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Abstract Network Function Virtualitazion has enabled Data Center Providers
to offer new service provisioning models. Through the use of data center man-
agement software (cloud managers), providers allow their tenants to customize
their virtual network infrastructure, enabling them to create a network topol-
ogy that includes network functions (e.g., routers, firewalls), either chosen
among the natively supported catalog or provided by third-parties. In order
to deploy a ready-to-go service, providers have also to take care of pushing
functional configurations into each network function (e.g., IP addresses for
routers and policy rules in firewalls).

This paper proposes an architecture that extends current cloud manage-
ment software to enable the configuration of network functions. We propose
a model-based approach that exploits the use of additional software compo-
nents, i.e. translators and gateways, which are VNF-agnostic, i.e. they are
vendor-neutral and not specific for a particular type of network function, and
do not require any change in the VNFs. A prototype of this solution has been
also implemented and tested, in order to validate our approach and evaluate
its effectiveness in the configuration phase.
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1 Introduction

Data Center Providers (DCPs) have implemented new ways to deploy and
manage networking services, because their old provisioning model was too
strictly intertwined with the physical network topology, being based on typ-
ical switching and bridging solutions. New service provisioning models have
been enabled thanks to the innovation of the Network Function Virtualization
(NFV) paradigm [1], which decouples software implementations of network
functions (i.e., Virtual Network Functions) from physical computing, storage
and networking resources. Following this paradigm, data centers are managed
through a cloud manager (CM) such as OpenStack [2], which is a software suite
that handles management tasks such as the deployment of Virtual Machines
(VM), the creation of the virtual network topology, and more.

Recently, DCPs have also enabled a novel tenant-centric provisioning model,
where tenants can define their own virtual infrastructure [16], with the assur-
ance of a safe multi-tenant environment. A virtual infrastructure, which is the
set of components that are required to deliver a complete service to a request-
ing tenant, include VMs, the actual network topology (e.g., virtual links, IP
networks), and VNF's (e.g., routers, switches, firewalls, NATs and other). The
creation of such virtual infrastructure can be done by either choosing network
functions! from the catalog offered by a DCP or by deploying third-parties
VNFs.

Cloud managers can rely on additional systems for configuring network
services and functions: examples are Puppet [5], Chef [6], Ansible [7] and oth-
ers. One advantage of such solutions is the possibility to integrate a network
function without any modification to the function itself, thanks to the use of
additional software modules such as agents or plug-ins. This approach, in fact,
relieves VNF developers from the burden of developing a special instance of
their functions for each particular CM adopted by the provider. However these
tools miss a high-level agility in configuring VNF's because they are targeted
to very expert users (i.e., providers, administrators, developers etc.). Exist-
ing configuration systems generally have a very steep learning curve and this
implies that non-expert tenants cannot build their virtual networks without
learning how to use the tool allowed by their DCP. Moreover, configuration
tools generally force users to create VNF configurations in the format needed
by the tools themselves, without providing a high-level representation of such
configuration parameters (e.g., no separation between the representation of an
IP address and its real value). In this way, such tools cannot exploit the ad-
vantages provided by model-based configuration approaches, which have been
recently proposed in the literature (e.g., [8] and [4]).

Model-based configuration means defining a representation (i.e., a data
model) for the configuration parameters of each VNF. The configuration, de-
fined through the above data model, is then automatically processed internally
by the system, hence generating the actual configuration parameters (e.g., IP

1 In this paper we use the terms VNF and network function interchangeably.
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addresses associated to all the interfaces of a router VNF), which are then
pushed into the VNF. An advantage of the separation of the actual VNF con-
figuration from its high-level representation is that it does not force DCPs to
use a single tool (e.g., Puppet) for configuring network functions. This makes
VNF insertion simpler, because programmers can integrate their VNF imple-
mentations in any CM that supports the same model-based approach.

Among the recent solutions that follow this trend, an informal working
group of network operators has proposed the use of vendor-neutral data mod-
els through the OpenConfig project [4]. OpenConfig aims at creating a set of
YANG-based models of network functions, leaving the choice of the strate-
gies for pushing the actual configuration, automatically derived from the data
model, to the operators such as the DCP. ForCES [8] is another example of
VNF-independent configuration approach, which relies on a unified model of
network abstractions and makes uses of a single protocol to control the VNF
lifecycle. In order to use this approach with already existing VNF's, either the
VNFs have to be updated with the addition of an implementation of the pro-
tocols specified by the above standard, or new adaptation components have
to be provided, in order to guarantee the seamless integration of the existing
VNFs in the new architecture.

In line with this recent trend, we propose a new architecture based on
vendor-neutral network function data models defined through VNF descrip-
tions that (i) facilitates the DCP in building a rich VNF catalog by adding
services that can offer a simple and uniform configuration plane to tenants,
(i) enables non-expert tenants to configure their network services through
that simple and coherent interface, and (4i) offers VNF developers an easy
way to integrate their services in the CM used by the DCP.

Relying on previous works [19] and inspired by advantages of the existing
agent /plug-in-based solutions that avoid changes in the VNF code, we design
an architecture that exploits additional translation modules. The distinctive
features of our additional modules are that they are VNF-agnostic (differently
from configuration plug-ins), while they are specific per-configuration strat-
egy. In this paper, we define configuration strategy as the combination of the
protocol used to send the configuration (e.g., SSH, NETCONF, SNMP, etc.)
and configuration method (e.g., command line interface (CLI), REST API,
file etc.) that has to be used to fully configure a VNF. In particular, the char-
acteristic to transparently support multiple configuration strategies is a clear
differentiation compared to existing solutions, which usually make use of a
single protocol or interface (e.g., Puppet).

In summary, this paper examines how DCPs can enhance their CM for
enabling the proposed configuration approach. In particular, this paper pro-
poses a solution that relies on new components and a different way to input
configuration data to perform all the necessary configuration tasks, and does
neither require additional per-VNF control modules (such as an additional
VM that provides the adaptation layer between the CM and the VNF, or an
additional module running natively in the CM), nor changes in the VNF code
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to integrate it in the CM, such as the the implementation of an additional
configuration strategy in the VNF itself.

The remainder of the paper is organized as follows: we start with the main
challenges addressed by the proposed solution during its design in Section 2
and present how this work is positioned with respect to the current literature
in Section 3; we also provide an overview of the proposed solution for config-
uring VNF's in Section 4; Section 5 presents a possible implementation of this
architecture, which was validated and tested through different use cases, as it
is presented in Section 6. This paper then concludes with some considerations
and possible future works in Section 7.

2 Objectives and challenges

This paper presents a flexible, scalable and VINF-agnostic solution to configure
VNFs based on (i) a VNF-independent formalism to describe the data model
of any VNF, (i) a set of VNF-dependent high-level data models (based on the
previous formalism) that describe the function itself, and (iii) a set of VNF-
independent components called translators and gateways that are in charge
of translating high-level configuration directives into the actual configuration
commands, which are VNF-specific. In our case, network functions (and their
models) can be provided dynamically to be deployed in tenant virtual networks
and CMs must guarantee their complete integration, even when these functions
are not known in advance to the CM (e.g., in case of third-parties VNF's). This
involves allowing the communication with other components (such as other
network functions) and configuring the functions themselves. In particular
the problem faced by this paper is that after creating the virtual network,
configuring the network paths (e.g., OpenFlow rules) and installing the chosen
VNFs, tenants have to configure them, in terms of functional and behavioral
information (e.g., black-listed domains for DNS filter).

The enhancements of CMs for enabling seamless configuration can bring
benefits to all the actors involved, which are the DCP, VNF Programmers and
Tenants.

From a DCP point of view, the use of a flexible and automated configu-
ration approach can facilitate the insertion of new VNFs into its catalog, as
the manual intervention of the DCP is no longer required each time a new
VNF has to be added, with well-known consequences in terms of provisioning
agility (minutes instead of weeks). This has a beneficial impact also on costs,
as the adoption of VNF-independent high-level formalisms for data models
reduces the difficulties in configuring different VNFs and favors the migration
to industry standards such as the one proposed by the OpenConfig [4] project,
based on the YANG language. Furthermore, a model-based approach enables
also DCPs to enforce additional controls such as integrity checks and verifica-
tion of the configuration correctness before actually deploying the requested
virtual network, as proposed in some recent works [20,21]. Another example
is the implementation of an automatic reconfiguration process, such as the
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realignment of configuration parameters across multiple VNFs (e.g., the IP
network assigned by the DHCP and the IP subnet used by the firewall to filter
incoming traffic), although this requires the development of new advanced au-
tomated tools that guarantee the correctness of the generated configuration.
A possible answer to the above problem can be found in [18], which focuses
on security applications and exploits refinement-based techniques to generate
and deploy the proper functional configurations in the controlled VNFs. The
resulting configurations are automatically derived from a set of high-level se-
curity statements, defined by the tenant itself, and are proved to be correct
thanks to the mathematical background those techniques are built upon.

From a VNF programmer perspective, instead, our solution would relieve
programmers from the burden of integrating their VNFs in every architec-
ture, for example, which may require the development of CM-specific plug-ins.
Hence a model-based approach can make VNFs immediately usable in any
present and future DCP architectures (i.e., CMs), without the necessity of
special integration efforts (e.g., reusing VNF models). In particular, our solu-
tion is designed so that VNF's can be integrated without supporting additional
protocols, but exploiting those configuration strategies the function natively
supports.

Finally, tenants can benefit from an enriched sets of functions, hence more
services. Moreover, they are allowed to build and operate virtual networks
without knowing the low-level configuration details (e.g., command line of a
router or configuration files for a DNS filter) because our solution hides such
technical details. In fact, DCPs could also provide a unified API (e.g., a dash-
board) in order to facilitate tenants to experience a uniform way to program
and configure the entire network infrastructure, including both topology in-
formation (e.g., links and VNFs) and the configuration required by the VNFs
themselves. For example, a tenant could be able to configure a router through
the same API that he used to deploy the function into the network.

While the advantages of having an architecture able to automatically con-
figure VNF's according to the model-based approach are clear, we can envision
two problems. First, the semantic of a configuration depends on the network
function itself, as the parameters used to configure a router are clearly differ-
ent from the ones needed by a firewall. This requires (i) VNF-specific data
models, although created with a language that is VNF-independent and hence
can support arbitrary functions, and (i) a set of components able to dynami-
cally understand such descriptions and apply them to the target VNF. Second,
network functions may require different strategies for being configured: some
support configuration methods like a web-based interface, a REST API, or
an SSH-based configuration; others can be configured via SNMP, and more.
This requires the translation of high-level configuration directives coming from
the tenant into the specific commands available in the chosen configuration
strategy (e.g., SNMP MIBs, configuration files) and the implementation of a
communication protocol in charge of transferring the above configuration to
the target VNF.
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Finally, the target architecture should avoid the insertion of any VNF-
specific configuration component inside the DCP’s network, such as dedicated
software modules that provide the interface between the uniform and user-
friendly configuration interface exposed to the tenants and the actual config-
uration strategy supported by the specific VNF. In addition, the VNF im-
ages should be kept unchanged independently of the CM under consideration
and the configuration strategies chosen by the DCP and/or supported by the
VNFs. Finally, in case a VNF supports multiple configuration strategies, the
architecture should be able to allow the DCP to choose the best one based on
a cost function and/or its management policies.

3 Related Work

In this section we investigate existing approaches for configuring (third-parties)
VNFs. Even though the research world has presented different works somehow
related to ours, most of the examined solutions focus on a subset of the problem
we face, for this reason we have grouped them in several categories.

Agent-Based Configuration Approach. Several tools have been proposed to
make the configuration and installation of additional software easy in a data
center. Puppet [5], Chef [6], Ansible [7] are examples of existing configuration
management systems, which aim at simplifying the task of managing large and
complex compute deployments and keeping the system up to date.

One advantage of this kind of solutions is that the responsibility of en-
abling the communication between the VNF and CM resides on the DCP side,
because such tools are based on a master-agent model (like Puppet), which
require the use of agents running in each node to configure and update the
network services installed on it. This means that VNF Programmers do not
have to implement additional software, apart from their functions, and also
DCPs avoid the installation of unknown software (i.e., VNF-specific plug-ins)
in their network. On the other side, such solutions generally present drawbacks
like steep learning curve, no abstraction of the network function configurations
and also difficulty in managing physical instances of network functions due to
the installation of non-native support agents (e.g., Puppet’s agent). Moreover,
most of them rely on a centralized management module, which has to collect
the configurations of all the functions and services installed in the network
and manage them, bearing all the well-known problems of a centralized solu-
tion. On the contrary, our solution was designed to be modular and logically
distributed.

Protocol-Based Configuration Approach. Among the investigated solutions for
configuring network functions, SNMP [14] and NETCONF [13] are two pro-
tocols that lay on data model languages. SNMP relies on SMIv2, while NET-
CONF on YANG, which has been indicated in [22] as a better data modelling
language compared to other languages (e.g., XML schemas). This is in line
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with our implementation choices, because we have exploited YANG for imple-
menting the network function data models.

From a DCP perspective, the use of a single configuration protocol, like
SNMP or NETCONF, may limit the VNF catalog: all the non-SNMP/NETCONF
functions cannot be integrated in the cloud manager in case these are the
only protocols supported by the DCP. The use of a more flexible architecture
that can enable more than one configuration strategy (e.g., NETCONF, RPC,
REST, etc.) can relive, on one side, the VNF programmers from integrating
the support of further protocols in their functions, and, on the other side, make
the DCP free to chose the best configuration strategies among the available
ones, based on, for example, security implications.

Model-based configuration approaches. A recent proposal in model-based con-
figuration is represented by the open-source OpenDayLight (ODL) [3] SDN
controller, which exploits a model-based service abstraction layer in order to
create programmable (and configurable) network services. In particular, ODL
enables the integration of third-parties VNFs thanks to the use of plug-ins in
charge of the communication between the VNF and ODL, and YANG-based
models that specify the data structures used and the messages supported by
the northbound interface of the VNF itself.

At the best of our knowledge, the difference between our proposal and the
approach taken by ODL does not consist in the model-driven abstraction, be-
cause both solutions encourage the use of models to represent data structures
and primitives to generate the VNF configuration and push it down to the
function itself. Instead, our solution has a different architectural design: while
the SDN controller needs VNF-specific plug-ins that are developed by the
VNF programmers and that have to implement an RPC API as northbound
interface (i.e., toward the SDN controller), we envision the use of configura-
tion modules that are VNF-agnostic and that can communicate with the VNF
through any protocol or API (i.e., configuration strategy) supported by the
DCP.

The ForCES framework [12], defined by the IETF Forwarding and Control
Element Separation working group, is another example of model-based con-
figuration approach and it addresses the creation, configuration, and resource
assignment of VNFs, exploiting an object-oriented model. In this context,
[8] argues for the need of a unifying common network abstraction model for
both forwarding aspects and network functions. This model is processed by a
Network Function Manager in charge of accessing to each device through ap-
propriate APIs and managing their life cycle. The authors have also provided
a proof-of-concept of the ForCES applicability in an NFV architecture [9].

However, instead of exploiting existing configuration strategies already sup-
ported by a network function, as it is envisioned by our work, their solution
uses an additional protocol (namely ForCES) for configuration and manage-
ment purposes. Moreover, the ForCES framework was designed for configuring
network datapaths by means of an XML schema: our solution, on the contrary,
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aims at defining function models for configuration purposes, without consid-
ering network connections and resources and use YANG as data modelling
language, instead of XML schemas, for the aforementioned reasons.

OpenConfig [4] is an Industry-based working group that proposes another
model-based approach for configuration and management and is currently
building a public database of vendor-neutral data models of network functions,
created using the YANG language. The development of these vendor-neutral
data models can facilitate VNF integration, because, it focuses on making
function model natively supported on networking hardware and software plat-
forms reusable for any DCP network. The main goal of the OpenConfig project
is concentrated on the modeling phase, leaving DCPs free to implement any
strategy for pushing configurations into network functions. Our main objective
is instead to define all the features required by a cloud manager to handle all
the steps needed for a complete configuration process.

Other Approaches. Finally, it is worth summarizing how some of the most re-
cent orchestration architectures proposed in the literature refer to the VNF
configuration problem, starting with the well-known ETSI-driven NFV archi-
tecture [1]. Even though the ETSI NFV project has considered the problem of
configuring VNF's and has proposed the Management and Orchestrator com-
ponent (MANO) to take care of management and configuration tasks in the
NFV architecture, only few works (e.g., [18]) are currently available that in-
vestigate this issue.

An example of MANO solution is vConductor, presented by Shen et al. [16],
which enables users to define their virtual networks. The authors have designed
their solution to exploit OpenStack [2] network and compute resource provi-
sioning frameworks, providing a proof of concept. In particular their prototype
exploits a data model for service, computing and networking aspects, neglect-
ing configuration parameters and data as we, instead, envision.

Another important architecture has been developed within the FP7 project
UNIFY [15], which aims at orchestrating any VNFs available in the whole net-
work of the telecom operator, which addresses the configuration problem by
defining a dedicated module as responsible of this task. A proof of concept pro-
totype of this architecture is available through the ESCAPE framework [17],
which deploys virtual networks by processing a data model, named Network
Function-Forwarding Graph (NF-FG). However, the problem of the configu-
ration has not been properly investigated, as the NF-FG model includes only
basic parameters such as IP addresses and cannot be seen as an acceptable
answer to the very general problem of VNF (and service) configuration.

4 Architecture

This section presents first the high-level overview of the whole architecture,
then it will show a more detailed view of the components in charge of con-
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Fig. 1: Interaction between different actors.

figuring VNFs and the inputs they require for their tasks, and the respective
actors that are in charge of that data.

4.1 Architecture overview

In order to perform a complete service deployment, including the configuration
of the VNF, the CM needs both the VNF image and its data model, which is
collected in a VNF description and must be provided by the VNF program-
mer. The DCP has to store both the VNF image and description in the proper
modules of its CM, in order to have them available when the tenant issues a
service request (Figure 1). At this point, the tenant can configure its VNF's
through a VNF-agnostic interface provided by the CM (e.g., REST API, dash-
board, etc.). Finally, the configuration module will automatically generate and
push the actual configuration in the VNFs, making the requested service fully
operative.

In this process it is important that the VNF description is defined in a
unified format in order to help mainly programmers and DCPs. The VNF
programmer can define the main functional information (e.g., firewall policy)
and the configuration protocols and methods (i.e., configuration strategies) for
pushing them into the VNF in a way that is recognized by any DCP, which,
in turn, are able to add to their catalog and use any VNF that adheres to the
unified description format. In order for this to be possible, DCPs must be able
to configure any VNF regardless of their intrinsic details.
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Tenant
—

Tenant *  Configuration strategy: 1
—_ Cloud Manager «  VNF catalog: many VNFs
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* Configuration strategy: 1
*  VNF catalog: limited
«  Agent: per-function/node

Plug-in

Plug-in

- Cloud Manager
— « Configuration strategy: many
-i!q m M « VNF catalog: many
« Translator: per-strategy

Fig. 2: Possible configuration-oriented CM architectures.

In order to enable this kind of configuration service, many features are
needed in a CM, in particular the integration of modules that perform the
configuration and the modification of the exposed interface to receive the VNF
configuration parameters.

A possible configuration-oriented architecture of a CM is shown in Figure 2
(case A): a master component is in charge of generating the VNF configura-
tions, while the agents are software modules installed in the network where
the VNFs are deployed, that monitor if the VNFs need some configuration
updates and, in case alert the master.

This is the approach adopted by solutions like Chef, Puppets, etc., where
the master/agent communication is based on HTTP API. This type of solution
avoids the necessity to develop additional code (i.e., adaptation of the VNF's to
the configuration protocol chosen by the DCP, or the implementation of VNF-
specific plug-ins), hence facilitating the operations of the VNF programmer.
However, this architecture presents some limitations (i) with respect to the
VNF catalog, because functions that cannot be configured through the agent
cannot be integrated in the system (or further effort must be spent for their
integration), and (4i) it requires the presence of an agent that runs aside each
VNFs.

Another possible architecture is depicted in case B (Figure 2), where the
configuration engine is not centralized inside the CM, but it is moved to VNF-
specific plug-ins. This is the approach currently adopted by OpenDayLight,
which requires a control plug-in developed by the VNF programmer to enable
the communication between VNF and cloud manager by means of, for example,
an RPC API From a DCP point of view, this solution leads to: (i) decreased
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VNF integration cost than case A; (i) a richer set of offered virtual services
thanks to the simplicity in integrating new VNFs; (i) the necessity to execute
control modules that are developed by third-parties, which might introduce
additional security issues.

Our solution is represented by the architecture shown in case C' (Figure 2),
which translates the high-level configuration parameters in the actual VNF
configuration commands and pushes them into the function. This solution
(i) avoids any change in the VNF source code and/or the implementation of
additional configuration plug-ins, (ii) avoids the installation of control agents
in the network in order to better scale with the number of deployed VNF's
and, finally, (44) supports multiple configuration strategies (e.g., CLI, REST,
etc.).

In particular, our approach is based on the splitting the configuration en-
gine in two orthogonal (and sequential) tasks, which consists in the translation
of high-level configuration parameters into a particular format required by a
VNF and their delivery to the function. Thus, a translator takes care of the
first task and a gateway will take care of the latter, transferring and installing
the VNF configuration by using one of the configuration strategies already
supported by the function itself.

This logically distributed architecture allows providers to optimize the con-
figuration task by instantiating a variable number of translators and gateways,
possibly only upon request, based on the current load of the system and the
number of VNFs that have to be configured in order to implement the overall
service request.

The use of translators and gateways allows the system to increase the
number of supported configuration strategies (hence, VNFs that require un-
conventional configuration methods and protocols) without impacting on the
existing ones, which continue to operate as usual. Moreover, these modules
exploit the data model descriptions of the VNFs for which the configuration
has to be created, enabling DCPs to support an unlimited number of network
functions. Also the separation of translating VNF configuration from the task
of delivering it to the VNF allows to split the inputs needed by the new com-
ponents. In particular, translators and gateways will use different parts of the
VNF description, which are: VNF object model, translation rules and access
parameters. The next sections will describe in detail these inputs and how they
are exploited by the new components.

4.2 Configuration translators

Since each configuration strategy has its own peculiarities (e.g., for a CLI-based
configuration, it is necessary to know the commands for enabling administra-
tive authorization), the architecture includes a configuration translator for
each configuration strategy the DCP wants to support (Figure 3). A transla-
tor hence must be aware of all the particular techniques and quirks needed for
the strategy it is in charge of.
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The use of separated translators makes also the system more extensible
and manageable, as it allows an easier insertion, replacement and removal of
supported configuration strategies: when the DCP wants to support a new
strategy, he has just to make a new translator available (and, in turn, a new
gateway). Furthermore, the system becomes scalable with respect to the num-
ber of VNFs running in the system: one translator (and gateway) enables the
integration of a number of network functions that support that strategy. The
larger the number of VNF's, the larger the number of translators and gateways
that are instantiated. This solution contrasts with the limited scalability of
agent-based architectures where a single agent may become a bottleneck.

Translator inputs. In order to perform its job, a translator needs the VNF
Object Model (OM), which is the VNF-specific model that we exploit to repre-
sent the function data inside the system (point 1 in Figure 3). In particular a
VNF object model represents a description of the data-structure instantiated
for storing the configuration parameters of a VNF. This means that each VNF
must be associated with its object model in order to be correctly integrated
into the system. Note that more than one OM may be necessary for the same
type of VNF. For example, a firewall from a first manufacturer can support
features that are different from the ones supported by a firewall of another
manufacturer, requiring further configuration parameters for such additional
features and hence a different object model.

Moreover since the object model is only the specification of the data struc-
ture used to store configuration parameters, an instance of the OM for each
deployed VNF is stored inside the CM, namely the VNF Object Model in-
stance (OM instance). For instance, we can consider the VNF OM as a class
declaration in an object-oriented programming language, while the VNF OM
instance can be seen as a particular instance of that class. In particular, when
the CM receives the request to deploy a new set of services (point 2), for each
VNF that is being instantiated a specific OM instance is created (point 3).
Referring to the previous example, if the tenant has required two VNFs of the
same firewall, two OM instances are created from the object model of that
particular firewall, one for each firewall VNF deployed in the network. Each
OM instance will contain the set of policy rules configured for its associated
firewall.

Among the other aforementioned advantages, the use of data models makes
any changes in DCP-provided API easier and transparent for the internal
processes of the system. This avoids also the use of data-structure formats for
collecting VNF configurations that would be translator-specific.

Another input coming from the CM is a set of translation rules (point 4),
i.e. directives used to drive the translator in generating the configuration of
the VNF in the right format. They express the way to translate the structure
and content of the OM instance into the specific structure/format required by
the VNF. Referring to the previous example of the firewall, translation rules
specify the format of policy rules according to the specific firewall in use.
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Fig. 3: Overview of a CM architecture for configuring VNFs.

The particular format used to configure a VNF depends also on the con-
figuration strategy supported by the function itself (e.g., CLI, REST API, file
etc.). For instance, a configuration through REST interface has certainly a
different format from one used for CLI-based configuration.

To better clarify the idea under the translation rules, let us consider the
previous example of the firewall and suppose that a policy rule can be set
through a command line like “add rule -source 130.192.31.24 -destination
8.8.8.8 -action ACCEPT”: an example of translation rule may be like “add
rule -source IP_.VALUE -destination IP_.VALUFE -action ACTION_VALUE”,
where the actual configuration parameters values (i.e., IP address and action)
are stored in the OM instance of that firewall. Further details about the format
of the translation rules in our solution are presented later.

As well as the object model, translation rules are both configuration strategy-
and VNF-specific, since each network function has its own primitives to be used
in the configuration phase. Hence both the VNF object model and translation
rules can be provided by the programmer through the VNF description.

With respect to which inputs the configuration translators need, the new
modules have been designed to receive: (i) configuration parameters saved into
the OM instance of the VNF (point 5 in Figure 3); () translation rules for
deploying such parameters into the VNF in the right format (point 6).

It is interesting to note that an OM instance is self-descriptive and hence
translators can discover the structure of an OM from any instance of that
model.
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4.3 Configuration gateways

The proposed architecture includes also a configuration gateway for each trans-
lator and, in turn, for each strategy supported (Figure 3). Gateways are in
charge of delivering the actual VNF configuration into the function by means
of the configuration strategy for which it is authorized. In order to achieve
this goal, a gateway needs surely the result of the configuration translation
process, which represents the final configuration of the function (point 8 in
Figure 3). However a configuration gateway requires another input to perform
its goal, namely the access parameters.

Gateway input. The access parameters (point 7 in Figure 3) are used to in-
struct the system on how to contact the VNF and update its configuration,
in order to complete the configuration of the VNF itself. Examples of access
parameters are IP addresses, port numbers, administrative credentials, com-
mands for entering in configuration mode and everything that describes how
to add the policy rules inside the firewall we have considered before.

In our vision access parameters should be standardized for each configura-
tion strategy, because each strategy needs different information: for example,
in a configuration though files, CMs must know the path where configuration
files are stored. DCPs and programmers can then set the actual values of those
parameters: DCPs would establish the management information internal to
his architecture (e.g., IP addresses of control interfaces), while programmers
would set parameters related to the internal mechanism of the VNF (e.g.,
root credentials). This implies that access parameters are strategy-specific,
but some of them are also VNF-independent. This is the reason why we do
not include such parameters into VNF descriptions. Further details on how
access parameters are stored in a real implementation of the architecture are
provided later.

5 Proof-of concept implementation

This section describes a proof-of-concept implementation of the proposed ar-
chitecture. We start by presenting some details that have not been included
in the previous description in order to keep the architecture description more
generic (i.e., inputs format and languages). We then continue with a descrip-
tion of our prototype.

5.1 Object Model

The VNF Object Model is based on the YANG data modeling language [10],
developed by IETF and extended for our purposes. YANG has been designed to
model configuration data and state, which can be manipulated through a pro-
tocol such as NETCONF. YANG was chosen because of it is protocol-agnostic,
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implementation-independent and human-readable. YANG is also easy to ex-
tend with new directives without impacting the compatibility with previous
implementations. Furthermore it is oriented to network configuration tasks,
hence it provides an excellent foundation for our problem as well.

This language offers also a wide set of directives to validate its statements.
Examples are type checking, default values, mandatory/optional statements
and their cardinality, value ranges checking, and other. While other simple val-
idations are possible through the definition of new YANG types, more complex
validations (e.g., dependency checking between statements) would require new
extensions. The support for validating primitives could allow VNF program-
mers to include directives that can be checked against configuration param-
eters provided by the tenant. However in this paper we are interested in the
configuration process and prefer to leave the checking and verification of con-
figuration correctness as future work. Hence, in our implementation YANG
has been exploited to define the VNF object model, which includes the most
significant data structures that are required to properly configure the function.

While the YANG language provides the set of advantages listed before,
our architecture can be implemented with any other language that present
similar characteristics; a possible alternative to YANG is represented by the
XML Schema. In this respect, XML Schema is more mature and already well
standardized, but it is more verbose, as shown by comparing the same data
structure defined in XML Schema (Listing 7 in Appendix A), where we have
defined the same data structure shown in Figure 1. In addition, YANG is
being adopted by different projects in the field of network management such
as OpenConfig, and new software artifacts such as the OpenDaylight SDN
controller, hence it should be more familiar at lest to the network managers.

An example of a possible YANG Object Model (i.e., VNF description)
is shown in Listing 1, where we define a structure to describe the state of
the Ethernet interfaces of a router. The idea is to have a data structure to
enumerate all the interfaces of a router (the top-level interfaces list) and,
for each of them, store all their network and physical addresses? (respectively
the leafs address and hwid in the nested ethernet list).

In our solution, the YANG VNF description file includes also translation
rules (presented in the next section), which are VNF-specific.

5.2 Translation rules

As shown in Listing 1, translation rules take the form of special comments in
the YANG-based VNF description, using the following structure:

//ConfigTransl:<Transl_N>:<Rule_N> <Rule_V>

2 Usually a network interface is assigned only one network and physical address, but this
is not true in the general case.
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module router {

import ietf-inet-types { prefix inet; }
import ietf-yang-types { prefix yang; }

list interfaces {

//ConfigTransl:file:header "//Start Interface List\n";}
//ConfigTransl:file:list_format "},NAME {\n";
//ConfigTransl:file:separators "\n}\n";
//ConfigTransl:file:footer "}\n//End Interface List";

key name;
leaf name {
type string; }

list ethernet {

//ConfigTransl:file:list_format "Y%NAME %VALUE {\n";
//ConfigTransl:file:separators "\n";
//ConfigTransl:file:footer "}\n";

key name;
leaf name {
type string; }

leaf address {
//ConfigTransl:file:leaf_format "),NAME %VALUE\n";
type inet:ipv4-address; 1}

leaf hwid {
//ConfigTransl:file:leaf_format "hw-id %VALUE\n";
type yang:mac-address;}

}

}

Listing 1: YANG language example: an excerpt of a router VNF descrip-
tion.

where <Transl N> specifies which configuration translator (and, in turn,
configuration strategy) the rule belongs to and can assume values like “file”,
“cli”, “rest”, etc.. Instead, <Rule N> and <Rule V> represent the rule
name and value, interpreted as strings. This structure allows to group all the
rules for a given translator under a specific prefix, in a way that is similar to the
concept of the namespace. This permits the presence of multiple translation
rules in the same YANG file, which can be useful when the VNF can support
different configuration strategies.
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The example presented in Listing 1, which assumes that the router is con-
figured through a file-based translator, shows some translation rules that create
the properly formatted output, which are: (i) header and footer are inserted
respectively before and after the current YANG element (e.g., 1ist or leaf)
when generating the final configuration; (ii) separators is used to divide child
nodes of the current statement; (%ii) list_format and leaf format work like
a printf of the C language, in which %NAME and %VALUE are expanded with
values depending on the context. In particular, %NAME and %VALUE represent
respectively the name of their YANG statement (e.g., “ethernet” for the list
ethernet and “address” for the leaf address) and its actual value (in the
case of a list, it will be the value of its key).

Although other configuration strategies may need additional (or different)
information such as the exact ordering sequence of the commands to be is-
sued in a CLI-based configuration, this does not represent a problem, as new
translation rules can be defined with the format needed by the specific trans-
lator. Furthermore, we could leverage hierarchical data structures, which are
natively offered by YANG. For instance, the current implementation serializes
the YANG Object Model of a VNF, hence assigning a lower priority to the
nested elements than their root statement.

None of the keywords is mandatory: an extreme case, thus, is a YANG
statement that does not have any translation rule. In this case that node will
not appear in the configuration output.

5.3 Access parameters

In general, access parameter are VNF-independent, but depend on the specific
configuration strategy chosen by the VNF (e.g., a network-based configuration
requires the TCP port to connect to, while a file-based configuration requires
to know where that file is located). Hence the DCP has to define the proper
set of access parameters for each supported configuration strategy. This is the
reason why in our solution the above parameters are not included in the VNF
description, but they are stored in another object that is used only by the
CM and may not be fully exported to the tenant. In order to simplify the
deployment, also access parameters are described using the YANG language.

Moreover, a new OM instance for the access parameters is automatically
created when a VNF is deployed and associated to the function, because this
instance must store the actual values of access parameters for loading a new
configuration into that VINF. The access parameter OM instance is also asso-
ciated to its function thanks to the name field (Listing 2), which contains the
VNF identifier inside the system.

An example of OM of access parameters for file-based configuration is
shown in Listing 2. Here VNF programmers, even tenants, must be able to set
the access parameters related to the VNF only. In other words, they must not
have the privileges for setting parameters like IP addresses of management
interfaces and others. An example of possible OM instance associated with
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module ConfigTransl2File {
list access_param {

key name;
leaf name { type string; }
leaf ip_address { type string; }
leaf port { type string; }
leaf user_name{ type string; }
leaf user_key { type string; }
leaf commands { type string; }
leaf file_name { type string; }
leaf file_path { type string; 2}

Listing 2: Excerpt of access parameter object model.

the aforementioned model and related to a router VNF is shown in Listing 3,
written in a JSON-like format.

The choice of the YANG language for describing the access parameters
was taken also because most of the parameters we need to describe are simple
(like IPv4/IPv6 address, configuration file name and path, etc.) and natively
supported by YANG. In any case, if needed, we can leverage the additional
YANG types defined by IETF in [11].

Finally to recap the configuration process, Figure 4 shows a detailed view
of the whole architecture including all the inputs. The VNF programmer has
provided both the VNF image (point 0) to launch the function instance, and
the other inputs required by the system. In particular, the VNF object model
(point 1) allows to build automatically the CM interface (dotted line) and OM
instance associated to that function (dashed line). Translation rules are instead
sent to the translators (point 2), while access parameters (point 3) are stored
into a gateway-specific OM instance (its structure is defined by the DCP,

{ "access_param": {
"name": "Router_94",
"ip_address": "130.192.31.94",
llport": "2001" .
"user_name": "router_admin",
"user_key": "admin",
"commands": "load /configuration/config.boot",
"file_name": "config.boot",
"file_path": "/configuration"

}
}

Listing 3: Possible content of an access parameter OM instance.
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Fig. 4: Detailed overview of the enhancements in CM architecture.

as mentioned before). The OM instance associated to the access parameters
is automatically created when a new VNF is deployed: this instance is then
associated to the VNF and used by the gateway later on.

Through the CM interface (e.g., the DCP web dashboard in Figure 4),
tenants can set the VNF configuration parameters (point 4 ), which are stored
into the OM instance of the function (point 5). After that, this instance (point
6) is passed to the translator selected based on the preferred configuration
strategy (i.e., CLI-based translator in the example). The combination of this
input and the translation rules is used to generate the actual VNF configu-
ration (point 7). Finally, the configuration gateway can retrieve both access
parameters (point 9) and the produced configuration (i.e., translator output -
point 8) to complete the VNF configuration process (point 10).

5.4 ConfigTransl2File Prototype

Having defined the language and formats of the additional inputs required
by the new components, we have also implemented a prototype for validating
and testing the effectiveness of our solution. In our prototype, a C++ library,
namely ConfigTranslLib, has been designed to support several configura-
tion strategies. We have implemented a translator/gateway prototype, namely
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ConfigTransl2File, to configure VNF's by means of files, regardless of their
format (e.g., XML, text or more).

This translator receives inputs through a REST interface exposed by the
CM, which are: (i) YANG OM instances of VNFs, where the translator can
retrieve the configuration parameters chosen by tenant and the configuration
file structure required by the function; (i) translation rules, which have been
stored in the VNF OM instance as well as the configuration parameters.

For the sake of simplicity, in our implementation the whole set of access
parameters is configurable through the REST API. However, in a real vendor’s
implementation, just a subset of those parameters must be exposed and made
public to tenants and programmers. The access parameters are then stored
into another OM instance, specific for the ConfigTrans12File translator.

Finally it is worth noting that our solution is able to support VNF's that
could require multiple configuration files. The ConfigTrans12File library can
be instructed to write different portions of the same YANG OM into different
configuration files, so that VNF's that require it can dump different parts of
their data into different locations. This can be done because of the object
model abstraction: the root element of a YANG module, for example a YANG
list, has no difference from a nested YANG statement (e.g., container, leaf-list,
list) under it, then these two elements of an object model can be the entry
points associated to different configuration files of the same function.

6 Validation and testing

We validated our architecture by implementing the components required to
configure two VNFs, Bind9 and Vyatta Core, respectively a DNS server and a
software router, which represent two well-known, albeit very different, network
functions. We decided to benchmark the performance of our prototype using
one VNF at a time, omitting the case in which multiple VNFs are deployed
(hence, need to be configured) at the same time. In fact, our current proof-
of-concept prototype handles the two VNFs sequentially, hence requiring a
total time for the configuration that is the sum of the individual components.
However, it is trivial to implement the architecture with multiple gateways
and translators, all running in parallel, hence achieving a configuration time
that is independent from the number of VNFs that have to be configured.
Starting with the validation phase, in particular concerning the DNS server,
we have defined the YANG-based description for Bind9. An excerpt is shown in
Listing 4, while Listing 5 is the corresponding part of the Bind9 configuration
file, generated by our prototype. As shown in Listing 5, we have configured
Bind9 to act as Secondary Master (i.e., it gets the zone data from the Primary
Master for that zone). Our validation methodology consists in sending config-
uration requests to our CM through its REST interface that aim at setting
the Bind9 configuration parameters; the call triggers the ConfigTrans12File
translator, which generates the above-mentioned configuration file. Another
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REST call is then issued to initialize the Bind9 access parameters, which are
stored in the proper OM instance.

Having all of the required inputs, the system is able to push the final
configuration file into the VNF and restart it. The successful deployment of
the configuration is validated by interrogating the Bind9 instance and checking
that the returned answer are coherent with the desired configuration.

A similar validation has been performed also for the second VNF, which
involves the Vyatta Core router. An excerpt of its YANG description file is
shown in Listing 1. In this case we have checked that the Vyatta instance
is actually configured with the desired data by checking the reachability of
the TP addresses on the interfaces and its static routes. Listing 6 shows an
excerpt of the Vyatta configuration file that was correctly generated by the
ConfigTransl2File prototype from the description shown in Listing 1.

6.1 Testing results

Two metrics have been considered for evaluating the effectiveness of the pro-
posed solution, which are (7) the elapsed time for generating configuration files
and (#2) the reduction of complexity from a tenant prospective, which can be

module bind9 {
list zome {

//ConfigTransl:file:list_format ") NAME \"},VALUE\" {\n";
//ConfigTransl:file:separators ";\n";
//ConfigTransl:file:footer "};\n ";

key name;
leaf name {
type string; 1}

leaf type {
//ConfigTransl:file:leaf_format ") NAME }VALUE\n";
type string; }

leaf file {
//ConfigTransl:file:leaf_format ") NAME \" %VALUE\"\n";
type string; }

leaf master {

//ConfigTransl:file:leaf_format "JNAME { %VALUE; };\n";
type string; 1}

Listing 4: An excerpt of the Bind9 YANG description file.
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zone ‘‘example.com” {
type slave;
file ‘‘db.example.com”;
masters { 192.168.1.10; };

}
Listing 5: Excerpt of the generated Bind9 configuration file.

translated in the size (i.e., verbosity) of the generated file compared to the
corresponding YANG source.

Starting with the first metric, Figure 5 plots the required time for gen-
erating the configuration file versus the size of such file. We have performed
multiple test runs (i.e., about 100 executions per file dimension) for both Vy-
atta Core (square points in figure) and Bind9 (circle points).

As show in the graphs, we have obtained satisfactory trends, because, as
we expect, the time required by ConfigTransl2File grows proportionally to the
size of the configuration file. This means that our solution is able to handle
configurations with a growing complexity, without requiring an exponential
time increase. This is in line with the constraints of assuring a good experience
to tenants.

In addition, our tests demonstrate that, for real case scenarios, the time
required to obtain the configuration file is on the order of tens of millisec-
onds. This result is also in line with the configuration times that are achieved
with other agent-based solutions. In particular, we have identified Ansible [7],
as one possible solution used to compare our approach. Ansible is based on
agents that exploit the SSH protocol for their interaction with the VNF, which
is usually supported by most VNFs. Furthermore, similarly to our approach,

//Start Interface List

interfaces {
ethernet eth0 {
address 130.192.31.94
duplex auto
hw—id 00:0¢:29:64:66:1c
mtu 1500
smp_affinity auto
speed auto
}

}

/'/End Interface List
Listing 6: Excerpt of the Vyatta configuration file.
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it avoids the installation of new agents in the VNF, hence preserving the orig-
inal network function image. Compared to the configuration time needed by
Ansible to push a configuration in both Bind9 and Vyatta, our solution per-
forms slightly slower, but it never exceeds 40% the value obtained by Ansible,
which is completely acceptable for humans who hardly notice this difference.
Furthermore this result has been obtained with proof-of-concept code, which
can be optimized in the future.

The two graphs, shown in Figure 5, report the 95% confidential interval
and show that our solution takes less than 30ms in average in both use cases.
The configuration time achieved by our prototype has a negligible impact on
the total deployment time, which is usually on the order of tens of seconds
when virtual machines have to be started. Hence, these results demonstrate
that the introduction of our solution in the CM does not increase the service
provisioning time experienced by tenants.

The second test suite aims at evaluating the reduction of complexity in con-
figuring networks from a tenant prospective, achieved thanks to our prototype.
In particular our solution allow the creation of YANG files in which only the
main configuration parameters are exported, such as policy rules in a firewall
VNF, avoiding all the details required by the specific configuration method
and the possible syntactical rules (and keywords) required by the VNF native
configuration method (e.g., firewall rule format, priority commands, special
directives etc.).

As a metric to measure the complexity of the configuration, we used the
size (in bytes) of the configuration files generated by our tool (dark grey bars
in Figures 6 and 7), which represent the complexity of the native configuration
method of the VNF. The above value has been compared with the size of the
configuration messages that have been generated to push the configuration
in the CM through our configuration REST APIs, which can be seen as the

30 T T

—— Vyatta Core
—e—  Bind9

(m)seconds

(k)bytes

Fig. 5: Elapsed time for generating Vyatta Core and Bind9 configuration files,
with 95% confidential intervals.
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Fig. 7: Vyatta use case: reduction of configuration complexity.

size of the same configuration with our approach (light grey bars in Figures 6
and 7). In particular, Figure 6 shows the results achieved in the Bind9 case,
while Figure 7 depicts the case of the Vyatta Core router.

In the Bind9 case, the reduction of complexity, that is the difference be-
tween the size of the configuration file and REST messages, grows linearly,
suggesting that tenants are facilitated in configuration phase. In the Vyatta
case, the size of the configuration file is approximately equal to the REST mes-
sage size, hence suggesting a similar complexity. However, it is worth noting
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that, with our approach, tenants are relieved from the burden of having a deep
knowledge of how to configure their VNFs, since they must interact only with
the CM, using a uniform configuration model across all VNFs. In addition,
this result must not be attributed to a possible inefficiency of our solution as
it is due to the differences existing between the two VNF's: each VNF imple-
mentation has its own configuration peculiarities and one function can be sim-
pler than other in configuration phase. This result highlights the importance
of supporting multiple configuration strategies and, in turn, multiple trans-
lators/gateways. For example, a configuration through the CLI may reduce
significantly the configuration complexity of the Vyatta case, which means
that the difference between the REST message payloads and the produced
configuration is more evident than the configuration through file. Supporting
many translators, the DCP may select the most suitable one for configuring a
specific VNF instance, based on their internal management policies and costs.

Concluding, our solution reduces the effort spent by tenants in configuring
their virtual services, with a negligible impact in terms of configuration time
and, likely, with a simplified configuration interface.

7 Conclusion

This paper proposes a solution for one of the weaknesses of the current cloud
managers used by Data Center Providers: the possibility to configure the net-
work functions using a simple and uniform configuration method, without at
the same time forcing the DCP to deploy additional per-VNF software modules
or the VNF programmer to adapt its code to the configuration tools chosen
by the DCP.

This paper presents a model-based approach to solve the above problem,
which enables to configure VNFs in terms of functional parameters (e.g., IP
address for a router and policy rules for a firewall), bringing multiple advan-
tages for all the actors involved (i.e., DCP, VNF programmer and tenant).
The cost and complexity reduction of integrating further VNFs is an example
of a possible advantage for the DCP and the VNF programmer.

The proposed enhancements consist in adding new VNF-agnostic compo-
nents in charge of configuring VNFs, with the associated inputs (and for-
mats). In particular, configuration translators and gateways are designed such
that: (i) CMs can support arbitrary VNFs without the use of specific control
plug-ins or agents; and (i) VNF programmers can integrate any of their func-
tions without supporting a CM-specific configuration strategy or developing
further implementation of their functions per DCP.

The proposed solution was validated and tested through two use cases
of VNFs: a software router (Vyatta Core) and a DNS server (Bind9). The
achieved results prove that our solution does not impact the service-provisioning
time and simplifies the tenants interaction with the CM, because tenants are
relieved from the burden of having a deep knowledge of how to configure each
of their functions.
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Possible future extensions could include further services provided by DCPs

for verifying the correctness of the configuration generated and validating the
correct integration of the desired configuration in the CM.
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Appendix 1: XML Schema as Object Model language

<schema>
<element name="router">
<complexType>
<sequence>
<element name="interfaces"
minOccurs="1" maxOccurs="unbounded">
<attribute name="name" type="string"/>
<complexType>
<sequence>
<element name="ethernet"
minOccurs="1" maxOccurs="unbounded">
<complexType>
<attribute name="name" type="string"/>
<attribute name="address" type="tns:ipv4"/>
<attribute name="hwid" type="tns:eth"/>
</complexType >
</element >
</sequence>
</complexType >
<key name="nameEthernetKey">
<selector xpath="ethernet"/>
<field xpath="name"/>
</key>
</element >
</sequence>
</complexType >
<key name="nameInterfaceKey">
<selector xpath="interfaces"/>
<field xpath="name"/>
</key>
</element >
</schema>

Listing 7: A possible Object Model description in XML Schema, equiva-
lent to the one written in YANG and shown in Listing 1.




