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Abstract

The experimental realization of time-dependent ultracold lattice systems has paved the way towards
the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-
components lattice dipolar Fermi gas the competition between long range repulsion and correlated
hopping induced by periodically modulated on-site interaction allows for the formation of hidden
magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by
string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom.
Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of
parameters for which hidden magnetism is present can be reached by means of the currently available
experimental setups and probes.

Since the Haldane’s discovery of a gapped phase with no local order in 1983 [1], hidden magnetic orders [2] have
attracted huge interest. In this context two very recent experiments involving organic molecular compounds [3]
and an oxide of nickel spin chain [4] have obtained relevant results. Nowadays cold atomic systems offer an ideal
platform to simulate fundamental quantum physics [5]. Indeed proposals for the realization of hidden charge
magnetism [6—10] have been carried out. Meanwhile the possible realization of interaction induced hidden spin
orders in fermionic systems is still an unexplored scenario.

At the same time, investigations of periodically modulated quantum systems [11] have predicted very
interesting effects [ 12—14]. They have stimulated impressive experimental achievements like frustrated classical
magnetism [15], gauge potentials [16], ferromagnetic domains [17] and the realization of new particle-hole
symmetric Hubbard-like Hamiltonians with correlated hopping processes (CHPs) [18]. The latter are believed
to be responsible for fundamental still open questions [19], one of these being the celebrated 7-
superconductivity [20].

A configuration closer to real materials [21] can be realized in trapped ultracold atomic systems with strong
long-range dipolar interaction, like magnetic atoms [22—24] and polar molecules [25-27]. In case of Er magnetic
atoms, this research line has produced the recent experimental realization [28] of a paradigmatic model in
condensed matter, the extended Bose—Hubbard model. Furthermore out-of-equilibrium dipolar systems have
been both used to generate quantum magnetic Hamiltonians [29, 30] and proposed to study disorderless many-
body localized regimes [31].

Motivated by the aforementioned reasons, in this paper we investigate the properties of a dipolar fermionic
mixture subject to a rapid time periodic modulation of the on-site interaction and trapped in a one-dimensional
(1D) optical lattice. In this regime Floquet theory can be applied. It allows to derive an effective time independent
model where an additional term of CHPs appears. When we treat the effective model within bosonization
approach [32], its behavior is reduced to that of two spin-charge separated sine-Gordon models. The latter turns
out to capture well the charge sector, predicting in particular the presence of hidden charge order; and to only
partly describe the behavior in the spin sector, since Haldane spin order appears to be ruled out. In fact, once

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/aa9037
mailto:Luca.Barbiero@ulb.ac.be
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa9037&domain=pdf&date_stamp=2017-12-06
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa9037&domain=pdf&date_stamp=2017-12-06
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 19 (2017) 123008 S Fazzini et al

4 T T T T /Jy T
I X=0.2 ' ]
3 eq. (7/
- - .
:)o ‘/‘/ AT ,t‘! =
Al 1\:"“ A eq. (8)
Ao _o® o cpw
& ,/g ]
L &-—¢ _-BcHI _
HI &
&
0 T . I . I
0 0.5 1.0 Yy 1.5 2.0
worr t 1 QLR QO P o
sworr + |0 Wt L AL 0 oo
st 40t B 0T Losa
o 1 Q% L0l 108 o
- 2 P c s
cow 00 L0 Dt 0 tHoson
Figure 1. Upper panel: DMRG (symbols) and bosonization (solid lines) phase diagram of (2) as a function of Uyand VwithJ = 1and
X = 0.2. Lower panel: cartoon of the phases with the relative NLOPs. The red (purple) dashed circles show the doublon-holon (spin
up—down) virtual excitations.

quasi-exact density matrix renormalization group (DMRG) [33] calculations are performed, a further spin
gapped region is found with respect to bosonization predictions. Noticeably, this is characterized by the presence
of hidden magnetic order in the spins. This magnetism can be solely detected by the non-vanishing of string-like
nonlocal order parameters (NLOPs). Finally we discuss how all our achievements can be experimentally
reproduced with the ongoing experimental setups involving magnetic atoms.

Model

We consider a balanced unit density two components (¢ = T, |) dipolar Fermi mixture of N particles” with
onsite periodically modulated interaction trapped in a 1D optical lattice. Within a single band approximation,
i.e. for a deep optical lattice, the extended Fermi—Hubbard model [21] gives an accurate description of the system

H=-]> > (cwcﬂ,— + h.c) + U(t)z njpnj + V>

(ij) o=1,1 jr=>1 T

nifjtr ”]+r

()]

where (..) denotes nearest neighbors, cj, (c]TU) destroys (creates) a o-fermion in the jth site of a lattice of length L
and n; = 3 n; , counts the total number of particles at site j. Crucially in cold atomic experiments all the
couplings, namely the hopping rate J, the onsite interaction U and the long range dipolar repulsion V may be
independently controlled by modifying the lattice depth, the transversal confinement [34, 35], using Feshbach
resonances, and/or controlling the orientation and strength of the polarizing field. The time dependence in (1)
can be induced by a rapid variation of the scattering length [36] producing a periodic modulation of the form
U(t) = Uy + U cos(wt) which consequently makes H (1) = H(t + T)being T = 27 /w.In the regime

w > Uy/7%, ]/ 7, Floquet theory can be used [37] to approximately remove the time dependence. Indeed,
analogously to the V = 0 case [38], we find that this kind of interaction modulation generates an effective time
independent Hamiltonian where the hopping processes are renormalized by the density, namely the CHPs

niniy,
Het = —J 3. (¢ cjo + 0O (I — X(nig — 1)) + Up S omjpnj + V'S ]rf* )
(ij),o j jr>0

where X = 1 — Jy(U; //w) is the CHPs rate, J, is the first kind Bessel function, and & denotes the other
component with respect to 0. The model (2) in the V = 0 regime has attracted huge interest in the context of
cuprate superconductors [39] while the X = 0 case has been studied in the context of time independent dipolar
fermions, see [40] and references therein. Meanwhile only few partial analysis have tried to approach the full H.g
[41-43], in case of just nearest-neighbor repulsion. From the other side, our figure 1 shows how the model (2)
presents a rich phase diagram including quantum regimes with hidden magnetic properties and topological

* All our results are obtained by keeping as conserved quantities both the total number of particles N = N; + N and the single component
species Nty = N; = N /2.
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Figure 2. Blue continuous lines are the time evolution of NLOPs, red dashed lines are the time-averaged values of NLOPs and black
dotted lines are the NLOP values given by Hgrequation (2). The extrapolated value of the strings is Og (L /2) while the extrapolated
value of the parities is (Op (L/2) + Op(L/2 + 1)) /2. All the results refer to a system of L = 8 sites and both couplings and inverse
time are expressed in unit of J. The amplitude of the correlated hopping processes in the static model is X = 0.2.

order. As explained in the following sections, the latter phases can be characterized solely by means of non-local
order parameters.

Nonlocal order parameters

In the context of lattice fermions a very fundamental role is played by NLOPs of parity- and string-like form.
Their correlation functions can be written respectively as

Op(r) = (e™%i=r%), ®
O¥(r) = (S} ™ LicjcterST S}, ), @

where v = ¢, s refers to the charge and spin degrees of freedom, and the charge and spin operators are defined
as:§; = (1 — nj)and §; = (nj; — n;). The relevance of NLOPs lies in the fact that they act as order parameters
for gapped 1D phases [2, 6, 44] without breaking any continuous symmetry, thus in agreement with the
Mermin—Wagner theorem [45]. Also, non-vanishing NLOPs characterize [46] symmetry protected topological
phases [47, 48] obtained by group cohomology. In particular a finite Og’ in the thermodynamic limitisa
signature of a phase with non-trivial topological properties, noticeably the presence of degenerate edge modes
[46,49], with charge or spin fractionalization. These facts have motivated their intensive use to study 1D
fermionic systems [41, 44, 50—-52] helping to display physical properties not captured by the usual two-point
correlation functions. More precisely, in fermionic systems the role of Oy is to signal the presence of trivial
Mott- (BEC-) like orders with virtual excitations consisting of correlated pairs of holon-doublon (for v = ¢) or
single electrons with up-down spin (for v = s) [44]. Meanwhile Og captures hidden non-trivial ‘dilute’
Haldane-like antiferromagnetic orders [1, 41] of holon-doublon (v = ¢) or up-down spins (¥ = s). General-
ization to higher dimension has also been considered recently [53].

Dynamics versus effective model

In order to check the validity of the Floquet theory we compare the finite size NLOP values obtained by
simulating both the time dependent model (1) and the derived time independent effective model (2). The time-
dependent simulations are performed by means of exact diagonalization starting from the initial ground state
with couplings J, U, V andat¢ > 0atime periodicity U(¢) is applied in order to get CHPs of strength X = 0.2.
After that, we monitor the time evolution and we evaluate the time-averages of the NLOPs’. As clearly shown in

5 . . . .
The time-averages are shown in the time interval 2 < t < 10. We checked thatthe 2 < t < 6,2 < t < 8and 2 < t < 10 averages
actually converge to the same value.
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figure 2 all the time averaged NLOP values are in good agreement with the ones obtained by exactly
diagonalizing (2) with couplings® J, U, V;, X. The latter result allows us to safely study H.gin order to get the full
phase diagram of (1) without losing some fundamental aspect encoded in the time dependence.

Luttinger liquid analysis

Here we report the results of a bosonization analysis [32] of H.g, which details can be found in [54]. The
Hamiltonian can be regarded as the sum of three contributions: H = H, + H; + H. In the weak coupling
limit, each of the first two contributions has the form of a sine-Gordon model in the v sector, namely

= | dx[HoV + %cow@m] )

with Hy, = %[KD (0.0,)* + Ki(ax@)z]. The contribution H,, = % fdx cos(~/87 ¢,) cos(+/87 ¢,), which
couples the spin and the charge sectors, is irrelevant in a renormalization group analysis, having scaling
dimension 4 and therefore it is usually neglected. The massive phases of the two decoupled sine-Gordon models
can be analyzed in the asymptotic limit by studying the renormalization group flow equations. In v sector the
transition line to a gapped phase is determined by the competition between the kinetic and the mass terms,
which generates the equation

2(Ky — 1) < |my|. (6)

The sign of m,, causes the field ¢, in equation (5) to pin to one of the two values 0 or &=/7/8 , which correspond
to the appearance of two distinguished nonlocal orders, namely the parity and the Haldane string orders. In fact,
in the continuum limit, when the field is pinned, the NLOPs become [41]: Of — ((cos NGY s <py)2> and
O¢ — {(sin /27 ¢,)%). This observation also allows to connect a non-vanishing Haldane string order with the
presence of degenerate edge modes typical of a non-trivial symmetry protected topological phase. Indeed, within
the bosonization framework, they are observed at the edge between the trivial (¢, = 0) and the non-trivial
(¢, == \/T/S ) phases [46, 49], and are characterized by fractional charge (for v = ¢) or spin (for ¥ = ). The
solution of inequality (6) in the charge sector produces the following transition line

16

U = 2¢OV + 22x. %
2 T

For V = 0, it marks the boundary between two gapped phases, which can be distinguished by means of different
NLOPs. Indeed, as U, crosses this critical point from higher to lower values, the topological nature of the
insulating state changes from trivial (Of = 0) to non-trivial (Os = 0).

On the other hand, it is found that the spin sector is gapless if Uy > U, where

Une = 2C3)V — x. @®)
2 T

Instead, the gapped phase obtained for Uy < Uy, is characterized by a parity order: Op = 0.

Summarizing, we find that bosonization analysis predicts the presence of three insulating phases, separated
by the two transition lines (7) and (8), as illustrated in figure 1, where the bosonization results are represented by
the green and yellow solid lines. For U > U, the state is characterized by finite Op, thus configuring as a Mott
insulating phase with trivial topological properties. Instead, between the two solid lines, i.e., for Uy, < Uy < Up,,
the system is ordered by OS, which identifies a charge Haldane insulator (CHI). Finally, for U < Uy, the charge
Haldane order coexists with a spin parity order, thus designating the presence of a charge density wave (CDW)
locally ordered phase [41].

In the end, we would like to stress that, since the su(2) spin invariance of the Hamiltonian imposes
constraints on the coefficients of the sine-Gordon model in the spin channel, within the one loop bosonization
analysis no phases with hidden spin order can be present. In other words, the approach described in this section
is not able to predict the presence of possibly existing phases with Og = 0. In fact, as we will see in the next
section, the numerical analysis shows the evidence of this order for limited regions inside both the Mott and the
CHI phases. The bosonization approach can be improved by releasing the requirement of spin-charge
separation and by including the effect of higher order harmonics.

® We checked that a different choice of the couplings does not affect the substantial agreement.
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Figure 3. Thermodynamic limit of charge gap, spin Luttinger constant and NLOPs of (2) for ] = 1, V=0.5and X = 0.2 asa function
of Up. A, is extrapolated by using open boundary conditions and sizes up to L = 44. K and the NLOPs are extrapolated by using
periodic boundary conditions and sizes up to L = 36. The extrapolated value of the strings is Og (L /2) while the extrapolated value of
the paritiesis (Op (L/2) + Op(L/2 + 1))/2.Inall our DMRG simulations we cut r to three nearest neighbors keeping up to 1600
DMRG states and performing up to 6 finite size sweeps.

DMRG results

The bosonization analysis is expected to give reliable results in the weak coupling regime. Below we perform a
further analysis based on quasi exact DMRG simulations to explore the full phase diagram. Since an insulating
behavior is expected everywhere except along a critical line, as a first step we evaluate the thermodynamic limit of
the chargegap A, = (E(N + 2) + E(N — 2) — 2E(N))/2 being E(N) the ground state energy of N particles.
The result is displayed in the upper panel of figure 3 for fixed X = 0.2 and V = 0.5. It clearly show that A,
vanishes only in one point thus signaling a continuous phase transition between two insulating phases. DMRG
results become more crucial when analyzing the behavior in the spin degrees of freedom, where CHPs are
known to make bosonization less predictive [55]. Here, as a first step we evaluate the thermodynamic limit of the
Luttinger spin constant K, = lim,_,o7S*(q) /q where $*(q) = 1/LY" €%~ D((S{S) — (S) (S/)) is the spin
structure factor. Luttinger liquid theory predicts K; = 1(0) in absence (presence) of a finite spin gap, defined as
the energy variation in flipping one spin. Here both logarithmic corrections and finite size effects make very
difficult to get sharp 0, 1values. Nevertheless a well established and accurate approximation, see [56], is to
consider a spin gapless (gapped) phase in presence of K; > 1(<1): the transition point is then fixed by the
crossing of the value 1. As clearly visible in figure 3 the analysis based on the thermodynamic limit of K
surprisingly finds, for small values of V, a further large spin gapped phase ranging in a region around the single
point where A, = 0. The above results allow us to identify all the gapped regions of the phase diagram, as
reported in figure 1. The nature of each phase can be better characterized by studying the behavior of the
different NLOPs (see bottom panels of figure 3). Based on this analysis, for large V, we find a phase with CDW
(Os, Op = 0) order, as expected, in analogy with the nearest neighbor extended Fermi—Hubbard model (see for
instance [42]). The similarities extend also to the large U, region where a charge gapped Mott phase signaled by
Opis present. Between the CDW and Mott regions instead, the fully gapped phase with bond ordering (BOW)—
characteristic of the extended Fermi—-Hubbard model and signaled by a non-zero value of both parity operators—
is destroyed by the CHPs. Indeed figure 3 shows that, at intermediate Uy, V/, three different phases characterized
by hidden magnetism take place. In particular as predicted by bosonization, a phase having as an order
parameter only OS5 appears (CHI). The latter reproduces in a two-species fermionic system the same charge
hidden antiferromagnetic order of the well known topological Haldane phase studied in the context of spin-1
chains [1], extended Bose—-Hubbard model [57-59], and multicomponent fermions [60]. Moreover, at variance
with the bosonization results, figure 3 also shows that both the Mott and CHI regions are partially replaced by
fully gapped phases, due to the presence of the spin string order (O5 = 0) coexisting with the charge order,
meaning that T and | spins are alternated and diluted in an arbitrary number of holons and doublons properly
organized. In particular, at fixed V and by increasing U, we first find a phase with the two strings being
simultaneously non-vanishing (Og, O§ = 0), thus describing hidden magnetism in both degrees of freedom:
holons and doublons are themselves diluted and alternated. This is called spin Haldane insulator (SHI). By a
further increase of the onsite interaction, the hidden antiferromagnetic charge order (Og) is replaced by the
Mott-like charge order (O%), where holons and doublons are organized in localized pairs. Meanwhile Og remains
finite in a further range, thus giving rise to spin gapped Mott phase (S-Mott). In figure 4, we show the finite size

5
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Figure 5. Thermodynamic limit of spin Luttinger constant K;and NLOPs for ] = 1, V = 0.3 and X = 0.05 as a function of Uj. K;and
the NLOPs are extrapolated by using periodic boundary conditions and sizes up to L = 24. The extrapolated value of the strings is
0O¢(L/2) while the extrapolated value of the parities is (Op (L/2) + Op(L/2 + 1)) /2.Inall our DMRG simulations we cut r to three
nearest neighbors keeping up to 1200 DMRG states and performing up to 6 finite size sweeps.

extrapolation of the string order parameters for different values of the onsite interaction strength, namely in the
CHI, SHI and S-Mott phases.

The full phase diagram is shown if figure 1, where the numerical results (symbols) are compared with the
bosonization predictions (solid lines). Moreover, in the lower panel a schematic picture of the phases is drawn to
help the reader understand their connotations in terms of nonlocal orders. We have checked that all our phases
with hidden magnetism are stable and robust with respect to varying X. In particular, increasing X, the shape of
the region with finite O5is preserved, whereas the size of the region with charge string order increases, thus
giving rise to an even bigger SHI regime. The crucial point, as shown in figure 5 is that the O5 order persists also
for very weak X, meaning that CHPs are the solely responsible for these kinds of hidden spin orders.

Discussion

The above DMRG results envisage a new scenario where hidden spin string order is explicitly induced by
interaction without breaking the full su(2) spin symmetry of the Hamiltonian, at variance with previous results
[49, 61]. Moreover, both the SHI and the S-Mott phases configure as fully gapped phases with no local order, at
variance with bosonization predictions.




10P Publishing

NewJ. Phys. 19 (2017) 123008 S Fazzini et al

In fact one may further notice that the presence even for weak coupling of spin gapped phases not predicted
by one-loop bosonization was already observed for a similar model [55]. In that case the inclusion of higher
order harmonics in the spin channel of bosonization analysis was subsequently proved [62] to induce the
opening of the observed spin gapped phase for ¢, = 0. However it must be stressed that here the further spin
gapped phase is non-trivial, i.e. it opens in correspondence of ¢, = + \/T/S . This suggests that the spin-charge
coupling term H, should have not been neglected. Otherwise the su(2) symmetry of the sine-Gordon model
would imply K; < 1onlyfor m, < 0, which solution describes just the trivial phase. In fact, following an
approach similar to [42], the role of H,, in a charge gapped phase can be understood by considering in the spin
channel an effective sine-Gordon model with renormalized mass m.* = m, + M, < cos /87 ¢, >, where ¢,
fixed to 0 (S-Mott) or & \/7T—/8 (SHI). Depending on the sign of M, one sees that in this case even for a negative
m,, m.* can become positive: in particular, this happens in presence of Haldane charge order iff M, < 0 (SHI
phase), whereas for trivial charge order one must have M, > 0 (S-Mott phase). The same approach could also
be applied to justify the shift which appears in the CHI-CDW transition line with respect to bosonization
predictions, exploring the case m.” < 0.

Experimental realization

The previous quantum phases could be studied by using a mixture of Erbium isotopes. In particular fermionic
167Er [63] as well as bosonic %3Er [28] isotopes are currently available in laboratories. The scattering length of
the '%8Er can be accurately tuned to reach a practically hard-core regime, thus giving rise to an effective two
components Fermi mixture’. At 30° < 6 < 90° (@ being the angle between the orientation of the dipoles and
the interparticles distance,) a recoil energy Er = h x 4.3 KHz, and an appropriate lattice depth should allow to
easily achieve the values 0.5 < V /] < 2 which is exactly the regime where hidden magnetism is predicted.
Feshbach resonance to tune '’Er—!%8Er onsite interaction should become available [64] and, in order to get
CHPs, arapid time dependent modulation can be applied following the procedure in [18]. Performing
measurements in a dynamically environment is very challenging. Nevertheless in a recent experiment [65]
involving periodically modulated fermions, local correlations have been probed. This can be done by a sudden
frozen of the system and subsequently using techniques used in static configurations where NLOPs have been
already experimentally measured [66, 67].

Summary

We have shown that periodical onsite modulation of lattice dipolar fermions allows to realize Hamiltonians with
long range dipolar interaction and CHPs terms. These drive the system from the static configuration of the
extended Hubbard model to states with hidden magnetism. The latter appears in the charge, spin or both
sectors, and can be detected solely by NLOPs. Our findings pave the way towards the study of interaction
induced hidden magnetic orders and their non-trivial topological effects, such as the formation of degenerate
edge modes. The phases can be detected with the currently available experimental setups and probes.
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