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ABSTRACT 

The deformation performance of the base cross sections of reinforced concrete buildings is 

fundamental when large seismic events occur allowing the structure to have large excursions in 

nonlinear field and guaranteeing an overall ductile behaviour. 

It is well known that the axial force acting on columns significantly reduces the curvature capacity of 

the sections and for this reason the technical codes give design criteria stating a limitation in order to 

preserve the displacement capacity. It is also recognized that when biaxial bending occur the cross 

section undergo a loss in strength capacity. Starting the study of from Bresler (1960), which provided 

suitable expression to predict 3D limit interaction surfaces, several numerical and analytical models 

were developed to take into account the biaxial interaction in strength.  

Simultaneously it is noteworthy to point out that the presence of biaxial bending also influences the 

deformation capacity of sections causing in most of the cases a relevant loss of the curvature and 

ductility available with respect to the one owned along the principal axes. This important issue is not 

faced by technical codes and not exhaustively treated in scientific literature as it was done for strength.  

Moreover nonlinear structural models based on lumped plasticity do not take into account these 

interaction aspects when defining plastic hinge properties in terms of curvature capacity. 

The paper presents a numerical study in which the deformation capacity of RC cross sections 

subjected to axial load and biaxial bending is investigated by means of a fiber discretization.  

A procedure for the numerical definition of biaxial domains of ultimate curvature, yielding curvature 

and curvature ductility is provided and the sensitivity of the biaxial deformation performance to some 

geometrical and mechanical parameters (aspect ratio, concrete strength and confinement efficacy) is 

discussed. 

INTRODUCTION 

The necessity to assess the seismic capacity of new and existing buildings is today going to 

have a large increase. This is mainly due to the opportunities offered by the continuous development 

of refined nonlinear investigation techniques based on static or dynamic procedures. Also the 

renovation of technical codes is strongly related to the advances reached by structural engineering and 

many innovations proposed by the scientific community became fundamental for design and 

prediction of buildings structural safety and basic in practical applications. With special regard to 
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reinforced concrete structures it is well known that the accuracy in prediction of the seismic capacity 

strongly depends on the accuracy in estimation of the beam and columns deformation performances.  

In particular, the base cross section of RC columns are affected by the simultaneous presence of 

axial forces and bending moments acting on a plane that is not coincident with one of the two principal 

planes of inertia. This occurs first of all because of the ground motions may interest the structures in 

any direction with respect to their planar symmetry axes. Moreover in the case of irregular or complex 

buildings, the possible activation of torsional modal contributions may significantly affect the overall 

response requesting biaxial bending capacity, in terms of strength and ductility. 

From a careful overview of technical codes and scientific literature itself it seems that the 

question of the deformation performance of the RC cross sections subjected to axial load and biaxial 

bending appear however today not completely faced, neither its importance is underlined.  With regard 

to this topic, the only instructions recognizable in technical codes regard the assessment of biaxial 

strength of sections, while no recommendations or criteria are given about the question of the 

estimation of biaxial ultimate curvature and ductility capacity. It is the case of ACI 318 and Eurocode 

2 codes that make use of Bresler theory as instrument for the evaluation of the strength limit surfaces 

of RC sections, but no tools or prescriptive suggestions, regarding the necessary biaxial deformation 

capacity, are provided. This lack in technical codes however reflects the fact that even in scientific 

literature the question appears not sufficiently investigated in this sense. Most of the authors in fact, 

focused their attention to improve the effectiveness of algorithms that are firstly aimed at the 

evaluation of biaxial strength capacity of RC sections. Some of these approaches makes use of 

numerical techniques (Hulse and Mosley, (1986), Spiegel and Limbrunner (1988), Da Vivo and Rosati 

(1998)) for the determination of the interaction surface, or analytical solutions providing useful closed 

form expressions (Fafitis (2001), Monti and Alessandri (2006)). 

Among the more recent studies, the interest in the evaluation of biaxial curvature capacity of 

sections became more evident even if the major efforts have been addressed to computational aspects. 

Kim and Lee (2000) provided a fiber decomposition finite element formulation validated by 

experimental tests on square and rectangular columns in which also curvature length localization were 

measured varying eccentricity angles. In Bonet et al. (2004) a generic algorithm for the analysis of 

arbitrary cross sections under axial load and biaxial bending, based on an analytical integration 

scheme described by curvilinear polygons is proposed. The algorithm focuses on the generation of 

moment–curvature diagrams, interaction curves and failure surfaces.  

The above mentioned algorithms constitute efficient computational tools for prediction of 

biaxial strength and a curvature capacity of RC cross sections; however a discussion about the 

variation in deformation capacity when the section is subjected to axial load and axial bending and 

major mechanical parameter involved the problem is not faced in these studies. 

Only recently Di Ludovico et al. (2007) and Fossetti and Papia (2012) focused their attention to 

this question. In the first work the authors presented a discussion on the influence of some key 

parameters on the definition of numerically generated ultimate curvature domains for different classes 

of RC sections. In the second a numerical procedure based on the stripe decomposition technique able 

to define resistance and curvature domains for symmetric RC cross sections subjected to axial load 

and biaxial bending is developed with the support of some experimental tests. In this latest study the 

question of biaxial curvature reduction is investigated in dimensionless terms and also here the 

influence of some parameters (axial force level, section geometry and steel hardening ratio) is 

discussed.  

Considering the relevance of the topic, a wider parametric study, regarding all mechanical and 

geometrical parameters involved in the problem appears anyway to be necessary, in order to not only 

have a deep understanding, but also to individuate the better design criteria for RC column cross-

sections. Moreover the capacity of a cross-section to support inelastic deformation demand and 

dissipate energy under biaxial bending cannot be assessed by the observing of ultimate curvature alone 

but the determination of the available curvature ductility along each bending direction appear more 

significant. 

In this paper the deformation capacity of the cross section is investigated firstly defining a 

numerical procedure for the identification of ultimate curvature, yielding curvature and curvature 

ductility domains. Subsequently the influence of the most representative geometrical and mechanical 

parameters (e.g. concrete strength, cross-section shape and concrete confinement level), on the biaxial 
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deformation capacity is examined through a deep parametric analysis. The discussion allowed 

individuating the most sensitive parameters to be taken into account in the during design and 

verification phases. 

DEFINITION OF BIAXIAL ULTIMATE CURVATURE, ELASTIC CURVATURE 

AND CURVATURE DUCTILITY DOMAINS 

In order to provide a numerical assessment of biaxial deformation capacity of the cross sections 

by means of a numerical modelling, the following assumptions on stress – strain relationships have 

been done. Two different constitutive laws were adopted to characterize cover and core concrete. In 

both cases a Kent-Scott-Park concrete law with a parabolic branch ending at the fixed compressive 

strain εc0=2‰ (corresponding to maximum stress fc) have been used. The following linear softening 

branch between εc0 and ultimate strain 
core

cuε depended each time on the considered core concrete 

confinement level. The unconfined cover concrete ultimate strain was assumed 
er

cu

covε =3.5‰. Steel 

rebars were modelled by means of an elastic-plastic law with a linear hardening ratio of ηh=0.001. The 

elastic Young modulus was assumed to be Es=210.000 MPa, while yielding stress was fy=450 MPa.  

No limit was given to ultimate steel strain assuming the concrete crushing as failure condition when 

the most compressed core fiber reached the ultimate strain value core

cu
ε . Under these hypotheses the 

ultimate curvature ϕu, which the cross section is able to reach, is given by the expression 

 

 
core

cu

core

cu
u

x

ε
ϕ =   (1)  

 
core

cu
x being the distance between the neutral axis and the point of the core region of the section 

interested by the maximum compression strain (Fig. 1). 

 

Figure 1. Ultimate stress-strain condition of a rectangular cross section under axial load and biaxial bending. 

The ultimate curvature of a rectangular cross section is generally conventionally calculated 

along the principal (x and y) axes. The values obtained are used for the further definition of the 

structural model nonlinearities. However this information does not allow a complete assessment of the 

deformation performance of the section under a general axial load and biaxial bending condition. 

Therefore the definition of an ultimate curvature domain (Fig. 2), representing the available 

curvature at each bending angle may constitute a powerful and detailed tool. For a RC section having 

an assigned value of axial load, the construction of the domain is carried out by fixing at each time the 

neutral axis angle of inclination α and imposing the equilibrium conditions at the pre-fixed failure 
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condition
core

cu

core

c εε = . Once calculated the neutral axis position, the ultimate curvature at that angle is 

evaluated by means of Eq. 1. In this way it is possible to build a numerical diagram having coordinates 

are ϕux=ϕu cosα on the x axis and ϕuy=ϕu sinα on the y axis. Each point of the diagram individuates 

univocally an angle of inclination of neural axis. The modulus of each vector pointing from the axes 

origin a general point represents the ultimate curvature along one direction identified by the bending 

angle and is analytically determined as  [ ] 502

uy

2

uxu

.

ϕϕϕ += .  

 a) b) 

Figure 2. Numerically built ultimate curvature domains for different axial force levels: a) square section; b) 

rectangular section. 

The axial force level acting on the section strongly influences the curvature capacity, therefore 

the dimensionless axial force ν=N/fcbh is here used as parameter defining the compression level and as 

also is shown in Fig. (2). As it can be expected, when increasing the axial force level the domain 

extension becomes smaller because of a general reduction of the ultimate curvature capacity. From a 

general point of view it can be moreover observed that the ultimate curvature values available for the 

cross section along x and y principal axes, undergo a significant reduction under biaxial regime.  

Even though the domains reported in Fig. (2) are referred to specific sections; the loss in biaxial 

curvature capacity generally affects all rectangular sections and will be deeply discussed afterwards. 

Similarly to what done for ultimate curvature domain a yielding (or elastic) curvature domain, 

representing the cross section curvature elastic limit conditions under a general biaxial regime, can be 

defined. With reference to Fig. (3), the elastic curvature limit condition is reached when the first steel 

rebar yields (εs=εsy) and before the maximum compressive strain on the core concrete 
core

cε  exceeds 

the limit value
core

cuε .  

 
 

Figure 3. Yielding stress-strain condition of a rectangular cross section under axial load and biaxial bending. 
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Under this condition the yielding curvature ϕe for a generically defined neutral axis α angle is 

expressed as  

 
ce

sy

e
xd −

=
ε

ϕ   (2)  

 

in which d is the distance between the yielded rebar and the concrete fiber subjected to the maximum 

compressive strain 
er

cu

covε on the section cover and xce the neutral axis distance to this fiber.  

The elastic curvature domain (Fig. 4) can be thus defined by varying the α bending angle and 

determining xce corresponding to yielding conditions with the consequent value of ϕe. The points lying 

on  the domain have coordinates ϕex=ϕe cosα on the x axis and ϕey=ϕe sinα on the y axis.  

By the observation of the elastic domains is noteworthy note that conversely what happened for 

the ultimate curvature domains, the extension of limit surface grows with increasing the axial force 

level. At the same time it can be observed that also yielding curvature exhibits the general tendency to 

undergo a reduction under biaxial bending conditions. Finally it should be noted that yielding 

curvature domains may be not defined at some bending angles if a specified level of axial force is 

exceeded. This case occurs in presence of high axial force level that leads to concrete failure before 

yielding of rebars. In the domains reported in Fig.(4) as samples such condition of brittle failure is 

reached for ν=0.8 at angles 0°,90°, 180° and 270°. 

 a) b)   

Figure 4. Numerically built yielding curvature domains for different axial load levels: a) square section; b) 

rectangular section. 

Once the ultimate and yielding curvature domains have been defined by the determination of the 

curvature ϕu and ϕe values at each considered bending angle a ductility domain can be analytically 

obtained by the simple application of the curvature ductility µϕ definition that is 

 

 
e

u

ϕ

ϕ
µϕ =   (3)  

 

The points on the domain are identified by the coordinates µϕx=µϕ cosα=(ϕu/ϕe) cosα on the x 

axis and µϕy=µϕ sinα=(ϕu/ϕe) sinα on the y axis. 

Some samples of curvature ductility domains for square and rectangular cross sections are 

reported in Fig. (5-a, 5-b). The latter show a double effect exerted by the compression level on the 

available ductility.  The domains generally undergo in fact a global reduction by increasing axial load; 

however axial load seems to have a positive contribution on biaxial ductility. Another characteristic 

that is observable is the fact that when yielding curvature is not defined because of a brittle failure of 

the section the curvature ductility domain drops to zero (Fig. 5a, 5b at ν=0.8).  
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a) b) 

Figure 5. Numerically built yielding curvature domains for different axial load levels: a) square section; b) 

rectangular section. 

PARAMETRIC ANALYSIS ON THE GEOMETRICAL AND MECHANICAL 

PARAMETERS INFLUENCING BIAXIAL DEFORMATION CAPACITY 

The curvature and ductility domains defined in the previous section revealed a dependence of 

the deformation capacity of the cross section on the bending direction. In order to achieve a wider 

comprehension and a design control, the role of some significant geometrical and mechanical 

parameters characterizing the RC cross sections have been investigated by means of a parametric 

study. Several parameters may influence the deformation performance of a RC cross section therefore, 

the one here investigated, were selected because of their relevance during design phases and are below 

reported: 

- concrete strength (fc ) ;  

- cross section aspect ratio (ξ=h/b); 

- confinement efficacy (εcu ) 

For concrete strength three classes of strength (14, 25 and 35 MPa) have been considered.  The 

influence of the shape of the section have been investigated considering cross sections having different 

(bxh) dimensions, in particular square 40x40 and rectangular 30x60. The latter correspond to the 

aspect ratios ξ, 1.0 and 2.0 . Finally the relevance influence of concrete confinement has been 

considered and introduced using as synthetic identification parameter the ultimate strain of the core 

concrete
core

cuε . Two level of confinement have been analysed, corresponding to low confinement 

efficacy (
core

cuε =0.5%) and mid-high confinement efficacy (
core

cuε =1.0%). The reinforcement ratio has 

been fixed for all the analyses at the value of ρ=As,tot /bh=1%. The details of parameters involved in 

the analysis are reported in Tab.1.  

The assessment of the cross section ultimate curvature and yielding curvature values have been 

performed by SAP 2000 NL Section Designer program, which is based on a fiber discretization of 

section geometry. The uniaxial constitutive laws of materials are assigned directly to the concrete core 

and cover fibers and steel fibers. The analysis of each section, at any given axial load value is 

performed with a discretization in 12 possible angles of on inclination of neutral axis per quarter (0°, 

5°, 10°, 20°, 30°, 35°, 45°, 55°, 60°, 70°, 80°, 85°, 90°). In the hypothesis of symmetric distribution of 

the reinforcement with respect to the orthogonal axes of the section the values of ultimate curvature, 

yielding curvature and curvature ductility calculated in a quarter have a symmetric distribution in the 

other quarters. As defined in the previous sections the ultimate curvature and yielding curvature 

reference values are the one associated to the reaching of ultimate core concrete compressive strain 
core

cu

core

c εε =  and rebars first yielding strain εs=εsy . 
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Table 1. Parameters involved in parametric study. 

 

The results of the parametric study are reported in Figs. (6-7) in terms of ultimate curvature, 

yielding curvature and curvature ductility domains, generated for different axial load levels.  

From a general point of view and independently from the geometrical and mechanical 

characteristics of section it is noteworthy observing the double effect exerted by the axial load level on 

the deformation capacity of sections. With regard to ultimate curvature domains it can be observed 

that their extension grows with reduction of axial load, at the same time lower values of axial force 

level are associated to an higher loss of curvature available in biaxial regime which goes from -25% to 

-60% of the respective values available along the principal axes. Conversely elastic curvature domains 

extension grows when increasing the axial load level having the maximum reduction of elastic 

curvature in biaxial condition associated with the highest values of axial force. Both ultimate and 

elastic curvature values in correspondence of the principal axes depend on the geometry on the 

section. Sections having values of ξ>1 exhibit differences in ultimate and elastic curvature values 

along x and y axes which stay in the same proportion with the aspect ratio. This difference is anyway 

balanced in terms of ductility. The ductility domains show in fact almost the same values of curvature 

ductility available along the orthogonal axes in sections having ξ>1. The axial force plays also here a 

significant role being the extension of the ductility domains significantly reduced by the compression 

level. Despite this it is recognized that if axial load is higher than ν=0.4 the biaxial curvature ductility 

becomes greater than the one available along the orthogonal axes.  

The influence of parameters fc, ξ and εcu on the biaxial deformation capacity of the cross 

sections subjected to axial load and biaxial bending is more evident observing the dimensionless 

curvature and curvature ductility domains (Fig. 8-9). The latter, thanks to the polar symmetry of the 

geometry of sections investigated, can be simply represented on a single quarter having as abscissa 

and ordinate the components of ultimate curvature and curvature ductility ( uxϕ , uyϕ , xϕµ , yϕµ ), 

divided by the same values in correspondence to α=0° and α=90° (
)( °=0

ux

αϕ , )( °=90

uy

αϕ , )( °=0

x

α
ϕµ , )( °=90

y

α
ϕµ ). 

This kind of representation allows one to easily compare the biaxial behavior of sections having 

different geometrical and mechanical features.  

With regard to the influence of concrete strength fc on the biaxial performance of the cross 

section the analyses revealed a limited relevance if comparison is accomplished at the same levels of 

axial load. The ultimate curvature generally grows when increasing strength but this increment is 

generally accompanied by lower biaxial curvature capacity (Fig. 8-a). The influence of strength is 

anyway negligible if axial load level exceeds ν=0.4. This tendency is also confirmed in terms of 

ductility observing dimensionless domains (Fig. 9.a). The limited influence of concrete strength that is 

here recognized is however due to the fact the comparisons are made at the same levels of 

dimensionless axial load. In fact if one considers that the strength increasing is associated with the  
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  a)                                               

     b)                                                   

      c) 

Figure 6. Ultimate curvature (a), yielding (b) and curvature ductility (c) domains for section 40x40. 
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   a) 

 

   b) 

   

     c). 

Figure 7. Ultimate curvature (a), yielding (b) and curvature ductility (c) domains for section 30x60. 
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b) 

Figure 8. Dimensionless ultimate curvature domains: a) influence of strength fc; b) influence of aspect ratio ξ. 

a) 

b) 

Figure 9. Dimensionless curvature ductility domains: a) influence of strength fc; b) influence of aspect ratio ξ. 

proportional reduction of axial load level that in dimensional terms means that the relevance of 

concrete strength the deformation performance is the same of the one exerted by the axial load level. 

The investigation on influence of the parameter ξ=h/b has shown that the aspect ratio does not 

actually influences the ultimate curvature capacity of sections which slightly increase with ξ and this 



 L.Cavaleri, F.Di Trapani, G.Macaluso, G.Scaduto 11 

 

  

influence is negligible after ν=0.3 (Fig. 6-7). This trend is more evident observing dimensionless 

ultimate curvature domains Fig. (8.b).  

The influence of confinement efficacy is finally considered. It can be easily observed by Figs. 

(6-7) that this parameter does not have any capacity to increase biaxial curvature and ductility capacity 

with respect to the one available along principal axes. A good confinement of concrete produces in 

fact a general improvement of the deformation capacity along any direction at the same way being the 

ultimate curvature domains directly proportional to the ultimate core concrete strain. The ultimate 

curvature and curvature ductility domains, determined for the two analyzed confinement levels, 

undergo a simple translation that stays in the same ratio of the considered core concrete ultimate 

strains. 

CONCLUSIONS 

Axial load and biaxial bending action influences in a not negligible way the deformation 

capacity of RC cross-sections. The biaxial action has a relevant impact on the ultimate curvature and 

curvature ductility and in most of the cases produces a relevant loss with respect to the principal 

directions. In order to account these aspects a numerical construction of dimensional and 

dimensionless biaxial ultimate curvature, yielding curvature and curvature ductility domains is 

described in the paper. 

The effects of some physical and mechanical parameters on the deformation capacity of RC 

cross-sections have been investigated by means of a parametric study. The parameters considered were 

1) concrete strength, 2) concrete confinement, 3) aspect ratio of cross-sections. The influence of each 

parameter has been evaluated at different levels of the dimensionless axial load.  

The analyses have shown that each of the parameters above listed has a role. Nevertheless some 

of them have a much more important influence. Further in spite of important variations in the ultimate 

curvature capacity in presence of biaxial bending, the curvature ductility capacity may undergo 

variations not so important (i.e., a strong reduction of ultimate curvature may not correspond  to an 

equal strong reduction of curvature ductility).  

The parameter that more than any other influences the deformation capacity of cross-sections is 

the confinement of core concrete that however impacts on the overall deformation performance and 

not on the biaxial in particular. The other parameters can reduce the differences between the 

deformation capacities in biaxial bending and along principal axes bending but have a lower influence. 

The analyses have highlighted that: 

- an increasing in the dimensionless axial load tends to cancel the differences between the axial 

bending  deformation capacity and biaxial bending deformation capacity;  

- the aspect ratio of cross-sections modifies the shape of the ultimate curvature domains and the 

curvature ductility domains being the possibility of a major reduction of the deformation capacity for 

major values of the aspect ratio; 

-  an increasing of the strength of concrete does not modify the shape of the ultimate curvature 

domains and of the curvature ductility domains but produces a light increasing of the area of these 

domains. However if the comparison is made with the same level of dimensional axial load the 

strength increasing produces a reduction of dimensionless axial load and a consequent increasing of 

defamation performance. 

From a general point of view the study revealed the quite relevance of the issue of the biaxial 

deformation performance of RC cross section. In particular it appears evident that the loss in ultimate 

curvature and ductility capacity exhibited under biaxial condition cannot be neglected during design 

phases or assessment of existing buildings. A more accurate nonlinear modeling of these aspects 

especially when using lumped plasticity should be therefore encouraged to get a more proper overall 

definition of capacity of RC buildings. 



12 

 

AKNOWLEDGEMENTS 

This study was supported by PO Italy – Malta 2007-2013. SIMIT Research Project: “Costituzione di 

un sistema integrato di protezione civile transfontaliero Italo-Maltese ” 

REFERENCES 

ACI 318 (2008). “Building code requirements for structural concrete and commentary”, American Concrete 

Institute (ACI). 

Eurocode 2 (2005). “Design of concrete structures, part 1-1: general rules and rules for buildings”, European 

Committee for Standardization (CEN).   

Bresler B (1960). “Design criteria of reinforced columns under axial load and biaxial bending”, ACI Journal, 

57(5):481-490.  

Hulse R, Mosley WH (1986). Reinforced concrete design by computer, MAcmillan Education Ltd. New York. 

Spiegel L, Limbrunner GF (1988). Reinforced concrete design, Prentice-Hall, Upper Saddle River, N.J.. 

De Vivo L, Rosati L (1998). “Ultimate strength analysis of reinforced concrete section subject to axial force and 

biaxial moment”, Comput. Methods Appl. Mech. Engrg,166:261-287. 

Fafitis A (2001). “Interaction surface of reinforced-concrete section in biaxial bending”. Journal of Stuctural 

Engineering, 840-846. 

Monti G, Alessandri S (2006). “Assessment of columns under combined biaxial bending and axial load”, 

proceedings of  second FIB congress, Naples, Italy.  

Kim JK, Lee S (2000). The behavior of reinforced concrete columns subjected to axial force and  biaxial 

bending. Engineering Structures 2000, 23:1518-1528. 

Bonet JL, Miguel PF, Fernandez MA, Romeo ML (2004). “Analytical approach to failure surfaces in  reinforced 

concrete sections subjected to axial load and biaxial bending”, J. Struct Eng (ASCE),130(12):2006-2015.  

Bonet JL, Romero M, Miguel P, Fernandez ML (2004). “A fast stress integration algorithm for reinforced 

concrete section with axial loads and biaxial bending”, Computers and Structures, 82:213-225.  

Fossetti M, Papia M (2012). “Dimensionless analysis of RC rectangular sections under axial load and biaxial 

bending”, Engineering Structures , 44:34-45. 

Di Ludovico M, Lignola G, Prota A, Cosenza E (2007). “Analisi non lineare di sezioni in c.a. soggette a 

pressoflessione deviata”. ANIDIS XII Convegno, L’Ingegneria sismica in Italia, Pisa, Italy. 

 


