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Abstract. De Biagi et al. (2017) have proposed a procedure
for building a fallen block volume-frequency law for rock-
fall phenomenon. The input data are from both the recording
of rockfall events and from the survey of fallen block vol-
umes. The epistemic and aleatoric uncertainties present in
the approach affect the value of the parameters of the law. It
is shown how to quantify the errors due to missed events, to
an observation period of finite duration and to a limited set
of measured blocks. At the end, the procedure outputs cor-
rective parameters to compute a design volume for rockfall
analysis and engineering calculations.

1 Introduction

In a recent paper, De Biagi et al. (2017) proposed a novel
approach for defining a block volume-frequency law to be
used in rockfall hazard quantification and in the design of
rockfall protection structures. Given a representative area
where the rockfall phenomenon occurs, the method con-
siders the temporal occurrences of the falling block events
separately from the deposit volumes distribution. The input
data for implementing the procedure are taken from observa-
tions and measurements. The present paper deals with the ef-
fects of epistemic uncertainties on the value of volumes pre-
dicted through the frequency law described in De Biagi et al.
(2017). As summarized by Straub and Schubert (2008), the
epistemic uncertainties are related to our incomplete knowl-
edge of the process, often because of limited data. Referring
to the aforementioned law, the uncertainty derives from a
limited number of recorded events and surveyed blocks. In
the following, the main steps required for deriving the block
volume-frequency law are proposed.

1. Surveying: a catalogue of rockfall events, C°, is drawn

up, i.e. a catalogue containing the size of the falling
blocks, the corresponding temporal information (date)
and a list of fallen block measured volumes, F°, that
may have fallen down at any time. Both C° and F° must
relate to the same representative area, i.e. the portion of
deposit beyond a defined line, say the foot of the slope,
where the hazard is computed.

. Threshold volume and reduced data sets: the catalogue

of the events C° contains all the recorded events gath-
ered in a time window of temporal length, #°. Since
there is the possibility that small events have not always
been recorded, a threshold volume V; is established, de-
fined as the minimum size of a fallen block that has al-
ways been observed and recorded (after its occurrence).
Entries related to volumes smaller than V; are removed
from C° and F°. These new data sets are denoted by
reduced catalogue, C, and reduced list, F, and have a
number of entries equal to n and N, respectively. The
temporal length ¢° is increased to consider that the ob-
servations began with the occurrence of an event, i.e.
t=10+ 4.

. Choosing the probabilistic models: two probabilistic

models are chosen. One should be able to describe the
temporal occurrences of the events of the reduced cat-
alogue, the other the distribution of the surveyed vol-
umes. Under the hypothesis of the Poisson point pro-
cess, a Poisson distribution, characterized by the param-
eter A > 0, is considered for the occurrence of falling
block events. A Pareto distribution is adopted for the lat-
ter, as stated by the power laws found in the literature.
In De Biagi et al. (2017), a generalized Pareto distri-
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bution (GPD), which can be ascribed to a Pareto type II
distribution, is adopted for describing the distribution of
the surveyed volumes. The two probabilistic models are
merged together. That is, the following equality holds:

1 —
— =F(v), 1
T (v) (1)
where T is the return period, v is a given volume, and
F 1is the survival function of the Pareto distribution. The
survival function is the complementary cumulative dis-
tribution function: Fy (v) =1 — Fy (v).

4. Evaluation of the parameters of the distribution: the es-
timate of the parameters can be obtained through max-
imum likelihood methods from the reduced data sets.
Referring to the occurrences process, the ratio A=n /t,
i.e. the annual frequency of events larger than Vi, is an
unbiased estimate of Poisson’s occurrence parameter.
Referring to the distribution of the volumes, details are
provided in Sect. 2.

2 Pareto type I distribution

To deal with a reduced number of parameters, a Pareto type 1
(Pareto I) distribution is adopted for describing the distribu-
tion of the surveyed volumes listed in F. The survival func-
tion of Pareto I is

1 V<

F@) = (%)—a - @

where u is the location parameter and « is the shape param-
eter, and both are positive.

As reported in the literature (see e.g. Arnold, 2015 and
the references cited herein), various procedures for estimat-
ing the parameters of Pareto I are proposed. In the present
analysis, the threshold volume is the estimate of the loca-
tion parameter, i.e. [t = V;. This value is arbitrary and strictly
depends on the possibility of observing small falling block
events. Referring to the shape parameter, in Arnold (2015),
the following estimator is proposed:

N . -1
&:N[;ln(é)} , 3)

where v; is the volume of each block measured in the repre-
sentative area. Hence, the survival function becomes

1 v< W

F(v) = (1)7& 4)
i

v>W
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Substituting Eq. (1) with Eq. (4), the volume v(T') corre-
sponding to a given return period (larger than 1/)) is deter-
mined:

W(T) = Vt(?\T)g. (5)

3 Reliability of the block volume-frequency law

One of the key questions that arose in the discussion of
“Estimation of the return period of rockfall blocks accord-
ing to their size” relates both to the minimum number of
observed events and to the minimum number of surveyed
blocks needed to build the curve. In the present section,
the reliability of the results obtained though Eq. (5) is dis-
cussed in the light of the consistency of the catalogue of the
events C and of the list of measured blocks F. In the fol-
lowing, the volume of the block with a return period 7' de-
termined through Eq. (5), with Pareto parameter vector =,
after the observation of n events during ¢ time, is denoted by
V(T,t,n, ).

3.1 Error due missed recorded events

The temporal information is relevant for establishing a link
between the return period and block volume. In the present
section, the effects of missed events are analysed. Supposing
that p events larger than V; (p € N) have not been observed
even if they have occurred, they would be part of the reduced
catalogue C. Since the length of the observation period does
not change, the value of the estimate of A varies: the corrected
value, A, is

B (2n+1)(n+p)2X

 n2Qn42p+1) ©

resulting in Ac > A Using the notation previously il-
lustrated, this implies V(T,t,n+ p,x) >V (T,t,n,x). In
other words, if it is supposed that events have not been ob-
served even if they have occurred, the volume at a given re-
turn period is underestimated.

The error due to the lack of p observed events is com-
puted in terms of ratio between the value of the volumes cor-
responding to the same return period, 7', i.e.

_V(T.,t,n+p,m)

& = 7
TP = ") (T, t.n, 1) )

Substituting the known terms, the ratio of Eq. (7) can be
rewritten as

1
lentnm+p? |t
5—[z<z+—zp+n} =& ®

It can be noted that, as expected, &7, p s greater than one; in
addition, £7, , does not depend on the return period of the es-
timated volume; thus it can be simply named £,. The length
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Figure 1. Design graph for the estimation of the error due to missed events £y, as a function of the number of events n in the reduced
catalogue C, the expected number of missed events p, and Pareto type I distribution shape parameter &.

of the observation period is not entered in Eq. (8). For prac-
tical use, a design chart, which can be used in various ways
depending on the required data, is proposed in Fig. 1.

As reported in the sketch of the plot, if the expected num-
ber of missed events p and the shape parameter & of Pareto I
are known, the error £, is derived from the number of events
in the reduced catalogue, n. Vice versa, given a value of the
error, the consistency of the reduced catalogue, i.e. the num-
ber of events, can be determined.

3.2 Error due to the stochastic nature of the
occurrence process

The events of the reduced catalogue C within the temporal
range ¢ are considered to be a realization of a Poisson point
process. The error due to the aleatoric nature of the process is
detailed in this section. P, ;(r) denotes the probability that,
given an average annual frequency equal to m, n events are
observed during the period ¢, i.e.

@n"

Pas ()= ==, ©

In De Biagi et al. (2017), the temporal parameter is A=n /t,
the value at which the Eq. (9) is maximized. However, X is
an estimate of the parameter, which does not necessarily co-
incide with the true value. Figure 2a plots the value of Py,
against 7 for different catalogues with A=0.2.

The area underlined by each curve is equal to ~!. Fig-
ure 2b plots the normalized curves Q, ;(w) =t P, (), i.e.
the curves with a unitary underlying area.

www.nat-hazards-earth-syst-sci.net/17/1487/2017/
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Figure 2. (a) Plot of P, ; against i, (b) plot of the normalized func-
tion, Qp ¢ against . The legend relates to both axes.

For design purposes, given n and ¢, the value A;, corre-
sponding to a given i percentile of the curve Q, () can
be used instead of A. For example, considering the 90 per-
centile, the value of Lgg to be considered is the one for which
the following equalities chain subsists

90
I'(n+1, Agot)
n dr=1— —— =0.90, 10
/Q,z(ﬂ)ﬂ NCES) 9 (10)
0
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Figure 3. The value of Lgq as a function of the duration of the ob-
servation window, ¢, or the number of events, n, and the estimated
Poisson occurrence parameter A.

where I" (o) is the Gamma function and I (e, o) is the upper
incomplete Gamma function. In other words, if n events are
observed during the period ¢, there is 90 % probability that
the true annual frequency parameter is lower that Agg. Fig-
ure 3 plots the value of Agg as a function of the duration of
the observation window and the estimated A. It is seen that
Aoo tends to % as much as the duration of the observation
window increases.

Accounting for the effects of the variability of the esti-
mate of the frequency parameter has direct consequences on
the value of the computed volume, Eq. (5). The effects on
the generated volume can be computed in terms of ratio Dgg
between the volume obtained with A9y and the reference (i.e.
with ):

1

1
VihooT)s  ((hoo\ 4
D9021(9—0)1:(?0), (an

Vt(iT)E

3.3 Error due to a reduced number of measured blocks

In this section, the error related to the consistency of the list
of block volumes surveyed in the representative area is deter-
mined and discussed. As already discussed in De Biagi et al.
(2017), the choice of V; depends on the precision of the his-
torical records performed in the representative area. On the
contrary, the value of the estimate of the shape parameter, &,
depends on the consistency of the reduced list F.

As proved by Malik (1970), the estimate & follows
a Gamma distribution, or equivalently, 2aN /& ~ X22N—2’
where o represents the real value of the Pareto I shape param-
eter, while & is its estimate. Asymptotic normality is proved,
since the inverse of a chi-squared distribution is very close to
a normal distribution.
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Figure 4. Empirical distribution of £ and the corresponding ¢/. The
example refers to @ = 1.50, N =50, AT = 10.

Considering the estimate of the shape parameter as a vari-
ate £ ~ X%N—Z%’ fixing the values of n, t and T, a dis-
tribution of volumes is expected. For example, given & =
1.50, N =50, AT =10 and Vi = 0.5, the volume computed
through Eq. (5) is 2.32m°>. A sample of 1 x 10° values of ¢
were generated through a Monte Carlo technique: left-hand
side plot of Fig. 4 shows the probability density of ¢ and the
right-hand side axes plot the probability density of the vol-
umes computed using the generated £.

The ratio between the 90 percentile volume (3.36 m3)
and the reference value (2.32m?) is denoted by Uy =
3.36/2.32 =1.45.

The error due to the consistency of the reduced list F is
evaluated in term of ratio U between the generated volumes
(e.g. with the £) and the reference value determined using the
estimate &. In detail,

_V(T.tnx%)  VOD)!

u —— = -,
V(T,t,n,]t) Vi(AT)a

(12)

where 7 * is the parameter vector containing the generated ¢,
while & is included in 7. The previous reduces to

U=OT)i & (13)
The value of U related, say, to 90 percentile can be relevant
for design purposes. Because of the reciprocity of the terms
composing the exponent of Eq. (13), this corresponds to 10
percentile of the distribution of ¢, i.e.

1

L
Ugp = (AT)%0 &, (14)
where
2 &
bio= XZN—Z,OJW' 15)

As for the previous case, for practical use, a design chart is
proposed in Fig. 5. As reported in the sketch of the plot, once
the estimate & is computed given N measured blocks, the
error corresponding to 90 percentile can be determined for
different AT values.

www.nat-hazards-earth-syst-sci.net/17/1487/2017/
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Figure 5. Design graph for the estimation of the volume multiplier (90 percentile) accounting for the number N of measured blocks in the
reduced list, *, and the term AT, and Pareto type I distribution shape parameter, &.

4 Conclusions

The quality of the survey and the precision in recording rock-
fall events occurring in a study area play a relevant role in
computing the volumes that would probably fall by a certain
period. This information is of primary importance for the de-
sign of protection devices, for the implementation of relia-
bility differentiation in structural engineering and for com-
puting the risk in a certain area. From Fig. 1 it emerges that,
given a number of missed events p, the error £, increases
as much as the estimate of Pareto I shape parameter o re-
duces. In general, supposing that 20 % of the events have not
been recorded, 10 events are sufficient to keep €299, < 1.20.
Referring to the amount of measured volumes for estimating
o, the value largely depends on the return period of the ex-
pected volume, rather than to the estimate &. For example,
when N =100 and @ = 1.50, the Uyy ranges from 1.05 to
1.70 as AT varies from 2 to 100. For small return periods, the
consistency of the reduced list 7 can somehow be limited.
Keeping Uyo below 1.20 for a large range of AT would imply
having a reduced list containing a thousand of records.

Anyway, for design purposes, for a given catalogue of
events (even limited) and a list of blocks, once the required
return period T is determined, the volume Vj of the 90 per-
centile block can be determined as follows, also taking into
account the potential errors due to p missed events:

1
Vi (T) ZSPZ/{90'D90 I:Vt(iT)aiI . (16)

www.nat-hazards-earth-syst-sci.net/17/1487/2017/

Table 1. Error calculations for Buisson and Becco dell’ Aquila at
T =50 years, supposing p = 1.

Buisson  Becco dell’ Aquila
n 5 3
t 25.3yr 22.17yr
A 0.1976 yr—! 0.1353 yr—!
@ 0.4101 0.9788
v(50 yr) 40m3 30m3
L0 0.4173 0.7863
190 0.3366 0.3013
& 1.4314 1.39
Uogp 3.7847 1.61
Dyo 3.0695 2.27
Vi (50 yr) 665 m3 665 m3

Although a complete error analysis for Pareto Type II is
needed, referring to the examples of Buisson and Becco
dell’ Aquila of De Biagi et al. (2017), the error components
are evaluated at a return period 7 = 50 years, with a num-
ber of missed events p = 1. From Figs. 4 and 5 of De Biagi
et al. (2017), the volumes v(50yr) are approximatively 40
and 30 m>, respectively. The calculations are reported in Ta-
ble 1. It clearly appears that a high number of observations
and surveyed blocks are fundamental for keeping the errors
low.
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