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Article

Nonparametric combination tests for
comparing two survival curves with
informative and non-informative
censoring

Rosa Arboretti,1 Roberto Fontana,2 Fortunato Pesarin3 and Luigi Salmaso4

Abstract

This paper looks at permutation methods used to deal with hypothesis testing within the survival analysis framework. In

the literature, several attempts have been made to deal with the comparison of survival curves and, depending on the

survival and hazard functions of two groups, they can be more or less efficient in detecting differences. Furthermore, in

some situations, censoring can be informative in that it depends on treatment effect. Our proposal is based on the

nonparametric combination approach and has proven to be very effective under different configurations of survival and

hazard functions. It allows the practitioner to test jointly on primary and censoring events and, by using multiple testing

methods, to assess the significance of the treatment effect separately on the survival and the censoring process.

Keywords

Permutation test, nonparametric combination test, weighted log-rank test

1 Motivation and overview from the literature

The main motivation for this paper comes from problems in applied research. Often a researcher’s aim is to test the
equality of two survival processes corresponding to two different therapies or treatments. A significant problem is
that well-known methods, like the log-rank test, assume that censoring is non-informative. When informative
censoring occurs, it is usually very difficult to model censoring patterns, which can be very complex. In addition,
assuming non-informative censoring when it is not true, increases the risk of making wrong decisions. In this
paper, we compare several methods which assume non-informative censoring with nonparametric combination
tests that can work both with informative and non-informative censoring.

In this section, we briefly present the most widely used statistics for testing the equality of two survival processes
based on independent randomly censored samples. We will refer to the survival process as the primary process and
to the censoring process as the secondary process.

The different nonparametric approaches can be classified as asymptotic or, for finite sample sizes, as
permutation procedures. In the framework of asymptotic nonparametric methods, several classes of tests may
be recognized in the literature.

A first class is based on integrated-weighted comparisons of the estimated cumulative hazard functions in the
two-sample design under the null and alternative hypotheses. These are based on the Nelson–Aalen estimator1,2

within weighted log-rank or weighted Cox–Mantel statistics. In particular, these methods are based on the
weighted differences between the observed and expected hazard rates. The test is based on weighted
comparisons of the estimated hazard rates of the jth population, j ¼ 1, 2, under the null and alternative
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Corresponding author:

Luigi Salmaso, Stradella San Nicola 3 Vicenza 36100 Italy.

Email: luigi.salmaso@unipd.it

Statistical Methods in Medical Research

0(0) 1–31

! The Author(s) 2017

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0962280217710836

journals.sagepub.com/home/smm

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0962280217710836
journals.sagepub.com/home/smm


hypotheses. An important consideration in applying this class of tests is the choice of weight function to be used.
Weights are used to highlight certain parts of the survival curves under study. A variety of weight functions have
been proposed in the literature and the related tests are more or less sensitive to early or late departures from the
hypothesized relationship between the two hazard functions (as specified in the null hypothesis) according to the
weight function used in the testing procedure. All these statistics are censored data generalizations of linear rank
statistics. For instance, the most commonly used rank-based test statistic is the log-rank test proposed by Mantel,3

Peto and Peto4 and Cox;5 it is a generalization of the exponential ordered score test of Savage6 for censored data.
This test statistic has good power when it comes to detecting differences in the hazard rates, when the ratio of
hazard functions in the populations being compared is approximately constant. Gilbert,7 Gehan8 and Breslow9

proposed a censored data generalization of the two-sample Wilcoxon–Mann–Whitney rank test (non-informative
censoring). Peto and Peto4 and Prentice et al.10 proposed other generalizations of the Wilcoxon–Mann–Whitney
test. They used a different estimate of the survival function based on the combined sample. Tarone and Ware11

proposed a class of multi-sample statistics for right-censored survival data that includes the log-rank test and the
censored data generalized Wilcoxon–Mann–Whitney procedures.

Fleming–Harrington12 introduced a very general class of tests which includes, as special cases, the log-rank test
and another version of the Wilcoxon–Mann–Whitney test. They use the Kaplan–Meier estimate of the survival
function based on the combined sample at the previous event time. More recently Gaugler et al.13 proposed a
modified Fleming–Harrington test very similar to the original version which includes as a special case the Peto–
Peto and Kalbfleisch–Prentice tests. Here, the Peto–Peto and Kalbfleisch–Prentice estimate of the survival function
is based on the pooled sample at the current event time. Jones and Crowley14 introduced a more general class of
single-covariate nonparametric tests for right-censored survival data that includes the Tarone–Ware two-sample
class, the Cox5 score test, the Tarone15 and Jonckheere16 C-sample trend statistics, the Brown et al.17 modification
of the Kendall rank statistic, Prentice’s linear rank statistics,10 O’Brien’s logit rank statistic (1978)18 and several
new procedures. This class can be generalized to include the Tarone–Ware C-sample class.

The statistical properties of the aforementioned test statistics have been studied by many authors. Here we
mention, among others, works by Gill,19 Fleming and Harrington,20 Breslow et al.,21 Fleming et al.,22 Lee,23

Kosorok and Lin.24

They are based on the weighted log-rank statisticsXD
i¼1

WðtiÞ dij � Ê dij
� �n o

j ¼ 1, 2

where j¼ 1, 2 denote the groups, 05 t1 5 � � � 5 tD are D different observation times in the interval 0, �ð � (tD ¼ �Þ,
dij is the number of primary events that occurred in the interval ti�1, tið �, t0 � 0 and Ê dij

� �
is an estimate of its

expected value. A variety of weight functions WðtiÞ have been proposed in the literature (see Table 1 where ri is the
number of individuals at risk at ti, i ¼ 1, . . . ,D and Ŝð:Þ and ~Sð:Þ are different estimates of the survival functions as
shall be clarified in Section 4). We observe that the symbol � is usually used for the terminal time, see e.g. the
monograph of Andersen et al.,25 while in this work � will be smaller than or equal to the terminal time.

These tests are sensitive to alternatives of ordered hazard functions.20 When they are applied to samples from
populations where the hazard rates cross, they have little power because early positive differences in favour of one
group are compensated by late differences in favour of the other treatment.

Table 1. Different types of weight function.

Weight function Test’s name

WðtiÞ ¼ 1 8ti Log-rank test

WðtiÞ ¼ ri Gehan-Breslow test

WðtiÞ ¼
ffiffiffi
ri
p

Tarone–Ware test

WðtiÞ ¼ ~SðtiÞ Peto–Peto and Kalbfleisch–Prentice tests

WðtiÞ ¼
~SðtiÞri
riþ1

Modified Peto–Peto and

Kalbfleisch–Prentice test25

Wp,qðtiÞ ¼ ðŜðti�1Þ
p
ð1� Ŝðti�1ÞÞ

q, p � 0; q � 0 Fleming–Harrington test

Wp,qðtiÞ ¼ ð~SðtiÞ
p
ð1� ~SðtiÞÞ

q, p � 0; q � 0 Modified Fleming-Harrington test26
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A second class of procedures is based on the maximum of the sequential evaluation of the weighted log-rank
tests at each event time. These procedures are known as ‘‘Renyi-type’’ statistics. Such tests are presumed to have
‘good’ power behaviour to detect crossing hazards. These supremum versions of the weighted log-rank tests were
proposed by Gill19 and are generalizations of the Kolmogorov–Smirnov statistic for comparing two censored data
samples (non-informative censoring).

A third class of procedures is the weighted Kaplan–Meier (WKM) statistic based directly on integrated
weighted comparisons of survival functions (rather than on ranks) in the two samples under the null and
alternative hypotheses, based on the Kaplan–Meier estimator. This class of tests was initially proposed by Pepe
and Fleming;26–28 more recently Lee et al.23 studied an integrated version of the WKM. Note that two other
versions of these two statistics could be obtained by replacing the Kaplan–Meier estimators with the Peto–Peto
and the Kalbfleisch–Prentice estimators. WKM statistics provide censored data generalizations of the two-sample
z- or t-test statistic (non-informative censoring). Asymptotic distribution properties of the WKM statistics can be
found in Pepe and Fleming28, Pepe and Fleming,29 and Lee et al.23

A fourth class of procedures is a censored data version of the Cramer–Von Mises statistics, based on the
integrated squared difference between the two estimated cumulative hazard rates, based on the Nelson–Aalen
estimator (non-informative censoring). This is done to obtain a limiting distribution which does not depend on the
relationship between the event and censoring times and because such tests arise naturally from counting process
theory. Small-sample and asymptotic distribution properties of three versions of this rank test statistic can be
found in Koziol30 and Schumacher.31

Finally, a further class of test statistics is a generalization of the two-sample median statistics for non-
informative censored data, proposed by Brookmeyer and Crowley,32 which is useful when we are interested in
comparing the median survival times of the two samples rather than the difference in the hazard rate or the
survival functions over time. Asymptotic distribution properties of the WKM statistics can be found in
Brookmeyer and Crowley.32

Other two-sample procedures have been suggested in the literature. The most recent works include a midrank
unification of rank tests for exact, tied and censored data proposed by Hudgens and Satten,33 a nonparametric
procedure for use when the distribution of time to non-informative censoring depends on treatment group and
survival time, proposed by DiRienzo,34 an asymptotically valid C-sample test statistic (C � 2) proposed by
Heller and Venkatraman,35 and the randomization-based log-rank test proposed by Zhang and Rosemberger.36

Recent contributions include Wakounig et al.37 which focuses on the nonparametric estimation of relative risk in
survival tests.

1.1 Permutation tests in survival analysis

When asymptotic tests are used to compare survival functions, it is possible to find situations in which the number
of failures of interest is so small that it is reasonable to question the validity of asymptotic tests. In such situations,
the standard asymptotic log-rank test, for example, is frequently replaced by its corresponding log-rank
permutation test – Galimberti and Valsecchi38 and Callegaro et al.39 This provides an exact small-sample test
when the censoring patterns in the two compared populations are equal. In actual fact, when the censoring
patterns are treatment dependent (i.e. informative), the observation pairs from the first population do not have
the same distribution as those from the second. The failure of the asymptotic log-rank test is not only due to an
inappropriate asymptotic approximation, which in turn can be replaced by an exact evaluation, but it is also due to
ignoring the interdependency of the observed risk sets, that is the risk sets in the 2� 2 contingency tables associated
with the D event times, as described in Heinze et al.40 Furthermore, since the two group sizes may be unbalanced,
the asymptotic test may not be appropriate as the asymptotic distributions under the null hypothesis may be too
far away from being appropriate. Some authors, among whom Kellerer and Chmelevsky,41 Chen and Gaylor,42

Ali,43 Soper and Tonkonoh,44 proposed the so-called exact procedures. These provide exact small sample tests
when the censoring patterns in the samples being compared are treatment independent.

In situations like these, permutation tests may be helpful. In this section, we give a brief description of methods
that require extensive computation. In the survival analysis framework, we present a review of the most common
two-sample permutation tests that have been suggested in the literature. The only necessary assumption is the
independence across the individuals of the pairs of primary and secondary data.

There are three different unidimensional exact conditional procedures analogous to the asymptotic log-rank test
and suitable for situations with treatment dependent (informative) censoring. The first method was proposed by
Heimann and Neuhaus.45 The other two were proposed in a work by Heinze et al.40 Callegaro et al.39 proposed an
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exact ‘‘Renyi-type’’ test suitable in case of treatment dependent censoring where it is assumed that, in the
alternative hypothesis, treatment may also influence the censoring process, but without considering their joint
effects. An interesting permutation contribution is given by Galimberti and Valsecchi38 who introduced a
permutation test to compare survival curves for non fixed-matched data when the number of strata increases,
the stratum sizes are small, and the proportional hazard model is not satisfied.

It is worth mentioning some papers that can deal with different censoring distributions like Neuhaus46 and
Brendel et al.47 (see also Janssen and Meyer48) and also with competing risks (Dobler et al.49 and subsequent
papers). All these papers assume non-informative censoring. However, the first two apply a different, but also
interesting permutation technique for survival data which is asymptotically unbiased while still being finitely exact
if exchangeability holds.

The joint analysis of primary and secondary time processes, as both can contain information on treatment
effects, is the main proposal of our paper.

1.2 Data structure

In a two-sample problem, the whole set of observed data can be summarized by the pair of associated matrices
ðX, dÞ

ðX, dÞ ¼ ½XmjðtÞ, �mjðtÞ�, 0 � t � �, m ¼ 1, . . . , nj, j ¼ 1, 2
� �

where ½XmjðtÞ, �mjðtÞ� is the event-time profile at time t of individual m in group j)
We make the assumption that the two groups are independent and that the observations are exchangeable

under the null hypothesis.
At time t for the m-th individual of the j-th group, the possible values of ðXmjðtÞ, �mjðtÞÞ are

. ð:, 0Þ when at time t the individual is still alive and had not left the study;

. ðx, 0Þ, x � t when the individual died at time x (primary event);

. ðx, 1Þ, x � t when the individual left the study at time x (censoring event).

In particular at the final time � if the m-th individual of the j-th group is still alive and did not leave the study,
the value of ðXmjðtÞ, �mjðtÞÞ is ð�, 1Þ, because this situation is equivalent to a censoring event that occurs at time �.

Data in ðX, dÞ correspond to pooling two-sample data profiles of two groups with n1 and n2 individuals,
respectively, classified according to two levels of a treatment. That is, ðX, dÞ ¼ ðX1, d1Þ ] ðX2, d2Þ

� �
, where ] is

the pooling operator to merge together two datasets and fðXj, dj Þg is

½XmjðtÞ, �mjðtÞ�, 0 � t � �, m ¼ 1, . . . , nj
� �

, j ¼ 1, 2

We also assume that the response variables in the two groups have unknown distributions P1 ¼ P1� � P1Xj� and
P2 ¼ P2� � P2Xj�, (Pj 2 P, where P is a possibly non specified nonparametric family of non-degenerate
distributions) both defined on the same probability space (�,A) where � ¼ ðX ,OÞ is the sample space, A is a
�-algebra of events and X and O are the sample spaces for data times X and censoring indicators �, respectively.
Hence, let � ¼ ðX ,OÞ be the support of the random vector ðX, dÞ and �=ðX, dÞ the permutation sample space given
ðX, dÞ. In this way, ðX ,OÞ=ðX, dÞ is the orbit associated with the data set ðX, dÞ, that is the set of sufficient statistics
under the null hypothesis associated with the observed data set ðX, dÞ, thus containing the set of all permutations
ðX	, d	Þ. Further details on the orbits can be found in Pesarin and Salmaso.50

In the permutation setting, let ðXj, dj Þ be the observed data set of nj elements related to the jth sample j¼ 1, 2.

Let us also use ðX	bj , d	bj Þ, j ¼ 1, 2 , b ¼ 1, . . . ,B
n o

to indicate a random sample of B elements from the

permutation sample space �=ðX, dÞ.

2 Comparison of survival curves

As frequently occurs in survival studies, time-to-event data are characterized by incompleteness due to censoring.
In particular, right-censored data occur when the unobserved and unknown time to the event of interest is more
than the recorded time for which an individual was under observation. For instance, subjects in a survival study
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can be lost to follow-up due to transfer to a non participating institution, or the study can finish before all the
subjects have observed the event.

The focus here is the presence of complicated censoring patterns and, in particular, the type of censoring. In the
right-censored survival data framework, censored data are usually assumed to originate from an underlying
random process, which may or may not be related to treatment levels or to event processes. When we assume
that the probability of a datum being censored does not depend on its unobserved value, then we may ignore this
process and so need not specify it.

Nearly all statistical procedures for right-censored survival data are based on the assumption that censoring
effects are, in a very specific sense, non-informative with respect to the distribution of survival time, i.e. unaffected
by treatment levels. If the censoring distributions are equal, the censoring process does not depend on group, and
observed values may be considered a random sub-sample of the complete data set. Thus, in these situations, it is
appropriate to ignore the process that causes censored data when making inferences on X. Therefore, in the case of
treatment independent censoring distribution, the process that causes censored data is called ignorable and analysis
may be carried out conditionally on the actually observed data.

In contrast, when the censoring patterns are treatment dependent, the observation pairs from the first sample do
not have the same distribution as those from the second sample, even when the null hypothesis on pure survival
times is true. In the case of treatment dependent censoring distributions, in order to make valid inferences, the
censored data process must be properly specified. Thus, the analysis of treatment dependent censoring data is
much more complicated than that of treatment independent censoring data because inferences must be made by
taking into consideration the data set as a whole and by specifying a proper model for the censoring pattern. In
any case, the specification of a model which correctly represents the censored data process up to now seems the
only way to remove the inferential bias caused by censoring.

In survival analysis, it is often of interest to test whether or not two survival time distributions are equal. We
assume that observations are available on the failure times of n individuals assumed to behave independently.
Focusing on the two independent sample case, researchers are often interested in comparing two therapies, two
products, two processes, two treatments, etc. For the moment let us consider the case where only one response is of
interest. The two samples are denoted by ðX11, . . . ,X1n1 Þ and ðX21, . . . ,X2n2 Þ, respectively. The X01s constitute a
random sample from the random variable X1 with CDF F1, and the X02s a random sample from X2 with CDF F2.
The testing problem is usually formulated as testing the null hypothesis H0 : fF1ðtÞ ¼ F2ðtÞ, 8t 2 R

þ
g � X1¼

d
X2.

We now move to the situation in which both primary and censoring events can occur. Let Sj and Kj denote the
marginal distribution functions of the survival and censoring times corresponding to the individuals of the jth
group, respectively, and let Pj denote their joint distribution function, j¼ 1, 2. As before ½0, �� is the time interval
under study. The hypotheses of interest, in the case of non-informative censoring ðK1 ¼ K2 ¼ KÞ, are

H0 : P1ðtÞ ¼ P2ðtÞ ¼ PðtÞ, 8t � �
� �

¼ f½S1ðtÞ ¼ S2ðtÞ�, 8t � �g

against

H1 : P1ðtÞ56¼4P2ðtÞ, some t � �
� �

¼ S1ðtÞ56¼4S2ðtÞ, some t � �
� �

where 56¼4 means either 5 , or 6¼ , or >. These hypotheses reflect the notion that if treatment has no effect,
then two primary processes are equal, the secondary processes being equal by assumption.

In the case of treatment-dependent (informative) censoring, the hypotheses are

H0 : P1ðtÞ ¼ P2ðtÞ ¼ PðtÞ, 8t � �
� �

¼ f½S1ðtÞ ¼ S2ðtÞ� \ ½K1ðtÞ ¼ K2ðtÞ�, 8t � �g

against

H1 : f½S1ðtÞ56¼4S2ðtÞ�
[

K1ðtÞ 6¼ K2ðtÞ½ �, some t � �g

which reflects the notion that if treatment has no effect, then both primary and secondary processes are equal in
two samples, whereas in the alternative, at least the primary or the secondary (or both) are not equal.

If we assume that in the null hypothesis, where treatments have exactly the same effect, all pairs in (X, d) of
event and censoring times are jointly exchangeable with respect to subjects and groups, then such multivariate
testing problems are solvable by the nonparametric combination (NPC) of dependent permutation tests, as are the
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tests on main and censoring time events – Pesarin,51 Pesarin and Salmaso.50 It should be emphasized that the
dependence structure between two processes in the alternative is too complicated to analyze, so we may only deal
with it nonparametrically by NPC. NPC works within Roy’s Union-Intersection principle. Thus, it is assumed that
the hypotheses can be broken down into a set of sub-hypotheses, and the related partial tests are assumed to be
marginally (i.e. separately, Pesarin52) unbiased, significant for large values and consistent.

Although some solutions presented in this chapter are exact, the most important ones are approximations
because the permutation distributions of the test statistics are not exactly invariant with respect to permutations of
censored data, as we shall see. However, the approximations are quite reasonably accurate in all situations,
provided that the number of observed data is not too small. The approximation is due to the fact that we
remove from the permutation sample space, associated with the whole data set, all those permutations where
the permutation sample sizes of actually observed n-dimensional data are not large enough. In a way, similarly to
the permutation analysis of missing data (see Section 7.9 of Pesarin and Salmaso50), we must establish a kind of
restriction on the permutation space, provided that this restriction does not imply unacceptable bias on inferential
conclusions.

3 Nonparametric combination-based tests

In the framework of permutation methods, it is possible to consider an analysis approach incorporating two
successive stages, the first focusing on the D observed distinct event times in the pooled sample, which can be
considered partial aspects of the hypothesis testing problem giving rise to a list of partial tests, and the second
focusing on the combination of these partial aspects into a global aspect.

Therefore, the NPC procedure for dependent tests may be viewed as a two-phase testing procedure. In the first
phase, let us suppose that �i : ðX ,OÞ ! R

1 (i ¼ 1, . . . ,D) is an appropriate univariate partial test statistic for the
ith sub-hypothesis H0i against H1i, for which (without loss of generality) we assume that �i is non-degenerate,
marginally or separately unbiased, consistent and that large values are significant, so that they are stochastically
larger inH1i than inH0i in both conditional and unconditional senses. In the second phase, we construct the global
test statistic either simply as �00 ¼

PD
i¼1 �i (direct combination) or as �00 ¼  ð�1, . . . , �i, . . . , �DÞ by combining the

permutation p-values �i ¼ ��i
associated with the D partial tests through a suitable combining function  . Hence,

the combined test is a function of D dependent partial tests. In practical terms, in place of true p-values �i, we use
their estimates �̂i based on B random permutations from the permutation sample space �=ðX, dÞ.

When there is a more complex data configuration (where the more interesting cases are given by testing in the
presence of stratification variables, closed-testing, multi-aspect testing, etc.), the NPC may be like a multi-phase
procedure characterized by several intermediate combinations, where we may, for instance, firstly combine partial
tests with respect to variables within each s stratum (with s ¼ 1, . . . ,S), and then combine the second-order tests
with respect to strata into a single third-order combined test.

3.1 Breaking down the hypotheses

It is generally of interest to test for the global (or overall) null hypothesis that the two groups have the same
underlying distribution

HG
0 : ðX1, �1Þ ¼

d
ðX2, �2Þ

n o
against a one-sided (stochastic dominance) or a two-sided (inequality in distribution) global alternative hypothesis

HG
1 : ðX1, �1Þ 56¼4

d

ðX2, �2Þ

� �

Let us assume that under the null hypothesis, the data ðX, dÞ are jointly exchangeable with respect to the two
groups. It is important to note that the pooled set of observed data ðX, dÞ in the null hypothesis is a set of jointly
sufficient statistics for the underlying observed and censoring data processes. Moreover, HG

0 implies the
exchangeability of individual data vectors with respect to groups, so that the permutation multivariate testing
principle is properly applicable, Pesarin.53

The complexity of this testing problem is such that it is very difficult to find a single overall test statistic.
However, the problem may be dealt with by means of the NPC of a set of dependent permutation tests.
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Hence, we consider a set of D partial tests followed by their NPC. The overall null hypothesis can be written as

HG
0 : \

D

i¼1
ðXi1, �i1Þ ¼

d
ðXi2, �i2Þ

h i� �
¼ \

D

i¼1
H0i

� �

equivalent to

HG
0 : \

D

i¼1
�1i¼

d
�2i

	 
� �
\ \

D

i¼1
X1i¼

d
X2i

	 

jd

� �� �
¼ Hd

0 \H
1Xj�
0

where a breakdown ofHG
0 is emphasized according to the main theory of the nonparametric combination – Pesarin

and Salmaso.50 In fact a suitable way to decompose the overall null hypothesis is usually denoted by the union of
the partial null hypotheses as in the Union-Intersection testing theory. The overall alternative hypothesis may be
represented as

HG
1 ¼ [

D

i¼1
½ðX1i, �1iÞ _5 6¼4

d

ðX2i, �2iÞ�

( )
¼ [

D

i¼1
H1i

� �

¼ [
D

i¼1
�1i _5 6¼ 4

d

�2i

 !" #[
[
D

i¼1
X1i

_5 6¼ 4
d

X2i

 !
jd

" #( )
¼ Hd

1

[
H1Xj�

1

It should, however, be highlighted that at time ti, i ¼ 1, . . . ,D either one main or one censoring event occurs, so
the total number of active sub-hypotheses is exactly D. Hence, the hypothesis HG

0 against HG
1 is broken down into

D sub-hypotheses H0i against H1i, i ¼ 1, . . . ,D, in such a way that HG
0 is true if all the D null sub-hypotheses H0i

are jointly true and HG
1 implies that the inequality of the two distributions entails the falsity of at least one among

the D null sub-hypotheses. Finally, note that the hypotheses and assumptions are such that the permutation testing
principle applies, Pesarin.53

Thus, to test HG
0 against HG

1 , we consider a D-dimensional vector of real-valued test statistics ¼ f1, . . . , Dg, the
ith component of which is the univariate partial test for the ith sub-hypothesis H0i against H1i. We assume that
partial tests are non-degenerate, marginally unbiased, consistent, and significant for large values. Hence, the
combined test is a function of D dependent partial tests and, of course, the combination must be
nonparametric, particularly with regard to the underlying dependence relation structure, which is too complex
to be analyzed by means of all its unknown coefficients of dependence.

3.2 The test structure

Let us consider toð1Þ5 � � � 5 toðDÞ, i ¼ 1, . . . ,D, the ordered and distinct observed times of the event of interest. To
make the notation easy, we write toðiÞ simply as ti. For each subject m within the jth group (m ¼ 1, . . . , nj, j¼ 1, 2)
and for each ti, we define VmjðtiÞ as

VmjðtiÞ ¼

1 if Xmj 4 ti

0 if Xmj � ti and a primary event occurred at Xmj

2 if Xmj � ti and a secondary event occurred at Xmj

8><>:
and the indicator of non-censored observations OmjðtiÞ as 1� �mjðtiÞ, i.e.

OmjðtiÞ ¼
0 if VmjðtiÞ ¼ 2

1 otherwise

�

We also define �ij ¼
Pnj

m¼1 OmjðtiÞ as the number of observations that have not already been censored at time ti

in the jth group, and �i ¼
P2

j¼1 �ijðtiÞ as the number of observations that have not already been censored at time ti
in the pooled sample.
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3.3 NPC test for treatment independent censoring

In this section, we consider a multidimensional permutation test in the case of treatment independent censoring
(TIC-NPC). This test, proposed by Callegaro et al.,39 is based on the assumption that censoring effects are non-
informative with respect to the distribution of survival time.

In the present context, we are interested in testing the global null hypothesis

HG
0 ¼ Hd

0 \H
1Xj�
0

against the global alternative

HG
1 ¼ Hd

1

[
H1Xj�

1

If the censored data are treatment independent, we may proceed conditionally on the observed censoring
indicator d and ignore Hd

0, because in this context d does not provide any information about treatment effects.
Hence, we may equivalently write the null hypothesis in the relatively simpler form

H0 ¼ H1Xj�
0 : \

D

i¼1
Xi1¼

d
Xi2

	 

dj

h i� �
¼ \iH

1Xj�
0i

n o
against

H1 : [
D

i¼1
H1Xj�

1i

� �

The partial permutation test statistics for testing the sub-hypothesis H1Xj�
0i against the sub-alternative H1Xj�

1i then
takes the form

�	1Xj�i ¼ �S	2ðtiÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
�	i1ðtiÞ

�	i2ðtiÞ

s
� �S	1ðtiÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
�	i2ðtiÞ

�	i1ðtiÞ

s

where �Sj ðtiÞ ¼
Pnj

m¼1 VmjðtiÞ�mjðtiÞ is the number of individuals that did not leave the study and are still alive at time

ti and the suffix 	 means that the statistic has been computed using a random permutation of the sample.
Note that each test statistic �1Xj�

i is permutationally invariant, in mean value and variance, with respect to the
sample size �	j ¼

Pnj
m¼1 �

	
mj, that varies according to the random attribution of units to the two groups, because

units with censoring data participate in the permutation mechanism as well as all other units. Also, note that when
there are no censoring values, so that �	j ¼ nj, j¼ 1, 2, each partial test is permutationally equivalent to the
traditional two-sample permutation test for comparison of locations.

In order for the given solution to be well-defined, we must assume that �	1 and �	2 are jointly positive. This
implies that, in general, we must consider a sort of restricted permutation strategy which consists of discarding
from the analysis all points of the permutation sample space ðX ,OÞ=ðX, dÞ in which even a single component of the
permutation matrix 1�	, of actual sample sizes of valid data, is zero. Of course, this kind of restriction has no effect
on inferential conclusions.

Therefore, the survival analysis may be solved by NPC of �00ðtiÞ ¼ �001Xj� ðtiÞ ¼  X �̂1Xj�1 , . . . , �̂1Xj�D

	 

where

�̂i ¼

1
2þ

PB
b¼1

I �	bi � �	i
� �

Bþ 1

is the p-value function estimate for each �	i ðtiÞ and  X is a suitable combining function  . For details on different
combining functions and related properties, we refer the reader to Pesarin and Salmaso.50

Note that according to Rubin,54 we may ignore the variable � because in this context we have assumed that it
does not provide any information on treatment effects.
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3.4 NPC test for treatment dependent censoring

In this section, we introduce a permutation test in the case of treatment dependent censoring (or informative
censoring).

As in the previous section, we are interested in testing the global null hypothesis

HG
0 ¼ Hd

0 \H
1Xj�
0

against the global alternative

HG
1 ¼ Hd

1

[
H1Xj�

1

In the case of treatment dependent censoring, it is assumed that, in the alternative, treatment may also
influence the censoring process. Then data X associated to the censored data process d must be taken into
consideration. In fact, the treatment may affect both the distributions of variables X and the censoring
indicator �. Hence, in the case of a treatment-dependent censoring data model, the null hypothesis requires the
joint distributional equality of the censored data processes in the two groups, giving rise to d, and of response data
X conditional on d, i.e.

HG
0 : d1¼

d
d2

h i
\ X1¼

d
X2

	 

dj

h in o
The assumed exchangeability, in the null hypothesis, of the n individual data vectors in ðX, dÞ, with respect to

the two groups, implies that the treatment effects are null on all observed and unobserved variables. In other
words, H0 implies that there is no difference in distribution for the multivariate censoring indicator variables
dj, j ¼ 1, 2, and, conditionally on d, for actually observed data X. As a consequence, it is not necessary to specify
both the censored data process and the data distribution, provided that marginally unbiased permutation tests are
available. In particular, it is not necessary to specify the dependence relation structure in ðX, dÞ because it is
nonparametrically processed by the NPC.

In this framework, the global null and alternative hypotheses, as in Section 3.3, may be broken down into the D
sub-hypotheses

HG
0 : \

D

i¼1
�i1¼

d
�i2

	 
� �
\ \

D

i¼1
Xi1¼

d
Xi2

	 

dj

� �� �
¼ Hd

0 \H
1Xj�
0

n o
¼ \

D

i¼1
Hd

0i

 �
\ \

D

i¼1
H1Xj�

0i

 �� �

against

HG
1 : [

D

i¼1
Hd

1i

 �[
[
D

i¼1
H1Xj�

1i

 �� �

where Hd
0i indicates the equality in distribution among the two levels of the ith marginal component of the

censoring indicator (censoring process), and H1Xj�
0i indicates the equality in distribution of the ith component of

X, conditional on d.
As before 05 t1 5 t2 5 � � � 5 tD ¼ � are the observed distinct times to event occurrences (primary and

censoring events).
For each time ti, let r

	
1i and r	2i be the number of subjects at risk at the start of the ith period in a permutation of

individual profiles

r	ji ¼
Xnj
m¼1

V	miO
	
mi, j ¼ 1, 2:

Let d	ji, and c	ji, j ¼ 1, 2, be the number of primary and censoring events, respectively, in two groups at ith
period ti�1, tið �, 1 � i � D.

Of course, ri ¼ r	1i þ r	2i, di ¼ d	1i þ d	2i and ci ¼ c	1i þ c	2i are permutation invariant quantities.
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At this stage, in the spirit of Mantel–Cox, we may apply two test statistics (log-rank type) for primary and
censoring events, respectively, followed by their NPC, that is

T	D ¼

P
i

ðd	1i �
�d	1iÞffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

V	Di

r

and

T	C ¼

P
i

ðc	1i � �c	1iÞffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

V	Ci

r
where

�d	1i ¼ di
r	1i
ri

and �c	1i ¼ ci
r	1i
ri

are the permutation means and

V	Di ¼ di
r	1i
ri

r	2i
ri

ri � di
ri � 1

and V	Ci ¼ ci
r	1i
ri

r	2i
ri

ri � ci
ri � 1

are the permutation variances of d	1i and c	1i, respectively.
Alternatively, in the spirit of Anderson–Darling, we may use

T	D,AD ¼
X
i

d	1i �
�d	1iffiffiffiffiffiffiffiffi

V	Di

p
and

T	C,AD ¼
X
i

c	1i � �c	1iffiffiffiffiffiffiffiffi
V	Ci

p
followed by the NPC. Test statistics within a permutation framework are usually chosen from well-known
statistics in the parametric or standard non-parametric field since such statistics are generally unbiased and
consistent, as in this case.

It should be noted that T	D, T
	
C, T

	
D,AD and T	C,AD are nothing more than direct combinations of D partial tests,

for primary and censoring events respectively.
We also observe that the Anderson–Darling-type statistics are the sum of standardized statistics, while the

Mantel–Cox-type statistics are the standardized sum of statistics.
If using weights wi, 1 � i � D, which can be different for primary and censoring events, the Mantel–Cox-type

statistic T	D becomes

T	Dðw1, . . . ,wDÞ ¼

P
i

wiðd
	
1i �

�d	1iÞffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

V	Di

r ð1Þ

and the Anderson–Darling-type statistic T	D becomes

T	D,ADðw1, . . . ,wDÞ ¼
X
i

wi
d	1i �

�d	1iffiffiffiffiffiffiffiffi
V	Di

p ð2Þ
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where

V	Diðw1, . . . ,wDÞ ¼ w2
i di

r	1i
ri

r	2i
ri

ri � di
ri � 1

Analogous expressions are obtained for T	Cðw1, . . . ,wDÞ and T	C,ADðw1, . . . ,wDÞ.
The final step of this procedure is the combination of these partial tests according to NPC Theory – Pesarin and

Salmaso.50

4 Simulation study

We set up a simulation study to compare the results obtained using different statistical tests. We analysed the NPC
tests, the statistical tests described in Wakounig et al.37 and those made available by the Proc Lifetest of SAS55

under the assumption of non-informative censoring.
We consider n ¼ n1 þ n2 individuals in the combined sample of two groups G1 and G2 where G1 (G2) has size n1

(n2). The data concerning primary events (or deaths) and censoring events are collected at each of D time points
05 t1 5 t2 5 � � � 5 tD which are considered as time to event occurrences. At the i-th time point, i ¼ 1, . . . ,D, for
each group Gj, j ¼ 1, 2, the relevant data are the number of individuals at risk ri,j, the number of deaths di,j and the
number of censoring events ci,j in the period of time between ti�1 (exclusive) and ti (inclusive), being t0 ¼ 0. This is
equivalent to considering the time ti as time to event occurrences.

The data scheme is summarized in Table 2, where rj,i, the number of individuals of group j at risk at time ti, is
computed as the difference between rj,i�1, the number of individuals of group j at risk at time ti�1, and the number
of primary and secondary events (dj,i�1 and cj,i�1, respectively) which occurred between ti�1 (exclusive) and ti
(inclusive)

rj,i ¼ rj,i�1 � ðdj,i�1 þ cj,i�1Þ, j ¼ 1, 2 ð3Þ

with r1,0 ¼ n1, r2,0 ¼ n2, r0 ¼ n and dj,0 ¼ cj,0 ¼ 0. From equation (3), it follows that r1,1 ¼ n1, r2,1 ¼ n2 and r1 ¼ n.
In this study, all the tests are based on the weighted log-rank type test statistics (Mantel–Cox) TDðw1, . . . ,wDÞ

and TCðw1, . . . ,wDÞ

T	Dðw1, . . . ,wDÞ ¼
X
i

wi

d	1,i � di
r	
1,i

riffiffiffiffiffiffiffi
VD

p ð4Þ

T	Cðw1, . . . ,wDÞ ¼
X
i

wi

c	1,i � ci
r	
1,i

riffiffiffiffiffiffiffi
VC

p ð5Þ

where wj are weights which are defined as described in Table 3, VD ¼
P

i V
	
Diðw1, . . . ,wDÞ and

VC ¼
P

i V
	
Ciðw1, . . . ,wDÞ.

We use Ŝð:Þ to denote the Kaplan–Meier estimator of the survival function

ŜðtÞ ¼
Y
ti�t

1�
di
ri

 �

Table 2. Situation at time ti, i ¼ 1, . . . ,D.

Number of individuals

Group At risk at t i Dead Censored

G1 r1,i d1,i c1,i

G2 r2,i d2,i c2,i

Total ri di ci
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Ĝð:Þ to denote the Kaplan–Meier estimator of the follow-up distribution and ~Sð:Þ to denote an estimate of the
survival function given by

~SðtÞ ¼
Y
tj�t

1�
dj

rj þ 1

 �

According to the approach implemented in the Proc Lifetest of SAS,55 the p-value for the two-sided test is
computed as 2ð1��ðjtobsjÞÞ where � is the cumulative distribution function of the standard normal distribution
and jtobsj is the absolute value of the observed value of TDðw1, . . . ,wDÞ. The justification for using the normal
distribution is that under H0 and non-informative censoring, the statistic TDðw1, . . . ,wDÞ asymptotically follows a
standard normal distribution. Working in the two-group situation, it is easy to see that Proc Lifetest computes p-
values as 1� F�2

1
ðt2obsÞ, where F�2

1
is the cumulative distribution function of the Chi-square distribution with one

degree of freedom. It follows that the same p-values as those computed using jtobsj and the standard normal
distribution are obtained.

Our goal is to compare the statistical tests described in Table 3 with those that can be obtained using NPC-
based tests. As a test statistic for partial tests, we consider the log-rank type Mantel statistic which is obtained
using all weights wi equal to 1. We used this statistic for both deaths (TMD) and censoring events (TMC)

T	MD ¼ T	Dð1, . . . , 1Þ ¼
XD
i¼1

d	1,i � di
r	
1,i

riffiffiffiffiffiffiffi
V	D

p
T	MC ¼ T	Cð1, . . . , 1Þ ¼

XD
i¼1

c	1,i � ci
r	
1,i

riffiffiffiffiffiffiffi
V	C

p
where V	D (V	C) is the variance of the observed number of deaths (number of censoring events) in group G1. It is
worth noting that the methodology can easily be extended to consider any of the statistics in Table 3.

We can now summarize the steps of the NPC test procedure.

. We consider B random permutations of the pooled profiles ðX, dÞ. For each permutation b, we compute both the
test statistics T

ðbÞ
MD and T

ðbÞ
MC, b ¼ 1, . . . ,B. We consider B¼ 1000 permutations and omit the * to simplify the

notation.
. We compute the p-values corresponding to deaths pMD and censoring events pMC as

pMD ¼

1
2þ

PB
b¼1

IðjT
ðbÞ
MDj � jT

ð0Þ
MDjÞ

Bþ 1

Table 3. Weights for the different statistical tests.

Test Statistics Name of test in Proc Lifetest Name of test in Wakounig et al.36 Weights wj

TM Logrank Mantel 1

TB Wilcoxon Breslow rj
TT Tarone–Ware

ffiffiffi
rj
p

TP Peto–Peto ~Sðtj Þ

TP? Modified Peto–Peto ~Sðtj Þ
rj

rjþ1

TH Harrington–Fleming (p, q), p, q � 0 ðŜðtj ÞÞ
p
ð1� Ŝðtj ÞÞ

q

TM?
Modified Mantel 1cGðtj Þ

TR Prentice ŜðtjÞ

TR? Modified Prentice
Ŝðtj Þ

Ĝðtj Þ
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pMC ¼

1
2þ

PB
b¼1

IðjT
ðbÞ
MCj � jT

ð0Þ
MCjÞ

Bþ 1

where T
ð0Þ
MD and T

ð0Þ
MC are the statistics corresponding to the observed data.

. We compute the p-value-like statistics as

�ðbÞMD ¼

1
2þ

P
j2f1,...,Bg, j6¼b

IðjT
ð j Þ
MDj � jT

ðbÞ
MDjÞ

Bþ 1
b ¼ 1, . . .B

�ðbÞMC ¼

1
2þ

P
j2f1,...,Bg, j6¼b

IðjT
ð j Þ
MCj � jT

ðbÞ
MCjÞ

Bþ 1
b ¼ 1, . . .B:

. We compute  ð�ðbÞMD, �
ðbÞ
MCÞ using the combination function �. In this work, we used Tippet ( T) and Fisher ( F)

combination functions which are defined as

 Tðx1, x2Þ ¼ minfx1, x2g

 Fðx1, x2Þ ¼ � log x1 � logx2:

. We compute the p-value for both the Tippet (pMT) and the Fisher (pMF) combination functions

pMT ¼

1
2þ

PB
b¼1

Iðminf�ðbÞMD, �
ðbÞ
MCg � minfpMD, pMCgÞ

Bþ 1

pMF ¼

1
2þ

PB
b¼1

Ið� log �ðbÞMD � log �ðbÞMC � � log pMD � log pMCÞ

Bþ 1

. As the output of the NPC test procedure, we consider both the one-response p-values pMD (for deaths) and pMC

(for censoring events) as well as the combined p-values pMT (using the Tippet combination function) and pMF

(using the Fisher combination function).

4.1 Different scenarios

For primary events, we set up the same scenarios as those described in Wakounig et al.,37 see Figures 1 and 2. We
consider two groups with n1 ¼ n2 ¼ 40 individuals and 10 equispaced times 05 t1 5 � � � 5 t10 ¼ 4 in the time
interval ½0, � ¼ 4�

ti ¼ i
4

10
, i ¼ 1, . . . , 10:

Survival times for group G1 are drawn randomly from an exponential distribution with hazard function
h1ðtÞ ¼ 0:5, while survival times for group G2 are drawn randomly from distributions with hazard function h2ðtÞ
defined as follows

(a) proportional hazards: h2ðtÞ ¼ 2h1ðtÞ
(b) converging hazards: h2ðtÞ ¼ ð1þ

2:88
1þ5tÞh1ðtÞ

(c) diverging hazards: h2ðtÞ ¼ ð1þ 1:86tÞh1ðtÞ
(d) identical hazards: h2ðtÞ ¼ h1ðtÞ
(e) diverging hazards: h2ðtÞ ¼ 0:11 expð1:5tÞ
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Figure 1. Hazard functions for A,B,C,D and E scenarios.

Figure 2. Survival functions for A,B,C,D and E scenarios.
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Each scenario has been considered under three different conditions of censoring events:

C0,0 no censoring events, i.e. Pð�mj ¼ 1Þ ¼ 0 8m, j.
C10,10 probability of censoring events equal to 10% for both G1 and G2 (non-informative censoring), i.e

Pð�mj ¼ 1Þ ¼ 0:10 8m, j.
C8,2 probability of censoring events equal to 8% for G1 and equal to 2% for G2 (informative censoring), i.e.

Pð�m1 ¼ 1Þ ¼ 0:08,Pð�m2 ¼ 1Þ ¼ 0:02 8m.

It follows that we considered a total of 15 scenarios s ¼ ðs1, s2Þ with s1 2 fA,B,C,D,Eg and
s2 2 fC0,0,C10,10,C8,2g. For each scenario, we ran N¼ 1000 simulations. In Section 4.6, we consider five further
scenarios that are inspired by one of the real examples that we will study in Section 5.

We observe that in the 10 scenarios s ¼ ðs1, s2Þ with s1 2 fA,B,C,D,Eg and s2 2 fC0,0,C10,10g, we have no
censoring or non-informative censoring. In these circumstances, the comparison between NPC and the other
tests is fair. In the remaining scenarios, censoring is informative and all the tests, except NPC, should not be
used. We use them mainly to show the risks that occur when a test suitable for non-informative censoring is used
when censoring is informative.

The simulation data have been generated according to the procedure below, considering the generic interval
ti�1, tið �, i ¼ 1, . . . ,D.
As the first step of the procedure, we simulate censoring events. For each individual at risk at time ti�1, we

consider the Bernoulli random variable Cmj 
Bernoulli Pð�mj ¼ 1Þ
� �

and, using a function which generates
random numbers from a specified distribution, we make a virtual experiment. If we get Cmj¼ 1, the individual
is censored. If a censoring event does not occur (i.e. Cmj¼ 0), we simulate a primary event. We compute

�mj,i ¼ PðXmj � tijXmj 4 ti�1,Cmj ¼ 0Þ ¼

¼
PðCmj ¼ 0ÞPðti�1 5Xmj � tijCmj ¼ 0Þ

PðCmj ¼ 0ÞPðXmj 4 ti�1jCmj ¼ 0Þ
¼

¼
Fj ðtiÞ � Fj ðti�1Þ

1� Fj ðtiÞ

where Fj ðtÞ ¼ 1� expð�
R t
0 hjðsÞdsÞ, j ¼ 1, 2. We consider the Bernoulli random variable Dmj 
 Bernoulli �mj,i

� �
and as before using a function which generates random numbers from a specified distribution, we perform a virtual
experiment. If we get Dmj,i ¼ 1, a primary event has occurred to the m-th individual of the j-th group in the time
interval ðti�1, ti�. Otherwise the m-th individual of the j-th group will be considered to be at risk in the next time
interval ðti, tiþ1�.

4.2 Results

For each scenario s and for each simulation, we follow the following steps:

(1) We compute all the test statistics listed in Table 3. We use TQ to denote one of these statistics.
(2) For each test statistic TQ, we compute the corresponding p-value pQ as 2ð1��ðjtQ,obsjÞÞ, where � is the

cumulative distribution function of the standard normal random variable and jtQ,obsj is the absolute value
of the observed value of TQ. We get pM for Logrank, pB for Wilcoxon, pT for Tarone–Ware, pP? for Modified
Peto–Peto, pH for Harrington–Fleming, pM?

for Modified Mantel, pR for Prentice and pR? for Modified
Prentice.

(3) Using the NPC procedure as described earlier, we get pMD, pMC, pMT and pMF.

Then, using the results of the N¼ 1000 simulations, the ð	oQ,	Þ curve is built for each scenario and each test
statistic TQ computing, for each nominal 	k ¼

k
100 , k ¼ 1, . . . , 99, the corresponding achieved 	oQ,k

	oQ,k ¼

PN
i

Ið pQ 5	kÞ

N
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In particular for each statistical test and for each scenario, we consider the achieved values 	oQ,k for k¼ 1, 5, 10.
It corresponds to evaluate, using the N¼ 1000 simulations, the power/size of each statistical test under the
commonly used values of 	k, i.e. 1%, 5% and 10% (see Appendix I).

In the interest of saving space and of facilitating the comparison among all the tests, we define a global score for
each test and for each scenario and we report the observed values of power/size in the tables of Section A.

In the scenarios for which the null hypothesis is not true, a test is good when, for a given 	, the achieved alpha is
large, which means that the p-values computed in the different simulations are often less than the nominal 	; in
other words, the null hypothesis is often rejected. The scenarios for which the null hypothesis is not true are
fðs1, s2Þ : s1 2 fA,B,C,Eg, s2 2 fC0,0,C10,10,C8,2gg and ðD,C8,2Þ. We observe that for the ðD,C8,2Þ scenario, the null
hypothesis is not true since the distributions of the censoring events are different. In these cases, we proceed as
follows: For each primary-event scenario s1 and for each nominal 	k, we compute the maximum mðs1Þ	k

of all the
achieved 	oQ,k by the different methods. Then for each method Q, we compute the score g

ðs1Þ
Q as the number of times

over the 99 different values of the nominal 	 that the method Q provides a value 	oQ,k close to the maximum mðs1Þ	k
. In

practice, by close to the maximum we mean that the value of 	oQ,k lies in the interval between 90% of the maximum
and the maximum itself, i.e. ½0:9mðs1Þ	k

,mðs1Þ	k
�. This interval has been defined to mitigate the effect of simulations. By

definition, the scores are between 0 and 1. Finally, as a global measure of the performance of method Q, we also
compute an average score gQ as the geometric mean of the scores obtained in each single primary-event scenario.

On the other hand, in the scenarios for which the null hypothesis is true, a test is good when, for a given 	, the
achieved alpha is close to the nominal 	. The scenarios for which the null hypothesis is true are ðD,C0,0Þ and
ðD,C10,10Þ. For each test Q, we compute the error statistic eQ defined as the quadratic mean of the differences
between the observed 	oQ,k and the nominal 	k

eQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

99

X99
k¼1

	oQ,k � 	k

	 
2vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

99

X99
k¼1

	oQ,k �
k

100

 �2

vuut : ð6Þ

4.3 Scenarios ðs1,C8,2Þ; informative censoring

First we consider the primary-event scenarios A, B, C, D and E when the probability of censoring events is
different. We observe that in this case, the scenario D does not correspond to the null hypothesis. As can be
seen in Figure 3, NPC tests perform better than all the other competitors.

The scores are reported in Table 4. The last column shows the global score gQ. We see that the NPC tests are the
best test procedures with a global score equal to 0.95 (Tippet combination function) and 0.96 (Fisher combination
function). All the other tests’, global score is no higher than 0.40. We also observe that for scenarios A, B, C, D
and E, the NPC scores are the highest. It is worth noting that univariate permutation tests considered as separate
tests are not as good as the NPC tests in detecting the difference between the two groups (their global scores are
0.40 and 0.61 respectively against 0.95 and 0.96 of the NPC tests).

4.4 Scenario ðs1,C10,10Þ; non-informative censoring

We now consider the primary-event scenarios A, B, C, D and E when the probability of censoring events is equal.
As we can see from the scores in Table 5, NPC tests perform very well in scenarios A, C and E (Tippet scores are
always greater than 0.92). In scenario B, Tippet and Fisher NPC tests get 0.70 and 0.69, respectively, which is good
but not excellent. In this case, the univariate permutation test performs very well, getting a score of 0.90. This
provides a practical guideline and suggests the univariate tests could be very useful in some situations.

With respect to the ðD,C10,10Þ scenario, which corresponds to the null hypothesis, we observe that all the tests
perform quite well, with the error statistic eQ less than 1.4%, as we can see in Table 6.

4.5 Scenario ðs1,C0,0Þ; no censoring

In this scenario, there are no censoring events (formally the only censoring events will occur at the end of the study
i.e. at time �). It follows that the permutation test on the primary events and the NPC tests all give exactly the same
result, i.e. pMD ¼ pMT ¼ pMF (pMC is not computed). As Table 7 shows, the permutation tests perform very well in
scenarios A, B, C and E (the total score is 0.96).
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We also observe that all the tests perform well under the null hypothesis (scenario D) with eQ always less than
1.7% (see Table 8).

4.6 Scenario (s1,Cdog); censoring similar to the ‘Cancer in dogs’ case

We conclude this section with the study of five further scenarios inspired by one of the real examples discussed in
Section 5 (the ‘Cancer in dogs’ case). More precisely, we consider two groups with different sizes, i.e. n1 ¼ 20 and
n2 ¼ 40 individuals. Then for each primary-event scenario s1 2 fA,B,C,D,Eg, we generate censoring events with

Figure 3. Achieved vs. nominal 	.

Table 4. Scores for informative censoring scenarios.

Test A B C D E Tot

NPC Tippet 0.98 0.97 0.99 0.87 0.94 0.95

NPC Fisher 1.00 1.00 1.00 0.84 0.99 0.96

Permutation on primary events 0.96 0.81 1.00 0.10 0.14 0.40

Permutation on censoring events 0.42 0.55 0.38 1.00 1.00 0.61

Logrank/Mantel 0.98 0.83 1.00 0.10 0.13 0.40

Wilcoxon/Breslow 0.83 0.99 0.71 0.11 0.13 0.38

Tarone–Ware 0.89 0.98 0.90 0.11 0.09 0.38

Peto–Peto 0.85 0.98 0.75 0.11 0.12 0.38

Modified Peto–Peto 0.85 0.99 0.74 0.11 0.12 0.38

Harrington–Fleming 0.84 0.99 0.78 0.11 0.10 0.37

Modified Mantel 0.97 0.78 1.00 0.09 0.13 0.39

Prentice 0.92 0.63 1.00 0.09 0.14 0.37

Modified Prentice 0.90 0.59 1.00 0.10 0.11 0.36
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probabilities pi which are different in the 10 time intervals ti�1, tið �, i ¼ 1, . . . , 10, t0 ¼ 0 and also different for the
two groups. These probabilities are approximately the same as those observed in the ‘Cancer in dogs’ real case and
are reported in Table 9.

We obtain the scores which are detailed in Table 10.
As for scenarios ðs1,C8,2Þ, the NPC tests display very good behaviour.

Table 5. Scores for non-informative censoring.

Test A B C E Tot

NPC Tippet 0.95 0.70 0.96 0.92 0.73

NPC Fisher 0.91 0.69 0.94 0.78 0.72

Permutation on primary events 1.00 0.90 1.00 0.74 0.79

Permutation on censoring events 0.10 0.11 0.09 0.98 0.13

Logrank/Mantel 1.00 0.90 1.00 0.75 0.80

Wilcoxon/Breslow 0.94 1.00 0.65 0.86 0.88

Tarone–Ware 0.99 1.00 0.87 0.88 0.62

Peto–Peto 0.97 1.00 0.72 0.88 0.83

Modified Peto–Peto 0.97 1.00 0.71 0.87 0.86

Harrington–Fleming 0.97 1.00 0.77 0.87 0.64

Modified Mantel 1.00 0.86 1.00 0.76 0.66

Prentice 1.00 0.79 1.00 0.70 0.76

Modified Prentice 1.00 0.77 1.00 0.68 0.61

Table 6. eQ statistics for non-informative censoring, see equation (6) for eQ definition.

Test eQ

NPC Tippet 0.007

Permutation on primary e 0.009

Permutation on censoring 0.014

NPC Fisher 0.008

Logrank/Mantel 0.007

Wilcoxon/Breslow 0.014

Tarone–Ware 0.009

Peto–Peto 0.012

Modified Peto–Peto 0.012

Harrington–Fleming 0.010

Modified Mantel 0.006

Prentice 0.013

Modified Prentice 0.013

Table 7. Scores for no-censoring scenarios.

Test A B C E Tot

Permutation on primary events 1.00 0.86 1.00 0.88 0.96

Logrank/Mantel 1.00 0.87 1.00 0.91 0.97

Wilcoxon/Breslow 0.93 1.00 0.84 0.83 0.62

Tarone–Ware 0.99 1.00 0.96 0.85 0.66

Peto–Peto 0.94 1.00 0.81 0.81 0.62

Modified Peto–Peto 0.94 1.00 0.80 0.84 0.61

Harrington–Fleming 0.93 1.00 0.84 0.83 0.62

Modified Mantel 1.00 0.83 1.00 0.91 0.73

Prentice 0.99 0.57 1.00 0.97 0.87

Modified Prentice 0.95 0.45 1.00 0.98 0.62
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5 Real examples

We work on two real cases for which the data are publicly available. These examples are also studied in Wakounig
et al.37 The data sets are:

(1) ‘Cancer in dogs’. Groups: 83 beagles receiving irradiation and bone marrow transplantation versus 198 control
dogs. Endpoint: time till occurrence of cancer. Censoring: 90%. Source: Prentice and Marek.56

(2) ‘Primary biliary cirrhosis’. Groups: 49 patients suffering from edema versus 263 free of edema, all of them
included in a clinical trial of primary biliary cirrhosis of the liver. Endpoint: time till transplantation of the
liver or death. Censoring: 60%. Source: Therneau and Grambsch.57

The product-limit survival estimates for the two cases are shown in Figures 4 and 5. The p-values resulting from
all the tests under study are shown in Table 11.

From Table 11, we observe that for the ‘Primary biliary cirrhosis’ data set all the p-values, apart from the one
corresponding to the permutation test on censoring events (p-value¼ 0.736), are almost zero.

Table 8. eQ statistics for no censoring, see equation (6) for eQ definition.

Test eQ

Permutation on primary events 0.011

Logrank/Mantel 0.010

Wilcoxon/Breslow 0.017

Tarone–Ware 0.013

Peto-Peto 0.017

Modified Peto–Peto 0.017

Harrington–Fleming 0.017

Modified Mantel 0.009

Prentice 0.012

Modified Prentice 0.011

Table 9. Probabilities of censoring similar to the ‘Cancer in dogs’ case.

Group p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

1 0.016 0.538 0.119 0.028 0.176 0.208 0.333 0.087 0.167 0.833

2 0.048 0.924 0.000 0.333 1.000 0.000 0.000 0.000 0.000 0.000

Table 10. Scores for censoring similar to the ‘Cancer in dogs’ case.

Test A B C D E Tot

NPC Tippet 0.99 0.99 1.00 0.97 1.00 0.99

NPC Fisher 1.00 1.00 1.00 0.94 1.00 0.99

Permutation on primary events 0.53 0.51 0.28 0.10 0.24 0.28

Permutation on censoring events 0.93 0.85 1.00 1.00 1.00 0.95

Logrank/Mantel 0.54 0.51 0.29 0.11 0.24 0.29

Wilcoxon/Breslow 0.42 0.57 0.18 0.10 0.40 0.28

Tarone–Ware 0.47 0.56 0.23 0.08 0.35 0.28

Peto–Peto 0.46 0.56 0.20 0.08 0.33 0.27

Modified Peto–Peto 0.46 0.57 0.21 0.08 0.34 0.27

Harrington–Fleming 0.47 0.56 0.20 0.08 0.32 0.27

Modified Mantel 0.51 0.52 0.24 0.09 0.30 0.28

Prentice 0.38 0.27 0.29 0.10 0.17 0.22

Modified Prentice 0.38 0.27 0.29 0.10 0.19 0.22
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Figure 4. Product-limit survival estimates (‘Cancer in dogs’ data set).

Figure 5. Product-limit survival estimates (‘Primary biliary cirrhosis’ data set).

Table 11. p-values for the real data applications.

Test Cancer in dogs

Primary biliary

cirrhosis

NPC Tippet 0.000 0.000

NPC Fisher 0.001 0.003

Logrank/Mantel 0.034 0.000

Wilcoxon/Breslow 0.526 0.000

Tarone–Ware 0.209 0.000

Peto–Peto 0.042 0.000

Modified Peto–Peto 0.043 0.000

Harrington–Fleming 0.040 0.000

Modified Mantel 0.035 0.000

Prentice 0.023 0.000

Modified Prentice 0.023 0.000
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With the aim of further investigating the reason why the null hypothesis is rejected, we can consider the
permutation tests on primary and censoring events. The original unadjusted p-values and the adjusted p-values
that have been computed to take into account multiple testing issues are reported in Table 12. We observe that the
censoring looks non-informative and the difference between the groups appears to be related to the different
behaviour of the patients in terms of endpoint. The empirical cumulative distribution function of the censoring
events is drawn in Figure 6.

For the ‘Cancer in dogs’ data set, all the p-values apart from those corresponding to the Wilcoxon/Breslow and
Tarone–Ware tests are less than 5%. From Table 13, we observe that the censoring looks informative, in that it
depends on the treatment effect while the difference for primary events is only weakly significant (adjusted p-values
less than 10% but greater than 5%). The empirical cumulative distribution function of the censoring events is
drawn in Figure 7.

In this case, it is worth noting that p-values of combined tests (NPC Fisher and NPC Tippet) are much lower
than p-values of other tests because tests on censoring provide additional information related to differences
between groups. This feature, i.e. the possibility to add a test on censoring, is only possible using our proposed
approach.

Finally, we observe that real-life examples, where the primary event can occur due to causes unrelated to the
disease under study, suggest an extension of our solution to competing risks, see Dobler et al.49 and subsequent
papers.

Table 12. Adjusted p-values for the ‘Primary billiary cirrhosis’ case.

Test

Unadjusted

p-value

Adjusted Bonferroni

p-value

Adjusted

Sidak p-value

Permutation on primary events 0.000 0.000 0.000

Permutation on censoring events 0.736 1.000 0.930

Figure 6. Empirical cumulative distribution function for censoring events.

Table 13. Adjusted p-values for the ‘Cancer in dogs’ case.

Test Unadjusted p-value Adjusted Bonferroni p-value Adjusted Sidak p-value

Permutation on primary events 0.048 0.096 0.094

Permutation on censoring events 0.000 0.000 0.000
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6 Conclusion

Our simulation study covered a wide range of interesting scenarios for both primary and censoring events (15
different scenarios in total). The scenarios for primary events (A, B, C, D and E) are exactly the same as those
studied by Wakounig et al.37 We analysed the NPC tests, the weighted log-rank tests described in Wakounig
et al.37 and those made available by the Proc Lifetest of SAS.55

In relation to informative censoring, NPC tests showed very good behaviour. Their power was more than two
times that of the other competitors for all the primary event scenarios.

NPC tests also performed very well in the presence of non-informative censoring or no censoring. In only one
situation (primary event scenario B and non-informative censoring) did the combined test’s performance decrease.
In such a situation, only a test for primary events should be adopted.

In summary, we believe these noticeable results establish our NPC testing method as the standard for the
analysis of survival processes. Indeed, it generally behaves at least as well as the best traditional tests when
censoring is assumed to be non-informative, and where traditional tests are specialized. Moreover, its
behaviour generally increases in power when both primary and secondary aspects are present. In this
framework, using multiple testing techniques, NPC makes it possible to test which aspect is significant, if any,
while controlling the family-wise error, thus providing a more comprehensive answer than traditional tests.

It is worth noting that all presented NPC tests can easily be extended to multivariate problems by combining
multiple endpoints with the same fashion as for primary and censoring events. We are also hopeful that it is
possible to extend them to competing risk models.
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Appendix 1. Power and size of the statistical tests

In this section, for each of scenario and each statistical test, we report the achieved 	oQ,k, k ¼ 1, 5, 10 corresponding
to the commonly used nominal 	k, k ¼ 1, 5, 10 values, i.e. 	1 ¼ 1%, 	5 ¼ 5% and 	10 ¼ 10%.

Appendix 1.1. Scenarios ðs1,C8,2Þ, informative censoring.

Table 14. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðA, C8,2Þ.

Nominal 	 1% 5% 10%

NPC Tippet 0.567 0.811 0.899

NPC Fisher 0.661 0.870 0.927

Permutation on primary events 0.553 0.788 0.874

Permutation on censoring events 0.249 0.461 0.576

Logrank/Mantel 0.567 0.792 0.877

Wilcoxon/Breslow 0.460 0.691 0.793

Tarone–Ware 0.523 0.746 0.829

Peto–Peto 0.475 0.708 0.806

Modified Peto–Peto 0.475 0.703 0.806

Harrington–Fleming 0.476 0.703 0.802

Modified Mantel 0.565 0.790 0.877

Prentice 0.541 0.764 0.845

Modified Prentice 0.536 0.749 0.834
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Table 17. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðD, C8,2Þ.

Nominal 	 1% 5% 10%

NPC Tippet 0.284 0.542 0.659

NPC Fisher 0.257 0.506 0.631

Permutation on primary events 0.011 0.045 0.080

Permutation on censoring events 0.365 0.628 0.754

Logrank/Mantel 0.012 0.047 0.084

Wilcoxon/Breslow 0.010 0.045 0.091

Tarone–Ware 0.012 0.046 0.087

Peto–Peto 0.010 0.048 0.089

Modified Peto–Peto 0.009 0.046 0.089

Harrington–Fleming 0.011 0.050 0.088

Modified Mantel 0.011 0.047 0.089

Prentice 0.015 0.049 0.091

Modified Prentice 0.016 0.047 0.092

Table 15. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðB, C8,2Þ.

Nominal 	 1% 5% 10%

NPC Tippet 0.435 0.678 0.804

NPC Fisher 0.543 0.753 0.845

Permutation on primary events 0.357 0.594 0.716

Permutation on censoring events 0.295 0.500 0.604

Logrank/Mantel 0.373 0.605 0.722

Wilcoxon/Breslow 0.463 0.729 0.829

Tarone–Ware 0.438 0.703 0.804

Peto–Peto 0.456 0.723 0.823

Modified Peto–Peto 0.458 0.724 0.823

Harrington–Fleming 0.459 0.722 0.826

Modified Mantel 0.347 0.583 0.706

Prentice 0.319 0.518 0.628

Modified Prentice 0.300 0.492 0.607

Table 16. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðC, C8,2Þ.

Nominal 	 1% 5% 10%

NPC Tippet 0.726 0.916 0.958

NPC Fisher 0.807 0.940 0.976

Permutation on primary events 0.745 0.911 0.953

Permutation on censoring events 0.223 0.435 0.573

Logrank/Mantel 0.762 0.915 0.952

Wilcoxon/Breslow 0.412 0.657 0.767

Tarone–Ware 0.580 0.797 0.876

Peto–Peto 0.437 0.669 0.775

Modified Peto–Peto 0.429 0.664 0.770

Harrington–Fleming 0.450 0.698 0.792

Modified Mantel 0.739 0.898 0.937

Prentice 0.752 0.914 0.950

Modified Prentice 0.727 0.894 0.936
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Appendix 1.2. Scenarios ðs1,C10,10Þ, non-informative censoring.

Table 20. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðB, C10,10Þ.

Nominal 	 1% 5% 10%

NPC Tippet 0.269 0.510 0.636

NPC Fisher 0.255 0.495 0.630

Permutation on primary events 0.343 0.619 0.730

Permutation on censoring events 0.011 0.053 0.113

Logrank/Mantel 0.372 0.626 0.735

Wilcoxon/Breslow 0.458 0.712 0.819

Tarone–Ware 0.447 0.693 0.793

Peto–Peto 0.457 0.704 0.805

Modified Peto–Peto 0.454 0.705 0.805

Harrington–Fleming 0.457 0.703 0.814

Modified Mantel 0.354 0.605 0.723

Prentice 0.345 0.601 0.703

Modified Prentice 0.327 0.584 0.691

Table 18. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðE, C8,2Þ.

Nominal 	 1% 5% 10%

NPC Tippet 0.259 0.508 0.666

NPC Fisher 0.281 0.567 0.691

Permutation on primary events 0.038 0.145 0.266

Permutation on censoring events 0.314 0.589 0.716

Logrank/Mantel 0.041 0.154 0.264

Wilcoxon/Breslow 0.033 0.085 0.151

Tarone–Ware 0.016 0.066 0.126

Peto–Peto 0.034 0.083 0.149

Modified Peto–Peto 0.035 0.085 0.157

Harrington–Fleming 0.021 0.072 0.119

Modified Mantel 0.019 0.096 0.167

Prentice 0.039 0.143 0.251

Modified Prentice 0.018 0.091 0.162

Table 19. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðA, C10,10Þ.

Nominal 	 1% 5% 10%

NPC Tippet 0.412 0.676 0.758

NPC Fisher 0.363 0.636 0.752

Permutation on primary events 0.529 0.748 0.824

Permutation on censoring events 0.008 0.049 0.101

Logrank/Mantel 0.545 0.760 0.834

Wilcoxon/Breslow 0.414 0.667 0.776

Tarone–Ware 0.485 0.730 0.811

Peto–Peto 0.456 0.696 0.798

Modified Peto–Peto 0.451 0.697 0.796

Harrington–Fleming 0.451 0.700 0.800

Modified Mantel 0.539 0.749 0.830

Prentice 0.538 0.756 0.833

Modified Prentice 0.531 0.742 0.827
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Table 23. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðE, C10,10Þ.

Nominal 	 1% 5% 10%

NPC Tippet 0.013 0.076 0.140

NPC Fisher 0.016 0.070 0.136

Permutation on primary events 0.026 0.079 0.150

Permutation on censoring events 0.005 0.060 0.106

Logrank/Mantel 0.025 0.086 0.151

Wilcoxon/Breslow 0.044 0.139 0.220

Tarone–Ware 0.018 0.067 0.122

Peto–Peto 0.035 0.122 0.186

Modified Peto–Peto 0.037 0.127 0.193

Harrington–Fleming 0.025 0.086 0.145

Modified Mantel 0.016 0.062 0.111

Prentice 0.026 0.086 0.146

Modified Prentice 0.016 0.062 0.110

Table 21. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðC, C10,10Þ.

Nominal 	 1% 5% 10%

NPC Tippet 0.588 0.809 0.888

NPC Fisher 0.499 0.774 0.861

Permutation on primary events 0.676 0.881 0.933

Permutation on censoring events 0.009 0.040 0.098

Logrank/Mantel 0.698 0.882 0.936

Wilcoxon/Breslow 0.342 0.577 0.693

Tarone–Ware 0.496 0.731 0.824

Peto–Peto 0.392 0.613 0.727

Modified Peto–Peto 0.380 0.605 0.722

Harrington–Fleming 0.414 0.660 0.753

Modified Mantel 0.651 0.855 0.910

Prentice 0.696 0.877 0.939

Modified Prentice 0.650 0.851 0.909

Table 22. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðD, C10,10Þ.

Nominal 	 1% 5% 10%

NPC Tippet 0.013 0.053 0.096

NPC Fisher 0.008 0.046 0.095

Permutation on primary events 0.011 0.038 0.089

Permutation on censoring events 0.012 0.058 0.116

Logrank/Mantel 0.011 0.042 0.095

Wilcoxon/Breslow 0.009 0.044 0.100

Tarone–Ware 0.010 0.038 0.095

Peto–Peto 0.012 0.036 0.097

Modified Peto–Peto 0.012 0.035 0.097

Harrington–Fleming 0.010 0.037 0.103

Modified Mantel 0.009 0.046 0.095

Prentice 0.010 0.049 0.093

Modified Prentice 0.009 0.046 0.094
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Appendix 1.3. Scenarios ðs1,C0,0Þ, no censoring.

Table 26. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðC, C0,0Þ.

Nominal 	 1% 5% 10%

Permutation on primary events 0.859 0.963 0.989

Logrank/Mantel 0.873 0.967 0.990

Wilcoxon/Breslow 0.536 0.767 0.841

Tarone–Ware 0.712 0.884 0.937

Peto–Peto 0.497 0.728 0.816

Modified Peto–Peto 0.488 0.722 0.810

Harrington–Fleming 0.536 0.767 0.841

Modified Mantel 0.840 0.959 0.977

Prentice 0.872 0.967 0.988

Modified Prentice 0.838 0.957 0.976

Table 24. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðA, C0,0Þ.

Nominal 	 1% 5% 10%

Permutation on primary events 0.607 0.843 0.900

Logrank/Mantel 0.638 0.852 0.903

Wilcoxon/Breslow 0.498 0.748 0.847

Tarone–Ware 0.572 0.811 0.888

Peto–Peto 0.511 0.749 0.844

Modified Peto–Peto 0.507 0.745 0.840

Harrington–Fleming 0.498 0.748 0.847

Modified Mantel 0.637 0.845 0.908

Prentice 0.572 0.782 0.851

Modified Prentice 0.560 0.762 0.840

Table 25. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðB, C0,0Þ.

Nominal 	 1% 5% 10%

Permutation on primary events 0.346 0.584 0.704

Logrank/Mantel 0.365 0.595 0.716

Wilcoxon/Breslow 0.495 0.723 0.810

Tarone–Ware 0.457 0.688 0.798

Peto–Peto 0.489 0.713 0.803

Modified Peto–Peto 0.489 0.715 0.805

Harrington–Fleming 0.495 0.723 0.810

Modified Mantel 0.348 0.576 0.700

Prentice 0.256 0.450 0.582

Modified Prentice 0.233 0.430 0.550
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Appendix 1.4. Scenarios ðs1,CdogÞ, censoring similar to the ‘Cancer in dogs’ case

Table 29. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðA, CdogÞ.

Nominal 	 1% 5% 10%

NPC Tippet 0.563 0.782 0.861

NPC Fisher 0.643 0.823 0.896

Permutation on primary events 0.200 0.406 0.539

Permutation on censoring events 0.535 0.732 0.809

Logrank/Mantel 0.195 0.420 0.547

Wilcoxon/Breslow 0.195 0.396 0.510

Tarone–Ware 0.198 0.410 0.531

Peto–Peto 0.200 0.408 0.525

Modified Peto–Peto 0.200 0.412 0.524

Harrington–Fleming 0.199 0.413 0.527

Modified Mantel 0.200 0.416 0.546

Prentice 0.160 0.372 0.494

Modified Prentice 0.154 0.363 0.491

Table 27. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðD, C0,0Þ.

Nominal 	 1% 5% 10%

Permutation on primary events 0.004 0.046 0.077

Logrank/Mantel 0.006 0.042 0.079

Wilcoxon/Breslow 0.011 0.044 0.089

Tarone–Ware 0.010 0.046 0.083

Peto–Peto 0.012 0.043 0.089

Modified Peto–Peto 0.012 0.044 0.088

Harrington–Fleming 0.011 0.044 0.089

Modified Mantel 0.008 0.044 0.083

Prentice 0.007 0.046 0.103

Modified Prentice 0.011 0.046 0.098

Table 28. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðE, C0,0Þ.

Nominal 	 1% 5% 10%

Permutation on primary events 0.125 0.335 0.449

Logrank/Mantel 0.139 0.342 0.458

Wilcoxon/Breslow 0.016 0.069 0.135

Tarone–Ware 0.027 0.110 0.188

Peto–Peto 0.014 0.092 0.158

Modified Peto–Peto 0.014 0.098 0.157

Harrington–Fleming 0.016 0.069 0.135

Modified Mantel 0.055 0.183 0.296

Prentice 0.139 0.342 0.458

Modified Prentice 0.055 0.183 0.296
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Table 31. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðC, CdogÞ.

Nominal 	 1% 5% 10%

NPC Tippet 0.499 0.709 0.802

NPC Fisher 0.545 0.756 0.833

Permutation on primary events 0.118 0.292 0.411

Permutation on censoring events 0.507 0.698 0.794

Logrank/Mantel 0.118 0.293 0.412

Wilcoxon/Breslow 0.064 0.208 0.300

Tarone–Ware 0.082 0.231 0.336

Peto–Peto 0.088 0.227 0.338

Modified Peto–Peto 0.083 0.222 0.331

Harrington–Fleming 0.091 0.240 0.349

Modified Mantel 0.104 0.275 0.390

Prentice 0.149 0.318 0.440

Modified Prentice 0.140 0.303 0.435

Table 30. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðB, CdogÞ.

Nominal 	 1% 5% 10%

NPC Tippet 0.629 0.834 0.902

NPC Fisher 0.708 0.863 0.919

Permutation on primary events 0.285 0.502 0.601

Permutation on censoring events 0.571 0.748 0.810

Logrank/Mantel 0.286 0.503 0.604

Wilcoxon/Breslow 0.297 0.520 0.637

Tarone–Ware 0.294 0.519 0.635

Peto–Peto 0.295 0.519 0.640

Modified Peto–Peto 0.295 0.519 0.639

Harrington–Fleming 0.301 0.516 0.638

Modified Mantel 0.284 0.505 0.603

Prentice 0.169 0.347 0.457

Modified Prentice 0.169 0.331 0.428

Table 32. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðD, CdogÞ.

Nominal 	 1% 5% 10%

NPC Tippet 0.563 0.759 0.840

NPC Fisher 0.506 0.728 0.826

Permutation on primary events 0.011 0.055 0.100

Permutation on censoring events 0.627 0.820 0.896

Logrank/Mantel 0.009 0.057 0.098

Wilcoxon/Breslow 0.009 0.056 0.119

Tarone–Ware 0.011 0.052 0.115

Peto–Peto 0.010 0.052 0.111

Modified Peto–Peto 0.010 0.053 0.114

Harrington–Fleming 0.010 0.054 0.113

Modified Mantel 0.011 0.054 0.107

Prentice 0.007 0.044 0.103

Modified Prentice 0.005 0.043 0.104
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Table 33. Achieved 	o
Q,k, k ¼ 1, 5, 10 for ðE, CdogÞ.

Nominal 	 1% 5% 10%

NPC Tippet 0.621 0.810 0.884

NPC Fisher 0.646 0.842 0.900

Permutation on primary events 0.064 0.208 0.317

Permutation on censoring events 0.669 0.855 0.913

Logrank/Mantel 0.064 0.210 0.321

Wilcoxon/Breslow 0.092 0.284 0.428

Tarone–Ware 0.082 0.263 0.394

Peto–Peto 0.076 0.258 0.387

Modified Peto–Peto 0.079 0.261 0.392

Harrington–Fleming 0.075 0.248 0.377

Modified Mantel 0.069 0.228 0.348

Prentice 0.043 0.165 0.284

Modified Prentice 0.045 0.179 0.303
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