
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the Multiplicative Regularization of Graph Laplacians on Closed and Open Structures With Applications to Spectral
Partitioning / Mitharwal, R.; Andriulli, FRANCESCO PAOLO. - In: IEEE ACCESS. - ISSN 2169-3536. - 2(2014), pp. 788-
796.

Original

On the Multiplicative Regularization of Graph Laplacians on Closed and Open Structures With
Applications to Spectral Partitioning

ieee

Publisher:

Published
DOI:10.1109/ACCESS.2014.2345657

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2678978 since: 2018-03-25T11:21:51Z

IEEE



Received July 14, 2014, accepted July 31, 2014, date of publication August 6, 2014, date of current version August 15, 2014.

Digital Object Identifier 10.1109/ACCESS.2014.2345657

On the Multiplicative Regularization of Graph
Laplacians on Closed and Open Structures
With Applications to Spectral Partitioning
RAJENDRA MITHARWAL, (Student Member, IEEE),
AND FRANCESCO P. ANDRIULLI, (Senior Member, IEEE)
Microwave Department, Telecom Bretagne/Institut Mines-Telecom, Brest 10129, France

Corresponding author: F. P. Andriulli (francesco.andriulli@mines-telecom.fr)

This work was supported in part by the Agence Nationale de la Recherche under Project FASTEEG-ANR-12-JS09-0010, in part by the
European Union Marie Curie Project NEUROIMAGEEG, in part by the Brittany Region, France, and in part by the HPC resources
through the GENCI-TGCC Project under Grant 2014-gen6944.

ABSTRACT A new regularization technique for graph Laplacians arising from triangular meshes of
closed and open structures is presented. The new technique is based on the analysis of graph Laplacian
spectrally equivalent operators in terms of Sobolev norms and on the appropriate selection of operators of
opposite differential strength to achieve a multiplicative regularization. In addition, a new 3-D/2-D nested
regularization strategy is presented to deal with open geometries. Numerical results show the advantages of
the proposed regularization as well as its effectiveness when used in spectral partitioning applications.

INDEX TERMS Spectral partitioning, computational electromagnetics, integral equations, multiplicative
preconditioners.

I. INTRODUCTION
Several integral equation formulations in Computational
Electromagnetics require the partitioning of a surface into
sub-manifolds or macro-cells. An incomplete list of exam-
ples includes domain decomposition integral equation meth-
ods [1], hierarchical quasi-Helmholtz decompositions [2],
and characteristic or synthetic basis function methods [3], [4].
Standard approaches for partitioning a domain rely on the use
of standard and adaptive octrees that became particularly pop-
ular for their use in fast integral equation algorithms [5]. Even
though these partitioning algorithms are very effective when
dealing with fast solvers, they are instead often inappropriate
in hierarchical preconditioning or domain decomposition set-
tings where connectivity constraints are present. In fact, for
complex and non-convex geometries, octree based strategies
often provide un-connected partitions that will require tedious
and often hardly feasible post-processing.

An effective, although usually expensive, way of obtain-
ing a partitioning of a meshed manifold into connected
components is to rely on the spectral properties of the mesh
associated graph Laplacian [6]. Such an approach, known in
literature as spectral partitioning, has been widely applied to
network design [7], VLSI layout [8], data mining [9], and
parallel load balancing algorithms [10]. Spectral partitioning

offers a robust partitioning strategy that works well even
for very complex, folded, or non-simply connected geome-
tries [6]. In many of these cases, partitioning techniques based
on octree schemes fail dramatically, jeopardizing the perfor-
mance of any subsequent method relying on the partitioning.
Lamentably, standard spectral partitioning methods are

very expensive since they rely on the spectral analysis
of the graph Laplacian matrix which is often severely
ill-conditioned. Several schemes to regularize the Laplacian
(like hierarchical bases approaches or geometric multi-grids)
rely on domain partitions to achieve the regularization
[11]–[14]. For this reason they cannot be used in this context
since they would require the manifold partitioning which is
instead the final goal of the procedure.
In this paper, we will introduce a different approach to

the problem. The graph Laplacian will be regularized in a
multiplicative way following a strategy similar to the one
used in Calderón preconditioning the Electric Field Inte-
gral Equation (EFIE) [15]–[18]. The differential strength of
the graph Laplacian will be regularized with operators of
equal, but opposite strength by using single layer operators,
suitably linked with Gram matrices [19]. In multiplicative
preconditioning techniques a particular care should always
be devoted when handling open structures. In this work,
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we handle the issue by introducing a new preconditioning
strategy based on two nested multiplicative preconditioners:
one on the surface, and a nested one (of one dimension
less) on the surface’s boundary. The reader should notice that
although this paper will use the regularized Laplacian for
spectral partitioning applications, many numerical algorithms
in computational electromagnetics [20]–[22] as well as in
other branches of computational science (such as compu-
tational neuroscience [23], computational mechanics [24],
machine learning [25], numerical linear algebra [26], high
performance computing [27]) are based on inversion of graph
Laplacians and, as such, can benefit from the contributions
presented in this work.

This paper is organized as follows. Section II presents
background material and introduces notation. Section III
presents a new regularization of graph Laplacians for the
close structure case. Section IV presents a new regularization
of graph Laplacians for the open structure case. Section V
presents numerical results that demonstrate the effectiveness
of the proposed schemes. Section VI presents our conclusions
and avenues for future research.

II. NOTATION AND BACKGROUND
The developments in this work apply to graph Laplacians
arising from relatively general surface meshes and as such
the treatment could stay general and independent of any par-
ticular implementation. This not with standing, mesh graph
Laplacians arise naturally from boundary element formula-
tions of electromagnetic integral equations. Given that inte-
gral operators will play a role in the regularization of the
graph Laplacians presented in this work, we thus find useful
to introduce here graph Laplacians from quasi-Helmholtz
decompositions of discrete boundary elements electric
currents.

Integral equations for electromagnetic perfect electrically
conducting scatterers often aim at the determination of the
induced electric current J(r) on an orientable manifold 0
discretized using a uniform mesh of triangular cells with an
average length h. The electric current J(r) is approximated by

J(r) =
N∑
n=1

In fn(r) (1)

where fn(r) are the Rao-Wilton-Glisson (RWG) basis
functions and where N is the number of internal edges of the
mesh. It is very well-known that the coefficient vector I, with
Ii = Ii, can be decomposed into Loop and Start coefficients
[21], [28]–[32]

I = 3λ+6σ (2)

where, with the conventions of Fig. 1, the matrix 3 is
defined as

3i,j =

 1 if the node j equals v+i
−1 if the node j equals v−i
0 otherwise

(3)

FIGURE 1. Symbols used in the definition of RWG, Loop, and Star
functions based on edge en, vertices v−n & v+n , and triangles c+n & c−n .

and the matrix 6 is defined as

6i,j =

 1 if the cell j equals c+i
−1 if the cell j equals c−i
0 otherwise

(4)

In writing (2) we have assumed for simplicity that 0 is simply
connected. With the definitions above we can immediately
obtain the two vertex-based and cell-based graph Laplacians
associated with the mesh as

3T3 and 6T6 (5)

respectively (see [21] and references therein). Using these
graph Laplacians, the connected partitions of the mani-
fold 0 can be obtained using spectral partitioning (refer to
Appendix A).
The spectral properties of the graph Laplacian can be

understood from their mapping properties between Sobolev
spaces. The space of square integrable functions L2(�) is
defined as

L2(�) = {f : �→ R | ‖f ‖L2(�) <∞}, (6)

with L2-norm of a function f given by ‖f ‖L2(�) =(∫
�
|f (x)|2d�

)1/2
. The space of square integrable functions

(defined on �) whose gradient is also a square integrable
function is known as Sobolev space H1(�) and it is given by

H1(�) = {f : �→ R | f ∈ L2(�) ∧ ∇f ∈ (L2(�))3}. (7)

Using this space, we can define the space H1/2(0) as

H1/2(0) = {f : 0→ R | ∃ g ∈ H1(�) such that

f = g|0} (8)

The spaceH1/2(0) and its dual spaceH−1/2(0) (set of contin-
uous functionals f : H1/2(0)→ R [33]) can be used to define
the mapping properties of some relevant static operators that
will be defined and used in what follows.
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The static operators which we will use in our analysis are
the single layer operator S, given by

S(w(r)) =
∫
∂0

1
4π |r− r′|

w(r′)dr ′ (9)

and hypersingular operator N defined as

N (w(r)) = ∂n

∫
∂0

∂ ′n′
1

4π |r− r′|
w(r′)dr ′ (10)

where ∂n = n · ∇ and n is 0’s surface normal at a given
location. The single layer operator and hypersingular opera-
tor, when restricted to 0, have the following mapping prop-
erties S : H−1/2(0) → H1/2(0) and N : H1/2(0) →
H−1/2(0) [34]. Using these operators, we can define the
equivalent norms in H−1/2 and H1/2 as [35]

〈w,S(w)〉 � ‖w‖H−1/2(0) ∀w ∈ H−1/2 (11)

〈w,N (w)〉 � ‖w‖H1/2(0) ∀w ∈ H
1/2,

∫
0

wd0 = 0. (12)

The equivalence relationship a � b between a and b means
there exists two positive real numbers c1 and c2 such that
c1b ≤ a ≤ c2b.

III. PROPOSED REGULARIZATION:
THE CLOSED STRUCTURE CASE
This section will deal with the regularization of the graph
Laplacian in case of a closed manifold. We will perform the
analysis explicitly for the case of 3T3 and then we will
explain how its dual regularization for 6T6 follows. This
will require a propaedeutic definition of some relevant basis
functions introduced in [36].

On each inner vertex i of the original mesh, a pyramid basis
function λi can be defined. The function λi is equal to 1 on
the ith vertex and goes linearly to 0 on the adjacent vertices.
The patch basis functions φi is defined on ith triangular cells
of original mesh with constant value of 1/

√
A (A being area

of the triangular cell) and 0 everywhere else.
Dual basis functions can be defined by using a barycen-

trically refined mesh as shown in Fig. 2. The original mesh
is shown with thick blue lines and the barycentric refined

FIGURE 2. Basis functions defined on the dual mesh based on vertex and
cell of the original mesh. (a) Dual patch. (b) Dual Pyramid.

mesh is shown with the thin red color lines. The dual pyra-
mid function λbari is the weighted sum of pyramid functions
defined on each vertex of barycentric refined mesh which
lies on the ith triangular cell of original mesh. If Nb is the
number of barycentric refined mesh edges connected to each
such vertex then the coefficient of each pyramid functions
is given by 2/Nb. For example, in Fig. 2b the vertex with
coefficient 1/5 has 10 barycentric edges connected to it. The
coefficient of the pyramid function on the barycenter of the
original triangular cell is 1. The dual patch basis functions
φbari shown in Fig. 2a is defined on the barycentric refined
triangular cells connected to the ith vertex with constant value
of 1/
√
Abar (Abar being the total area of these triangular cells)

over them and 0 everywhere else.
From the definition of Loop functions, it can be easily seen

that

xT3T3x � xT3TG3x = 〈∇sλx,∇sλx〉 = ‖λx‖H1(0) (13)

where λx =
∑

i xiλi, and the first passage follows from the
well-conditioning of the RWG Gram matrix G. The previous
expression makes evident that graph Laplacian is ill condi-
tioned, since it is spectrally equivalent to the discretization
of an operator of differential order 2 and thus gives rise to
matrices with condition number growing as O(h2) (see also
the treatment in [21]). Our aim is to find a multiplicative
preconditioner P3 such that

xT (P3)T3T3P3x � xT x (14)

by using operators of opposite order. More specifically, for
the hypersingular operator N it is known that

〈λx,N (λx)〉 = xTNx � ‖λx‖
H

1
2 (0)

. (15)

Since both direct and inverse inequalities are satisfied by the
functions λ [37] we get

xT3T3x � xTNTNx. (16)

The left hand side of the well-known scalar Calderón identity

NS = −
I
4
+K (17)

where K is a compact operator, can be stably discretized as

NG−1mixS (18)

where the mixed Gram matrix is defined as (Gmix)i,j =〈
φbari , λj

〉
and where the single layer operator is discretized

using dual patch basis functions, i.e. (S)i,j =
〈
φbari ,S(φbarj )

〉
.

The identity (17) ensures the well-conditioning of (18) and
thus the spectral equivalency

xTST (G−1mix)
TNTNG−1mixSx � xT x (19)

holds. Using equation (16) and (19) we get

xTST (G−1mix)
T3T3G−1mixSx � (20)

xTST (G−1mix)
TNTNG−1mixSx � xT x. (21)
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The overall regularized vertex based graph Laplacian is
given by

ST (G−1mix)
T3T3G−1mixS (22)

from which it follows that

P3 = G−1mixS (23)

is a valid preconditioner for3T3, i.e. (P3)T3T3P3 is a well
conditioned matrix.

Carrying the same analysis for the cell based graph
Laplacian6T6 accounts at finding themultiplicative precon-
ditioner P6 such that

xT (P6)T6T6P6x � xT x. (24)

Here we will use the fact that xT6T6x � xT6TGBC6x =〈
∇sλ

bar
x ,∇sλ

bar
x
〉
=
∥∥λbarx

∥∥
H1(0) (refer [21]) where λ

bar
x =∑

i xiλ
bar
i . The grammatrix (GBC )i,j =

〈
f BCi , f BCj

〉
is defined

using Buffa-Christiansen basis functions [16], [36], [38]. The
steps from equation (15) to (21) can be repeated to get the
overall regularized cell based graph Laplacian given by

S̃
T
(G̃
−1
mix)

T6T6G̃
−1
mix S̃ (25)

where the mixed Gram matrix is (G̃mix)i,j =
〈
φi, λ

bar
j

〉
and

single layer operator matrix is (S̃)i,j =
〈
φi,S(φj)

〉
. Therefore,

the preconditioning matrix

P6 = G̃
−1
mix S̃ (26)

is a valid preconditioner for6T6, i.e. (P6)T6T6P6 is a well
conditioned matrix.

Either of the graph Laplacians with their respective
preconditioner matrices can be used in the spectral partition-
ing algorithm described in Appendix A to obtain connected
partitions.

IV. PROPOSED REGULARIZATION:
THE OPEN STRUCTURE CASE
When the structure 0 is open, the regularization above can be
sub-optimal since (17) does not hold. A strategy to solve this
issue is presented next.

The main idea for doing this is to bring back the problem of
preconditioning the graph Laplacian on an open geometry to
two subsequent closed geometry preconditioning problems,
the second of which is one dimension less. More specifically,
consider an open domain 0 which needs to be partitioned
using a graph Laplacian matrix 3T

o3o (the subscript o is
used to indicate that it is a graph Laplacian of an open
geometry). The matrix is spectrally equivalent to (3T

oG3o),
where G is the Gram matrix of RWG basis functions,
which is well conditioned. Therefore (3T

oG3o)−13T
o3o can

be inverted with few iterations of an iterative solver. This
accounts for the need of performing efficiently the following
inversion

uo = (3T
oG3o)−1fo, (27)

for any given fo. We will now assume that G in 3T
oG3o

is defined on a plane, given that since 0 comes out of
known geometry, if this is not the case a pull back (based
on NURBS [39] for example) can always be used without
recurring to mesh parameterization algorithms. Moreover, we
easily and efficiently find a closed domain� such that0 ⊂ �
by cylindrical extrusion for example see Fig. 3. Solving (27)
accounts of solving the Laplace-Beltrami operator [40] on a
planar face of 0 with Dirichlet boundary conditions. We can
then invert the Laplace-Beltrami operator on the entire close
object 0 (where we can use the preconditioner developed
above) and then correct the boundary conditions with the 2D
single layer potential

FIGURE 3. Domains used in the nested approach for open structures: a
surface 0 with its corresponding closed domain � and its boudary ∂0.

Vp(w(r)) =
∫
∂0

−1
2π

log |r− r′|w(r′)dr ′ (28)

which is harmonic in 0. An advantage of solving the
Laplace-Beltrami operator over the close object rather than
using the infinite solution as it is usually done in solving 2D
integral equations is that fo is naturally extended to be the
right-hand-side of the overall problem and no further interpo-
lation is necessary. In fact, define the sparse transformation
matrices T as the map from vertices of closed structure to the
non-boundary vertices of open structure

Ti,j =

1 if open structure non-boundary vertex j
coincides with closed structure vertex i,

0 otherwise,
(29)

and B as the map from vertices of closed structure to the
boundary vertices of open structure

Bi,j =

1 if open structure boundary vertex i
coincides with closed structure vertex j

0 otherwise
(30)

The basis functions needed to discretize the 2D single layer
operator and to define the Gram matrices are pulse and
triangular basis functions. Each pulse basis function pi is
defined by

pi(r) =
{
1 r ∈ αri + (1− α)ri+1 : α ∈ (0, 1)
0 otherwise

(31)

on the adjacent pair of vertices with coordinates ri and ri+1.
The triangular basis function ti at a vertex with coordinates ri

VOLUME 2, 2014 791
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is given by

ti(r) =


|ri+1−r|
|ri+1−ri|

r ∈ αri + (1− α)ri+1 : α ∈ [0, 1]
|ri−1−r|
|ri−1−ri|

r ∈ αri−1 + (1− α)ri : α ∈ [0, 1]

0 otherwise

(32)

where ri is the vertex adjacent to both ri−1 and ri+1.
The single layer operator equation (28) on ∂0 when
discretized using pulse basis functions gives (Vp)i,j =〈
pi,Vp(pj)

〉
. The operator matrix (Vδp)i,j =

〈
δi,Vp(pj)

〉
brings

the correction of boundary conditions on 0. δ is the delta
function defined on the inner vertices of 0. The mixed pulse-
triangular basis Gram matrix (Gp,t )i,j =

〈
pi, tj

〉
is obtained

using pulse basis p and triangular basis t defined on the
boundary vertices of open structure.

The overall RHS fc over the closed domain will be
fc = (T − 1ei)T fo where ei is the canonical basis element
in the row vector space of T such that T(:, i) = 0. Moreover,
up to the discretization precision, the inverse in (27) can be
computed as

uo = Tuc − uH (33)

where uc = (3TG3)+fc and where uH = VδpV−1p Gp,tBuc
is a harmonic correction. Overall

uo =
(
T− VδpV−1p Gp,tB

)
(3TG3)+(T− 1ei)T fo (34)

so that the preconditioning matrix is selected as

Po =
(
T− VδpV−1p Gp,tB

)
(3TG3)+(T− 1ei)T (35)

note that Po is never formed explicitly, it is instead
always applied multiplicatively and, in particular, the
two (pseudo) inverses (3TG3)+ and V−1p are always
preconditioned.
More specifically, if the operatorWp represents 2D hyper-

singular operator given by

Wp(w(r)) = ∂n

∫
∂0

∂ ′n′
−1
2π

log |r− r′|w(r′)dr ′ (36)

where ∂n = n · ∂
∂r then the a 2D counterpart [40] of the

Calderón identity (17) reads

WpVp = −
I
4
+D (37)

and it can be used to apply the regularization of the discretized
matrix (Vp). In fact, the discretization of the 2D hyper-
singular operator needs dual triangular basis functions like
those proposed in [41]. The domain of this triangular basis can
be seen in Fig. 4 where the crosses are placed at the midpoint
of the edge connecting the nodes. If the original mesh consists
of nodes represented by r and the dual mesh consists of cross
represented by d , then let ri−1, d i−1, ri, d i, ri+1, d i+1 and
ri+2 be the coordinates of the vertices moving from left to
right through the boundarymesh. The dual triangular function

FIGURE 4. Triangular basis functions on the dual mesh (dashed blue line)
and constant basis function on the standard mesh (red line).

(refer also to Fig. 4) is defined as

t∗i (r)=



|d i+1−r|
2|d i+1−ri+1|

r ∈ αri + 1+ (1− α)d i+1 :

α ∈ [0, 1]
1
2 +

|ri+1−r|
2|ri+1−d i|

r ∈ αdi + (1− α)ri+1 : α ∈ [0, 1]
1
2 +

|ri−r|
2|ri−d i|

r ∈ αri + (1− α)d i : α ∈ [0, 1]
|d i−1−r|
2|d i−1−ri|

r ∈ αd i−1 + (1− α)ri : α ∈ [0, 1]

0 otherwise
(38)

The left hand side of equation (37) results in the following
well conditioned matrix WpG−1p,t∗Vp where the discretized

2D hyper-singular operator matrix (Wp)i,j =
〈
t∗i ,Wp(t∗j )

〉
is linked with the mix Gram matrix (Gp,t∗ )i,j =

〈
pi, t∗j

〉
defined using pulse basis function and the dual triangular
basis function. So Pt = WpG−1p,t∗ is a left preconditioner for
Vp, i.e. PtVp is a well conditioned matrix.

V. NUMERICAL RESULTS
The effect of the proposed regularization scheme for the graph
Laplacian is firstly tested on a sphere of radius 1m. In Fig. 5,

FIGURE 5. Condition number (closed structure).
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the condition number of the graph Laplacian 6T6 is plotted
for different values of the spectral index 1/h and compared
with the condition number of the regularized operator. It is
clear that the condition number of the graph Laplacian grows
quadratically as a function of the spectral index, while the reg-
ularized operator shows a constant conditioning as expected
from the theory. The impact of this on the iterative inversion
of the graph Laplacian is shown in Fig. 6 where the number of
iterations are plotted against the number of unknowns for both
standard and regularized graph Laplacian. The relative error
for the iterative solver is 10−5 and the number of unknowns
is varied between 250 and 1 million. An ACA algorithm [42]
is used for compressing the regularizer, with compression
precision of 10−6. It is clear that the regularized graph
Laplacian can be iteratively inverted in a constant number of
iterations, independently of the number of unknowns, while
an increasingly high number of iterations are required for
inverting the standard graph Laplacian, as expected from the
theory.

FIGURE 6. CGS iterations (closed structure).

We have applied our method to perform spectral partition-
ing ofmodels of a space shuttle and of a ship. For bothmodels,
the tolerance error of subspace iteration, CGS iterations and
ACA is set to 10−2, 10−5 and 10−6 respectively. As expected,
the spectral partitioning produces connected partitions
(represented by different colors) as shown in the Fig. 7 and 8.

In the case of the space shuttle, the subspace method
took 7 iterations to converge. The number of CGS
iterations to invert graph Laplacian using regularization was
brought down from 1167 to 50. The ship model partition-
ing algorithm took 12 subspace iterations to converge and
the number of CGS iterations using regularization decreased
from 1222 to 85. When comparing the spectrally obtained
and a standard octree [5] obtained partitions produced for the
ship model in Fig. 9 and 10, we see that spectral partitioning
produces connected partitions whereas the octree partitions
are disconnected. This exemplifies one of the advantages of
using spectral partitioning over other techniques; connectivity

FIGURE 7. Spectral partitioning of a shuttle model.

FIGURE 8. Spectral partitioning of a ship model.

FIGURE 9. Spectral partitions of ship’s deck.

in fact is required by many techniques requiring the partition-
ing of a domain.
The regularization approach for an open structure was

tested on a square plate of dimension 1× 1m. In this case we
partitioned the vertex based mesh (thus we inverted the graph
Laplacian 3T3). The number of iterative solver’s iterations
is shown in Fig. 11. It is clear that also in this case the
regularization effect is indeed achieved as expected by the
theory since the number of iterations stays constant irrespec-
tive of the dimension of the problem. If the closed structure
regularization technique is applied to the square plate, we
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FIGURE 10. Octree partitions of ship’s deck.

FIGURE 11. CGS iterations (open structure).

see that the number of iterations, although decreased, is still
varying with the discretization density.

VI. CONCLUSION
A new regularization technique for graph Laplacians arising
from triangular meshes of closed and open structures has been
presented. The ill-conditioned behavior of graph Laplacian
matrices is neutralized by exploiting scalar Calderón iden-
tities and operators of opposite differential strength. A new
3D/2D nested regularization strategy has been presented to
deal with open geometries. Finally, numerical results have
shown the effectiveness of the proposed regularization as well
as its applicability to real case scenarios when used in spectral
partitioning applications.

APPENDIX
SPECTRAL PARTITIONING
Given a Graph Laplacian with vertices indexed by i =
1, . . . ,N , Spectral Partitioning aims at dividing the vertices
in two sets giving rise to two connected subgraphs. Spectral
partitioning is based on the following strategy [6]:

1) Compute the singular vectorV associated to the second
smallest singular value of a graph Laplacian

2) Separate the indices of the Laplacian matrix in the two
groups: I+ = {i : Vi ≥ 0} and I− = {i : Vi ≤ 0}

Algorithm 1 Subspace Iteration Method for Graph Laplacian

LTL = LTL+ 11T
n2

Xk = In×p
Sk = 0
while tol < err do

for i = 0 to p do
b = PTXk (:, i)
x = cgs(PTLTLP,b)
Xk+1(:, i) = Px
Xk+1(:, i) =

Xk+1(:,i)
norm(Xk+1(:,i),2)

end for
Ak+1 = XT

k+1L
TLXk+1

Ik+1 = XT
k+1Xk+1

[Vk+1,Sk+1] = eig(Ak+1, Ik+1)
err = norm(Sk+1−Sk )

norm(Sk )
Sk = Sk+1
Xk = Xk+1Vk+1

end while

for which it can be proved that the graphs associated to the
two groups are connected [6]. In practice, one of the most
common algorithms to obtain the required singular vector
is the subspace iteration method [43], it represents a block
generalization of the the simple inverse power method. The
reason for using a block scheme is that the naive inverse
power algorithm behaves very poorly in case of non unitary
multiplicity of the eigenvalues. A 3-dimensionalmanifold can
show multiplicities of the second-last eigenvalues up to 3, so
that 4-block subspace iterationmethodmust be used to ensure
the convergence of the scheme.
In our case, we are interested in finding the p = 3 eigen-

vectors (X)n×p corresponding to the p smallest eigenvalues
of the graph Laplacian LTL of dimension n × n where
L = 6 or L = 3. Algorithm 1 presents a synthetic and
implementation-oriented description of the subspace iteration
method adapted to our case. In the algorithms the p smallest
eigenvalues are stored stored in Sk and the corresponding
eigenvectors are stored in Xk once a tolerance level has
been achieved. The eigenvector Xk (:, p − 1) corresponding
to second smallest eigenvalue is selected and the cells of the
mesh are partitioned in two sets I+ and I−. IfXk (i, p−1) > 0
then the ith cell is assigned to I+ otherwise it is assigned
to I− and we obtain connected graphs associated with two
sets. Notice that the graph Laplacian is preconditioned with
the matrix P whose choice depends on the type of graph
Laplacian (see Section III).
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