close to the 

one used to define the statistical significance (P=0.05).  By increasing the sample 

of patients, maybe a statistical difference would be observed.   

Before interpreting the differences observed between affected and unaffected 

muscles, a consideration should be made: are these side-differences an outcome of 

stroke or are they also related to effects of upper-limb dominance on the muscles 

responses? In our previous study, reported in chapter 3, we performed the same 

experimental protocol of this study with 16 healthy, young subjects and found 

significant smaller median increments in biceps brachii of dominant than non-

dominant arms (cf. chapter 3, subsection 3.3).  Hence, to understand whether the 

side-differences found in the stroke patients may have any relation with dominance, 

patients were organized in three different groups: (Group 1) the four patients whose 

dominant arm was the affected one and median increments were greater in the 

affected than unaffected arm; (Group 2) the two patients whose dominant arm was 

the unaffected one and median increments were greater in the affected than 

unaffected arm; (Group 3) the two patients whose dominant arm was the affected 

one and median increments were smaller in the affected than unaffected arm.  

For the four patients in (Group 1), results found for median increments agreed with 

our hypothesis of greater variations in the amplitude of M waves elicited in biceps 

brachii of affected than unaffected arms.  Such results were likely an outcome of 

stroke, since with respect to dominance, they were contrary to the results found for 

the healthy subjects (cf. chapter 3, subsection 3.3), i.e., the dominant arm of these 

patients showed higher median increments with respect to the non-dominant arm.  

Median increments were about 0.1-1.3 % greater in affected than unaffected biceps 

brachii muscles. This finding seems to be consistent with the notion that collateral 

reinnervation takes place after stroke, increasing the number of muscle fibers per 

unit (innervation ratio) and, therefore, the magnitude of the muscle responses.  It 

corroborates with previous studies (Martínez et al. 1982; Lukács et al. 2009) which 

showed higher fiber density in muscles affected after stroke with respect to healthy, 

unaffected muscles. 

For the two patients in (Group 2), it is not clear whether the greater increments 

observed in the affected muscles of these patients may reflect changes in the motor 

units’ size due to stroke or whether they may be a result of side-differences related 

to dominance.  The muscles affected in these patients were those of their non-

dominant arms.  Thus, greater median increments were observed in muscles of non-
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dominant that dominant arms, as verified for the healthy subjects evaluated in 

chapter 3.  Due to the reduced number of patients in this group, we could not 

perform a statistical analysis in order to verify whether the side-differences found 

for these patients are compared with those found for the healthy subjects.  However, 

comparing the difference between the median increments of arms of each patient 

(cf. Figure 13A) with the average difference found between arms of the healthy 

subjects (cf. Figure 9A of chapter 3), distinct patterns were observed.  For one 

patient, side-difference (0.2 %) was smaller than the average difference found 

between arms of healthy subjects (0.7 %), while for the other patient it was higher 

(1.2 %).  A greater sample of subjects would be necessary to verify whether the 

effect of stroke overcomes the effect of the dominance on side-differences of 

median increments.   

For the two patients in (Group 3), results were contrary to our hypothesis and were 

consistent with the findings for the healthy subjects, about dominance.  Median 

increments were 0.2 % and 0.4 % smaller in the affected than unaffected muscles 

of these patients, with the affected sides corresponding to the dominant arms.  These 

results suggest that a muscle reinnervation process may not necessarily occur for 

all muscles affected by stroke.  Indeed, the inter-subjects variability observed in our 

findings, with respect to side-differences of neuromuscular responses of stroke 

patients, was also reported by previous studies, which did not consider the patients’ 

dominance though.  Briefly, Kallenberg and Hermens (2009) and Li et al. (2013) 

analyzed the absolute amplitude values of surface EMGs recorded in muscles of 

affected and unaffected arms of stroke patients, during isometric contractions 

performed at different force levels.  For part of the patients they evaluated, muscles 

responses were greater in affected than unaffected sides and, although statistical 

differences have not been significant, the authors suggested the collateral 

reinnervation to explain such difference.  However, for the other part of the patients, 

muscle responses were smaller in affected than unaffected sides.  Kallenberg and 

Hermens (2009) suggested that the greater responses observed in unaffected 

muscles may have been due to an increase in fiber diameter on unaffected muscles 

as a consequence of overuse.  While Li et al. (2013) suggested the muscle fiber 

atrophy as a possible reason for the smaller responses observed in affected muscles.  

In our study, however, differences between the muscle fibers’ diameters in affected 

and unaffected biceps brachii do not explain the results we found, since M-waves 

amplitude were normalized with respect to the minimal and maximal muscle 

responses, compensating the effect of anatomical differences between arms on the 

surface EMGs (Farina et al. 2002). 
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Besides dominance, we also verified the relationship between the time elapsed since 

the stroke onset of patients and side-differences in muscle responses, evaluated by 

means of the ratio between median increments on unaffected and affected muscles 

(ratio of median increments).  No correlation was found between the ratio of median 

increments and the time elapsed since the stroke onset of the patients evaluated 

(Figure 14), probably due to the reduced sample of subjects and the variability 

among them.  However, observing the individual patient results (cf. Figure 14), for 

two patients whose results indicated a muscle reinnervation have occurred after 

stroke (patients 12 and 15), the time elapsed since the stroke onset ranged between 

one and two months, suggesting muscle reinnervation may be already observed 

after few months following the stroke onset.  Such assumption corroborates with 

Martínez et al. (1982) and Lukács et al. (2009) findings, which suggested that motor 

unit reorganization following stroke already occurs in the first months after the 

stroke onset.  Briefly, the authors of both studies evaluated the fiber density of hand 

muscles affected in stroke patients, through single-fiber EMG.  Martínez et al. 

(1982) found increased fiber density in patients with only two months since the 

stroke onset.  Lukács et al. (2009) observed that for patients with less than ten 

months from the stroke onset, there was a gradual increase in the muscle fiber 

density as patients had more time elapsed since the stroke onset.   

4.4.3 Physiological implications 

Notwithstanding the reduced sample of patients evaluated in this study, we verified 

a trend towards greater variations in the amplitude of M waves elicited in affected 

than unaffected biceps brachii.  Although our findings are not conclusive, they seem 

to provide evidence of changes in the organization of the neuromuscular system 

following stroke, specifically of increases in the innervation ratio of muscles 

affected after stroke likely due to muscle fiber reinnervation.  Such possible 

increase in the motor units’ size in muscles affected after stroke, however, would 

imply that the surviving motoneurons may produce higher force values than before 

stroke.  Focusing attention on patients whose variations in M-waves amplitude were 

greater in affected than unaffected biceps brachii, the maximum side-difference in 

median increments was 1.3 % (cf. Figure 13A).  Such a value can be considered as 

indicative of the greater amount of additional motor units elicited in the affected 

muscle with respect to the unaffected muscle for similar, relative increases in the 

stimulation intensity.  In this hypothesis, if we translate this side-difference in terms 

of incremental force, biceps brachii of affected arms would produce greater relative 

force increments with respect to unaffected arms.  Hence, the collateral 
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reinnervation process following stroke may hinder the ability of stroke survivors to 

produce increments in force as finely as healthy muscles.   

4.4.4 Study limitation 

Given that previous findings suggest that after stroke the number of motor units 

may be on average 20-60% smaller in affected than unaffected muscles (McComas 

et al. 1973; Hara et al. 2004; Li et al. 2011, 2014a; Kouzi et al. 2014), one could 

expect a much clear difference in the M-waves responses between affected and 

unaffected biceps brachii evaluated in this study.  The subtle difference we observed 

between the median increments of affected and unaffected muscles (Figure 13A) 

may put in doubt whether the stimulus-response curve analysis we performed is 

effective to assess structural adaptations of muscles affected after stroke due to a 

collateral reinnervation process.  Before drawing such conclusion, however, an 

important consideration must be highlighted: we do not know the degree of 

collateral reinnervation in the biceps brachii muscles affected in the patients we 

evaluated.  If the number of motor units in a muscle is reduced in 50% after stroke, 

for example, this does not mean that all the muscle fibers denervated in this muscle 

would be reinnervated by the survivors motoneurons.  Perhaps only part or none of 

the muscle fibers denervated are reinnervated.  In our opinion, such uncertainty with 

respect to the occurrence of a reinnervation process in the muscles evaluated is the 

main limitation of the present study and, probably, of previous studies which also 

investigated alterations in the neuromuscular system following stroke (Kallenberg 

and Hermens 2009; Li et al. 2013).  Indeed, as commented in the discussion, such 

studies as well as ours found controversial results among the patients assessed, 

which may be associated with different degrees of a reinnervation process in 

muscles affected after stroke.  Therefore, more investigation should be necessary in 

order to verify the effectiveness of stimulus-response curve analysis performed in 

the present study. 
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