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Abstract. In literature there is evidence that Android applications are
not rigorously tested as their desktop counterparts. However – especially
for what concerns the Graphical User Interface of mobile apps – a thor-
ough testing should be advisable for developers.
Some peculiarities of Android applications discourage developers from
performing automated testing. Among them, we recognize fragility, i.e.
test classes failing because of modifications in the GUI only, without the
application functionalities being modified.
The aim of this study is to provide a preliminary characterization of the
fragility issue for Android apps, identifying some of its causes and esti-
mating its frequency among Android open-source projects. We defined a
set of metrics to quantify the amount of fragility of any testing suite, and
measured them automatically for a set of repositories hosted on GitHub.
We found that, for projects featuring GUI tests, the incidence of fragility
is around 10% for test classes, and around 5% for test methods. This
means that a significant effort has to be put by developers in fixing their
test suites because of the occurrence of fragilities.

1 Introduction

Recent years have witnessed a significant diffusion of mobile devices, which have
largely overtaken desktop computers in terms of shipped units [1]. The most
widespread operating system available for mobile devices is Android, adopted
by around 85% of them in 2016 [2].

Thanks to the growth of the capabilities of handheld devices, nowadays An-
droid applications can perform tasks that a few years ago were exclusive to
high-end desktop computers. Several marketplaces are available for developers
to release their software, and Android users can choose among a vast quantity
of competitive Applications to satisfy their needs.

In such a scenario, testing becomes crucial, to ensure that the user experience
is not harmed by undesired behaviours and crashes. Studies in literature have
highlighted the need for performing different kinds of testing for Android apps
[3]: GUI (i.e., Graphical User Interface), unit, integration, system, regression,



compatibility, performance, security testing. Among those, GUI testing is a very
prominent need, since the interfaces offered to the users can be very complex
and expose various risks of undesired behaviours.

However, several studies have examined the test culture among mobile devel-
opers, finding out that most of them do not practice any kind of GUI testing. A
high percentage of developers just rely on the execution of manual tests on the
user interface, or do not perform testing at all, leaving the recognition of bugs
and malfunctions to the final users. Evidence about this lack of testing is given
by Kochar et al. [4], who found that under 15% of the set of applications they
considered featured any kind of test classes.

The very short time to market of Android apps is not a sufficient justifica-
tion for such a lack of automated testing. Intrinsic characteristics of Android
applications can discourage developers from testing them: for instance, the ne-
cessity of deploying the app on different versions of the OS and different device
models (which may come with different screen characteristics and customized
interfaces); the pace of evolution of the operating system; the diversity of con-
texts and unpredictable events to which the application may have to respond to;
the possible variability (or lack) of resources available on the device.

We believe that the fragility of GUI scripted tests -a problem already ex-
plored for different kinds of software, e.g. for web applications [5, 6]- may be
an important deterrent to the large-scale adoption of GUI testing for Android
applications: developers may decide to discard completely the testing phase of
their products, if even small changes in their GUI can break entire test suites.
In short, we define a GUI test as fragile if it has to be modified when changes
are made in the GUI, and not in the functionalities of the app.

With this work, we aimed at gathering information about the diffusion and
incidence of the fragility problem. We gave our definition of fragility for mobile
GUI tests, and defined a set of metrics that may be helpful to evaluate its
incidence on the maintainance of an Android app. We evaluated our metrics and
based our findings on six different sets of applications, that we extracted from
the GitHub repository searching for popular scripted GUI testing tools.

2 Background and Related Work

This section provides an introduction to Android programming and testing, and
a survey of existing papers about Android testing and its challenges.

2.1 Overview of Android Applications

A definition of mobile apps can be given [7] as mobile software (i.e., applications
that run on mobile devices like smartphones or tablets) taking input from the
context of execution (i.e., that performs actions in response of characteristics or
events in their environment).

In the Android environment, apps can be built starting from four base com-
ponents. Activities build the user interface, by defining their elements and the



responses that will be triggered by different classes of user input (e.g., tactile or
vocal). Services handle background operations that can take longer than user
interactions, like the management of network connections. Broadcast Receivers
listen to events that are launched by the system and allow the app to respond
to them (e.g., low battery signal). Content providers are in charge of managing
the application data. Components are characterized by a specific life cycle, that
should be properly tested in order to avoid crashes in the app. GUI testing is
strictly tied to the testing of Activities, since the user interaction and the graphic
elements of the app are managed by them.

Mobile Apps are typically classified into three categories [8]. Native mobile
apps are designed to run on a specific platform, with elements and interfaces
specifically designed for it. Web-based apps are developed in web languages,
and are loaded by a browser on mobile devices. Hybrid apps use native code to
provide an interface to their users, but the core of the application logic is still a
web application that is loaded at run-time.

2.2 Alternatives for Android GUI testing

In general, automated mobile testing can be defined as “testing activities for
native and Web applications on mobile devices, using well defined software test
methods and tools to ensure quality in functions, behaviours performance, and
quality of service” [9].

As briefly discussed in section 1, there are different levels at which Android
testing can be performed. In our study, we focus on scripted GUI testing.

The most immediate option to perform GUI testing is the execution of man-
ual test cases. Manual testing is preferred by a large percentage of developers.
While the technique is easy and fast to actuate and is not a prerogative of spe-
cialized workforce, it is not exhaustive, error prone and hardly reproducible [10].
Automated GUI testing techniques are thus recommendable, since they can pro-
duce sets of scripts that allow to exercise -in a repeatable and exhaustive way- all
the functionalities of a given user interface. Some techniques do not need knowl-
edge about the source code of the apps to test (i.e., only the .apk packages are
necessary) and can automatically produce test scripts, that can be refined and
parametrized afterwards. If the source code is available, it is possible to write
scripted white-box test methods, like it can be done for typical JUnit testing of
Android applications.

Different approaches are proposed in literature for the GUI testing of An-
droid Applications [11]. Random and Fuzzy testing techniques [12–14] need no
information about the SUT (i.e., Software Under Test) and give random inputs
to its activities, evaluating if any of the inputs triggers undesired behaviours or
exceptions.

Capture & Replay testing tools [15–17] allow to start recording sessions of
operations on the GUI of Android apps, obtaining repeatable test scripts that
can be re-executed in a second moment (e.g., for performing regression testing).

Model-based testing techniques [18–24] take advantage of models of the SUT,
that can be extracted automatically by a GUI ripping component, or created



manually by the developer. Provided the model, these techniques generate a
systematic traversing of its transitions, to explore the application GUI as thor-
oughly as possible. Event-sequence generation tools [25, 26] adopt a similar ap-
proach that considers the test cases as streams of events.

Minor coverage is given in literature [10,27] for scripted and white-box test-
ing techniques, which require the testers to manually select operations to be
performed on the SUT, and write down test classes and methods based on them.

Several characteristics of Android applications, that may make testing them
a complex task, have been investigated in literature [3,7,8]: limited energy, mem-
ory and bandwith of the devices; constant interruptions and interactions with
other applications running and with the system; wide sets of different devices to
which the interface must be adapted; very short time to market; very frequent
changes in user interfaces; In addition to those causes related to the nature of
the Android OS and mobile devices, some studies [4] highlight that developers
may also neglect testing because of complexity and missing documentation of
the available testing tools.

2.3 GUI testing Fragility approximations

For our purposes, which is an evaluation of GUI testing we adopt the following
definition for fragile GUI tests.

We consider a GUI test class as fragile when two conditions hold:
– it needs modifications when the application evolves;
– the need is not due to a change in any functionality of the application,

but to changes in the user interface arrangement and/or definition.

We believe that fragility can be one of the main factors discouraging de-
velopers from adopting GUI testing, because trivial changes in the GUI may
break entire test suites. Our preliminary study on a test suite developed for an
open-source Android application, K-9 mail [28], found that up to the 75% of
scripted tests had to be modified because of modifications in the GUI, during
their lifespan. Among the causes of such modifications, we found: identifier and
text changes inside the visual hierarchy of activities; deletion or relocation of
GUI elements; usage of physical buttons; layout and graphics change; adapta-
tion to different hardware and device models; activity flow variations; execution
time variability.

Modifications performed to test code can be divided in 4 categories [29]: per-
fective maintenance, when test code is refactored to increase its quality; adaptive
maintenance, to adapt the test code to the evolution of the product code; pre-
ventive maintenance, to avoid the possible need for intervention in test code in
future releases; corrective maintenance and bug fixes. According to our definition,
a test method is fragile when the modifications performed on it are adaptive,
and related to aspects of the application GUI.

To implement an automated classification of test classes without semanti-
cally discriminating any modification between these four categories, we adopt a



simple heuristic: we consider any modified method of a GUI test class as fragile.
When a test class is modified, we consider it as non fragile if there are no mod-
ified methods inside it. Hence, we do not consider as fragile the classes whose
modifications are only among import statements and constructors, or caused by
the addition or removal of test methods.

We suppose, in fact, that the addition of a new method should reflect the in-
troduction of new functionalities or new use cases to be tested in the application,
and not the modification of existing elements of the already tested activities. On
the other hand, if some lines of code inside a single test method had to be mod-
ified, it is more likely that tests had to be rewritten due to minor changes in
the application and possibly in its user interface (e.g. modifications in the screen
hierarchy and in the transitions between activities).

3 Study Design

The aim of this work was identifying how a set of well-known set of GUI testing
tools were used among Android open-source applications, and to quantify how
many changes are needed by test classes. Finally, we wanted to give evidences
of the presence of GUI testing fragility.

Thus, we organized the paper around the following research questions:

– RQ1 Evolution: how much Android GUI test code is modified over different
releases?

– RQ2 Fragility: how many fragilities occur in Android GUI test suites?

As the first step of our research, we extracted a set of open source projects
from GitHub that presented multiple releases and that could be considered as
Android applications.

Then, we studied how applications were changed through their release history,
and we did the same for their test classes. We tracked the evolutions of individual
test classes and methods, so that we could compute fragility estimations.

In the following, we give details about the set of metrics we defined to track
modifications and fragilities, and the tools we selected for our investigations.

3.1 Metrics definition

Table 1 reports the metrics we defined, and the ranges of value they can belong
to. The metrics are explained in detail in the following subsections.

Some metrics have been presented in literature, for the quantification of mod-
ifications in test classes and test methods. For instance, Tang et al. [30] define
eighteen metrics for the description of bug-fixing change histories. They are di-
vided into three different categories: size (e.g., lines of code added or removed,
number of changed classes, files or methods), atomic (e.g., boolean values indi-
cating whether a class has added methods), or semantic (e.g., number of added
or removed dependencies). The metrics defined in the following are at a higher
level than the ones provided in the mentioned paper, and can also be defined on
top of them.



Table 1. Metrics definition

Group Name Description Range

Test evolution (RQ1) TLR Test LOCs Ratio [0, 1]
MTLR Modified Test LOCs Ratio [0, ∞]
MRTL Modified Relative Test LOCs [0, 1]
MRR Modified Releases Ratio [0, 1]
TCV Test Class Volatility [0, 1]

Fragility (RQ2) MCR Modified Test Classes Ratio [0, 1]
MMR Modified Test Methods Ratio [0, 1]
FCR Fragile Classes Ratio [0, 1]
FRR Fragile Releases Ratio [0, 1]
TCFF Test Class Fragility Frequence [0, 1]

Test suite evolution (RQ1) The metrics answering RQ1 aim to describe the
evolution of Android projects and relative test suites; they have been computed
for each couple of consecutive tagged releases, and then averaged over the whole
history of each project.

– TLR (i.e., Test LOCs Ratio) defined as TLRi = Tlocsi
Plocsi

where Tlocsi is the
absolute number of lines of code in test classes for release i, and Plocsi is
the total amount of Program LOCs for release i. This metric, lying in the
[0, 1] interval, allows us to quantify the relevance of the testing code inside
the release.

– MTLR (i.e., Modified Test LOCs Ratio) defined as MTLRi = Tdiffi

Tlocsi−1
,

where Tdiffi is the amount of added, deleted or modified test LOCs between
tagged releases i − 1 and i, and Tlocsi−1 is the total amount of test LOCs
in release i−1. This quantifies the amount of changes performed on existing
test LOCs for a specific release of a project.

– MRTL (i.e., Modified Relative Test LOCs) defined as MRTLi = Tdiffi

Pdiffi
where

Tdiffi and Pdiffi are respectively the amount of added, deleted or modified
test and production LOCs, in the transition between release i−1 and i. It is
computed only for releases featuring test code (i.e., TRLi > 0). This metric
lies in the [0, 1] range, and values close to 1 imply that a significant portion
of the total effort in making the application evolve is needed to keep the test
classes up to date.

– MRR (i.e., Modified Releases Ratio), computed as the ratio between the
number of tagged releases in which at least a test class has been modified,
and the total amount of tagged releases featuring test classes. This metric
lies in the range [0, 1] and bigger values indicate a minor adaptability of the
test suite -as a whole- to changes in the SUT.

– TCV (i.e., Test Class Volatility), can be computed for each test class as

TCVj =
MRj

Lifespanj
where MRj is the amount of releases in which test class

j is modified, and Lifespanj is the number of releases of the application
featuring the test class j.

As an example of the computation of TCV, figure 1 shows the number of
LOCs modified in test class NotesScreenTest.java of the project nhaarman/Triad



Fig. 1. Modified test LOCs for class NotesScreenTest.java of project nhaarman/Triad

[31] (featuring Espresso), for each tagged release in which it is present. The test
class is introduced in release 0.2.0 (number 2 in the history of the project) and is
present until the master release (number 46 in the history). Hence, the lifespan
of the class is 45. From the bar plot is evident that the test class has been
modified five times during its lifespan. Thus, the volatility of the test class can
be computed as TCV = 5

45 = 0.11.

Fragility of test classes and methods (RQ2) The following metrics aim to
give an approximated characterization of the fragility of test suites.

– MCR (i.e., Modified test Classes Ratio) defined as MCRi = MCi

TCi−1
where

MCi is the number of modified test classes in the transition between release
i− 1 and i, and TCi−1 the total number of test classes in release i− 1 (the
metric is not defined when TCi−1 = 0). The metric lies in the [0, 1] range:
the larger the values of MCR, the less test classes are stable during the
evolution of the app they test.

– MMR (i.e., Modified test Methods Ratio) defined as MMRi = MMi

TMi−1
where

MMi is the number of modified test methods between releases i − 1 and i,
and TMi−1 is the total number of test methods in release i−1 (the metric is
not defined when TMi−1 = 0). The metric lies in the [0, 1] range: the larger
the values of MMR, the less test methods are stable during the evolution of
the app they test.

– FCR (i.e. Fragile Classes Ratio) defined as FCRi = MCMMi

TCi−1
where MCMMi

is the number of test classes that are modified, and that feature at least one
modified method between releases i− 1 and 1. TCi−1 is the number of test
classes featured by release i− 1 (the metric is not defined when TCi−1 = 0).
This metric represents the percentage of fragile classes (according to our
definition), upon the entire set of test classes featured by a tagged release
of the project. The metric is upper-bounded by MCR, since by its definition
MCRi = MCi/TCi, and MCMMi ≤ MCi.

– FRR (i.e., Fragile Releases Ratio), computed as the ratio between the num-
ber of tagged releases featuring at least a fragile class, and the total amount
of tagged releases featuring test classes. This metric lies in the range [0, 1]
and is upper bounded by MRR.



Fig. 2. Diff for class TheFullScreenBarcodeActivity.java of ligipassandroid (releases
3.2.0 - 3.2.1)

Fig. 3. Diff for class ThePassEditActivity.java of ligipassandroid (releases 3.2.0 - 3.2.1)

– TCFF (i.e., Test Class Fragility Frequence) defined as TCFFj =
FRj

Lifespanj

where FRj is the the amount of releases in which the test class j contains
modified methods, and Lifespanj is the number of releases of the application
featuring the test class j. This metric is upper bounded by TCV , since by
construction MRj (the number of releases in which the class is modified) is
higher or equal to FRj

For instance, in figure 2 the output of the Git Diff command for the class
TheFullScreenBarcodeActivity.java of the repository ligi/passandroid ( [32], fea-
turing Espresso), between releases 3.2.0 and 3.2.1, is shown. The class is mod-
ified, but there are no modifications inside test methods. In fact, the only two
lines modified are import statements. Hence, this class counts as a modified class
(thus counting for MC) but, since MM = 0, it is not considered as a fragile class.
Thus, it does not count for MCMM.

The second sample in figure 3 is the diff for the class ThePassEditActiv-
ity.java. In the class there are four rows modified inside three different test
methods. In this case, the class counts for MC and also for MCMM , since
MM = 3.



To validate the metrics defined for fragile classes and fragile methods (since
we consider as fragile also tests that are modified for reasons different from GUI
modifications) we compute the Precision metric as P = TP

TP+FP , where TP is the
number of True Positives, in our case the test methods whose changes actually
reflect modifications in the GUI (or, if we consider test classes, the ones with
modified methods and actually fragile); FP is the number of False Positives, i.e.,
the methods that feature changed LOCs, but due to different reasons (or the
test classes with modified methods, but not fragile). P is defined in the range
[0, 1]: values closer to 1 are an evidence that the presence of modified lines in
test methods is a dependable proxy to identify modifications in test classes due
to changes related to the user interface of the application.

3.2 Instruments

This section describes the tools and scripts that have been used to extract iden-
tify and filter projects, and to extract the measures we used for our analysis on
evolution and fragility.

GitHub Repository Search GitHub Repository Search API allows to extract
all projects containing a certain keyword in their names, readmes or descriptions.
To access the GitHub API we have used the cURL Linux program inside a bash
script.

Since the output of the GitHub Repository Search is limited to the first 1000
occurrences found, we have taken advantage of the ”created” parameter to limit
consecutive searches over a set of time ranges. The ”language” parameter can be
used to limit the search repositories according to the language they are written
in. The output of the API call is in the form of a Json file: we used jsawk to
inspect its content.

The following query returns a set of up to 1000 repositories -written in java-
featuring a given keyword in their description, readme or name:

c u r l −u $USER:$PASSWORD −H A c c e p t : a p p l i c a t i o n /vnd . github .
v3 . text−match+ j s o n h t t p s : // api . g ithub . com/ search /
r e p o s i t o r i e s ?q=keyword+language : java+created : ”
$CURR DATE RANGE ”&s o r t=s t a r s&order=desc&page=
$ C U R R E N T P A G E

Git Code Search To search for particular code inside files belonging to a
given project, the GitHub Code Search API can be leveraged. The search can
be parametrized with the “filename” parameter, which makes the search to be
performed only in files named as the provided keyword (if the parameter is omit-
ted, the keyword is searched in all files of the repository). The “repo” parameter
allows to specify the repository in which to perform the search.

Some limitations have to be considered when GitHub Code Search API is
used, as it is explained in the Git documentation [33]: (i) only the default branch
(in most cases the master branch) is considered for the code search; thus, if the



searched keyword is present in older releases but is removed in the master branch,
the project will not be part of the results; (ii) for performance reasons, only files
smaller than 384kb are searchable; (iii) only repositories with fewer than 500,000
files are searchable. Latest two issues may not be very relevant in our context,
since the size of the projects and files considered is typically not so big - with
the exceptions of whole firmwares and clones of the entire Android Operative
System. The following sample query returns the names of the files, containing a
provided keyword, found inside a GitHub repository:

c u r l −u $USER:$PASSWORD −H A c c e p t : a p p l i c a t i o n /vnd . github . v3
. text−match+ j s o n h t t p s : // api . g ithub . com/ search / code ?
q=keyword+f i l ename : AndroidManifest . xml+repo : r e p o s i t o r y |
jsawk r e t u r n t h i s . i t e m s | jsawk r e t u r n t h i s .
p a t h

Count of (modified) lines of code To count the total lines of code inside a
repository (or a set of files) we leveraged the open-source Cloc tool [34].

The number of modifications performed to files of a GitHub repository can be
obtained using the git diff command. Giving just the two releases as parameters
of the command, the modifications performed to the whole repository are shown;
as an alternative, it is possible to specify the full paths of a file to be found in
each release, to obtain the modifications that were performed on that specific
file. Specifying the -M parameter allows to identify files that have been renamed
or moved, without considering such operation as the combination of a deletion
and an addition of a file.

Java class parser We based our Java class examiner on JavaParser [35], an
open source tool (available on GitHub) that can be used to explore the structure
of any Java application. We developed a console tool which, given two releases
of the same test class:(i) extracts all methods that are declared in both the
releases; (ii) lists all methods that have been removed from the class; (iii) lists
all the methods that have been added to the class; (iv) inspects the diff file
for common methods, and for each modified line checks whether it has been
performed inside an existing method. The output of the script gives the count
of total, added, modified, and removed methods.

3.3 Selected Testing Tools

The first two tools we have searched for are part of the official Android Instru-
mentation Framework [36]. Espresso [37] is an open-source automation frame-
work that allows to test the GUI of a single application, leveraging a gray-box
approach (i.e., the developer has to know the internal disposition of elements
inside the view tree of the app, to write scripts exercising them). UI Automa-
tor [38], adds some functionalities to those provided by Espresso: it allows to
check the device performance, to perform testing on multiple applications at the



same time, and operations on the system GUI. Both tools can be used only to
test native apps.

Selendroid [39] is a testing framework based on Selenium, that allows to
test the GUI of native, hybrid and web-based applications; the tool allows to
retrieve elements of the application and to inspect the current state of the app’s
GUI without having access to its source code, and to execute the test cases on
multiple devices at the same time.

Robotium [40] is an open-source extension of JUnit for the testing of Android
apps, that has been one of the most used testing tools since the beginning of the
diffusion of Android programming; it can be used to write black-box test scripts
or function tests (if the source code is available) of both native and web-based
apps.

Robolectric [41] is a tool that can be used to perform black-box testing di-
rectly on the Java Virtual Machine, without the use of a real device or an
emulator; it can be considered as an enabler of Test-Driven Development for
Android applications, since the instrumentation of Android emulators is signifi-
cantly slower than the direct execution on the JVM.

Appium [42] leverages WebDriver and Selendroid for the creation of black-
box test cases that can be run on multiple platforms (e.g., Android and iOS); test
cases can be created via an inspector that enables basic functions of recording
and playback, via image recognition, or via code. It can be used to test both
native and web-based applications. Test scripts can be data-driven.

3.4 Procedure

Context definition The first step we performed for the definition of our con-
text was the search for the word “Android” in the descriptions, readmes and
names of projects of GitHub, using the GitHub Repository Search API. All the
projects that had no tagged releases (and hence, no evolution to investigate)
were excluded from the context.

A second step of filtering has been applied, in order to try to avoid including
in the context spurious results (e.g., libraries, utilities, applications developed for
other systems intended to interface with Android counterparts). In fact, as it is
explained in the Android developer’s guide [43], it is mandatory for any Android
app to have a Manifest file in its root directory. Therefore we used GitHub
Code Search to search for files named “AndroidManifest.xml” and cointaining
the keyword “manifest”, and we cut out from the context the projects not giving
any positive occurrence to this search.

To search for any of the testing tools considered, we used again GitHub Code
Search on the Android projects that are included in the context. We considered
Java files featuring the name of a testing technique as test classes.

Test LOCs analysis (RQ1) To answer RQ1, for each pair of consecutive
tagged releases of every project, the total amount of modified LOCs is computed.
Then, the total amount of LOCs added, removed or modified in the test files



previously identified is computed. Those values allow to compute TLR, MTLR
and MRTL for each tagged release.

Finally, when the exploration of the project history is completed, global av-
eraged values are computed: TLR = Avgi{TLRi}, MTLR = Avgi{MTLRi},
MRTL =
Avgi{MRTLi}, with i ∈ [2, NTR], being NTR the number of tagged releases
featured by the project. At the end of the exploration of the tagged releases of
each project, MRR is computed to quantify the percentage of them featuring
modifications in test classes.

Lifespan and volatility (TCVj) are computed for each test class, and then an
overall average is computed as TCV = Avgj{TCVj} with j ∈ [1, NTC].

Test classes history tracking, Fragility (RQ2) We have tracked the evolu-
tion of single test classes and methods, taking into account the tagged releases
in which each test class has been added, modified or deleted.

Then, for each tagged release we have obtained the number of modified
classes and methods, i.e. MCR and MMR, and the derived metric FCR. Also
in this case, at the end of the exploration averages have been computed as
MCR = Avgi{MCRi}, MMR = Avgi{MMRi}, FCR = Avgi{FCRi}, with
i ∈ [1, NTR].

At the end of the exploration of the tagged releases of each project, FRR and
has been computed to quantify the percentage of them featuring modifications
due to fragility.

Test class Fragility Frequence (TCFFj) has been computed for each test
class, and then an overall average has been computed for each project, as TCFF =
Avgj{TCFFj} with j ∈ [1, NTC].

To understand how the frequency of fragility depends on the amount of
tagged releases and testing code ratio of Android projects, we also extracted a
subset of our original context, composed by projects having more than 5 tagged
releases and 10% Testing LOCs Ratio. We computed again the fragility metrics
on this subset, and compared the results to the ones computed over the whole
context.

A manual inspection of a set of modified test classes with modified methods
has been conducted, in order to verify the dependability of the metrics defined to
identify fragile methods and fragile classes (i.e., MMR and FCR). 30 couples of
releases of different classes have been selected randomly, and manually examined
before and after they were modified. The modifications performed were charac-
terized under four categories: (i) bug fixing and refactoring (e.g. enhancement of
test methods, adaptations to new APIs and removal of deprecated method calls,
etc.); (ii) syntactical correction and formatting; (iii) adaptation to changes in
program code not related to GUI; (iv) adaptation to changes in program code
related to GUI. Only the modifications belonging to the last class are considered
as true positives for our analysis; all the others are considered as false positives.
Based on that subdivision, precision is estimated for two metrics: the percentage
of fragile classes, and the percentage of fragile methods.



Table 2. Sets of projects considered

Tool Projects Mean Tlocs Mean TLR

Espresso 398 558 8.8%
UIAutomator 105 3,155 8.6%
Selendroid 6 8,627 19.4%
Robotium 145 873 8.7%
Robolectric 826 1,448 16.4%
Appium 11 4,469 37.3%

4 Results and Discussion

Applying the search procedure and the filtering to cut out spurious projects,
a set of 18,930 Android projects was mined from GitHub, and used for the
computation of the metrics defined before.

The sizes of the sets featuring each of the six chosen testing tools are shown in
table 2. The table reports also information about the size of the testing suites: the
average total amount of testing LOCs (T locs) and the average relative amount
of testing LOCs (TLR) computed for master releases.

4.1 Test suite evolution (RQ1)

Table 3 shows the statistics collected about the average evolution of test code,
for the six selected testing tools. For every set, TLR, MTLR, MRTL, MMR
and TCV have been averaged on all the projects. The values in last row are
obtained as averages of the six values above, weighted by the size of the six sets.

The values reported for average Test LOCs Ratio (TLR) show that – when
present – GUI testing can be a relevant portion of the project during its lifecycle,
if compared to the total LOCs of the application. The average values range
from about 7.3% (for the set of Espresso projects) to 31.9% (for the set of
Appium projects). For the largest set of projects considered (the ones featuring
Robolectric) the mean TLR is 13.4%. The TLR averaged over the releases of
applications is typically smaller than the TLR computed for master releases (see
table II): this is due to the graduality of the construction of test suites, which
may be very small or absent in intial releases. The boxplots in figure 4 show the
distribution of TLR values for the six sets of projects.

The average Modified Test LOCs Ratio (MTLR) shows that typically around
2.8% of test code is modified between consecutive releases. Very small values were
obtained for the projects featuring UIAutomator; this should be a consequence
of bigger test suites, in terms of absolute total test LOCs, with respect to the
ones written with Espresso, Robolectric and Robotium (the sets featuring a
significant number of projects).

The measures about the Modified Relative Test LOCs (MRTL) show that,
on average, when GUI testing tools are used, the 7.4% of the modified LOCs
belong to test classes. With this metric, however, we are still unable to discrim-
inate what is the reason behind the modifications performed on test classes.



Table 3. Measures of the evolution of test code (averages on the sets of repositories)

Tool TLR MTLR MRTL MRR TCV
Espresso 7.3% 2.6% 4.7% 22.2% 8.6%
UI Automator 9.6% 1.4% 3.5% 16.5% 6.4%
Selendroid 19.4% 4.3% 11.5% 39.6% 11.5%
Robotium 7.8% 3.8% 5.3% 22.1% 9.9%
Robolectric 13.4% 2.9% 9.5% 28.2% 8.6%
Appium 31.9% 1.8% 16.6% 27.3% 10.3%
Average 11.1% 2.8% 7.4% 25.2% 8.6%
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Fig. 4. Distribution of TLR

The higher MRTL values for the sets of projects featuring Appium and Selen-
droid can be justified by the small size of the two sets, and by the nature of the
projects examined. For instance, the whole Selendroid framework, on GitHub as
selendroid/selendroid, is subject to heavy modifications.

The Modified Releases Ratio (MRR) metric gives an indication about how
often the developers had to modify any of their test classes when they published
new releases of their projects. On average, about 25% of releases needed mod-
ifications in the test suite (with a maximum of 39.6% for the set of projects
featuring Selendroid). Since releases may be frequent and numerous for GitHub
projects, this result explains that the need for updating test classes is a common
issue for Android developers that are leveraging scripted testing.

The 8.4% value for the Test Class Volatility (TCV ) metric, which charac-
terizes the phenomenon from the point of view of the individual test classes,
highlights the fact that each test class has to be modified, on average, every ten
tagged releases in which it appears.

As an example of evolution of GUI testing code, we considered the project
ligi/PassAndroid, that feature both unit tests written in jUnit, and GUI tests
built with Espresso. Figure 5 shows the amount of Espresso and JUnit code
throughout the history of the app. The graph highlights that the need for GUI
testing can be even more stringent than the need for Unit testing checking the
application logic. Figure 6 shows the history of modifications of Espresso test
classes of Passandroid. A portion of the set of test classes had to be modified
for each release of the application. In an occasion (v2.4.5) the entire test suite



Fig. 5. PassAndroid: GUI test LOCs
compared to JUnit and total LOCs

Fig. 6. PassAndroid: history of the set
of Espresso test classes.

Fig. 7. PassAndroid: history of the set of JUnit test classes.

had to be rewritten. The absolute number of interventions performed on the test
classes is significantly higher for Espresso than for JUnit (see figure 7).

4.2 Fragility of test classes and methods (RQ2)

Table 4 shows the fragility estimations that we have computed for each project,
and then averaged over the six sets: MCR, MMR, FCR. Based on them, we
computed two additional derived metrics: FRR and TCFF The values in last
row are obtained as averages of the six values above, weighted by the size of the
six sets.

The first column about the Modified Classes Ratio (MCR) metric shows
that, on average, 14.8% of test classes are modified between consecutive tagged
releases in our set of Android projects. The exception is represented by the set
of projects adopting UIAutomator, we need to investigate further the cause of
such difference.

The 3.5% average value found for the Modified Methods Ratio (MMR) met-
ric highlights that the percentage of modified methods is -as expected- smaller
than the percentage of modified classes: this is obviously due to the fact that
multiple test methods are contained in single test classes.



Table 4. Measures for fragility (averages on the sets of repositories)

Tool MCR MMR FCR FRR TCFF

Espresso 15.2% 3.5% 8.3% 14.4% 4.6%
UI Automator 9.0% 1.8% 4.6% 10.2% 3.1%
Selendroid 16.5% 2.7% 4.9% 28.2% 3.4%
Robotium 16.4% 3.5% 9.3% 15.2% 5.7%
Robolectric 15.1% 3.8% 8.5% 20.6% 4.9%
Appium 15.2% 4.6% 7.7% 17.1% 5.1%

Average 14.8% 3.6% 8.2% 17.7% 4.8%

Table 5. Percentage of projects without modifications in test suites, classes and meth-
ods

Unmodified Unmodified Unmodified
Tool suites classes methods
Espresso 24.6% 57.0% 65.8%
UIAutomator 16.0% 40.0% 55.0%
Selendroid 60.0% 60.0% 80.0%
Robotium 16.6% 44.1% 60.0%
Robolectric 15.8% 45.3% 53.3%
Appium 27.3% 54.5% 72.7%

The Fragile Classes Ratio (FCR) metric gives the ratio between the classes
that we define fragile upon all the classes contained by each project. On aver-
age, about 8% of the classes were fragile in the transition between consecutive
releases.

The Fragile Releases Ratio (FRR) metric gives an indication of how many
releases of the considered project contained test classes that we identify as fragile.
The value is upper-bounded by MRR, which is the frequence of releases featuring
any kind of modification. A value of FRR = 17.5% is relevant, because it means
that about one in five releases require a change in test methods.

Upper-bounded by TCV (the overall volatility for test classes), the aver-
age Test Class Fragility Frequence (TCFF ) provides information about the fre-
quency of modifications that test classes must undergo because of fragilities. The
average value of 4.8% tells us that a typical test class must be modified because
of fragilities every 20 releases in which it appears.

It must also be considered that the averages reported above are heavily low-
ered by those projects in which test classes and methods are inserted – at the
beginning or at some point in their history – but are never modified later. In
table 5 we show: the percentage of projects whose test suites are never modified;
the percentage of projects with no modifications in test classes (i.e., only addi-
tions and modifications of test classes are performed); the percentage of projects
with no modifications in test methods (i.e., only additions and modifications of
methods are performed, and no fragility is detected).

In table 6 we show the results that have been gathered only for those projects
that feature a relevant percentage of test code among product code (more than
10%) and more than five tagged releases. We show our results for the four biggest
sets of projects considered, being the ones featuring Selendroid and Appium not



Table 6. Measures for fragility for long-lived and tested projects

Tool MCR MMR FCR FRR TCFF
Espresso 21.2% 4.5% 12.5% 26.6% 9.0%
UI Automator 10.0% 0.9% 4.9% 11.7% 8.1%
Robotium 25.7% 5.2% 13.8% 29.0% 18.3%
Robolectric 30.0% 5.3% 12.5% 36.0% 14.7%
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Fig. 8. Distribution of FRR metric for long-lived and tested projects

relevant for such a comparison because they contain a few units. Our hypothesis
is that projects that have a longer history and bigger test suites, are more in-
clined to have test classes and methods modified than shorter-lived projects in
which the amount of testing is negligible. The metrics we computed confirm our
supposition: with the only exception of the set of projects featuring UIautoma-
tor, average FRR is nearly doubled for all sets (comparative boxplots are shown
in figure 8). Also the average TCFF is largely increased if only applications with
relevant test code percentage and release history are considered.

4.3 Metrics validation

Table 7 shows the results of the validation procedure for RQ2. We found that
about 70% of the modifications of methods are true positives if we consider them
as proxies of modifications limited to the GUI and not affecting the functionality
of the application. Hence, we can consider that modifications in the GUI of the
application are involved in the majority of the modifications to test methods
and classes.

We can also compute an estimate of the precision if we consider classes and
not individual methods. We consider a class found as fragile a true positive if it
contains at least a method whose modifications are connected to the GUI of the
SUT. In this case we found 21 classes with modifications related to the GUI of
the SUT, and hence 21 true positives among 30 samples (70%).



Table 7. Precision for Fragile Methods and Classes

Metric Measured TP FP P

Fragile Methods 65 45 20 69.2%
Fragile Classes 30 21 9 70.0%

5 Threats to Validity

Threats to internal validity. The test class identification process is based on
the search of the name of the tool as keyword: any file containing one of such
keyword is considered as a test file without further inspection; this procedure
may miss some test classes, or consider a file as a test file mistakenly. The
number of tagged releases is used as a criterion to identify a project as worth
to be investigated; it is not assured that this check is the most dependable one
for pruning negligible projects. The scripts and tools we used assume that no
syntactic errors are present inside the test classes on which they operate, and
that the names of those files are properly spelled (e.g., without the presence
of special characters or blank spaces); the correctness of the metric extraction
technique is not assured in different circumstances.

Threats to external validity. Our findings are based only on the GitHub open-
source project repository. Even though it is a very large repository, it is not
assured that such findings can be generalized to closed-source Android appli-
cations, neither to ones taken from different repositories. The applications we
extracted are not necessarily released to final users. Nevertheless, we selected a
subset of projects that were released on the Play Store, and the average metrics
computed on them were not significantly different from the ones computed on
the whole sample. We have collected measures for six scripted GUI automated
testing tools. It is not certain that such selection is representative of other cate-
gories of tools or different tools of the same category, which may exhibit different
trends of fragilities throughout the history of the projects featuring them.

Threats to construct validity. We link the GUI test fragility to any change
in the interface that requires an adaptation of the test. The proxy we used -
a change in any test method - is not perfectly linked to a change in the GUI.
The magnitude of this threat has been evaluated with a Precision measure equal
to 70%. This might reduce our fragility estimate but not change its order of
magnitude.

6 Conclusion and Future Work

The objective of this paper was characterizing the amount of GUI testing fragili-
ties that have been experienced by open-source Android projects during their
history. We analyzed the transitions between consecutive tagged releases for
projects featuring some relevant GUI automated testing tools -Espresso, UIAu-
tomator, Selendroid, Robotium, Robolecric, Appium- among the repositories
hosted by the GitHub portal.



We found that, when present, the GUI testing code can be up to 13% of the
whole program code. Concerning the evolution of test code, on average in every
release about 7.5% of the changed lines are in the UI test code, and about 3%
of test code has to be modified.

The fragility of the tests can be estimated with two metrics based on the
raw count of classes and methods modified. Overall we can estimate fragility
of the analyzed test classes around 8% (meaning that there is such probability
that a test class may include a modified test method). The association between
modified test methods and modifications in the GUI has been proved dependable
in 70% of the cases examined.

On average, around 25% of releases featuring test classes need intervention
in test classes to keep them aligned with the production code. About 18% of test
classes need intervention because of the presence of classes that are marked as
fragile by our definition, and for each transition, there is 5% possibility for any
class to need modifications due to fragility. These results show that developers
need to rather frequently adapt their GUI scripted testing suites to the evolution
of the application. Each individual test class, on average, has to be modified one
every ten tagged releases of the project, and one every twenty if we consider just
modification due to fragilities.

These evaluations show that fragility can be a relevant issue for automated
scripted testing for Android applications, and that it may be one of the factors
discouraging developers for a thorough testing of their software. We have also
found that the fragility problem is significantly more relevant when test code is
not a negligible portion of Program code, and when the applications feature a
sufficient number of tagged released to be considered long-lived.

In the future it might be possible to define a taxonomy of causes of fragilities,
guidelines to help developers to avoid it, and finally automated tools capable of
adapting the test cases to modificatons made in the user interfaces. An exten-
sion of the study to other databases of open-source projects, to compare different
testing frameworks or typologies, or to other sotware platforms (like iOS) is also
possible.
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