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1 Introduction
Micromechanics based failure analysis of composite
structures is a competent tool to model damage pro-
gression as it can effectively capture explicit variation
in constituent properties along with their non-linearities
[1]. The paper presents a fast two-scale finite element
framework based on a class of refined finite beam mod-
els called Carrera Unified Formulation (CUF) [2]. The
energy based crack band theory (CBT) is implemented
within framework to predict the damage propagation in
individual constituents [3, 4, 5]. The efficiency of the
framework is derived from the ability of CUF models
to provide accurate three-dimensional displacement and
stress fields at a reduced computational cost (approx-
imately one order of magnitude of degrees of freedom
less as compared to standard 3D brick elements).

2 Carrera Unified Formulation
Carrera Unified Formulation (CUF) expresses the dis-
placement field as an expansion of generic cross-section
functions, Fτ (x, z) with the displacement, uτ (y),

u(x, y, z, t) = Fτ (x, z)uτ (y, t) τ = 1, 2, ., T

where T is the number of terms in cross-section expan-
sion function Fτ [2]. In this work, 1D CUF models
based on Lagrange Expansion (LE) functions are uti-
lized. Bi-quadratic nine-noded L9 Lagrange elements
are used to model the cross-section. The displacement
field within an L9 element can be expressed as

ux = F1ux1 + F2ux2 + ...+ F9ux9

uy = F1uy1 + F2uy2 + ...+ F9uy9

uz = F1uz1 + F2uz2 + ...+ F9uz9

where ux1 , ..., ux9 represent the translational displace-
ment component of each of the nine nodes in the L9
element. The beam is discretized using the classical
finite element technique. Therefore, the displacement
vector can be expressed as

u(x, y, z) = Fτ (x, z)Ni(y)uτi

where Ni stands for the FE shape function, Fτ for the
cross-section expansion function.

Component-Wise (CW) approach is an efficient and
powerful tool which allows to model each component in

an complex structure via 1D CUF LE models by en-
riching the kinematic field [6, 7]. In this work, CW
approach is utilized to model the sub-scale representa-
tive volume element (RVE) of a uni-directional fiber-
reinforced composite as illustrated in Figure 1. With
CW approach, the RVE can be discretized into any
number of L9 elements with individual constitutive
properties (eg.: fiber and matrix). Periodic boundary
conditions are applied for the displacement unknowns
along the outer faces of the RVE. CUF RVE models

(a) Hex-pack RVE (b) CW CUF model

+

48 L9 2 B4 

Fig. 1: CW modeling of a hex-pack RVE

are able to compute local stress concentrations at the
micoscale with great computational accuracy as illus-
trated in Fig. 2. The local strain and stress fields
are computed using the local constitutive laws and the
overall stiffness, strain and stress field is obtained by
volume averaging the quantities over the RVE dimen-
sions. Fiber is assumed to be linearly isotropic and brit-
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Fig. 2: Transverse stress contour (σxx) for hex-pack RVE under trans-
verse strain (εxx) (Number of degrees of freedom is mentioned
in brackets)

tle. Therefore, a maximum longitudinal stress criteria
is used and upon satisfaction the stiffness is reduced
to zero. Matrix is assumed to be isotropic and maxi-
mum principal stress criteria is used as failure envelope.
Upon damage initiation, matrix stiffness degrades lin-
early based on crack band model [3, 4]. The algorithm
for the damage degradation is illustrated in Fig. 4.

3 Two-scale framework
The two-scale framework consists of a macro-level
model to define the structural-level components via
ABAQUS, interfaced with a sub-scale model at fiber-
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Fig. 3: Workflow of the two-scale framework built within ABAQUS
via UMAT/VUMAT interface

matrix level using CUF micromechanics module as illus-
trated in Fig. 3. The communication between the two
scales is achieved through exchange of strain, stress and
stiffness tensor at every integration point via ABAQUS
UMAT/VUMAT call.
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Fig. 4: Algorithm for two-scale progressive damage analysis

4 Numerical results

An unnotched [0]8 coupon under uniaxial tension is sim-
ulated. A triply periodic RVE (see Fig. 1) is used for
analyzing the composite coupon. The volume fraction
of the RVE is 65% and it is made of IM7/977-3 mate-
rial configuration [1]. Structural coupon was modeled
in ABAQUS using C3D8 brick element and CUF-RVE
micromechanical module is called at every gauss point
for material response. The stress-strain response for a
[0]8 laminate is presented in Fig. 5.
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Fig. 5: Uniaxial stress-strain curve for laminates [0]8

5 Conclusion
A novel micromechanics-based two-scale analysis for
progressive damage analysis of composite is presented.
The micromechanics module integrated into the frame-
work is based on a class of refined beam models called
Carrera Unified Formulation. Efficiency of CUF beam
models to produce accurate displacement and stress
fields is exploited for micromechanical analysis. The
energy based crack band theory (CBT) is implemented
within micromechanical framework for predicting the
damage propagation. Result for an unnotched [0]8
coupon under uni-axial tension is presented. The result
is validated against experimental data. Future results
shall include a set of different layups (notched and un-
notched) under tensile and compressive loading condi-
tions. Predictive capabilities along with the efficiency of
the presented two-scale framework shall be highlighted.
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