View metadata, citation and similar papers at core.ac.uk

L

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Self-Validated Time-Domain Analysis of Linear Systems with Bounded Uncertain Parameters

-

P
brought to you by i CORE

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

Original

Self-Validated Time-Domain Analysis of Linear Systems with Bounded Uncertain Parameters / Trinchero, Riccardo;
Manfredi, Paolo; Stievano, IGOR SIMONE. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. Il, EXPRESS
BRIEFS. - ISSN 1549-7747. - STAMPA. - 65:11(2018), pp. 1499-1503.

Availability:
This version is available at: 11583/2678425 since: 2018-11-01T14:30:16Z

Publisher:
ieee

Published
DOI:10.1109/TCSII.2017.2740118

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
ieee

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

04 August 2020



https://core.ac.uk/display/234917796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Self-Validated Time-Domain Analysis of Linear
Systems with Bounded Uncertain Parameters

Riccardo Trinchero, Member, IEEE, Paolo Manfredi, Member, IEEE, Igor S. Stievano, Senior Member, IEEE.

Abstract—This paper presents a novel approach to predict the
bounds of the time-domain response of a linear system subject
to multiple bounded uncertain input parameters. The method
leverages the framework of Taylor models in conjunction with
the numerical inversion of Laplace transform (NILT). Different
formulations of the NILT are reviewed, and their advantages
and limitations are discussed. An implementation relying on an
inverse fast Fourier transform (IFFT) turns out to be the most
efficient and accurate alternative. The feasibility of the technique
is validated based on several diverse application examples,
namely a control loop, a lossy transmission-line network and
an active low-pass filter.

Index Terms—Circuit simulation, numerical inversion of
Laplace transform, Taylor models, uncertainty.

I. INTRODUCTION

The increasing variability in the manufacture of electronic
components has recently prompted a wide interest in accu-
rate techniques for the quantification of uncertainties that,
if not properly accounted for, may severely affect design
costs and time to market. Uncertainty quantification techniques
are indeed of paramount importance in modern designs to
flag potential problems prior to mass fabrication and avoid
expensive redesign. In this framework, it is often useful to
estimate the strict upper and lower bounds of the system
performance, for example to take into account approximations
or truncation of input data, or whenever the actual distribution
of such data is unknown.

Interval methods are self-validated algebraic techniques,
meaning that they provide a conservative enclosure of the
solution of a system subject to bounded uncertain input param-
eters. Interval analysis and affine arithmetic are two interval
techniques that were both applied to the worst-case analysis
of electrical circuits (see [1] and [2], respectively). However,
they suffer from some limitations arising from the lack of,
or rough parametrization with respect to the uncertain input
parameters, which leads to potentially large overestimation
and little insight into their relationship with the outputs of
interest [3].

The Taylor arithmetic, or Taylor model (TM), is an alter-
native approach that combines the robustness of the interval
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analysis and the strength of a higher-order parametric repre-
sentation [4]-[5]. Each TM variable consists of a multivariate
Taylor polynomial, providing an accurate parametric represen-
tation with respect to the uncertain input parameters, which
is complemented by an interval remainder accounting for
approximation and round-off errors arising in the calculation
of the system solution. Hence, the upper and lower bounds
of a TM variable are readily determined from those of its
polynomial part. The methodology was recently adapted for
the first-time application to the frequency-domain analysis of
linear circuits [6], and it was later improved and integrated
into a freely available general purpose tool [7], [8].

The applicability of this approach to time-domain analysis
was however still questionable. In general, some applications
of TMs to the solution of ordinary differential equation (ODE)
systems were discussed in the literature [9]-[11]. However,
most of the applications appear to be limited to very small-size
problems in terms of number of unknowns. Furthermore, some
issues were reported concerning the blowup of the enclosure
(remainder) as integration progresses over time [11].

The present paper proposes an alternative approach that
overcomes the aforementioned limitations, by leveraging the
state-of-the-art TMsim tool [7] in conjunction with the numer-
ical inversion of Laplace transform (NILT) [12]-[15]. Indeed,
working in the Laplace domain provides several advantages:

« the conservativity of the remainder through the transform
is guaranteed by the linearity of the Laplace operator;

o the remainder blowup can be avoided, or considerably
reduced, if the solution of every time point is cast
as an independent contribution from different complex
frequencies;

o issues related to the proper time step choice, which can
become critical in time-domain integrations, especially
for active and/or highly resonating circuits, are avoided;

« the inclusion of components that are inherently defined
in the frequency domain, like control loops or lossy and
dispersive transmission lines, becomes straightforward;

o it offers the possibility to simulate larger problems, as
the solution relies on the effective and robust algorithm
for matrix inversion proposed in [6], rather than on
cumbersome time-domain numerical integrations.

Nevertheless, there exist several implementations of the
NILT. Three alternative approaches, based on inverse fast
Fourier transform (IFFT), Padé approximation, and convolu-
tion, are reviewed and compared in this paper. Their advan-
tages and limitations are highlighted, showing that the IFFT-
based NILT provides the best accuracy and computational



efficiency. The discussion is supported by three application
examples.

II. TAYLOR MODEL

The standard TM representation of a generic function f(x),
with x in a bounded domain! D C R4, is

f(x) = P(x) + I, (D)
where Pr(x) is a polynomial up to a predefined order n,
whereas Iy = [Iy,Iy] is a two-valued interval remainder.

While Pj(x) provides in fact an approximate parametric
representation of f(x) over D, the interval remainder is such
that

Pr(x)+ Iy < f(x) < Pr(x) +1; ¥xeD, (2

i.e., the true value of f(x) is guaranteed to lie between the
upper and lower curves defined by the polynomial Py(x) and
the interval remainder ;. Based on the above property, it is
possible to conclude that the global extrema of f(x) are

min{f(x)} > min{Pr(x)} + Iy (32)
max{f(x)} < max{Pr(x)} + I. (3b)

A conservative estimation of the extrema of the multivariate
polynomial, which cannot be determined in closed form, is
obtained by using the properties of Bernstein polynomials [6].

The problem then amounts to express the output quantity of
interest in the form (1). This is achieved by propagating the
TM representation starting from the selected uncertain input
parameters and through a suitable redefinition of the operations
involved in the calculation of the output [6], [7]. Once (1)
is determined, the property (3) is used to conservatively
estimate the upper and lower bounds of the uncertain output
variable. The TM representation (1) is suitably extended to
matrix arithmetic. In particular, the inversion of a matrix TM
is effectively carried out leveraging the Sherman-Morrison
formula [6].

The outlined TM framework is readily applied to the esti-
mation of the upper and lower bounds of the Laplace-domain
response Y (s;x) of a generic linear network with bounded
uncertain parameters X.

III. TIME-DOMAIN ANALYSIS VIA TM AND NILT

The time-domain response y(¢) of a linear system can
be obtained from its Laplace-domain response Y (s) via the
inverse Laplace transform, which reads

o+joo
y<t>=z-1{y<s>}<t>=j% / Y(s)e'tds, ()

where s = o + jw is the Laplace variable consisting of
the dumping term o > 0 and the angular frequency w.
Thanks to the linearity of the Laplace operator, the TM of a
Laplace-domain response can be directly transformed into the

IThe probability distribution of the parameters x is possibly unknown, and
hence disregarded here. Only the possibility to occur within their range of
variation is considered.

corresponding time-domain TM without introducing issues on
the conservativity of its remainder.

In general, however, an exact closed-form solution of the
above integral is not available for large scale circuit. Indeed,
large networks are solved numerically and their responses
are usually available as tabulated data. For this reason, in
the last decades different techniques have been proposed
for the numerical solution of (4). In particular, three NILT
techniques are investigated in the following, with the aim
of assessing their advantages and limitations in view of the
targeted application to the time-domain self-validated analysis
of linear systems.

A. NILT Based on IFFT

The inverse Laplace transform in (4) can be rewritten in
terms of the inverse Fourier transform as follows:

eUt

+oo
y(t) / Y (o + jw)e’tdw =
—o0

~jon
—e F Y (0 + jw)} () = Gt ()

where the signal 7(t) = y(t)e~ 7" is a dumped version of the
actual time-domain response ¥(¢).
The above integral can be efficiently computed with the
robust and well-known IFFT algorithm, leading to
+N
y(ty) = €™ Ay Z Re {c,Y (0 + J2mnA p)ed2TmA st },

n=0

7(t)

(6)
where co =1, ¢, =2Vn >0, Ay = 1/T,, is the sampling
frequency determined by the desired observation time window
Tw, and t, = kTy,/N € [0,T,] is the kth discrete time
instant. In order to minimize the time-domain aliasing error
introduced by the discrete spectrum of Y'(s), a damping factor
of 0 = aln(N)/T,, with a > 1 is usually considered to
ensure that §(¢) decays to zero at the end of the observation
window [0, T,,] [12], [13].

It should be noted that (6) merely involves a linear combi-
nation of samples of Laplace-domain responses evaluated at
a fixed set of complex frequency points. This calculation can
be readily carried out using the available TM operations [7].
The term e’** may slightly increase the remainder towards
the end of the time window but, as shown by the application
examples, this effect is limited by considering o = 1.5.

B. NILT Based on Padé Approximation

The discussion starts by introducing in (4) the variable
change z = st, which leads to the following integral [15]:

a’+joo
1 z
t) = — Y (—)edz. 7
v = / (t)e ? )
o/ —joo

The Padé approximation of the exponential function reads

- Nw(2)

M

K,
=2 ®)

i=1

e




where N (z) and D/ (z) are two polynomials, whereas z; and
K; are the poles and the residues of the corresponding rational
function, respectively. The coefficients of the polynomials
Ny (z) and Dps(z) are available in closed form [15], and the
poles and residues are readily computed from these.

By substituting (8) into (7), the time-domain response can
be expressed as [14]

o' +joo M i
P ,
t) ~ —— Y (7) ‘—d
y(t) j2mt / t Zz—ziz
o' —joo =1 )

[M/2]

1S el ()

where f{i = K; for a real pole and Xi = 2K for a pair of
complex conjugate poles.

It is worth noting that (9) features again a linear combination
of a set of Laplace-domain responses but, as opposed to (6), it
is not discretized. However, for each time instant ¢ at which the
response is evaluated, the response needs to be computed for
a different set of [M/2] complex frequencies. Furthermore,
the accuracy is strongly related to the order M in the Padé
approximation (8). As shown in the following application
examples, a too low order M leads to poor accuracy in
reproducing the dynamics of y(t) at the end of the observation
window. On the other hand, a large value of M may cause
numerical issues. Therefore, it is in general difficult to properly
choose the value of M.

C. NILT Based on IFFT and Convolution

This technique is presented to illustrate the advantage of
pure spectral techniques with respect to convolution-based
approaches. The underlying idea is to compute the time-
domain response as the convolution between the impulse
response of the system h(t) = £~ {H(s)}(t), calculated via
the NILT in (6), and the excitation e(t):

—+o0

y(t) = h(t) xe(t) = / h(t — 1)e(T)dr.

0

(10)

The above integral is calculated as the following sum of
discrete functions:

N
ylkA] =~ ALY h[(k = i)Ade[id] Yk, k—i>0, (11)
i=0

where A; is the desired time step and the discrete-time im-
pulse response is computed with (6). Equation (11) highlights
the main difference between the pure spectral approaches
and the integration-based (including ODE) ones for the self-
validated analysis of linear time-invariant systems. Owing to
the integral operator, each sample y(ty) is correlated to the
system responses at previous time instants. Therefore, the TM
remainder is likely to constantly grow and eventually blowup,
as shown in the following. On the contrary, the solutions based
on (6) and (9) turn out to be completely independent from the
previous and future samples of y(t).

IV. APPLICATION EXAMPLES

In this section, the TM framework is applied to the time-
domain analysis of various linear systems with bounded un-
certain parameters. To this end, the state-of-the-art TMsim
toolbox [7], [8] is combined with the NILT implementa-
tions discussed in Section III by using available operations.
Although the following application examples focus on the
estimation of the output bounds, it is worth mentioning that the
TMs provide in addition an accurate parametric representation
of the outputs with respect to the uncertain input parameters.

A. lustrative Example: Control Loop

e(t) —>®—>

Fig. 1. Block diagram of the control loop system with a PID controller.

For the sake of illustration, the proposed method is first
applied to simulate the time-domain response of the control
loop in Fig. 1. The system consists of a closed loop with
open-loop transfer function G(s) = 1/(s?> + 5s + 3) and a
proportional integrative derivative (PID) controller feedback
with transfer function K (s) = ¢;+c2/s+0.1s. The parameters
c1 and ¢, of the controller are independent uncertain variables
in the intervals ¢; = [8,10] and ¢y = [21, 29], respectively.
These two variables are readily expressed as the following
TMs:

Te, (1) = Pey(x1) + I, =9+ 121 +[0,0] (12a)

Te,(x2) = Pey(22) + I, =254+ 4 - 22+ [0,0], (12b)

where for computational convenience x = [z7,x2] is nor-
malized within the domain D = [—1,1] x [—1,1]. Starting
from (12), the transfer function K(s) of the controller is
expressed as the multivariate TM

Tk (s;x) =Te,(21) +

+ 0.1s.

TC2 (1‘2)
e (13)

Finally, the TM representation of the closed-loop transfer
function H (s;x) is obtained as

o Tk(s;x)G(s)
Ty (s;x) = m

where Py and Iy are calculated by means of the TMsim
toolbox. This allows obtaining a conservative estimation of
the upper and lower bounds of H(s;x) for all the possible
combinations of the uncertain parameters [c1,c2] € [8,10] X
[21,29].

A conservative estimation of the bounds of the time-
domain response is obtained by calculating the corresponding
TM via the NILT. As an example, a unit step excitation
e(t) = u(t — tg), with ¢ = 1 s, is considered. Starting

=Py (s;x) +Iu(s), (14)
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Fig. 2. Step response of the linear system of Fig. 1. Gray lines: MC samples;
solid red, dotted green, and dashed blue lines: bounds from IFFT-, Padé
approximation- and convolution-based TM analyses, respectively.

from (14), the time-domain TM is computed as T} (t;x) =
L HTy(s;x)E(s)}(t), with E(s) = Z{e(t)} = 1/se .

Fig. 2 shows the spread of the response resulting from the
parameter uncertainty and obtained based on 10000 Monte
Carlo (MC) samples. The bounds estimated from TM simu-
lations with expansion order n = 6 and the different NILT
implementations are also shown. The curves indicate that
the IFFT-based NILT (solid red lines) provides a very tight
enclose of the MC curves within the whole simulation window.
On the contrary, the bounds obtained with both the Padé
approximation- (dashed blue lines) and convolution-based
(dotted green lines) approaches slightly diverge towards the
end of the observation time. This is due to the high order in
the approximation (M = 12) and to the integration in the two
cases, respectively.

At this point, it is important to mention that the MC samples
in Fig. 2 are computed via the IFFT-based NILT (6). For this
specific example, however, the various NILT implementations
do not have an appreciable effect on the deterministic calcu-
lation of the MC responses. Nonetheless, as discussed above,
they do affect the TM remainder and hence the tightness of
the estimated enclosure.

B. Lossy Transmission-Line Network

Next, the proposed technique is applied to the network of
Fig. 3. The circuit consists of a combination of lossy microstrip
transmission lines and lumped elements. The value of the
inductors and the capacitors varies within 10% around the
nominal value. The network is represented in the Laplace
domain by means of the modified nodal analysis (MNA)
formalism, leading to a linear system with 13 unknowns. The
microstrip conductor resistance is modeled as R, + Rs\/s/7
to properly account for the skin effect [16]. The network is
excited at the left side with a pulse of amplitude Ey =1V,
duration T' = 3 ns and rise/fall times 7, = 74 = 0.2 ns.

Fig. 4 shows the resulting time-domain evolution of the
far-end voltage v, indicated in Fig. 3. The spread re-
sulting from 10000 MC runs computed via the IFFT-based
NILT (gray lines) is compared with the enclosures obtained
by means of TM analyses of order n = 5. While the
IFFT-based implementation (solid red lines) provides again

length=3 cm

Vout (£)

5!2)
150 pm

20 jm} o =58 MS/m

100 pm

Fig. 3. Network consisting of microstrip lines and lumped elements. The
cross-section of the lines is shown on the right.

a tight enclosure, the remainder of the convolution-based
solution (dotted green lines) quickly blows up due to the
integration. Furthermore, it is possible to appreciate how the
Padé approximation computed with M = 13 (dashed blue
lines) is unable to accurately capture the high dynamic of
the waveform. Increasing the order M makes the analysis
numerically instable and the response diverge. It should be
noted that this inaccuracy appears also in the MC samples,
while the convolution-based NILT still performs well for the
deterministic MC calculations (results not shown here). These
results confirm the better performance of the IFFT-based NILT
in the TM analysis with respect to other approaches. Finally,
for an independent validation, the bounds obtained from 10000
transient MC simulations in SPICE are shown by the dashed
black lines. These results confirm the general accuracy of the
IFFT-based NILT. However, there is no guarantee that the TM
bounds are conservative with respect to the SPICE result, since
the underlying solution algorithms differ.

0.04 | MC (Matlab) 1
—— NILT-IFFT+TM
0.03 - NILT-Pade+TM| |

====NILT-conv+TM |.
— — SPICE

Time (ns)

Fig. 4. Time-domain behavior of voltage vout in the circuit of Fig. 3. Gray
lines: MC samples; solid red, dotted green, and dashed blue lines: bounds from
IFFT-, Padé approximation- and convolution-based TM analyses, respectively;
dashed black lines: bounds from a transient MC analysis in SPICE.

As far as the computational times are concerned, the IFFT-,
Padé approximation- and convolution-based TM simulations
take 295 s, 507 s and 1153 s, respectively. For comparison,
the MC analysis in SPICE requires 1540 s instead. This
demonstrates that the IFFT-based approach provides, besides
a superior accuracy, also higher computational efficiency. On



the other hand, the computational cost is competitive with a
commercial circuit simulator, while providing in addition a
parametric representation of the output.

C. Active Low-Pass Filter

Ry Rg Ry Rig R
O— A o
In R S Ryir lOut
7 17 CQI
=C7 =
Rs 3 Ris
Rig
Rio :’ Rayo
Lc, Lc, Lcg
Ry = 54779k Ry = 2.0076kQ  R3.4.89,13,14,18,19 = 3.3k R5 = 4.5898k)

Re=444kQ Ry =5.9999kQ Ryo = 4.2573kQ Ry; = 3.2201kQ Ry = 5.88327kQ
Ris = 5.62599kQ Rig = 3.63678kQ Ry7 = 10301k Rgp = 5.808498kQ Roy = 1.2201kQ
Cy = 120F C5 = 6.8nF C5 = 4.70F Cr = 6.8nF Co4,689 = 10nF

Fig. 5. Schematic of the low-pass filter reproduced from [17].

The last example considers the active low-pass filter in
Fig. 6, consisting of a combination of ideal operational
amplifiers and passive elements and having a bandwidth of
approximately 3 kHz. The value of the capacitors Cs, Cg
and Cy is assumed to vary within [9.5,10.5] nF. The network
is described in the Laplace domain by means of the MNA,
leading to a system of 17 equations. To stress the robustness of
the proposed method, an out-of-band impulse, with amplitude
1 V and duration 0.167 ms, is considered as input.

Fig. 6 shows the time-domain behavior of the output volt-
age. The spread of 10000 MC simulations (gray lines) is com-
pared with the enclosure obtained with a TM analysis (n = 4)
in conjunction with the IFFT-based NILT (solid red lines),
showing again excellent agreement. The MC bounds obtained
with two transient SPICE simulations with different maximum
time steps are provided by the dashed and solid black lines.
These additional curves highlight the strong instability of the
SPICE simulation as a function of the selected maximum time
step, which is avoided by the Laplace-based analysis.

V. CONCLUSIONS

This paper addresses the self-validated time-domain analysis
of linear systems affected by bounded uncertain parameters.
The proposed technique effectively combines the framework
of TMs with the NILT. Different NILT implementations are
reviewed for this purpose. A NILT based on the IFFT provides
the best performance in terms of both accuracy and compu-
tational efficiency. Three application examples are considered
to support the discussion. The extension to circuits including
nonlinear components is currently under investigation.
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