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Abstract: This work analyzes the effects of permanent 
magnet shape on the performance of surface-mounted 
permanent magnet (SPM) machine, including average 
torque, cogging torque, magnet volume and de-
magnetization limit. Analytical expressions are 
introduced to obtain the relationship between magnet 
shape and torque behaviors. Secondly, a multi-objective 
Differential Evolution (MODE) algorithm is used to get 
the best tradeoff model between torque performances. An 
automatic design process via MODE for SPM motor with 
magnet shaping is introduced. All the models are 
validated by Finite Element Analysis (FEA). 
 
Key words: Magnet shape, Cogging torque, Multi-
objective optimization 
 
1. Introduction 

Thanks to their high efficiency, high torque 

density, and good dynamic performance, permanent 

magnet synchronous motors (PMSMs) have been 

widely utilized in industrial applications, electric 

vehicles and aerospace over last several decades. 

Among PMSMs, surface-mounted permanent 

magnet (SPM) motors are popular due to their 

simple configuration, compared to Interior 

permanent magnet (IPM) motors [1]. 

Nonetheless, the cogging torque of SPM motors, 

which results from interaction between permanent 

magnet (PM) edge and stator slot openings causing 

vibration and noise, is a significant issue for high 

performance requirements [2]. Many methods have 

been developed for reducing cogging torque [3], for 

example, rotor skewing, magnet shifting or shaping, 

applying notches in stator teeth, etc. Each method 

has its own merits and drawbacks. In terms of 

skewing, although it effectively diminishes cogging 

torque, it also reduces the torque output of the 

machine and increases the manufacturing cost [4]. 

Similarly, magnet shaping can decrease the 

interaction between magnet and stator teeth, at the 

risk of reducing the fundamental airgap flux density, 

and therefore average output torque. 

Several optimization algorithms have been used 

in machine design process to achieve optimal torque, 

power or field weakening capability in recent years 

[5]. Among multi-objective optimization algorithms, 

multi-objective differential evolution (MODE) is 

one of the well-accepted methodologies for motor 

design optimization [6]. For example, torque and 

flux weakening capability of a concentrated-winding 

SPM machine for traction application were Pareto-

optimized in [7].   

This research deals with analytical calculation of 

SPM motors cogging torque, when magnet shaping 

is applied. Based on that, this paper investigates the 

trade-off between average torque and cogging torque 

performance using a constrained stator geometry and 

MODE optimization. Demagnetization of PMs and 

volume (i.e. cost) of PMs are also considered in the 

study. In turn, the paper formulates an automatic 

design process for SPM motors with magnet 

shaping, validated by Finite Element Analysis 

(FEA). 
 
2. Torque model 

One pole of an SPM rotor with shaped magnets is 

reported in Fig.1. The outer profile of the PM is 

circular and follows the set of parameters defined in 

the figure. 𝑙𝑚 is the maximum magnet length at the 

center of the pole, r is the rotor iron radius, 𝛽 is the 

magnet length at the magnet edge, in p.u. of 𝑙𝑚. 

When 𝛽 equals to 1, the magnet length is uniform. 

𝛼𝑚 is the magnet angular span, 𝜉 is the rotor angular 

coordinate, starting from the magnet center, 𝑔(𝜉) is 

the airgap length function of 𝜉 and 𝑟𝑐 is the radius of 

the outer rounded magnet profile. After defining the 

magnet parameters (𝛼𝑚, 𝑙𝑚 and 𝛽), the magnet 

length distribution 𝑙𝑚(𝜉), 𝑟𝑐 and central position 

𝑂′of rounded profile are calculated.  

Assuming that the current vector having 

amplitude 𝑖0 is controlled on the q axis, the torque 

output is: 
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𝑇 =
3

2
∙ 𝑝 ∙ 𝜆𝑚 ∙ 𝑖0  (1) 

Where p is the number of pole pairs, 𝜆𝑚 is 

magnet flux linkage and 𝑖0 is the motor maximum 

current. The magnet flux linkage 𝜆𝑚 is evaluated 

considering the fundamental component of the 

airgap flux density and neglecting higher order 

harmonics: 

𝜆𝑚 = 𝐷𝑖𝑠𝐿 ∙
𝑘𝑤𝑁𝑠

𝑝
∙ 𝐵𝑔1  (2) 

Where 𝐿 is the stack length, 𝑁𝑠 is the number of 

turns per phase, 𝑘𝑤 is the winding factor, 𝐷𝑖𝑠 is the 

stator inner diameter and 𝐵𝑔1 is the peak of 

fundamental airgap flux density.  

 

Fig.  1.   Definition of design parameters for SPM motors 

with circular PM shape 

2.1 Airgap flux density distribution 
Assuming that the airgap flux is radial and that 

the cross sectional areas of PMs and airgap are 

equal, for a slotless machine, it is obtained that, 

𝐵𝑔(𝜉) ≅ 𝐵𝑚(𝜉) =
𝑙𝑚(𝜉) 𝑔(𝜉)⁄

𝑙𝑚(𝜉) 𝑔(𝜉)⁄ +𝑘𝑐∙𝜇𝑟
∙ 𝐵𝑟 (3) 

Here 𝐵𝑚(𝜉) is the magnet flux density function, 

𝑘𝑐 is the Carter coefficient, and 𝜇𝑟 is the relative 

permeability of the magnet, and 𝐵𝑟 is the magnet 

remanent flux density. 

The magnet length function 𝑙𝑚(𝜉) is not only 

dependent on 𝜉, it also relies on the magnet length 

ratio 𝛽 at magnet edge. It is can be seen that while 𝛽 

increases, 𝐵𝑔(𝜉) will also rises, thus making 𝐵𝑔1 

increase.  The limitation of 𝛽 will be discussed in 

next section. Based on the magnet parameters input 

(𝑙𝑚, 𝛼𝑚 and 𝛽), the radius of rounded magnet shape 

𝑟𝑐 and 𝑙𝑚(𝜉) can be achieved as, 

𝑟𝑐 =
(2𝑟2+2𝑙𝑚𝑟(𝛽+1))(1−cos

𝛼𝑚
2

)+(𝛽2+1−2𝛽 cos
𝛼𝑚

2
)𝑙𝑚

2

2(𝑟(1−cos
𝛼𝑚

2
)+𝑙𝑚(1−𝛽 cos

𝛼𝑚
2

))
 (4) 

𝑙𝑚(𝜉) = (𝑟 + 𝑙𝑚 − 𝑟𝑐) cos 𝜉 − r + 

               √𝑟𝑐
2 − ((𝑟 + 𝑙𝑚)𝑠𝑖𝑛𝜉 − 𝑟𝑐𝑠𝑖𝑛𝜉)2  (5) 

The relationship among stator inner diameter 𝐷𝑖𝑠, 

𝑙𝑚(𝜉)  and 𝑔(𝜉) is given, 

𝑙𝑚(𝜉) +  𝑔(𝜉) + 𝑟 =  𝐷𝑖𝑠 2⁄   (6) 

Then substituting (5) into (6), the airgap length is 

then calculated as,  

𝑔(𝜉) =  𝐷𝑖𝑠 2⁄ − (𝑟 + 𝑙𝑚 − 𝑟𝑐) cos 𝜉 − 

             √𝑟𝑐
2 − ((𝑟 + 𝑙𝑚)𝑠𝑖𝑛𝜉 − 𝑟𝑐𝑠𝑖𝑛𝜉)2 (7) 

Combining equations (3) to (7), the airgap flux 

density expression 𝐵𝑔(𝜉) is calculated as, 

𝐵𝑔(𝜉) = ((𝑟 + 𝑙𝑚 − 𝑟𝑐) cos ξ − 𝑟 + 

   √𝑟𝑐
2 − ((𝑟 + 𝑙𝑚)𝑠𝑖𝑛𝜉 − 𝑟𝑐𝑠𝑖𝑛𝜉)2) ∙ 𝐵𝑟/ 

((1 − 𝑘𝑐𝜇𝑟)(𝑟 + 𝑙𝑚 − 𝑟𝑐) 𝑐𝑜𝑠 𝜉 + 

            (1 − 𝑘𝑐𝜇𝑟)√𝑟𝑐
2 − ((𝑟 + 𝑙𝑚)𝑠𝑖𝑛𝜉 − 𝑟𝑐𝑠𝑖𝑛𝜉)2 

              −𝑟 +
𝑘𝑐∙𝜇𝑟𝐷𝑖𝑠

2
)  (8) 

Three cases of airgap flux density distribution 

𝐵𝑔(𝜉) waveforms are reported in Fig. 2. The 

analytical results are presented in continuous lines 

and the circle marked points represent the FEA 

results. It can be seen that the analytical results agree 

with the FEA results along with the PM areas. 

Nonetheless, influenced by fringing effect, in the 

regions without PMs, the flux density cannot vanish, 

as indicated by the FEA results. The proposed 

mathematical model (8) assumes the airgap flux 

density to be zero off the magnet pole, with minor 

effect on torque and power factor prediction.   

The fundamental component’s amplitude 𝐵𝑔1 is 

obtained by Fourier transform of the analytical flux 

density distribution 𝐵𝑔(𝜉). Then 𝜆𝑚 is calculated by 

(2). Table 1 summarizes the difference between 



 

analytical results and FEA results on 𝜆𝑚. The 

matching of the results is reasonably good for all 

considered values of the parameter 𝛽. 

 

Fig.  2.   Airgap flux density distribution of a slotless 

motor, analytical results: continuous lines; FEA 

results: circle marked 

Table 1 Difference between analytical and FEA results 

𝑙𝑚 = 5 𝑚𝑚 

𝑔𝑚𝑖𝑛 = 1 𝑚𝑚 

𝛼𝑚 = 150° 

𝛽 0.6 0.7 1 

𝐵𝑔1  [T] 

Analytical 1.02 1.05 1.15 

FEA 1.04 1.06 1.13 

Error % -2 -1 +1.7 

𝜆𝑚  [Wb-t] 

Analytical 0.48 0.50 0.55 

FEA 0.49 0.50 0.54 

Error % -2 0 +1.9 

 

2.2 Cogging torque model 

Cogging torque is caused by the interaction 

between the PMs fixed on the rotor surface and 

stator slots. While the PMs are rotating, the 

magnetic energy varies with rotor position angle 𝜃. 

The cogging torque can be calculated based on 

energy derivative method, 

𝑇𝑐𝑜𝑔 (𝜃) = − 
𝜕𝑊0

𝜕𝜃
 (9) 

Where W0 is the total magnetic energy stored in 

the motor at open circuit conditions (zero current), 

function of the rotor position only. Since the 

magnetic energy stored in the iron and PMs is 

negligible compared with that one stored in the 

airgap, only the airgap volume and corresponding 

flux density distribution will be considered for the 

determination of the motor magnetic energy. At zero 

current, the magnetic energy is expressed as [8] 

𝑊0(𝜃) =  
1

2𝜇0
∫ 𝐵𝑔0 𝑑𝑉

𝑉
  (10) 

The airgap flux density distribution at zero 

current 𝐵𝑔0 can be achieved from the product of 

slotless machine distribution 𝐵𝑔(𝜉, 𝜃) and airgap 

permeance function 𝐺(𝜉), accounting for the slot 

opening effect. 

𝐵𝑔0 =  𝐵𝑔(𝜉, 𝜃) ∙ 𝐺(𝜉)  (11) 

From (9), (10) and (11), the cogging torque 

expression can be derived as,  

𝑇𝑐𝑜𝑔(𝜃) =  
𝜋𝐿

4𝜇0
((𝑟 + 𝑙𝑚(𝜉))

2
− (

𝐷𝑖𝑠

2
)

2

) ∙ 

                    
𝜕

𝜕𝜃
∫ 𝐵𝑔

2(𝜉, 𝜃) ∙ 𝐺2(𝜉) 𝑑𝜉
2𝜋

0
  (12) 

Where 𝜇0 is the air permeability. If 𝐺2(𝜉) and 

𝐵𝑔
2(𝜉, 𝜃) are expressed as Fourier series, (12) can be 

transformed as: 

𝑇𝑐𝑜𝑔(𝜃) =  
𝜋𝐿𝑘

4𝜇0
((𝑟 + 𝑙𝑚(𝜉))

2
− (

𝐷𝑖𝑠

2
)

2

) ∙ 

                     ∑ 𝑛𝐺𝑎𝑛𝑘𝐵𝑎𝑛𝑘sin (𝑛𝑘𝜃)∞
𝑛=1   (13) 

In the equation, k is the least common multiple 

(LCM) of stator slot number 𝑄𝑠 and 2𝑝, and 𝑛 is the 

harmonic order.  The equation presents that the 

cogging torque relates to the magnet length 𝑙𝑚(𝜉), 

coefficients 𝐺𝑎𝑛𝑘 and 𝐵𝑎𝑛𝑘, and k. The cross 

sectional view of a simplified stator slot is shown in 

Fig. 3. The Fourier coefficients 𝐺𝑎𝑛𝑘 of the airgap 

relative permeance can be calculated as suggested in 

[9], 

𝐺𝑎𝑛𝑘 =  
𝑄𝑠

𝜋
(∫ 𝑐𝑜𝑠(𝑛𝑘𝜃)𝑑𝜃

−
𝑑0
2

−
𝜋
𝑄𝑠

+ ∫ 𝑐𝑜𝑠(𝑛𝑘𝜃)𝑑𝜃

𝜋
𝑄𝑠

𝑑0
2

) 

         = −
𝑄𝑠

𝜋

2

𝑛𝑘
sin (

𝑑0

2
∙ 𝑛𝑘) (14) 

Equation (14) shows that 𝐺𝑎𝑛𝑘 relates to the slot 

opening 𝑑0 and it is independent upon magnet 

shape.  



 

 

 

Fig.  3.   Stator slot cross-section view 

The other Fourier coefficient 𝐵𝑎𝑛𝑘 is calculated 

as, 

𝐵𝑎𝑛𝑘 =
4𝑝

𝜋
∫ 𝐵𝑔

2(𝜉) cos(𝑛𝑘𝜉)

𝛼𝑚
2𝑝

0
𝑑𝜉 (15) 

It is can be seen that the magnet shape 

parameters 𝛼𝑚, 𝛽 and 𝑙𝑚 are relevant to 𝐵𝑎𝑛𝑘. 

Substituting (14) and (15) into (13), cogging torque 

expression can be obtained as, 

𝑇𝑐𝑜𝑔(𝜃) =  
𝜋𝐿𝑘

4𝜇0
((𝑟 + 𝑙𝑚(𝜉))

2
− 𝑅2) ∙ 

                    ∑ [−
𝑄𝑠

𝜋

2

𝑘
sin (

𝑑0

2
𝑛𝑘)

4𝑝

𝜋
sin(𝑛𝑘𝜃) ∙∞

𝑛=1

                   ∫ 𝐵𝑔
2(𝜉) cos(𝑛𝑘𝜉)

𝛼𝑚
2𝑝

0
𝑑𝜉] (16) 

In this research, the stator geometry and slot and 

pole pair combination are fixed: 𝑄𝑠 = 36, 𝑝 = 3 , 
therefore 𝑘 = 36 (see Table 2). The influence of 

magnet shape parameters 𝛼𝑚, β and 𝑙𝑚 on cogging 

torque according to (16) are reported in Fig. 4. The 

cogging torque results are measured as peak-peak  

value. It can be seen that 𝛼𝑚 = 150° has the 

strongest anti-cogging effect, as expectable with this 

number of slots [8], and that further reduction to 

cogging can be achieved by limiting β when 𝛼𝑚 and 

𝑙𝑚 are invariant. Moreover, each 𝛽 relates to an 

optimal 𝛼𝑚, which is an original contribution of this 

analysis. For example, for 𝛽 < 0.4 the value 

𝛼𝑚 = 150° is no longer the optimal magnet span.  

 

Fig.  4.   Influence of  𝛼𝑚 and β on peak-peak cogging 

torque, 𝑙𝑚(𝜉 = 0) = 5𝑚𝑚, 𝑔(𝜉 = 0) = 1𝑚𝑚 

 

3. Torque and cogging optimization 

The main motor ratings of the selected design 

example are reported in Table 2. MODE and FEA 

methods are utilized to optimize PM shape giving 

optimal 𝜆𝑚 and 𝑇𝑐𝑜𝑔 at open load condition. By 

applying (1), the torque output is obtained from the 

product of 𝜆𝑚 and 𝑖0. The optimization inputs are: 

𝑙𝑚, 𝛼𝑚 and 𝛽. Other cost functions considered off-

line after the optimization are the distance from the 

demagnetization limit and the mass of the PMs. The 

procedure of optimization process is shown in Fig. 

5. 

 

Fig.  5.   Flowchart of optimization procedure 



 

Table 2 Main parameters of target machine 

Parameters Values Units 

Number of slots 36  

Pole pairs 3  

Stator inner diameter 120 mm 

Stator outer diameter 175 mm 

Stack length 110 mm 

Minimum airgap length 1 mm 

Slot opening 0.3  

Maximum current 26 A 

Maximum speed 1000 rpm 

Number of turns per phase 120  

Torque target 56 Nm 

Peak cogging torque limit 1 Nm 

 
3.1 Demagnetization and magnet edge length 

limitation 

To prevent fracture in manufacturing process, the 

PM ends should not be too thin. Besides the 

manufacturing issues, the PMs must be protected 

against demagnetization by having adequate 

minimum length 𝛽𝑙𝑚. The maximum armature 

magnetoforce (mmf) per pole is defined as [10], 

𝐹𝑝1 =
3

2

4

𝜋

𝑘𝑤𝑁𝑠

2𝑝
𝑖0  (17) 

It is assumed that all of the mmf drop occurs over 

the air gap and saturation of stator iron is neglected. 

The air gap flux density produced by armature 

current alone is maximum at the magnet’s edges, 

calculated as, 

𝐵𝑔,𝑆 =
𝐹𝑝1𝜇0

𝑔
=

3

2

4

𝜋

𝜇0𝑘𝑤𝑁𝑠

2𝑝(𝑙𝑚(𝜉=0)+𝜇r𝑘c𝑔(𝜉=0))
𝑖0  (18) 

To prevent demagnetization at maximum current 

condition, the flux density at PM edge must be equal 

or larger than minimum allowed flux density in the 

magnet 𝐵𝑑 (knee point of the magnet characteristic). 

Therefore, the flux density 𝐵𝑚(𝜉 =
𝛼𝑚

2
) at open load 

condition should be not less than the sum of 𝐵𝑔,𝑆 and 

𝐵𝑑, thus: 

𝐵𝑚(𝜉 =
𝛼𝑚

2
) ≥ 𝐵𝑔,𝑠 + 𝐵𝑑  (19) 

Corresponds to (19), B-H curve on the 

relationship among 𝐵𝑚(𝜉 =
𝛼𝑚

2
), 𝐵𝑔,𝑆 and 𝐵𝑑 is 

shown in Fig. 6. The relationship among maximum 

allowed current, 𝑙𝑚 and 𝛽 is reported in Fig. 7. It 

illustrates that the maximum current is in 

proportional to the magnet length ratio 𝛽 when 𝑙𝑚 is 

fixed. In this study, 𝐵𝑑 is chosen as 0.1T (BMN-

42SH at 80℃). Then, from (3), (18) and (19), the 

minimum length at magnet edge is achieved as 1.7 

𝑚𝑚, i.e. 𝛽 = 0.24 while 𝑙𝑚(𝜉 = 0) = 7 𝑚𝑚.  

 

Fig.  6.   Operating point determination with 

demagnetization limit 

 

Fig.  7.   Relationship among 𝛽, 𝑙𝑚 and maximum 

allowed current 

3.2 Optimal magnet span range 

For magnets having constant length the magnet 

span 𝛼𝑚 giving minimum cogging torque is as [8],  

𝛼𝑚

𝜏𝑝
=

𝑁−𝑚1

𝑁
+ 𝑚2 (20) 

Where 𝑁 = 𝑘 2𝑝⁄  (𝑁 = 6 in the reported 

example), 𝑚1 is an integer from 1 to (𝑁 − 1), 𝜏𝑝 is 

the pole pitch. Due to the fringing PM flux entering 

into the slot side, additional factor 𝑚2 should be 

taken into account, which ranges from 0.01 to 0.03 

[11]. The formula is valid for magnets having 

uniform thickness. In this paper, the airgap thickness 

is gradually increasing from pole center to PM edge, 

making the mutual effect between PM edge and slots 

less acute than that in uniform thickness PM case. 

Based on that, in order to achieve more possible 

solutions, 𝑚2 has been increased to 0.05. Since 

larger 𝛼𝑚 generate higher torque according to (5) 

and (8), it is convenient to set 𝑚1 = 1. In this study, 

the range of PM span is set as 0.83𝜏𝑝 to 0.88𝜏𝑝. 



 

 

After defining the bounds of PM shape, the MODE 

procedure will automatically optimize the torque and 

cogging torque performance. 

 

3.3 Result of optimization 

As mentioned beforehand, the stator geometry in 

this study is fixed. According to [5], MODE is more 

efficient to get desired results in terms of the number 

of machine candidates. The bounds setting of 

magnet parameters are shown in Table 3.  

A two-stage optimization procedure is used here 

to save the running time which consists of first step 

called global search (GS) and a refined step called 

local search (LS). This approach was first suggested 

in [6]. During the GS process, 10000 candidates are 

involved (100 individuals in one population over 

100 generations). Each candidate is evaluated by 31 

FEA simulations for 31 rotor positions distributed 

evenly over one slot pitch. Then cogging torque is 

defined as the difference between maximum and 

minimum torque values. 𝜆𝑚 is the mean flux linkage 

value along with d axis of total 31 simulations. Then 

the maximum torque capability is calculated by (1) 

and reported as a negative value. After 16-hour 

parallel computing processing in a standard desktop 

computer (Intel i7, 4-core, 16 GB RAM), the Pareto 

front is obtained. One promising solution is selected 

as the base design for the subsequent LS stage. The 

search bounds of the LS optimization are ± 5% of 

base model data input. Then another 200 refined 

candidates are evaluated in 30 minutes. The final 

Pareto front consists of both GS and LS stage is 

reported in Fig. 8. 

 

Fig.  8.   Pareto front of both GS and LS stages 

The optimization result consists of 208 motors 

from the evolution process. From Fig. 8, it is 

reported that the lowest cogging torque is around 0.4 

Nm in this research. However the motor with lowest 

cogging torque is not able to generate adequate 

maximum torque (blue circle, Motor 3). Conversely, 

the one can produce highest torque has a worst 

cogging torque situation (green circle, Motor 1). The 

motor located at left bottom of Pareto front (red 

circle, Motor 2) is the one with best tradeoff 

between cogging torque and torque producing 

capability. The cross-sections of three motors are 

shown in Fig. 9 with their relative magnet 

parameters.  

 
Table 3 Limit of search space for optimization 

Magnet parameter 𝑙𝑚 β αm 

Bounds (GS) [5, 7] [0.24, 1] [150, 159] 

GS-optimum 

(Motor 0) 
6.89 0.55 155.7 

Bounds (LS) [6.54,7] [0.52, 0.57] [150, 159] 

LS-optimum 

(Motor 2) 
6.95 0.57 158 

Units mm p.u. elt. degree 

 

   

 

Fig.  9.   Three different motor cross-sections from Pareto 

front 

The detailed cogging torque waveforms of three 

motors over two slot pitches are presented in Fig. 10. 

The zero rotor position is defined as the line where 

the PM center aligned with the tooth center as the 

same position shown in Fig. 9. Although the cogging 

torque performance of Motor 3 is the best solution 

among the Pareto front, the torque production is 

considerably lower than others. The red model is 

chosen as the optimal solution to be a prototype 

since it can achieve the maximum torque target (56 

Nm) with relatively low cogging torque. The torque 



 

waveforms for the three motors over an entire period 

under maximum current condition are presented in 

Fig. 11. The average torque outputs from FEA are 

matched with the analytical results obtained from 

(1). Moreover, it also illustrates that the torque 

ripples of the three motors have the same trend of 

their cogging torque results. The torque ripple has 

been reduced while the edge length of magnet 

becomes shorter (from Motor 1 to Motor 3). 

Considering the cost, a larger amount of magnets is 

used in Motor 1. Compared with Motor 1, Motor 2 is 

also the cost-optimal one, shown in Fig. 9. 

 

Fig. 10. Cogging torque waveforms of three motors 

 

Fig. 11.  Torque waveforms of the three motors 

Table 4 Analytical and FEA results comparison on 

magnet edge 

 
𝐵𝑚(𝜉 =

𝛼𝑚

2
) 

[T] 

𝐵𝑔,𝑆 

[T] 
𝐵𝑚𝑖𝑛 
[T] 

Motor 1 
Analytical 0.63 0.23 0.4 

FEA 0.65 - 0.49 

Motor 2 
Analytical 0.55 0.2 0.35 

FEA 0.61 - 0.46 

Motor 3 
Analytical 0.33 0.14 0.19 

FEA 0.39 - 0.31 

 
Considering the demagnetization limit, the 

minimum flux density on PM edge from analytical 

and FEA results of the three motors are reported in 

Table 4. The FEA results on 𝐵𝑚𝑖𝑛 are higher than 

those from analytical calculation since the current is 

not applied along q axis. The FEA results present 

that the PMs are prevented from demagnetizing risk. 
 
4. Conclusion 

This paper presented a design procedure to 

optimize the PM shape of rounded SPM motors to 

find an optima tradeoff between torque and cogging 

torque behaviors. Both torque and cogging torque 

calculation through magnet shaping method is 

analyzed. Dependent on demagnetization limit and 

optimal magnet span calculation, the magnet bounds 

in optimization process are obtained. The cogging 

torque and maximum torque waveforms of three 

different motors on Pareto front are shown, which is 

obtained by MODE optimization and FEA 

simulations. One optimum motor is selected as the 

best trade-off machine among PM volume, torque 

and cogging torque behaviors. 
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