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Corso Duca degli Abruzzi 24, 10129, Torino (Italy) 

Abstract 

A relatively diffused quality decision problem is that of classifying some objects of interest into 

predetermined nominal categories. This problem is particularly interesting in the case: (i) multiple 

agents perform local classifications of an object, to be fused into a global classification, (ii) there is 

more than one object to be classified, and (iii) agents may have different positions of power, 

expressed in the form of an importance rank-ordering. Due to the specificity of the problem, the 

scientific literature encompasses a relatively small number of data fusion techniques.  

For the fusion to be effective, the global classifications of the objects should be consistent with the 

agents’ local classifications and their importance rank-ordering, which represent the input data.  

The aim of this paper is to propose a set of indicators, which allow to check the degree of 

consistency between the global classification and the input data, from several perspectives, e.g., 

that of individual agents, individual objects, agents’ importance rank-ordering, etc.. These 

indicators are independent from the fusion technique in use and applicable to a wide variety of 

practical contexts, such as problems in which some of the local classifications are uncertain or 

incomplete. 

The proposed indicators are simple, intuitive and practical for comparing the results obtained 

through different techniques. The description therein is supported by several practical examples. 

Keywords: Quality classification problem, Quality inspection, Decision making, Surface-defect 

classification, Nominal scale, Rank-ordered agents, Fusion technique, Consistency, Agent 

agreement. 

Introduction 

When using nominal scales, it is often required to classify some objects of interest (o1, o2, o3, etc.) 

into predetermined scale categories (c1, c2, c3, etc.). By an “object” we will consider a specific 

feature/attribute of an entity observed; for example, a morphological characteristic of biological 

species (such as skin and eye colour) or the marital status of individuals (e.g., single, married, 

divorced, widowed, civil union, etc.). This operation – referred to as quality classification problem 

(Léger and Martel, 2002; Zopounidis and Doumpos, 2002; Bashkansky and Gadrich, 2008; Van 

Wieringen and De Mast, 2008) – is not trivial, when objective and incontrovertible rules for driving 

it are not available (Duffuaa and Khan, 2005; Bashkansky et al. 2007; Franceschini et al. 2007; See, 

2012). For example, the classification of surface defects in Manufacturing or that of reference 
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materials in Materials Science are subjective, as they may change from subject to subject (Mevik  

and Næs  2002; Franceschini, Galetto, and Varetto, 2004; Mandroli and al. 2006). 

The quality classification problem can be formulated in several forms. A popular formulation is that 

in which: (i) each category is defined a priori and characterized by one or more typical objects, also 

known as reference objects or prototypes; (ii) a set of criteria are used for comparing the object of 

interest with the prototype(s) of each quality category; (iii) the most plausible category for the 

object of interest is the one minimizing a suitable dissimilarity measure (Van Wieringen and De 

Mast, 2008; Agresti, 2013; Creswell, 2013; Bress, 2016; Steiner et al. 2016). 

In this paper, we consider a different formulation of the problem – formalized in a recent paper by 

the authors (Franceschini and Maisano, 2016) – in which we assume that multiple decision-making 

agents have to classify several objects of interest into plausible scale categories. By a “decision-

making agent” we will consider any of a wide variety of subjects; examples could be human beings, 

individual criteria in a multi-criteria decision process, etc.. Precisely, (i) each agent performs a 

(subjective) local classification of an object, selecting the most plausible category (e.g., agent d1 

classifies object o1 into category c2, d2 classifies it into c3, etc.), and (ii) the agents’ local 

classifications are fused into a global (or fused) one. Other important features of this formulation 

are that:  

1. Each agent may express just a single preference in favour of the category(ies) that he/she 

considers to be most plausible. This feature makes the assignment process easier for agents: 

selecting a single category is more practical than formulating, for instance, a preference ordering 

of the categories (e.g., (c1 ~ c2) > c3 > …), as these quality categories are often mutually 

exclusive and/or inconsistent with each other; e.g., considering the problem of classifying 

biological species into the categories bacteria, protozoa, chromista, plantae, fungi, animalia, it 

seems unreasonable to formulate preference orderings of the categories. 

2. In the case of hesitation, one agent may (i) refrain from expressing his/her preference or (ii) 

fractionalize his/her (single) preference between two or more (tied) categories (e.g., agent d1 

may classify object o1 into the two categories c2 and c3, or even decide not to classify it). In this 

way, agents are not forced to dubious (local) classifications in uncertain situations. 

3. There is a hierarchy of importance of agents, expressed through a linear ordering, like 

d1 > (d2 ~ d3) > …, where symbols “>” and “~” depict the “strict preference” and “indifference” 

relationship respectively (Nederpelt and Kamareddine, 2004). This feature makes the problem 

more general, since agents should not necessarily be equi-important. Also, the formulation of the 

agents’ importance hierarchy through a rank-ordering is easier (for the analysts) than that 

through a set of weights (Cook, 2006). In fact, although the literature provides several techniques 

for guiding weight quantification – for example, the AHP procedure (Saaty, 1980; Ramanathan 

and Ganesh, 1994) or the method proposed in Wang et al. (2014) – they are often neglected in 
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practice, probably because of their complexity or the (strong) hypotheses behind their use. As a 

result, weights are not rarely assigned in arbitrary and questionable ways. 

4. It is assumed that the global classification of an (i-th) object should necessarily consist of one-

and-only-one category, as this is the ultimate goal of the quality classification problem. 

Despite its relative simplicity and practicality, the afore-described quality classification problem has 

been little studied and the state of the art essentially includes two fusion techniques: the first one 

simply uses the mode operator while the second, recently proposed by Franceschini and Maisano 

(2016), is based on the idea that the winning quality category is the one that reaches a threshold 

first, during a gradual voting process based on the agents’ importance rank-ordering. We will return 

to these techniques later. 

The afore-mentioned fusion techniques, and maybe those that will be proposed in the future, 

certainly have their pro and contra; e.g., the first technique is certainly simpler but also rougher 

than the second one. An interesting question is: For a generic quality classification problem with 

rank-ordered agents, how could we identify the best fusion technique? We are aware that it is a very 

tricky question, since (i) it is difficult to pinpoint the concept of “best” fusion technique and (ii) the 

“true” solution to a generic problem is not known a priori (Zopounidis and Doumpos, 2002; 

Figueira et al., 2005; Cook, 2006). Nevertheless, the performance of different fusion techniques 

may be assessed, at least roughly, according to various aspects, such as:  

 The ability to produce a classification that is consistent with the input data; 

 The adaptability to a variety of input data (e.g., tied or incomplete local classifications, in the 

case of agents’ hesitation); 

 Computational complexity. 

Among these aspects, the one concerning the consistency of the classification is particularly 

important and can be decomposed into two dimensions: 

A) Type-A consistency, i.e., the ability of a solution to reflect the agents’ local classifications; 

B) Type-B consistency, i.e., the ability of a solution to reflect the agents’ importance hierarchy, 

based on the idea that the more important agents should have a predominant influence on the 

solution. 

The goal of this paper is to provide a practical set of indicators to quantify the consistency of global 

solutions, taking into account both the above dimensions. A not-so-dissimilar set of indicators was 

proposed for a different decision-making problem, concerning the fusion of multi-agent preference 

orderings into a single consensus ordering (Franceschini and Maisano, 2015). 

The consistency verification can be performed at different aggregation levels (e.g., at the level of 

individual objects, individual agents, etc.). Also, some of the proposed indicators allow to depict the 

so-called level of agent agreement (Viera and Garrett, 2005). 

The remainder of the paper is organized into four sections. The section “Related work” contains a 
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brief literature review of the quality classification problems in the field of multi-criteria decision 

aid. The section “Description of the indicators” presents a detailed description of the proposed 

indicators, focusing on their construction, aggregation, and practical use. The description is 

supported by a realistic example in the manufacturing field. The section “Active use of the proposed 

indicators” reverses the perspective, interpreting the proposed indicators not only as passive tools, 

to check the solution provided by a certain fusion technique, but also as active tools to identify the 

most plausible solution to a quality classification problem. Finally, the section “Discussion” 

summarizes the original contributions of this paper, highlighting its practical implications, 

limitations and suggestions for future research. 

Related work 

The scientific literature encompasses a variety of techniques for supporting the classification of 

objects into nominal scale categories. These techniques generally depend on (i) the specific 

formulation of the classification problem, (ii) the initial data available, and (iii) the requirements 

related to the solution (Yevseyeva, 2007). The majority of these techniques have been developed in 

the area of multi-criteria decision aid (MCDA) and almost exclusively apply to classification 

problems based on the use of sets of prototypes for the categories. 

 For instance, the one proposed by Perny (1998), denominated multi-criteria filtering (MCF), is 

based on the concordance and non-discordance principles that have been first used on the 

ELECTRE methods (Roy, 1968). The method proposed by Goletsis et al. (2004), denominated 

gMCDA classifier, implements a similar scheme, with less control parameters to be adjusted. 

Another similar MCDA classification method – denominated PROAFTN (Belacel, 2000) – enables 

to determine the fuzzy indifference relations by generalising the concordance and discordance 

indices used in the ELECTRE III method. 

Despite the abundance of MCDA classification techniques, the literature includes little research on 

other aspects, such as (i) the analysis of the interdependencies of the control parameters, (ii) their 

statistical validation, (iii) comparisons and applications of different techniques MCDA methods 

over the same datasets, and (iv) the establishment of links between these techniques and those 

coming from related disciplines, such as Pattern Recognition, Machine Learning, Data Mining, etc. 

(Witten and Frank, 2005). 

A “rare bird” is represented by the tool developed by Brasil Fihlo et al., (2009), which allows to 

compare the effectiveness of different classification techniques, based on a customized genetic 

algorithm to calibrate their control parameters automatically, under some different sets of 

prototypes. Unfortunately, this tool cannot be applied to techniques designed for the classification 

problem formalized by Franceschini and Maisano (2016), i.e., in which (i) multiple agents perform 

local classifications of an object, to be fused into a global classification, (ii) there is more than one 
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object to be classified, and (iii) there is an importance rank-ordering of agents. 

For this particular classification problem, the different state-of-the-art classification (or fusion) 

techniques are only two: 

 The first one is quite trivial since the “winning” category is selected through the mode operator, 

which identifies the category with the largest number of preferences (even fractionalized). In the 

example in Tab. 1, the mode corresponds to c2 as this category collects a number of preferences 

(i.e., 2) higher than the other ones. We note that the preference by agent d3 is fractionalized with 

respect to the two (tied) categories c1 and c3 (which obtain 0.5 preferences each). The total 

number of agents participating in this classification process is 4, since – among the 5 initial 

agents (i.e., d1 to d5) – d4 is unable to classify the object of interest; the total score, obtained 

cumulating the agents’ preferences, is obviously 4. We remark that the selection technique based 

on the mode ignores the agents’ importance hierarchy, i.e., d1 > (d2 ~ d3) > d4 > d5 in the case 

exemplified. 

Tab. 1. (a) Hypothetical multi-agent classification of an object (oi), considering four nominal categories (c1 to c4). 
(b) Selection of the most plausible category through the mode of the agents’ local classifications (i.e., c2). 

 (a) Classification of an object  (b) Agents’ preferences 
 d1 d2 d3 d4 d5  c1 c2 c3 c4 

1. Agents’ local classifications c1 c2 c1, c3 - c2  1.5 2 0.5 0 
 (1) (1) (0.5, 0.5) N/A (1)      

2. Agents’ importance rank-ordering: d1 > (d2 ~ d3) > d4 > d5      

 

 The second fusion technique, recently proposed by Franceschini and Maisano (2016), is based on 

the following idea: the winning category is the one that reaches a threshold (t) first, during a 

gradual voting process based on the agents’ importance rank-ordering. Regarding the problem in 

Tab. 1(a), the voting process is organized into four turns, which correspond to the “blocks” of 

agents with indifferent importance (i.e., turn 1 including d1, turn 2 including d2 and d3, due to 

their indifferent importance, turn 3 including d4, and turn 4 including d5). In each turn, the 

categories gradually cumulate a score corresponding to the preferences expressed by the agents. 

We note that turn 3 is “dull” as agent d4 refrains from classifying the object of interest. 

According to this fusion technique, c1 is selected, as its cumulative score reaches t first (i.e., in 

turn 2). The parameter t was set to 1.5; for details, see (Franceschini and Maisano, 2016). This 

fusion technique favours c1 as this category is the preferred one, according to the more important 

agents (see Tab. 2). 

The indicators presented in the remainder of the paper represent an important novelty for the 

state of the art, as they allow to check the consistency of the solution obtained by a specific 

fusion technique and/or to compare the solutions obtained by different techniques. 
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Tab. 2. Selection of the most plausible category applying the fusion technique by Franceschini and Maisano 
(2016) to the problem in Tab. 1(a). The selection results in c1. 

 (a) Agents’ turn-by-turn preferences  (b) Cumulative score 
 c1 c2 c3 c4  c1 c2 c3 c4 

Turn 1 (d1) 1 0 0 0  1 0 0 0 
Turn 2 (d2 ~ d3) 0.5 1 0.5 0  1.5 1 0.5 0 
Turn 3 (d4) - - - -  1.5 1 0.5 0 
Turn 4 (d5) 0 1 0 1  1.5 2 0.5 0 
t = (1+Ji/2)/2 = 1.5, where Ji = 4 is the number of voting agents, excluding those unable to classify the 
object (oi) of interest, i.e., d3 in this case. Details on the rationale behind this formula are presented in 
(Franceschini and Maisano, 2016). 

Description of the indicators 

This section illustrates the proposed indicators in detail. In order to make the description effective 

and clarify the notation in use, let us consider a realistic problem concerning the classification of 

defects on the surface of hot-rolled steel plates by visual inspection. In this context, the correct 

quality recognition and classification can provide effective information for product optimization. 

We hypothesize that I = 5 defects (i.e. the oi objects of the problem, being i = 1, 2, …, I) should be 

classified by J = 4 operators (i.e., the dj agents of the problem, being j = 1, 2, …, J) into K = 3 

nominal categories (ck, being k = 1, 2, …, K), corresponding to some of the most frequent defect 

types for the manufacturing process of interest (for details, see (Ai and Xu, 2013)): 

(c1)  crack, i.e, longitudinal or transverse fractures, which are along or perpendicular to the rolling 

direction respectively;  

(c2)  scale, i.e., defects in the form of fish scales, strips or dots;  

(c3)  chap, i.e., defects shaped like a turtleback or a network of cracks.  

Operators/agents are divided into three classes of competence (i.e., I, II, and III, in decreasing 

order), based on a combination of two attributes: (i) their work experience (e.g. number of years of 

service), and (ii) their level of professional qualification (e.g., worker, team leader, foreman, etc.). 

A team of experts selected these two attributes, as they may significantly influence the accuracy of 

the response while being relatively easy to evaluate. The resulting agents’ importance rank-ordering 

is d1 > (d2 ~ d4) > d3. 

Each agent performs a local classification of each of the five objects (see Tab. 3(a)). Through some 

fusion technique (no matter what), these local classifications are merged into global ones, which 

represent the solution to the problem (see Tab. 3(b)). 

Tab. 3. (a) Classification problem in which 5 objects (oi) are classified by 4 agents (dj) into 3 quality categories 
(ck). (b) Possible solution to the problem, obtained through no-matter-what fusion technique.  

 (a) Input data  (b) Solution 
Agents  d1 d2 d3 d4  Global classification 

concerning oi Competence class  I II III II 
 1. Local classifications concerning oi o1 c1 c2 c2 c1, c3 c1 

 o2 c2 c2, c3 c2 -  c2 
 o3 c3 c2 c1, c2, c3 c3  c2 
 o4 c1, c2 c2 c1 c1, c3  c1 
 o5 c3 c2, c3 c2, c3 -  c3 

2. Agents’ importance rank-ordering: d1 > (d2 ~ d4) > d3. 
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In the case of hesitation, agents are not forced to formulate dubious classifications; in fact, they may 

(i) refrain from performing some of the local classifications (e.g., see those characterized by the 

symbol “-”) or (ii) make multiple assignments (e.g., the d4’s local classification of o1 is “c1, c3”).  

The rest of the following section is divided into three subsections, which describe respectively: 

 The proposed indicators to assess the type-A consistency of the solution; 

 The proposed indicators to assess the type-B consistency of the solution; 

 Aggregation of (some of) the previous typologies of indicators into an overall consistency 

indicator. 

Type-A consistency (level‐2 title) 

The type-A consistency can be assessed at the level of (i) an individual i-th object, and (ii) the 

totality of the objects, as described in the following two subsections. 

Level of an individual object: A
ip   indicators (level-3 title) 

For each i-th object (oi), the local quality classification by each j-th agent (dj) is transformed into a 

score (Aij), representing the type-A consistency with respect to the global classification. Tab. 4 

reports the possible scores, hereafter denominated as Aij-scores. 

Tab. 4. Scores used for evaluating the type-A consistency of a local classification with respect to the global one. 

Case Example Aij-score 
Local classif. Global classif. 

1. The category in the global classification and the single one 
in the local classification are coincident.  

c1 c1 1 

2. The category in the global classification is included among 
the (l) multiple categories in the local classification. 

c1, c2, c3 c1 
1/l (i.e., 1/3 in the case 

exemplified) 
3. The category in the global classification is different from the 

category(ies) in the local classification. 
c2, c3 c1 0 

4. The agent is unable to classify the object of interest. - c1 N/A 

 

These scores can be interpreted as relative frequencies of the (single) category in the global 

classification, with respect to the category(ies) in the local classification: the score is 1 in the case of 

one-to-one correspondence, 1/l in the case of partial matching among the (l) multiple categories, 0 

in the case of no matching, and N/A (not applicable) in the case one agent is unable to classify the 

object of interest. 

Next, for each i-th object, it is possible to construct a vector of the Aij-scores related to the agents’ 

involved in the classification problem. For example, Tab. 5 reports the vector of the Aij-scores 

concerning o1, for the problem in Tab. 3, and the average score ( %5371 .p A  ) related to the object 

o1. Considering a generic i-th object, A
ip   is defined as: 
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j
ij

A
i J

A

p


 , (1) 

where Ji is the number of agents able to classify oi (e.g., 4 for o1).    

The indicator A
ip   is a real number included between 0 and 1: the higher the value, the greater the 

type-A consistency. The superscript “A” indicates that this indicator represents the type-A 

consistency, while the subscript “i•” denotes that it is determined by considering all of the usable 

Aij-scores for the i-th object, i.e., those different from “N/A” (see Tab. 4). 

Tab. 5. Vector of the scores representing the type-A consistency for the quality classification of o1, in the problem 
in Tab. 3. 

Agents d1 d2 d3 d4 
Local classifications c1 c2 c2 c1, c3 
A1j-scores 1 0 0 0.5 

37.5%451111 













  /.JAp

j
j

A      

The global classification is c1; 
The agents’ importance rank-ordering is d1 > (d2 ~ d4) > d3; 
J1 = 4 is the total number of agents involved in the classification process of o1; 

Ap 1  depicts the type-A consistency related to the classification of o1. 

 

Among the possible quality categories in the global classification, the one maximizing A
ip   

obviously corresponds to the mode: being A
ip   proportional to the sum of the relative frequencies of 

the categories (i.e., the Aij-scores), it will be maximized by the category with the maximum relative 

frequency, i.e., the mode itself. We remark that A
ip   = 1 denotes the ideal case of full agreement 

among agents, in which the local classifications are all coincident with the global one. 

The A
ip   construction can be extended to the totality of the objects. Tab. 6 illustrates the Aij-scores 

concerning the solution to the problem exemplified (see Tab. 3(b)).  

Tab. 6. Table of the indicators of type-A consistency related to the problem in Tab. 3, at the level of the 
individual objects and the totality of the objects. 

 Aij-scores     

oi d1 d2 d3 d4  Ji 
j

ijA A
ip 

 

o1 1 0 0 0.5  4 1.5 37.5% 
o2 1 0.5 1 N/A  3 2.5 83.3% 
o3 0 1 1/3 0  4 1.3 32.5% 
o4 0.5 0 1 0.5  4 2.0 50.0% 
o5 1 0.5 0.5 N/A  3 2.0 66.7% 

Ij 5 5 5 3  18 
i

i
j

j JI   


i

ijA  
3.5 2.0 2.8 1.0   39.A

i j
ij   

A
jp
 70.0% 40.0% 56.7% 33.3%    pA = 51.9% 

Ji  number of agents able to classify the i-th object; 
Ij  number of objects that the j-th agent is able to classify; 
Aij  score expressing the type-A consistency between the global classification and the local one by the 

j-th agent, with respect to the i-th object; 
A
ip  , A

jp  and pA are defined in Eqs. 1, 3 and 2 respectively. 
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Level of the totality of the objects: pA and A
jp  indicators (level-3 title) 

An overall indicator of the type-A consistency, at the level of the totality of the objects, is defined 

as the weighted sum of the A
ip   values with respect to the relevant Ji values, i.e., the number of 

agents able to classify oi: 













i
i

i j
ij

i
i

i
i

A
i

A

J

A

J

Jp
p . (2) 

Eq. 2 shows that pA can also be interpreted as the average of the Aij-scores (excluding the “N/A” 

contributions). Among the possible quality categories in the solution to a classification problem, 

those maximizing pA correspond to the mode values of the local classifications. A proof is that, 

since the mode relating to an individual i-th object maximizes 
j

ijA , the mode values of the 

totality of the objects will maximize 
i j

ijA , which is proportional to pA (see Eq. 2). 

Let us now define another type-A consistency indicator (i.e., A
jp ), which is somehow akin to A

ip  , 

being defined as the average of the Aij-scores related to the local classifications by a certain j-th 

agent: 

J

i
ij

A
j I

A
p


 , (3) 

where the subscript “•j” denotes that this indicator is determined considering all of the usable Aij-

scores related to the (j-th) agent of the problem, i.e., those different from “N/A”. 

Likewise A
ip  , A

jp  is a real number [0, 1]. In the above example, we note that – among the 4 

agents of interest – those formulating the more consistent local classifications are d1 and d3, with 

%0701 .p A   and %7563 .p A   respectively (see the bottom of Tab. 6). 

Returning to the overall indicator pA, it can also be interpreted as a weighted sum of the A
jp  values 

with respect to Ij, i.e., the number of objects that the j-th agent is able to classify: 


 




j
j

j
j

A
j

A

I

Ip

p . (4) 

We remark that, since A
ip  , A

jp , and pA depict the type-A consistency, they do not take into account 

the agents’ importance rank-ordering. This limitation can be overcome by introducing the 

complementary indicators described in the next subsection. 
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Type-B consistency (level‐2 title) 

Likewise type-A consistency, the type-B one can be assessed at the level of (i) an individual i-th 

object and (ii) the totality of the objects, as described in the following subsections. 

Level of an individual object: B
ip   indicators (level-3 title) 

The B
ip   indicators rely on the idea that the more important agents should have a predominant 

influence on the determination of the solution, resulting in higher Aij-scores. Following this idea, it 

seems reasonable to compare the importance rank-ordering of the agents (i.e., d1 > (d2 ~ d4) > d3, in 

the case exemplified) with the ordering based on the relevant Aij-scores, for an i-th object of 

interest. E.g., considering o1, we have the following ordering: (A11=1) > (A14=0.5) > 

(A12=0) ~ (A13=0), therefore the corresponding agents’ ordering will be d1 > d4 > (d2 ~ d3). For 

simplicity, the agents’ ordering resulting from the comparison of the Aij-scores of an i-th object will 

be hereafter denominated as “Aij-ordering”. 

The comparison between the agents’ importance rank-ordering and the Aij-ordering is carried out in 

two steps:  

1. Decomposition of the two orderings into a number of paired-comparison relationships (e.g., in 

the case (d1 > d2), the paired comparison (d1, d2) will result in the relationships “>”. There are 4 

types of possible relationships, characterized by the following symbols: 

“>”  Strict preference in favour of the first agent in the paired comparison; 

“<”  Strict preference in favour of the second agent in the paired comparison; 

“~”  Indifference between the two agents; 

“N/A” not applicable, as the paired comparison is not defined in the ordering of interest.  

Tab.7 shows the paired-comparison relationships obtained from the Aij-ordering of o1 and the 

agents’ importance rank-ordering. 

Tab. 7. Paired-comparison relationships obtained from the Aij-ordering of o1 and the agents’ importance rank-
ordering. 

Ordering Paired comparison relationships 
(d1, d2) (d1, d3) (d1, d4) (d2, d3) (d2, d4) (d3, d4)

Aij-ordering of o1: d1 > d4 > (d2 ~ d3) > > > ~ < < 
Agents’ importance rank-ordering: d1 > (d2 ~ d4) > d3 > > > > ~ < 

 

2. Comparison of the paired-comparison relationships and assignment of Bil-scores, according to 

the conventions in Tab.8. The subscript “il” indicates that a Bil-score is associated with each i-th 

object and each l-th paired comparison; precisely, for each i-th object, l is a natural number [1, 

Li], Li being the number of usable paired-comparison relationships (i.e., different from “N/A”). 

Tab.8 also contains a definition of the four cases of full consistency, weak consistency, 

inconsistency and incomparability, which are associated with four different possible scores. 
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The conventional choice of assigning 0.5 points in the case of weak consistency is justified by 

the fact that this is the intermediate case between that one of full consistency (with score 1) and 

that of inconsistency (with score 0). We are aware that this choice, although reasonable, is 

inevitably arbitrary; however, we will return to this point later, showing that the proposed 

indicators are relatively robust with respect to small variations in these scores (see the section 

“Sensitivity analysis”, in the appendix). 

Tab. 8. Conventional scores used for evaluating the type-B consistency, when comparing the paired-comparison 
relationships resulting from the Aij-orderings (or A

jp
‐ordering) with those resulting from the agents’ importance 

rank-ordering. 
Case Score 
1. Full consistency, i.e., the two paired-comparison relationships are identical (both “>” or “<” or 

“~”). 
1 

2. Weak consistency, i.e., one of the two paired-comparison relationships is of indifference “~”, 
while the other one is of strict preference (“>” or “<”). In other words, the two paired-
comparison relationships are consistent with respect to the weak-preference relationship “≤” or 
“≥”; e.g., when comparing the relationship d1 > d2 with d1 ~ d2. 

0.5 

3. Inconsistency, i.e., the two paired-comparison relationships are of opposite strict preference 
(“>” and “<”, or “<” and “>”); e.g., when comparing the relationship d1 > d2 with d1 < d2. 

0 

4. Incomparability, i.e., at least one of the two paired-comparison relationships is “N/A”. N/A 

 

The type-B consistency vector in Tab.9 contains the Bil-scores resulting from the comparison of the 

paired-comparison relationships in Tab.7.  

Tab.9 Vector of the Bil-scores of o1, based on the paired-comparison relationship in Tab.7. 

oi (d1, d2) (d1, d3) (d1, d4) (d2, d3) (d2, d4) (d3, d4)   

o1 1 1 1 0.5 0.5 1  51 
l

lB %3831 .p B 
 

 

Considering a generic i-th object, we define the aggregated indicator of type-B consistency: 

i

l
il

B
i L

B
p


 , (5) 

where 

the subscript “i•” denotes that all the usable Bil-scores related to oi are averaged; 


l

ilB  is the total score related to the object oi; 

Li is the number of usable paired-comparison relationships, i.e.: 

  21
2

/JJ
J

L ii
i

i 







 , (6) 

Ji being the number of agents able to classify oi. Returning to the Aij-ordering relating to oi, 

exemplified in Tab.7, J1 = 4 and therefore L1 = 6. 

Similarly to other existing indicators – e.g., the Kendall’s tau () and the Spearman’s rho () – B
ip   

can be interpreted as an indicator of correlation between pairs of orderings (Kendall, 1970; 
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Spearman, 1904; Montgomery, 2013). Curiously, in the case of orderings with strict-preference 

relationships only,  and Bp 1  are linearly related, as shown below: 

12
nscombinatiopair  of no. total

pairs discordant of no.pairs concordant of no.















 


B
i

i

l
ili

l
il

p
L

BLB

 .          (7) 

In this sense, B
ip   can be considered as a variant of . The decision to adopt B

ip   is motivated by two 

reasons:  

1. its range – i.e., [0, 1] – is compatible with that of the so-far-defined indicators; 

2. it can be easily calculated even if the orderings (i) are incomplete or (ii) contain some 

indifference relationships. 

Level of the totality of the objects: the pB indicator (level-3 title) 

The calculation of the type-B consistency vector and the relevant B
ip   value can obviously be 

extended to the totality of the objects. Tab.10 and Tab.11 respectively show the paired-comparison 

relationships and the consistency table (i.e., the table collecting the consistency vectors) relating to 

the totality of the objects, for the problem exemplified.  

Tab.10 shows the paired-comparison relationships obtained from (i) the Aij-orderings of the objects 

of interest, (ii) the A
jp -ordering (the practical use of this other ordering will be clarified later), and 

(iii) the agents’ importance rank-ordering. Regarding the Aij-orderings, we remark that the number 

(Li) of usable paired-comparison relationships can vary from object to object (see the last column). 

For example, for o2 and o5, L2 = L5 = 3
2

3









, since agent d4 does not formulate any local 

classification of these objects. 

Tab.11 shows that the local/global classifications concerning o1 denote a relatively high type-B 

consistency ( %3831 .pB  ), while this consistency is significantly lower for the other objects. 

Tab.10. Paired-comparison relationships obtained from the Aij-orderings of the individual objects, the A
jp
-

ordering and the agents’ importance rank-ordering. 

Ordering(s) Paired-comparison relationships  
Li(d1, d2) (d1, d3) (d1, d4) (d2, d3) (d2, d4) (d3, d4) 

Aij-orderings: 

o1 d1 > d4 > (d2 ~ d3) > > > ~ < <  6 
o2 (d1 ~ d3) > d2 > ~ N/A < N/A N/A  3 
o3 d2 > d3 > (d1 ~ d4) < < ~ > > >  6 
o4 d3 > (d1 ~ d4) > d2 > < ~ < < >  6 
o5 d1 > (d2 ~ d3) > > N/A ~ N/A N/A  3 

           
A
jp -ordering: d1 > d3 > d2 > d4 > > > < > >  L•=6 

           

Agents’ importance rank-ordering: d1 > (d2 ~ d4) > d3 > > > > ~ <  L=6 
Li  is the number of usable paired-comparison relationships (i.e., different from “N/A”) obtained from the Aij-ordering related to oi; 
L•  is the number of usable paired-comparison relationships obtained from the A

jp
-ordering; 

L  is the number of usable paired-comparison relationships obtained from the agents’ importance rank-ordering. 
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Tab.11. Consistency table relating to the paired-comparison relationships in Tab.7. 

Types of scores  (d1, d2) (d1, d3) (d1, d4) (d2, d3) (d2, d4) (d3, d4) Li 
l

ilB  B
ip 

 

Bil-scores 

o1 1 1 1 0.5 0.5 1 6 5 83.3% 
o2 1 0.5 N/A 0 N/A N/A 3 1.5 50.0% 
o3 0 0 0.5 1 0.5 0 6 2 33.3% 
o4 1 0 0.5 0 0.5 0 6 2 33.3% 
o5 1 1 N/A 0.5 N/A N/A 6 2.5 41.7% 

           

B•l-scores  1 1 1 0 0.5 0 L• = 6 53.B
l

l  
 Bp =58.3% 

Bil-scores are constructed by comparing the paired-comparison relationships obtained from the Aij-ordering with those obtained from 
the agents’ importance rank-ordering; 

B•l-scores are constructed by comparing the paired-comparison relationships obtained from the A
jp
-ordering with those obtained 

from the agents’ importance rank-ordering; 
L•  is the number of usable paired-comparison relationships obtained from the A

jp
-ordering. 

 

The information given by the B
ip   indicators is quite fragmented, as it is based on data concerning 

individual objects. A more general indicator of type-B consistency can be constructed based on the 

comparison between the agents’ importance rank-ordering and the A
jp -ordering; in fact, A

jp  

indicators provide a type-A consistency evaluation based on the totality of the objects, not just one. 

In the case exemplified, the A
jp -ordering is ( Ap 1 =70.0%) > ( Ap 3 =33.3%) > ( Ap 2 =56.7%) > 

( Ap 4 =40.0%), therefore the resulting agents’ ordering is d1 > d3 > d2 > d4 (see Tab. 6 and Tab.10). 

For simplicity, the agents’ ordering resulting from the comparison of the A
jp -scores will be 

hereafter denominated as “ A
jp -ordering”. We can define a synthetic indicator (pB), which, although 

being analogous to the afore-described B
ip   indicators, has a richer information content: 






L

B
p l

l
B , (8) 

where 

B•l is the type-B consistency score, constructed by comparing the usable paired-comparison 

relationships obtained from the A
jp -ordering with those obtained from the agents’ importance 

rank-ordering, according to the conventions in Tab. 8; 

L• is the number of usable paired-comparison relationship, obtained from the A
jp -ordering. 

The absence of subscript indicates that pB takes into account the totality of the agents and the 

objects of interest (through the A
jp  indicators). The information given by pB is certainly more 

exhaustive than that given by the individual B
ip   indicators. 
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Aggregation of pA and pB
 (level‐2 title) 

Among the indicators defined in Sects. 2.1 and 2.2, those with greater information content are pA 

and pB. These indicators are complementary as they respectively depict the overall type-A and type-

B consistency. 

The indicators pA, pB and those used for evaluating the consistency at a local level, i.e., A
ip  , A

jp , 

and B
ip  , can be used to make a structured comparison between different solutions to the same 

quality classification problem. For example, Fig. 1 contains a comparison between two possible 

solutions to the problem exemplified, i.e., the so-far-examined solution (solution 1: c1, c2, c2, c1, c3), 

and the one corresponding to the mode of the local classifications (solution 2: c2, c2, c3, c1, c3).  

20%

40%

60%

80%

Overall
level 

Solution Ap 1  Ap 2  Ap 3  Ap 4  Ap 5  Ap 1  Ap 2  Ap 3  Ap 4  pA Bp 1  Bp 2  Bp 3  Bp 4  Bp 5  pB 

1. c1, c2, c3, c1, c3 37.5% 83.3% 32.5% 50.0% 66.7% 70.0% 40.0% 56.7% 33.3% 51.9% 83.3% 50.0% 33.3% 66.7% 41.7% 58.3%
2. c2, c2, c3, c1, c3 50.0% 83.3% 58.3% 50.0% 66.7% 70.0% 40.0% 76.7% 50.0% 60.2% 25.0% 50.0% 58.3% 66.7% 41.7% 41.7%

Object level Agent level Overall  
level 

Object level 

Type-A consistency Type-B consistency 

Solution 1 

Solution 2 

Key: 

  

Fig. 1. Structured comparison between two possible solutions to the problem exemplified, on the basis of the 
proposed indicators. 

 

We note that the two solutions appear quite similar in terms of type-A consistency, as proved by the 

relatively close pA values (i.e. 51.9% for solution 1 and 60.2% for solution 2). Regarding type-B 

consistency, solution 1 seems better than solution 2 (i.e., pB values are 58.3% and 41.7% 

respectively). 

It is worth remarking that the so-far-discussed indicators provide a consistency evaluation for a 

specific quality classification problem, not in absolute terms. E.g., in problems characterized by a 

very high level of agent agreement, global classifications are more likely to be consistent with the 

agents’ local classifications and the relevant pA values tend to be higher. For example, a solution 

with pA = 79%, in a classification problem with a relatively low agent agreement is not necessarily 

less consistent than a solution with pA = 80%, in a problem where the agent agreement is much 

higher. 

Based on the above considerations, to obtain a more “absolute” information on the (type-A and 

type-B) consistency of a certain solution, it seems reasonable to compare the pA and pB indicators 
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with the highest values that they could achieve (i.e., pA, Max and pB, Max) for a specific quality 

classification problem: 

 
 B

K

B, Max

A

K

A, Max

pMaxp

pMaxp

I

I

solutions

solutions




, (9) 

in which KI is the total number of possible solutions to the quality classification problem, K being 

the number of possible categories in which an object can be classified, and I being the total number 

of objects to be classified. 

Finding pA, Max (and the corresponding solution(s)) is relatively simple, as – being pA defined as the 

(weighted) sum of the A
ip   values related to the individual objects (see Eq. 2) – it can be maximized 

by independently maximizing the individual A
ip   values, through the mode of the local 

classifications. Returning to the above-exemplified problem, the solution maximizing pA is therefore 

coincident with the solution 2 in Fig. 1, with a corresponding pA, Max = 60.2%. The relatively low 

value of this indicator denotes a relatively poor level of agreement in the agents’ local 

classifications. In this sense, pA, Max can be used as a rough indicator of agent agreement, for the 

problem of interest. 

The scientific literature encompasses other indicators aimed at evaluating agent agreement, such as 

the Cohen’s Kappa and its variants (Agresti, 2013; Cohen, 1960; 1968). Even though these 

indicators are relatively simple and intuitive, they have some limitations, e.g., they are considered 

as overly conservative measure of agreement or they are based on the very unrealistic scenario, that 

– when not completely certain – agents simply guess; for details see (Strijbos, 2006; Pontius Jr and 

Millones, 2011). Also, the application of these indicators to the problem of interest can be 

complicated in the case local classifications are uncertain (e.g., with multiple tied categories) or 

incomplete. 

Finding pB, Max is more complicated than finding pA, Max. Among the possible solutions, it is not 

immediate to determine the one(s) maximizing pB, as the problem cannot be decomposed at the 

level of individual objects. On the contrary, it can be shown that the solution maximizing the 

individual B
ip   values is not necessarily that one maximizing pB; see the proof in the section “Note 

on the pB maximization”, in the appendix. For the above reasons, a way to determine pB, Max is (i) 

generating all the possible (KI) solutions to the classification problem and (ii) selecting that one(s) 

with the highest pB value. Finding a more efficient way of determining the solutions with pB, Max is 

an open problem. 

For the classification problem exemplified, ten out of the KI = 35 = 243 possible solutions have 

pB = pB, Max = 91.7% (see Tab.12). 
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Despite the above ten solutions all maximize the type-B consistency, they do not necessarily 

perform well in terms of type-A consistency, as we can see from the generally low pA values (see 

the penultimate column of Tab.12). 

Tab.12. List of the 10 solutions to the classification problem exemplified, which maximize pB. 

No. Solution pA pB=pB, Max 
o1 o2 o3 o4 o5 

1 c1 c1 c1 c2 c1 18.5% 91.7% 
2 c1 c1 c2 c3 c3 29.6% 91.7% 
3 c1 c1 c3 c2 c3 40.7% 91.7% 
4 c1 c2 c2 c3 c1 32.4% 91.7% 
5 c1 c2 c3 c2 c1 43.5% 91.7% 
6 c1 c2 c3 c2 c2 49.1% 91.7% 
7 c3 c2 c3 c2 c3 54.6% 91.7% 
8 c3 3 c3 c3 c3 26.9% 91.7% 
9 c3 c2 c3 c2 c3 43.5% 91.7% 
10 c3 c2 c3 c2 c3 49.1% 91.7% 

 

To ease the comparison between the pA and pB values related to a certain solution and the 

corresponding pA, Max and pB, Max values, we can define the following two normalized indicators:  

ax,,

ax,,

MBBNormB

MAANormA

ppp

ppp




. (10) 

Obviously, these indicators reach the maximum value (i.e., 1) for solutions with pA = pA, Max and 

pB = pB, Max respectively. pA, Norm and pB, Norm make the type-A and type-B consistency evaluations 

more homogeneous and comparable with each other; in fact, although both pA and pB[0, 1], we 

have noticed that the pA values related to the solutions to a generic classification problem generally 

tend to be lower than the pB values (see for example the distributions in Fig. 2), and therefore the 

direct comparison of these indicators would be inappropriate. 

An alternative possible approach for normalizing pA and pB would be to replace them with their 

percentile number in the relevant distributions (e.g., for a pA value in the 76th percentile of the 

distribution, pA, Norm would be 0.76). However, this normalization would “downgrade” the cardinal 

scales of pA and pB to ordinal ones, where the “distance” between values is not taken into account 

(Stevens, 1946). 
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   Fig. 2. Distributions of the pA and pB values related to the (KI = 35 = 243) possible solutions to the classification 
problem exemplified. 
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It is interesting to notice that the pA, Norm and pB, Norm values are generally uncorrelated; see the map 

in Fig. 3, representing the “positioning” of the possible (KI) solutions to the classification problem 

of interest. This lack of correlation corroborates the hypothesis that pA and pB (or pA, Norm and 

pB, Norm) are complementary indicators. It was empirically checked that these considerations can be 

extended to other classification problems. 

 
Fig. 3. pA,Norm – pB,Norm map concerning the quality classification problem in Tab. 2. The iso-pO lines are 
perpendicular to the bisector of the first quadrant; the corresponding numerical values of pO are reported along 
the bottom edge and the right edge of the map. 

A synthetic indicator of overall consistency (pO) can be obtained by averaging pA, Norm and pB, Norm: 

2

,, NormBNormA
O pp

p


 . (11) 

The synthesis by the average value allows condensing the results of the consistency analysis into a 

single number. Although this choice seems practical and reasonable to us, we are aware that an 

analogous synthesis can be obtained in other ways, e.g., using the min() operator.  

Considering the solution in Tab. 3(b), pA, Norm = 95.4% and pB, Norm = 81.8%, therefore pO = 88.6%. 

This indicator, which [0, 1], provides a synthetic estimate of the type-A and type-B consistency of 

the solution examined. 

Having introduced a relatively large number of indicators at different aggregation levels, let us now 

focus on the tree diagram in Fig. 4, which summarizes their construction and practical use. The 

input data (i.e., agents’ local classifications and importance rank-ordering) and output data (i.e., 

global classifications of the objects) of the quality classification problem are positioned at the 
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bottom of the diagram, while the overall consistency indicator (pO) is positioned at the top vertex. 

The (sub-)indicators for assessing the type-A and type-B consistency are positioned on the left and 

right-hand side respectively. Interestingly, the diagram shows a certain asymmetry: while the type-

A consistency indicators ignore the agents’ importance rank-ordering, the type-B consistency 

indicators combine this information with that of other (sub-)indicators of type-A consistency (e.g., 

the A
jp  values). 

pO Overall consistency 
indicator 

pA, Norm pB, Norm 
Overall type-A consistency, with 

respect to the optimal level 
Overall type-B consistency, with 

respect to the optimal level 
 

pA pA, max pB pB, max Overall type-A 
consistency 

Overall type-B 
consistency 

Optimal level of the overall 
type-A consistency 

(agent agreement indicator) 

Optimal level of the 
overall type-B consistency 
 

Optimal level of type-B 
consistency related to the 

individual i-th object 

B
ip 

max,B
ip 

A
ip 

max,A
ip 

B•l -scores 

Aij -scores Type-A consistency related to the 
individual i-th object and j-th agent 

Solution  
(global classification) 

Agents’ importance 
rank-ordering 

4. INPUT/OUTPUT DATA OF THE CLASSIFICATION PROBLEM 

3. INDICATORS CONCERNING INDIVIDUAL OBJECTS 

Bil -scores Type-B consistency related to the individual l-th 
paired comparison, when comparing the Aij-
ordering related to the individual i-th object 
with the agents’ importance rank ordering 

Type-B consistency related to the individual l-th 
paired comparison, when comparing the     -ordering 
related to the individual i-th object with the agents’ 

importance rank ordering 

A
jp

Type-A consistency related 
to the individual j-th agent 

Type-A consistency related 
to the individual i-th object 
 

1. AGGREGATED INDICATORS 

2. INDICATOR CONCERNING INDIVIDUAL AGENTS 

Agents’ local 
classifications 

Type-B consistency related 
to the individual i-th object 
 

Optimal level of type-A 
consistency related to the 

individual i-th object 

A
jp

 
Fig. 4. Tree diagram of the proposed set of indicators, synthesizing their construction and practical use. 

 

Active use of the proposed indicators 

The indicators presented in Sects. 2.1, 2.2 and 2.3 have so far been interpreted as practical (passive) 

tools for assessing the consistency of the solutions to a specific quality classification problem. This 

paradigm can be reversed, interpreting these indicators as active tools for determining the optimal 

solution(s). The adjective “optimal” is related to the conventions adopted in the definition of the 

indicators. In other words, (some of) them can be used to define an objective function, to be 

maximized for determining the better solution(s) in terms of type-A and type-B consistency. The 

proposed indicators may therefore become the basic elements of a novel fusion technique for 

determining the solution to a specific quality classification problem, so as to enrich process 

diagnostic capabilities. 

A way of defining such an objective function is through the synthetic indicator pO. For the purpose 

of example, Tab.13 includes the top-30 solutions in terms of pO, for the problem exemplified in the 
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section “Description of the indicators”. Interestingly, the afore-examined solution (with pO = 74.9%) 

is classified in 23rd position of the pO-ranking, quite distanced from the optimal solution (with 

pO = pO, Max = 95.4%); see also the graphical representation in Fig. 5. We are aware that this ranking 

depends on some potentially questionable assumptions in the construction of the indicators in use, 

such as: (i) definition of pA and pB, (ii) normalization mechanism for obtaining pA, Norm and pB, Norm, 

and (iii) aggregation mechanism for determining pO. Nevertheless, it seems reasonable to assume 

that the better solutions (in terms of type-A and type-B consistency) are those with relatively high 

pO values. The section “Sensitivity analysis” (in the appendix) contains a sensitivity analysis, 

showing that pO is relatively robust with respect to small variations in the Bil and B•l-scores, used for 

evaluating the type-B consistency. 

Fig. 5 contains a pA, Norm–pB, Norm map of the top-30 solutions in Tab. 13. 

Let us notice that the one corresponding to the mode of the local classifications is ranked in 30th 

position. Although this solution maximizes the type-A consistency (obviously, pA, Norm = 1), it 

totally neglects the agents’ importance hierarchy; pB, Norm is therefore relatively low (i.e., 45.5%), 

penalizing the resulting pO (i.e., 72.7%). 

Tab.13. List of the top-30 solutions, in terms of pO, for the classification problem in Tab. 3(a). 

Solution no. Rank position Global classifications pA pA, Norm pB pB, Norm pO 
o1 o2 o3 o4 o5 

1(a, b) 1 c1 c2 c3 c2 c3 54.6% 90.8% 91.7% 100.0% 95.4%
2(b) 2 c1 c2 c3 c2 c2 49.1% 81.5% 91.7% 100.0% 90.8%
3(b) 2 c3 c2 c3 c2 c3 49.1% 81.5% 91.7% 100.0% 90.8%
4 4 c1 c2 c3 c1 c3 57.4% 95.4% 75.0% 81.8% 88.6%
5 4 c2 c2 c3 c2 c3 57.4% 95.4% 75.0% 81.8% 88.6%
6(b) 6 c1 c2 c3 c2 c1 43.5% 72.3% 91.7% 100.0% 86.2%
7(b) 6 c1 c3 c3 c2 c3 43.5% 72.3% 91.7% 100.0% 86.2%
8 8 c1 c2 c3 c1 c2 51.9% 86.2% 75.0% 81.8% 84.0%
9 8 c3 c2 c3 c1 c3 51.9% 86.2% 75.0% 81.8% 84.0%
10(b) 10 c1 c1 c3 c2 c3 40.7% 67.7% 91.7% 100.0% 83.8%
11 11 c1 c2 c2 c2 c3 49.1% 81.5% 75.0% 81.8% 81.7%
12 11 c1 c2 c3 c3 c3 49.1% 81.5% 75.0% 81.8% 81.7%
13 13 c3 c2 c3 c2 c2 43.5% 72.3% 83.3% 90.9% 81.6%
14 14 c1 c2 c3 c1 c1 46.3% 76.9% 75.0% 81.8% 79.4%
15 14 c1 c3 c3 c1 c3 46.3% 76.9% 75.0% 81.8% 79.4%
16 16 c1 c1 c3 c1 c3 43.5% 72.3% 75.0% 81.8% 77.1%
17 16 c1 c2 c1 c2 c3 43.5% 72.3% 75.0% 81.8% 77.1%
18 16 c1 c2 c2 c3 c3 43.5% 72.3% 75.0% 81.8% 77.1%
19 19 c1 c3 c3 c2 c2 38.0% 63.1% 83.3% 90.9% 77.0%
20 19 c3 c2 c3 c2 c1 38.0% 63.1% 83.3% 90.9% 77.0%
21 19 c3 c3 c3 c2 c3 38.0% 63.1% 83.3% 90.9% 77.0%
22(b) 22 c1 c2 c2 c3 c1 32.4% 53.8% 91.7% 100.0% 76.9%
23(c) 23 c2 c2 c3 c3 c3 51.9% 86.2% 58.3% 63.6% 74.9%
24 23 c1 c2 c2 c1 c3 51.9% 86.2% 58.3% 63.6% 74.9%
25 25 c2 c2 c3 c2 c1 46.3% 76.9% 66.7% 72.7% 74.8%
26 25 c1 c3 c2 c1 c3 40.7% 67.7% 75.0% 81.8% 74.8%
27 27 c1 c1 c3 c2 c2 35.2% 58.5% 83.3% 90.9% 74.7%
28 27 c3 c1 c3 c2 c3 35.2% 58.5% 83.3% 90.9% 74.7%
29(b) 29 c1 c1 c2 c3 c3 29.6% 49.2% 91.7% 100.0% 74.6%
30(d) 30 c2 c2 c3 c1 c3 60.2% 100.0% 41.7% 45.5% 72.7%

(a)  Optimal solution, which is coincidentally the same solution resulting from the application of the fusion technique 
proposed by Franceschini and Maisano (2016); 

(b)  Solutions maximizing pB;  

(c)  Solution examined in the section “Description of the indicators” (see Tab. 3(b)); 
(d)  Solution maximizing pA, resulting from the application of the mode operator. 
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Coincidentally, the optimal solution is the same solution obtained through the fusion technique by 

Franceschini and Maisano14 (briefly recalled in the section “Related work”). This coincidence is 

quite interesting and may somehow be interpreted as a test of convergent validity of the 

optimization approach proposed in this section (Campell, 1946). 
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Fig. 5. Detail of the pA,Norm– pB,Norm map in Fig. 3, focussing on the top 30 solutions in terms of pO. The relevant 
rank-positions (i.e., from 1 to 30, in descending order) are reported in the map; the numbers in brackets (i.e., 
“xn”) indicate that n different solutions have the same positioning. The iso-pO lines are perpendicular to the 
bisector of the first quadrant; the corresponding numerical values of pO are reported along the bottom edge and 
the right edge of the map. 

Discussion 

This paper proposed a set of relatively simple and intuitive indicators for assessing the (type-A and 

type-B) consistency of the solution(s) to a multi-object quality classification problem with multiple 

rank-ordered agents. Here follows a synthetic list of the indicators:  

 A
ip   and A

jp  can be used to check the type-A consistency at the level of individual objects and 

individual agents, respectively; 

 B
ip   can be used to check the type-B consistency at the level of individual objects; 

 pA and pB provide an overall assessment on the type-A and type-B consistency respectively. We 

empirically showed that these indicators are complementary; 

 pA, Max provides an indication of the maximum achievable level of type-A consistency, for a 

specific quality classification problem, and can also be interpreted as a rough measure of the 

level of agent agreement; 

 pB, Max provides an indication of the maximum achievable level of type-B consistency, for a 

specific quality classification problem; 

 pA, Norm and pB, Norm are obtained by normalizing pA and pB. This normalization is necessary 
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because the direct comparison of pA and pB would produce biased results. 

 Finally, pO is an overall consistency indicator, obtained by averaging pA, Norm and pB, Norm; this 

indicator is relatively robust with respect to small variations in the Bil and B•l-scores. 

Let us now focus the attention on the (twofold) practical role of pO: 

1. pO can be interpreted as a passive tool, which provides an overall indication of the level of 

consistency of a solution to a specific classification problem. E.g., considering the problem 

exemplified, the solution proposed in Tab. 3(b) (with pO = 88.6%) seems significantly more 

consistent than that obtained by applying the mode operator (i.e., the solution ranked in 30th 

position in Tab.13, with pO = 72.7%). 

2. pO can be interpreted as an active tool, precisely an objective function to be maximized for 

identifying the optimal solution(s). 

Although the proposed indicators are simple, intuitive and practical, their construction may present 

some limitations, such as: 

 The determination of some of them (e.g., pB, Max and pO, Max) can be computationally burdensome, 

since it requires the analysis of the totality of the possible solutions to a certain classification 

problem. To overcome this problem, we have developed an ad hoc software application 

(available on request), which automatically generates all the possible solutions and determines 

the relevant indicators. 

 The normalization and aggregation mechanism of the indicators is based on potentially 

questionable assumptions. Nevertheless, a sensitivity analysis showed the robustness of pO to 

small variations of the input data. 

 The calculation of the indicators for assessing the type-B consistency is based on the comparison 

of two orderings. This conventional choice is potentially debatable. 

In this study we focussed the attention on quality classification problems in which the solution 

includes one-and-only-one quality category for each object. With relatively modest changes, the 

proposed indicators could be adapted to more general problems, in which the solution may be 

indeterminate or include multiple quality categories (e.g., in the case of hesitation by a relatively 

large portion of the agents). 

Future research will aim at analyzing the proposed way of determining the optimal solution(s), from 

the viewpoint of some popular axioms borrowed from the social choice theory (Arrow and 

Rayanaud, 1986). Also, we plan to develop a real-use application of the proposed indicators in a 

bigger scale. 
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Appendix 

Note on the pB maximization (level‐2 title) 

Sects. 2.1.2 and 2.3 showed that, for a specific quality classification problem, the determination of 

the maximum possible value of pA (i.e., pA, Max) is relatively simple: this value is associated with the 

solution(s) that maximize the A
ip   values related to the individual objects. The pA maximization 

problem can be therefore decomposed on an object-by-object basis. 

The determination of the maximum possible value of pB (i.e., pB, Max) is more complicated as the 

solution(s) that maximize the B
ip   values related to the individual objects are not necessarily those 

with pB = pB, Max.  

Let us now provide a demonstration of this statement, based on a counter-example contradicting the 

statement that the solutions maximizing the individual B
ip   values are also those with pB = pB, Max. 

We consider a specific classification problem where I = 6 objects (i.e. o1 to o6) should be classified 

by J = 10 agents (i.e., d1 to d10) into K = 4 nominal categories (i.e., c1 to c4). The agents’ importance 

rank-ordering is: (d1 ~ d7) > (d2 ~ d4) > (d3 ~ d5 ~ d10) > (d6 ~ d8 ~ d9). Each agent performs a local 

classification for each objects, as shown in Tab. A.1. 

Tab. A.1. Classification problem in which 6 objects (oi) are classified by 10 agents (dj) into 4 categories (ck).  

Agents  d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 
Local classifications concerning oi o1 c1 c1 c2 c1, c3 c1 c1, c2 c1 c3 c1 c1

 o2 c2 c2, c4 c2 - c2 c2 c2 c1 c2, c3 c2

 o3 c4 c4 c1, c2, c4 c4 c1, c4 c1, c4 c4 - c2 c4

 o4 c1, c2 c1 c1 c1 c1 c2 c1, c2 - c1, c2 c2

 o5 c4 c2, c4 c2, c4 - c2, c3, c4 c4 c4 c2 c4 c4

 o6 c1, c3 c1 c1, c4 c1 c1 c4 c1 c4 c2 c1, c4

Agents’ importance rank-ordering: (d1 ~ d7) > (d2 ~ d4) > (d3 ~ d5 ~ d10) > (d6 ~ d8 ~ d9). 
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Analyzing the KI = 4096 possible solutions to this problem, we respectively selected (i) those 

maximizing the individual B
ip   values and (ii) those maximizing pB (see Tab. A.2). It can be noted 

that the (three) solutions maximizing the individual B
ip   values all have pB values lower than pB, Max.  

Tab. A.2. List of the three solutions maximizing the individual B
ip   values (on a object-by-object basis) and that 

one maximizing pB, for the classification problem in Tab. A.1. 

Agents o1 o2 o3 o4 o5 o6 
Bp 1

 Bp 2
 Bp 3

 Bp 4
 Bp 5

 Bp 6
 pB 

Solutions maximizing the 
individual B

ip 
 values 

c1 c4 c4 c1 c1 c3 65.6% 62.2% 68.9% 66.7% 58.9% 66.7% 73.3% 
c1 c4 c4 c1 c3 c3 65.6% 62.2% 68.9% 66.7% 58.9% 66.7% 73.3% 
c1 c4 c4 c1 c4 c3 65.6% 62.2% 68.9% 66.7% 58.9% 66.7% 76.7% 

Solution maximizing pB c1 c2 c1 c1 c4 c1 65.6% 52.2% 43.3% 66.7% 58.9% 65.6% pB, Max = 85.6%

 

This result represents a proof that the solution(s) maximizing the B
ip   values related to the 

individual objects are not necessarily those with pB = pB, Max. 

Sensitivity analysis (level‐2 title) 

This section analyzes the robustness of the proposed indicators with respect to small variations in 

the Bil and B•l-scores, used for evaluating the type-B consistency. While the assignment of these 

scores seems adequate in the case of (i) full consistency (score 1), (ii) inconsistency (score 0), and 

(iii) incomparability (N/A), it is somehow arbitrary in the case of weak consistency (score 0.5) – see 

the relevant definitions in Tab.8. We now propose an empirical sensitivity analysis aimed at 

showing how small variations in the weak-consistency score may affect (some of) the proposed 

indicators. Specifically, considering the classification problem in the section “Description of the 

indicators”, we analysed the variations in the indicators associated with the (KI = 243) possible 

solutions, when using the three different sets of Bil and B•l-scores in Tab. A.3 – i.e., set (a), (b), and 

(c). We note that set (b) is the same set proposed in Tab.8 and used in the previous examples. 

Tab. A.3. Sets of Bil and B•l-scores used in the sensitivity analysis. 

 Scores 
Set (a) Set (b) Set (c) 

1. Full consistency 1 1 1 
2. Weak consistency 0.25 0.50 0.75 
3. Inconsistency 0 0 0 
4.  Incomparability N/A N/A N/A 

 

Considering the 30 solutions in Tab.13 (i.e., the top-30 solutions of the problem exemplified in the 

section “Description of the model”, obtained adopting set (b)), we recalculated the corresponding 

indicators, especially pA, Norm, pB, Norm and pO. Then we determined the corresponding rank position 

in terms of pO (i.e., a number included between 1 and 243). It can be seen that the resulting changes 

in the pO values are marginal, e.g., the top-7 solutions are identical for each of the three sets (see 

also the diagram in Fig. A.1). Although we are aware that it is not a rigorous proof, the sensitivity 
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analysis revealed a certain robustness of pO. 

Tab. A.4. Results of the robustness analysis: pO-ranking related to the 30 solutions in Tab.13, when using each of 
the three sets of Bil and B•l-scores in Tab. A.3. 

Solution 
No. 

Global classifications  Set (a) Set (b) Set (c) 
o1 o2 o3 o4 o5 pA, Norm pB, Norm pO rank pos. pB, Norm pO rank pos. pB, Norm pO rank pos.

1 c1 c2 c3 c2 c3 90.8% 100.0% 95.4% 1 100.0% 95.4% 1 100.0% 95.4% 1 
2 c1 c2 c3 c2 c2 81.5% 100.0% 90.8% 2 100.0% 90.8% 2 100.0% 90.8% 2 
3 c3 c2 c3 c2 c3 81.5% 100.0% 90.8% 2 100.0% 90.8% 2 100.0% 90.8% 2 
4 c1 c2 c3 c1 c3 95.4% 81.0% 88.2% 4 81.8% 88.6% 4 82.6% 89.0% 4 
5 c2 c2 c3 c2 c3 95.4% 81.0% 88.2% 4 81.8% 88.6% 4 82.6% 89.0% 4 
6 c1 c2 c3 c2 c1 72.3% 100.0% 86.2% 6 100.0% 86.2% 6 100.0% 86.2% 6 
7 c1 c3 c3 c2 c3 72.3% 100.0% 86.2% 6 100.0% 86.2% 6 100.0% 86.2% 6 
8 c1 c2 c3 c1 c2 86.2% 81.0% 83.6% 9 81.8% 84.0% 8 82.6% 84.4% 8 
9 c3 c2 c3 c1 c3 86.2% 81.0% 83.6% 9 81.8% 84.0% 8 82.6% 84.4% 8 

10 c1 c1 c3 c2 c3 67.7% 100.0% 83.8% 8 100.0% 83.8% 10 100.0% 83.8% 11 
11 c1 c2 c2 c2 c3 81.5% 81.0% 81.2% 11 81.8% 81.7% 11 82.6% 82.1% 12 
12 c1 c2 c3 c3 c3 81.5% 81.0% 81.2% 11 81.8% 81.7% 11 82.6% 82.1% 12 
13 c3 c2 c3 c2 c2 72.3% 85.7% 79.0% 13 90.9% 81.6% 13 95.7% 84.0% 10 
14 c1 c2 c3 c1 c1 76.9% 81.0% 78.9% 14 81.8% 79.4% 14 82.6% 79.8% 14 
15 c1 c3 c3 c1 c3 76.9% 81.0% 78.9% 14 81.8% 79.4% 14 82.6% 79.8% 14 
16 c1 c1 c3 c1 c3 72.3% 81.0% 76.6% 17 81.8% 77.1% 16 82.6% 77.5% 20 
17 c1 c2 c1 c2 c3 72.3% 81.0% 76.6% 17 81.8% 77.1% 16 82.6% 77.5% 20 
18 c1 c2 c2 c3 c3 72.3% 81.0% 76.6% 17 81.8% 77.1% 16 82.6% 77.5% 20 
19 c1 c3 c3 c2 c2 63.1% 85.7% 74.4% 21 90.9% 77.0% 19 95.7% 79.4% 16 
20 c3 c2 c3 c2 c1 63.1% 85.7% 74.4% 21 90.9% 77.0% 19 95.7% 79.4% 16 
21 c3 c3 c3 c2 c3 63.1% 85.7% 74.4% 21 90.9% 77.0% 19 95.7% 79.4% 16 
22 c1 c2 c2 c3 c1 53.8% 100.0% 76.9% 16 100.0% 76.9% 22 100.0% 76.9% 25 
23 c2 c2 c3 c3 c3 86.2% 61.9% 74.0% 25 63.6% 74.9% 23 65.2% 75.7% 26 
24 c1 c2 c2 c1 c3 86.2% 61.9% 74.0% 26 63.6% 74.9% 24 65.2% 75.7% 27 
25 c2 c2 c3 c2 c1 76.9% 66.7% 71.8% 33 72.7% 74.8% 25 78.3% 77.6% 19 
26 c1 c3 c2 c1 c3 67.7% 81.0% 74.3% 24 81.8% 74.8% 26 82.6% 75.2% 29 
27 c1 c1 c3 c2 c2 58.5% 85.7% 72.1% 28 90.9% 74.7% 27 95.7% 77.1% 23 
28 c3 c1 c3 c2 c3 58.5% 85.7% 72.1% 28 90.9% 74.7% 27 95.7% 77.1% 23 
29 c1 c1 c2 c3 c3 49.2% 100.0% 74.6% 20 100.0% 74.6% 29 100.0% 74.6% 34 
30 c2 c2 c3 c1 c3 100.0% 42.9% 71.4% 34 45.5% 72.7% 30 47.8% 73.9% 35 
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Fig. A.1. Graphical representation of the pO-ranking related to the 30 solutions in Tab.13, when using each of the 
three sets of Bil and B•l-scores in Tab. A.3. 


