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Abstract

Nowadays, typical methodologies employed in statistical physics are successfully applied to
a huge set of problems arising from different research fields. In this thesis I will propose
several statistical mechanics based models able to deal with two types of problems:
optimization and inference problems. The intrinsic difficulty that characterizes both
problems is that, due to the hard combinatorial nature of optimization and inference,
finding exact solutions would require hard and impractical computations. In fact, the
time needed to perform these calculations, in almost all cases, scales exponentially with
respect to relevant parameters of the system and thus cannot be accomplished in practice.

As combinatorial optimization addresses the problem of finding a fair configuration of
variables able to minimize/maximize an objective function, inference seeks a posteriori the
most fair assignment of a set of variables given a partial knowledge of the system. These
two problems can be re-phrased in a statistical mechanics framework where elementary
components of a physical system interact according to the constraints of the original
problem. The information at our disposal can be encoded in the Boltzmann distribution
of the new variables which, if properly investigated, can provide the solutions to the
original problems. As a consequence, the methodologies originally adopted in statistical
mechanics to study and, eventually, approximate the Boltzmann distribution can be
fruitfully applied for solving inference and optimization problems.

The structure of the thesis follows the path covered during the three years of my
Ph.D. At first, I will propose a set of combinatorial optimization problems on graphs, the
Prize collecting and the Packing of Steiner trees problems. The tools used to face these
hard problems rely on the zero-temperature implementation of the Belief Propagation
algorithm, called Max Sum algorithm. The second set of problems proposed in this thesis
falls under the name of linear estimation problems. One of them, the compressed sensing
problem, will guide us in the modelling of these problems within a Bayesian framework
along with the introduction of a powerful algorithm known as Expectation Propagation
or Expectation Consistent in statistical physics. I will propose a similar approach to
other challenging problems: the inference of metabolic fluxes, the inverse problem of the
electro-encephalography and the reconstruction of tomographic images.
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Part I

Statistical physics for combinatorial
problems





Chapter 1

Introduction

In this chapter we will introduce the main features of statistical mechanics along with
a brief review about optimization and inference problems. The link among the three
disciplines is underlined by several examples in which we express both combinatorial
optimization and inference problems using a language borrowed from statistical physics.

1.1 Basic notions of statistical mechanics

Statistical mechanics was born in the end of the 19th century to rigorously explain the
laws of thermodynamics in a probabilistic framework. Starting from a microscopical
description of a system of a large number of elementary units (for instance, particles in a
gas), it recovers a macroscopic viewpoint that, at equilibrium, is governed by the state
laws of thermodynamics [1, 2].

Let us define the microscopic state of element i as xi and the space of configurations
as X such that xi ∈ X; it fully describes the microscopic details, i.e. all the degrees
of freedom, of element i. From now on we consider xi as a discrete variable but the
generalization to continuous space is straightforward. For a system of N units, the
configuration space of the state x = {xi}i=1,...,N will be the product space XN =
X × . . .×X, and thus x ∈ XN .

The energy function, or Hamiltonian, H (x) depends on the kind of interaction among
the elementary components. In the most general case the energy can be any function of
the configuration that depends on many-bodies terms, we say k−bodies, as

H (x) =
∑

i1,...,ik

H (xi1 , . . . , xik) (1.1.1)
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where k can take any value from 1 to N . For non-interacting systems, the energy function
is the sum of single elements energy, for instance

H (x) =
N∑
i=1

H (xi) (1.1.2)

Notice that the expressions in (1.1.1) and (1.1.2) can be further simplified if one
replaces the exact expression with the Taylor expansion of H (x) with respect to x. Once
the space of configurations and the energy function are defined, we can state that, in a
canonical ensemble picture, the probability that the system assumes a configuration x is
given by the Boltzmann distribution

P (x) = 1
Zβ
e−βH(x) (1.1.3)

where Zβ is the partition function defined as

Zβ =
∑

x∈XN

e−βH(x) (1.1.4)

The parameter β appearing in (1.1.3) and (1.1.4) is the so-called inverse temperature
defined as β = 1

kBT
where T is the temperature, kB is the Boltzmann constant that, for

sake of simplicity, will be omitted for the rest of the work.
The sum in (1.1.4) runs over all the possible configurations of the system and,

depending of the functional form of the energy, it may lead to an intractable or unfeasible
computation. This means that, although the partition function is exactly computable,
the time needed to perform this calculation grows exponentially with the size N of the
system. Very few statistical models can be “solved” in the sense that the partition
function can be computed in polynomial time. The distinction among tractable and
intractable problems is outlined in section 1.2.1.

Let us outline how a system described by the distribution in (1.1.3) behaves in the
following limiting cases:

• High temperature regime. Performing the β → 0 limit, one finds:

lim
β→0

P (x) = 1
|X|

(1.1.5)

The Boltzmann distribution in (1.1.3) becomes a flat distribution: as a consequence
all configurations are equally likely to occur.
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• Low temperature regime In the β → ∞ limit the Boltzmann distribution
concentrates over the maximum(a) of (1.1.3), or in other words, those configurations
that minimize the energy function, the ground states, dominate the Boltzmann
distribution. Assuming that H has a unique minimum and defining as x∗ =
arg minx H (x) the ground state, the Boltzmann distribution reads

lim
β→+∞

P (x) = I [x = x∗] (1.1.6)

where I [·] is the indicator function that takes value 1 is its argument is true or 0
otherwise.

The behavior of the system at microscopic level and, therefore, the main aspects of the
Boltzmann distributions are caught by some thermodynamic potentials whose “macro-
scopic” behavior reflects the microscopic one. The most important one is the (Helmholtz)
free energy

F = − 1
β

lnZβ (1.1.7)

since, as discussed in section §3.2, a system at thermal equilibrium will assume a
configuration of variables such that the free energy potential is minimized. From the free
energy one can derive two more thermodynamic potentials, the internal energy U and
the entropy S

U = ∂

∂β
[βF ] S = β2 ∂

∂β
F (1.1.8)

that are all related through the expression

F = U − TS (1.1.9)

Thus
U =

∑
x

H (x)P (x) S = −
∑

x

P (x) lnP (x) (1.1.10)

where this latter expression of S is the Shannon entropy coming from information theory
[3].

1.1.1 Phase transitions

The main purpose of statistical mechanics is to quantitatively study the behavior of a
system in the thermodynamic limit, that is when the number of the elementary units N
is very large, or, more formally, when N → +∞ . Since the thermodynamic potentials
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defined in section §1.1 proportionally growth with respect to the system size, it is useful
to introduce an intensive measure of these potentials when N → +∞. For instance, let
us define the intensive free energy functional as

f = lim
N→+∞

F

N
(1.1.11)

For finiteN the partition function and the Helmholtz free energy defined in (1.1.4)(1.1.7)
are analytic functions of the temperature (or of the parameter β) but in the thermody-
namic limit analyticity may be not preserved. In these cases, there exists a the critical
value of the (inverse) temperature βc on which the intensive free energy is not analytic.
Macroscopically, the system undergoes a phase transition and it dramatically changes its
state. We can differentiate two cases:

• First order phase transition. The free energy is a continuous function of β but
its derivative has a discontinuity in βc;

• Second order phase transition. The free energy and its first derivative are
continuous but the second derivative has a singularity in βc.

In this thesis we will encounter some phase transitions. When we will investigate the
solution space of combinatorial optimization and inference problems, we will face sort of
phase transitions in the sense that these problems can change their “state” from solvable
to unsolvable in particular settings. This is what we will show in section 2.2.1.3 for the
compressed sensing problem introduced in section 2.2.1.1.

Example 1. Ising model
The Ising model is the most famous model of statistical physics. As a matter of

example let us consider a discrete model of N spins subjected to pairwise interactions and
an external field. The state σi of spin i is defined in the space of possible spin magnetic
moments, σi ∈ {−1, 1}. The Hamiltonian is defined as

H (σ) = −
∑
(i,j)

Jijσiσj −
∑
i

hiσi (1.1.12)

where the sum over (i, j) runs over all coupled spins. The parameters Jij govern
the strength of the coupling and they take positive (negative) value for ferromagnetic
(paramagnetic) interaction. With hi we denote the external field applied to spin i. The
partition function associated with this Hamiltonian is given by

Zβ =
∑
σ

e−βH(σ) (1.1.13)
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that is not tractable in general cases.

1.2 Optimization problems

1.2.1 NP versus P

The link between computer science and statistical mechanics has recently produced a
breeding ground for the study of combinatorial problems [4]. Since the beginning of
the Sixties, algorithms complexity played a central role in the understanding of the
performance of digital calculus, addressing the question of how the time and space
consumption is linked to the input size of the problem.

This study has produced the important distinction between polynomial time (P)
problems and non-deterministic polynomial (NP) time problems. By definition, for the
first class there exist algorithms that guarantee a solution for any instance of the problem
in a feasible time, i.e. that scales polynomially with the input size; for the second class we
can only verify that a candidate solution is indeed a solution. We say that some instances
of an NP problem are intractable as the resolution process may need a computing time
that can even exponentially grow with respect to the input size. Going deeper in the
classification we can briefly introduce the classes of NP-complete and NP-hard problems.
A problem belongs to the NP-hard class if any problem in NP can be converted to
it in feasible time. An NP-complete problem is an NP-hard problem and it is itself
NP, meaning that checking if a trial solution is a solution requires a time that scales
polynomially. A consequence of this is that the existence of a polynomial algorithm
for any NP-complete problem implies NP = P . So far, no such an algorithm for any
NP-complete problem has been found and, although no proof exists, the hypothesis
that NP ̸= P seems hard to refute. Another consequence is that there exist “harder”
problems belonging to the NP-hard class, but not in NP, such that even checking a
solution requires unfeasible time.

Cook’s paper [5] proved that the SAT-problem (the decision problem of determining
whether a Boolean logic formula can be satisfied or not) belongs to the NP-complete class;
to prove that any other NP problem is NP-complete, it suffices to prove that satisfiability
can be reduced to it. That’s what Karp did in 1972 [6] where 21 combinatorial problems
have been classified in the NP-complete class (and since then, many more). Several
combinatorial decision problems belong to the NP-complete class but its optimization
version falls outside of NP. To underline this distinction we show in example 2 the decision
and the optimization version of the traveling salesman problem.
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Example 2. Traveling salesman problem
Consider a salesman that wants to visit N cities in the following way: starting from

the first one, he would like to visit any other city once and ends the tour with the first
one. With each possible tour we associate a cost that is the sum of the kilometers covered
by the salesman. We can formulate two versions of the problem:

• Optimization problem: What is the path of minimum cost? There is not a
tractable strategy to verify that a candidate solution is the optimum: in order to
identify the minimum circuit satisfying the constraints one needs to explore all the
paths. This is also unfeasible. In fact, a brute force search algorithm will explore
all the possible closed path in O (N !) steps. Performances of more sophisticated
algorithms will require O

(
N22N

)
iterations [7]. This version of the problem is

NP-hard.

• Decision problem: Given a cost L, is there a tour with cost smaller than L? To
verify that a trial closed path satisfies the hard constraint of visiting once each
city and compare the costs are surely feasible. Looking for a solution is instead
intractable as before. The decision problem is thus NP-complete.

1.2.2 Link to statistical mechanics

The classification presented in section 1.2.1 deals with universal properties: when we
say that “this problem needs a computing time which is exponential” means essentially
that there exists at least one difficult instance of this kind; it is a worst case analysis.
Fortunately, the occurrence of difficult or easy instances really depends on which problem
we are dealing with so we can wonder what happens in typical cases: how frequent is
an easy instance? Can I use some methods to solve this subset of instances? This is
where statistical mechanics enters into the picture. In particular, the first link between
combinatorial optimization problems and statistical physics has been made in [8] and
typically it is stated as follows. A combinatorial optimization problem consists in finding
a particular state or configuration that minimizes an objective function. In a statistical
physics picture it corresponds to finding the ground state of a system whose energy is the
objective function of the combinatorial problem. More formally, we aim at determining the
configuration x∗ that minimizes the objective function H (x), or equivalently, dominates
the Boltzmann distribution Pβ (x) = 1

Zβ
e−βH(x) for β → +∞ as we have explained in

section §1.1.
This is key observation that will be highly exploited in the problems faced in this

thesis. To give an example, we describe in example 3 a way of treating the graph
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coloring problem in a statistical mechanics framework; this needs to be understood as an
introduction to the mapping described in section §4.2 and section §5.2.

Example 3. Graph coloring

Given a graph G (V,E) and a set of Q colors, the problem consists in assigning to
any node i ∈ V a color such that its neighbors j ∈ ∂i have different colors. For general
graphs, determining whether a “colorable” assignment exists is one of the 21 NP-complete
problems listed by Karp in [6].

Let us define xi ∈ Q the color of node i and x = {xi} i=1,...,N a possible configuration
of the N nodes; the “Hamiltonian” or cost function that counts how many constraints
are not satisfied is given by

H (x) =
∑

(i,j)∈E
δxi,xj

(1.2.1)

Thus the Boltzmann distribution associated with the variables x is

P (x) = 1
Zβ
e

−β
∑

(i,j) δxi,xj (1.2.2)

The ground state will be composed by those configurations, in any, of zero-energies; other
configurations, with positive energies, will not exactly solve the problem. Notice that if
we perform the β → +∞ limit, we force the system to lie on the ground state.

The modeling is certainly not unique. For instance, in order to stress the hard
constraint imposed to each couple of neighbors (i, j) ∈ E, we can eventually define a
joint probability distribution of the variables as

P (x) = 1
Z

∏
(i,j)∈E

(
1− δxi,xj

)
(1.2.3)

1.3 Statistical inference

Statistical inference is the process of deducing properties of an underlying distribution
by analysis of data. Very often the information at our disposal is affected by uncertainty
or it partially describes the properties that we would like to infer; as a consequence, we
need to investigate the problem in a probabilistic framework [9, 10]. To give an example,
suppose of having a coin and a series of “head” or “tail” outcomes; how can we determine
if the coin is fair? Although there is not a process that can deterministically answer
“yes” or “no” to this question, we can investigate what is most probable value for the
probability of "heads" or "tails" given a series of outcomes and thus decide if the coin is
biased or not.
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Despite the fact that our knowledge suffers from uncertainties about all the details
of the problem in interest, we assume that the process can be well explained by an
hypotheses or a model. Among all the approaches to statistical inference the more
intuitive is the so-called Bayesian inference; its name clearly derives from the use of Bayes’
theorem of probability theory. Not only this method provides a powerful connection
between observations and unknowns, but it can, in principle, estimates the goodness of
our hypothesis, or model, that, we think, describes the problem.

Suppose of having access to M measurements {yi}i=1,...,M = y generated by a system
that we assume is well described by hypothesis H. We denote as {x̃i} i=1,...,N = x̃ the
continuous or discrete variables that we aim at inferring. Let us define x our estimate of
x̃. We ask ourselves, what is the probability distribution of the unknown variables x

given that we have observed y and our model H is correct? Bayes’ theorem states that

P (x|y,H) = P (y|x,H)P (x|H)
P (y|H) (1.3.1)

Probabilities entering in (1.3.1) have special names in the context of statistical
inference:

• P (x|y,H) is the posterior probability;

• P (y|x,H) is the likelihood. For fixed x it is a probability over y, otherwise it is a
function of both;

• P (x|H) is the prior probability. It includes the prior knowledge, in any, of the
unknowns. Otherwise it is taken as a uniform distribution;

• P (y|H) is called evidence. In the context of model selection, i.e. estimate how
good is our model, it plays a main role.

Our model H is formally characterized by a set of parameters, let us define them as θ,
which must be carefully determined in order to the model to well describe the problem
in interest. For most of the problems and applications presented in this work, we will
drop the “H” on the probabilities except when we will try to infer the parameters from
the data.

1.3.1 A statistical physics picture

Historically, the first analogy between statistical inference and statistical physics can be
found in the seminal work of Shannon [3] where the term “entropy” has been used to
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quantify the amount of information in an inference problem. More importantly, Jaynes in
[11] argued that, according to maximum entropy principle, statistical mechanics has not
to be thought as a physical theory depending on its assumptions but it is a special case
of a general Bayesian inference theory [9]. Nowadays, the two disciplines are more and
more connected as problems arising from one field can be treated using methodologies of
the other [1, 12].

Mathematically, a straight-forward link between statistical inference and statistical
physics can be established re-phrasing the posterior distribution (to the power of β) in
(1.3.1) as a Boltzmann distribution of the type

P (x|y)β = 1
Z (y)e

β logP (y|x)+β logP (x) = 1
Z (y)e

−βH(x,y) (1.3.2)

where Z (y) is the partition function and H (x,y) is the Hamiltonian of a system of
interacting units that, in this case, are both x and y. The parameter β is eventually set to
+∞ when we want to investigate the most probable configurations x∗ = arg maxP (x|y)
that correspond to the ground states of the system with Hamiltonian H (x,y). This
model is very general as can encompass both discrete and continuous variables. We will
use this kind of mapping in section 2.2.1.1, section §7.1, section §8.1 and section §9.1.



Chapter 2

Problems

In this chapter we will provide a formal description of the problems faced in this thesis
together with a brief introduction to their applications.

2.1 Steiner tree problems

The minimum Steiner Tree problem (MStP) is an important combinatorial optimization
problem. It consists in finding a connected sub-graph, within a weighted graph, able
to connect a given subset of nodes, called terminal nodes, at minimum cost. With
a solution of this problem we associate an objective function that represents the cost
of connection and it is given by the sum of weights associated with the edges of the
sub-graph. The decision problem of determining whether there exists a solution of cost
less then a given threshold is one of the 21 NP-complete problems identified by Karp in
[6]. The optimization problem of finding the connected sub-graph of minimum cost is
instead NP-hard. Assuming that we want to minimize the objective function with the
constraint of connecting all terminals, it is easy to show that the solution is an acyclic
connected sub-graph, that is a tree. In fact, starting from a loopy sub-graph in which all
terminals are connected we can prune certain edges, lowering the energy and keeping the
connection.

There exist many different variants of the MStP depending on the additional con-
straints that nodes, edges or even the degree of the tree must satisfy. In this work we
deal with a generalization of the MStP that is the Prize-Collecting Steiner tree problem
(PCStP) where, instead of dealing with terminals, we are given a graph with “prizes”
associated with nodes. The objective function is now lowered each time we add a “prized”
node: the optimal configuration will be given by the best trade-off between the cost of
the solution and the reward gained by the insertion of nodes.
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Both MStP and PCStP have been recently used in several different frameworks
to model a huge set of problems. Consider, for instance, the problem of optimally
distributing heating or fiber optics in a city [13]. Customers (or potential customers)
can be seen as prized nodes in a graph, the street network of the town. Edges will be
weighted according to the cost of the connection of pipes and cables. A solution of the
MStP on this type of graph provides an optimal set of potential customers along with
the most efficient architecture of the pipes or cables. In addition to the optimal power
distribution problem, we mention the research of protein associations in cell signaling
[14, 15] and the circuit design problem [16].

The most popular approaches to the PCStP are the use of linear programming
[17] and optimized heuristics [18]. We present in 3.6.1.1.1 the standard Goemans-
Williamson heuristics [19] as a background to the Max-Sum modified heuristics presented
in section §4.4. A cavity method has been used in [20, 21] to study the statistical properties
and performances of an implementation of the Max sum algorithm in section 3.3.4 for
this problem. The approach mainly relies on “pointer variables” associated with nodes of
the graph.

Another variant we are going to present is the Packing of Steiner trees where we
aim at finding multiple trees within the graph. These trees “interact” in the sense that
nodes and/or edges belonging to a certain solution must satisfy additional constraints. In
particular, in the Vertex-disjoint Steiner tree problem (V-StP) once a node is part of one
solution it cannot be shared by other trees. As a consequence, also edges can belong to
at most one tree. Differently, in the Edge-disjoint Steiner tree problem (E-StP) edges of
a solution-tree cannot be used by other trees but nodes can be shared by different trees.

In addition to its mathematical interest, a lot of attention is devoted to the Packing of
Steiner trees since several layout design issues arising from Very Large Systems Integrated
(VLSI) circuits can be mapped into variants of this combinatorial optimization problem
[16]. Graphs underling these circuits are typically 2D or 3D grid graphs where the
terminals assignment usually satisfies some working conditions.

2.1.1 The Prize-Collecting Steiner tree problem

Let us give a formal definition of the PCStP. Given a graph G (V,E) with prizes ci ≥ 0
associated with each node i ∈ V and weights wij > 0 on each edge (i, j) ∈ E, we address
the problem of finding a tree T (VT , ET ), where VT ⊆ V , ET ⊆ E and the objective
function

H (VT , ET ) =
∑

(i,j)∈ET

wij −
∑
i∈VT

ci (2.1.1)
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Figure 2.1.1: Instance of the MStP on the left and the optimal solution on the right

is minimized. Thus, we seek

T ∗ = arg min
(VT ,ET )

H (VT , ET ) (2.1.2)

Notice that if we impose very large prizes to the nodes, for instance for ci → +∞, we
recover the MStP. Nodes having ci > 0 are often called profitable nodes.

In chapter 4 we present an algorithm, based on the Max Sum algorithm presented
in section 3.3.4, able to efficiently find a “bounded” and “rooted” solution. We mean
that among all the profitable nodes, one is selected to be the root node of the tree and
this needs to be surely included in the solution. We can also define the diameter of the
tree as the maximum distance between the root and any other node within the tree.
With “bounded” we indicate that the diameter of the solution can be at most equal to a
constant; if this constant is D, we say that the tree is D-bounded.

As a matter of example, we propose in figure 2.1.1 (left plot) a small graph in which
we solve the MStP. Red nodes are the terminals (node “4” is the root) while the numbers
close to the edges are the weights of the graph. The solution is plotted on the right
where the edges of the solution are now red. Nodes different from the terminals that are
members of the solution are called Steiner nodes; in this example nodes {3, 5, 7, 8} are
Steiner nodes.
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2.1.2 Packing of Steiner trees problems

In the following we will give a formal definition of the packing of Steiner Trees problems.
Given a weighted graph G (V,E,M) containingM subsets of vertices with non-negative

real prizes {cµi : i ∈ V, µ = 1, . . . ,M} and real positive weights
{
wµij : (i, j) ∈ E, µ = 1, . . . ,M

}
on edges, we consider the problem of finding M connected sub-graphs Gµ = (Vµ, Eµ) that
minimize the following cost or energy function:

H =
∑
µ

 ∑
i∈V \Vµ

cµi +
∑

(i,j)∈Eµ

wµij

 (2.1.3)

This definition of the problem is as general as possible since node prizes and edge
costs can depend on sub-graph µ and, for directed graph, we can admit wµij ≠ wµji.
In the following we interpret the solution-trees as networks that allow terminals to
“communicate” thus each sub-graph Gµ is a “communication” µ flowing within the graph.

Additionally, subsets Gµ must satisfy some interaction constraints. In the Vertex-
disjoint Steiner Trees Problem (V-DStP), vertex-sets Vµ must be pairwise disjoint, i.e.
Vµ ∩ Vν = ∅ if µ ̸= ν and, consequently, also edge sets will be pairwise disjoint whereas
in the Edge-disjoint Steiner Trees Problem (E-DStP), only edge sets must be pairwise
disjoints, i.e. Eµ ∩ Eν = ∅ if µ ̸= ν, but vertex sets can overlap. In chapter 5 we
will present three algorithms to solve the V-DStP and the E-DStP based on the zero-
temperature implementation of the Belief Propagation, the Max Sum algorithm outlined
in section 3.3.4.

2.2 Linear estimation problems

The problems that will be described in the following part of the chapter can be seen as
particular cases of a more general problem, the linear estimation problem (LEP). This
type of problem consists in determining a vector x ∈ RN that satisfies a system of linear
equations of the type

Ax = y (2.2.1)

where A ∈ RM×N and y ∈ RM are known and N > M . The system in (2.2.1)
is ill-posed and, mathematically speaking, there exists an infinite number of solutions
satisfying the linear constraints; nonetheless the domain of research can be significantly
reduced if one makes further assumptions concerning the desired solution.

These problems can be faced using very different techniques. We will shortly show how
to deal with LEP using linear programming in section §3.6.1 but the main approaches
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utilized in this thesis rely on the Bayesian inference. We will encode within the posterior
probability of the unknowns all the available information about the system along with
the hard constraints that variables x must satisfy.

In the following we will formulate several inverse problem as particular cases of the
linear estimation problem. Among all, the compressed sensing problem will be mapped
here into a Bayesian inference problem and in section 2.2.1.2 we will show some known
results of this particular problem to be thought as an introductory part of the preliminary
results shown in chapter 6.

2.2.1 Compressed sensing

In the framework of signal acquisition, the compressed sensing (CS) problem [22] addresses
the question of determining what is the best procedure to sample, compress and save
the data without losing information. Applications of the CS problem arise from very
different fields: from image processing [23, 22] to astronomy [24] and biology [25].

The problem setting is typically the following. A receiver acquires some measurements
y = {ym}m=1,...,M emitted by a noisy device. Typically, we know how the machine works:
starting from a signal s = {sn}n=1,...,N , it makes linear operations that can be formally
described as multiplication by an M ×N matrix F (if this matrix is not given, there exist
several procedures able to design one [26]). Since the output of the operation is affected
by some additive noise ε, each component of the measurements vector is mathematically
described as

ym =
N∑
n=1

Fmnsn + εm m = 1, . . . ,M (2.2.2)

In practical cases, the system of equations expressed in (2.2.2) is ill-posed, being
N > M . In the compressed sensing framework we assume that the original signal is
K-sparse, meaning that only a fraction ρ = K

N
of elements of s is non-zeros.

We will present how to cope the CS problem in a Bayesian framework in section 2.2.1.1;
approaches for solving this problem are illustrated in section 3.4.1, section 3.6.1.2 and
chapter 6.

2.2.1.1 Bayesian approach to CS problem

Let us call x our prediction about the signal s in (2.2.2) and let us specify the formal
expression of the posterior P (x|y) in (1.3.1). The likelihood function remarks the linear
constraint;in the noisy case, we can express the probability of observing y given x as
the probability of observing the noise. Thus if we assume that each component εm is
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distributed according to a Gaussian distribution of zero mean and variance ∆, we obtain

P (y|x) ∝
∏
m

1√
2π∆

e− 1
2∆(ym−

∑
n
Fmnxn)2

(2.2.3)

The noiseless case can be encoded taking the limit of ∆→ 0 of equation (2.2.3) that
corresponds to exactly impose the linear constraint y = Fx. The prior P (x) enforces
the sparsity of the solution; if we define ρ = K

N
the fraction of non-zeros components and

we assume independence among them, we obtain

P (x) ∝
∏
n

[(1− ρ) δ (xn) + ρϕ (xn)] (2.2.4)

where δ (·) is the Dirac delta function and ϕ (·) is a finite variance function to be
determined. This type of prior is often called L0 regularization. If we assume that
non-zeros entries are smooth and distributed according to a Gaussian distribution with
zero mean and variance λ we can write the posterior as:

P (x|y) ∝ e− 1
2∆ (y−Fx)T (y−Fx)∏

n

[
(1− ρ) δ (xn) + ρ√

2πλ
e− x2

n
2λ

]
(2.2.5)

2.2.1.2 Different priors

The L0 prior introduced in (2.2.4) “directly” imposes the sparsity constraint, in the
sense that the sought solution have exactly ρN non-zeros components. Let us write the
posterior in equation (2.2.5) as in the statistical mechanics picture outlined in section 1.3.1

P (x|y) ∝ e−βH(x,y) (2.2.6)

where

H (x,y) = 1
2∆ (y − Fx)T (y − Fx)−

∑
n

ln
[
(1− ρ) δ (xn) + ρ√

2πλ
e− x2

n
2λ

]
(2.2.7)

Due to the presence of the Dirac delta distribution, this energy function is not easy
to treat with standard minimization approaches. For this reason one can “relax” the
sparsity constraint imposing a different kind of prior to the x variables which corresponds
to replacing the logarithm term in the Hamiltonian with a convex function of x. We will
show here two formulations:

• L1 regularization. This prior is also known as Laplace or LASSO (least absolute
shrinkage and selection operator) [27] prior and consists in the following distribution



26 Problems

PL1 (x) ∝
∏
n

e−β1|xn| = e−β1∥x∥1 (2.2.8)

where the function ∥x∥1 is the L1-norm. The parameter β1 > 0 governs the
sparseness of the solution.

• L2 regularization. Here we replace the ∥x∥1 in (2.2.8) with the ∥x∥2 as

PL2 (x) ∝
∏
n

e−β2x2
n = e−β2∥x∥2 (2.2.9)

The posterior is this case assume the functional form of a multivariate Gaussian
distribution.

These formulations of the prior allow to treat the CS problem with Linear Programming
techniques as shown in section 3.6.1.2.

2.2.1.3 Thermodynamic limit

Both using mathematical techniques [28] and replica symmetric analysis [29, 30] it is
possible to study what happens to the space of solutions of the CS problem in the
thermodynamic limit, that is for N → +∞ and M → +∞ and fixed measurement rate
α = M

N
.

Let us suppose that the matrix of measurement F is composed by independently
distributed Gaussian random variables and let us work in the noiseless regime: the system
in (2.2.2) describes a set of linear independent equations. If M ≥ K, we can try to
solve the system y = Fx for any of the possible

(
N
K

)
assignments of the non-zero entries

of x and determine which x satisfies the linear constraint. However, this exhaustive
enumeration approach is impractical as the operations needed to seek a solution scales
exponentially with N . Notice also that for M < K , that is when the measurement rate
is smaller then the fraction of non-zero of the signal, it is impossible to solve the problem.
Thus there exists a limit of perfect reconstruction, α = ρ, beyond which, that it for
α ≥ ρ, it is, in principle, possible to retrieve the signal. This is what we are seeking when
we impose an L0 prior on the variables x. What happens when the prior is instead L1 or
L2? We plot in figure 2.2.1 the phase diagram of the space of solution of this problem as
explained in [30]. Blue, red, and green lines correspond to the critical values of α as a
function of the sparsity ρ when we use the L0, the L1 and L2 regularizations respectively.
We notice that for the L1 prior the portion of the space between the red and the blue
line is not accessible even though we are beyond the theoretical limit of the L0 line. This
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Figure 2.2.1: Phase diagram of the space of solutions of the CS problem.

is the most interesting limit. The case of the L2 regularization is instead trivial as we
need α ≥ 1 and so M ≥ N to reach perfect reconstruction of the signal; in this limit it
suffices to trivially solve (if F is a full rank matrix) x = F−1y which is not a compressed
sensing problem.

It has been proved [26, 9] that the limit of perfect reconstruction of the Belief
Propagation algorithm (see section 3.4.1) is delimited by a curve that lies in a region in
between the L1 and L0 curves. Results employing the Belief Propagation algorithm and
shown in chapter 6 are consistent with this limit.

2.2.2 The space of solution of constrained metabolic fluxes

Living organisms perform a never-ending stream of chemical reactions to maintain an
environmental condition favorable to their self-sustenance [31, 32]. The elementary units
responsible for this dynamic equilibrium are the cells. Within a cell, molecules like
aminoacids, sugars, nucleotides, and lipids are processed by a huge set of enzymes to
supply energy, to build proteins and other macro-molecules necessary to the cell life. All
these complicated mechanisms take the name of metabolism.

The entire sets of possible reactions and all the molecules (often called metabolites)
entering in these processes are well known from chemistry. Often reactions occur one
after the other in the sense that the products of a reaction are the starting materials for
other reactions and so on. The “velocity” of reaction, i.e. the rate at which each reaction
takes place, is not known a priori. We define this rate as metabolic flux.

More formally, we can associate with each reaction a linear equation that describes
the number of metabolites consumed or produced; the proportionality factors are called
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stoichiometric coefficients. If we consider all possible reactions, we can build a matrix of
these coefficients: the stoichiometric matrix. Let us consider a metabolic network of M
metabolites and N reactions characterized by a M ×N stoichiometric matrix S, where
the entry Sij quantifies how metabolite i is produced (degraded) in reaction j; notice
that typically N > M . Let us study how the concentrations c of metabolites change in
time. Assuming that the concentration of metabolites are conserved, we can write the
following continuity (or conservation) equation

∂c

∂t
= Sν − o + i (2.2.10)

where ν = {νi}i=1,...,N are the metabolic fluxes, i and o are respectively the input and
output metabolic flows. Now if we define i− o ≡ b = {bi}i=1,...,M as the net metabolic
uptake and we investigate the system at steady state condition, we obtain the linear
system of equations

Sν = b (2.2.11)

where the fluxes ν ∈ RN have to be determined. Notice that the relation in (2.2.11)
cannot be inverted being the system of equations ill-posed; in principle there exists
infinite configurations of fluxes satisfying (2.2.11). Fortunately, fluxes cannot take any
possible value, are instead bounded, that is

νmin ≤ ν ≤ νmax (2.2.12)

where νmin and νmax are the minimum and maximum allowed values of the fluxes.
Bounds enforce some physiological constraints: on irreversible reactions we must impose
ν ≥ 0, or, for those fluxes that are fixed to a certain value for maintenance reasons, we
need to impose small interval of variation. In all other cases bounds are computed through
the so-called Michaelis-Menten equation or set to very large values if no information is
available. The solution space is thus bounded and it can now be described by a convex
polytope in a N −M dimensional space; any point within the polytope is an allowed
configuration of fluxes. We will show several approaches to investigate the space of
solutions of this problem. The first one is Flux Balance Analysis (see section 3.6.1.3) that
consists in finding the configurations of fluxes (a point within the polytope) such that
the growth rate of the cell is maximized; the second one is a sampling technique called
Hit-and-Run Monte Carlo (see section 3.6.2.1) able to estimate numerically the marginal
probability of each flux. In chapter 7 we present an analytic approach able to accurately
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approximate the marginal probability density of metabolic fluxes. The approximation
relying on the Expectation Propagation algorithm is presented in section §3.5.

Apart from the stoichiometric constraints affecting metabolic fluxes, we mention
that the general process is simultaneously driven by regulatory constraints on enzymes
participating to the metabolism, their corresponding genes and genes transcription factors
[33]. However, integrating information on regulatory processes dramatically affects the
complexity of the model and so far, theoretical research basically focuses its attention on
(simple) stoichiometric models which, nonetheless, provides a significant explanation of
cell functioning.

2.2.2.1 Fixing experimental profiles of fluxes

Let us define a slightly modified problem involving metabolic fluxes. Consider an organism
which is well modeled by constraints (2.2.11) and (2.2.12) and let us suppose of having
an experimental evidence of the distribution of a certain flux νi. How the metabolism of
this organism has changed to accommodate this flux profile? We show in section §7.3
how to cope to this specific problem using the Expectation Propagation algorithm.

2.2.3 An inverse problem in electro-encephalography

The electrical activity of the brain is detected through electro-encephalograph (EEG)
recordings which experimentally provide measures of voltage on the scalp. These voltages
are the direct consequence of the presence of current densities within the brain. From
a physical viewpoint, we can relate the measurements at time t to the current density
through

v (rs, t) =
∫
drgK (rs, rg) j (rg, t) (2.2.13)

where rs refers to a point on the scalp and rg span the space covered by gth source;
j (rg, t) is the current at point rg at time t while K (rs, rg) is the kernel matrix (or
electric lead field) that summarizes the electric and geometrical properties of the media
(brain, skull and scalp).

The inverse problem of locally identifying the sources of the currents, given a set of
measurements of voltages, corresponds to the solution of a Fredholm integral equation of
the first kind, or, using an inference jargon, the inverse problem of the EEG [34]. Even
at steady state condition, solving this problem is very hard due to the ill-posed nature of
the problem; in fact, many distributions for the currents satisfy (2.2.13). To deal with it,
we will introduce a more simplified model for the static case. We underline that solving
this inverse problem is of huge impact in medical diagnosis as it provides an accurate
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knowledge of the current distributions within the brain through non-invasive medical
devices.

Let us model the brain as a 3D “sphere” in a discretized space where voltages are now
the solutions of a set of linear equations involving the (discrete) electric lead field and
current densities. Formally, we group the voltage records in a vector v of Ne components,
where Ne is the number of the electrodes (typically Ne ∈ [32, 64]). In our discrete model
of the brain activity, the vector v is given by:

v = Kj + ε (2.2.14)

where K is the kernel matrix of dimension Ne × Ng, Ng is the number grid volumes
(called voxels) in the discretized brain, j is a vector of dimension Ng containing the
current densities in each point of the space and ε models the additive noise affecting the
measures. The problem of inferring the current densities from given voltage measures
and a given electric lead field K is as hard as in the continuous case being the system of
equations in (2.2.14) under-determined. Notice in fact that Ng ≫ Ne (typically Ng ∼ 103)
and thus the solution is not unique. Moreover, addressing the pseudo-inverse problem,
that is finding j =

(
KTK

)
KT · (v + δ) where δ is a small perturbation of the voltages,

is not sufficient as solutions j strongly depend on the choice of δ.
One way of reducing the space of solutions is to impose certain additional constraints

on j. A convenient choice could be to assume sparsity on the components of j and to map
this problem into a compressed sensing problem as described in section §2.2.1. However,
these sparse solutions would correspond to point-like activation regions which is not what
biologically evidences predict. What we seek are “sparse” but also “smooth” solutions,
in the sense that current densities must spread in few volumes of the brain and than
smoothly decay to zero in neighbor non-involved areas. The active regions correspond to
well known areas of the brain those subdivision provides a map of the cerebral cortex
according to neural organization. Thus, the constraints on the unknown variables must
be carefully designed to impose sparseness, smoothness and correlate the components of j.
We propose in chapter 8 an algorithm based on Expectation Propagation approximation
able to spatially localize the sources of synthetic currents within brain.

2.2.4 Inference in tomographic images

Tomography is an imaging technique of utmost importance in diagnostic medicine [35, 36].
It consists in illuminating an object (in medicine, an internal organ) from different
directions and detecting transmitted or reflected rays. From the set of measurements
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(often called projections), it reconstructs a posteriori the 2D cross-section of the object.
The first medical applications used X-rays but, nowadays, radioisotopes and ultrasounds
are successfully employed. Physically, the projections are the result of the energy
transmitted (or reflected) by the object when illuminated.

If we performed a large set of measurements, we would be able to perfect reconstruct
the object but, due to some practical issues, like the (usual) large size of the objects
or the limited scanning directions of the devices, the rays (projections) are emitted
(collected) in a limited set of angles. This affects the goodness of the tomographic images
and efficient reconstruction algorithms are needed. In addition, it is preferable to use
the least possible number of rays not to expose the patient (in diagnostic medicine) to
excessive radiation that, even in small quantity, can damage the tissues.

The first attempt to reconstruct a tomographic image comes from the use of the
Radon anti-transform that we will briefly outline here. Mathematically speaking, a
projection at a given angle is the integral of the image in the direction of the ray. Let us
define f (x, y) the “intensity” of the image at position (x, y), and t = x cos θ + y sin θ the
parametrization of the line covered by rays emitted at angle θ . The device will detect

yθ,t =
∫ ∫ +∞

−∞
dxdyf (x, y) δ (x cos θ + y sin θ − t) (2.2.15)

where the function yθ,t is known as the Radon transform of the function f (x, y) [35].
Notice that performing its anti-transform will solve the inverse problem.

What we will present in this work is typically applied to X-rays computed tomography
(CT) where the intensity of the images is determined by the photon absorption of the
medium. Let us partition the image in L× L grid of N = L2 pixels, where each pixel
xi for i ∈ {1, . . . , N} is treated as a continuous variable and let us call y the set of M
measurements. The Beer-Lambert law of photons absorption connects the measurements
with the intensities x as

y = Fx + w (2.2.16)

where F is a M × N tomographic projection matrix whose entries Fij take value 1 if
pixel j has been illuminated by beam i and 0 otherwise. Another possible definition of
F requires that each element Fij is the length of the portion of ray i passing through
pixel j. The vector w contains the additive noise of the measurements. Typically the
number of measurements is equal to M = L× nθ where nθ is the number of directions of
the emitted beams. Notice that the linear system of equations in (2.2.16) is ill-posed.
Clearly, the x variables must satisfy additional constraints. If we are dealing with true
detectors we know that under (or over) a certain amount of intensity it is not possible
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to detect the signal (or intensity saturates). So, the value of each component xi should
be bounded in an interval [xmini , xmaxi ] where, for instance, xmini = 0 (or black, in a gray
scale) and xmaxi = 1 (or white). Most importantly, as images represent “something”,
in the sense that the values of the intensities are not random, neighbors pixels should
be correlated. We show in chapter 9 how to implement an Expectation Propagation
algorithm to face this problem.



Chapter 3

Methods

This chapter provides a detailed description of the methodologies used to face the problems
in chapter 2; these approaches fall under the class of variational methods. To be precise
we will present the Belief Propagation algorithm for discrete and continuous variables,
the Max Sum algorithm (the zero-temperature limit of the Belief Propagation equations
for discrete variables) and the Expectation Propagation algorithm. The purpose of
all the approaches that we will outline here is to approximate intractable probability
distributions that describe the variables of the problems we are dealing with. We underline
that, using the mapping introduced in chapter 1, they will have the functional form of
Boltzmann-Gibbs distributions. The methods for treating discrete variables will be used
in Part II to solve the variants of the Steiner tree problem while, for all the inference
problems in chapter 2, we will apply continuous variables based tools. In particular, we
will exploit here the compressed sensing problem as a guideline to the introduction of the
Belief Propagation equations for continuous variables and of the Expectation Propagation
equations.

At the end of the chapter we mention some other techniques used to solve the problems
in chapter 2 whose results, in most of the cases, will be compared in Part II to our results.

3.1 Bayesian inference methods

We have introduced in section §1.3 Bayes’ theorem from which we can design a posteriori
the probability distribution of the variables we want to infer. Once this distribution is
defined, there exist several approaches to estimate the values of the unknowns from their
joint distribution. We show here three of them, the maximum a posteriori, the maximum
likelihood and the minimum mean square error estimator. The last one will be used in
almost all the inference problems we will face in this thesis.
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• Maximum a posteriori (MAP). In this approach the predicted value of x is the
most probable one according to the posterior probability, that is

xMAP = arg max
x

P (x|y) (3.1.1)

• Maximum likelihood estimation (MLE). When we do not have any prior
knowledge on the x, the prior is set to an uniform distribution over the space of
configurations of x; in this case the posterior is not well defined. However, we can
still maximize the likelihood as

xMLE = arg max
x

P (y|x) (3.1.2)

• Minimum mean square error (MMSE). Differently to the first two approaches
that address the problem of finding the most probable value for x, one may ask what
are the values of the xi such that the mean square error between each unknown and
the corresponding true variable is minimized. One can prove that this is equivalent
to compute

xMMSE
i =

∫
dxixiP (xi|y) (3.1.3)

where
P (xi|y) =

∫ ∏
j ̸=i

dxjP (x|y) (3.1.4)

is the marginal probability distribution. Thus our estimate is the first moment of
the marginal posterior distribution.

Notice that the MAP estimator is precisely the ground state of a physical system
characterized by the Hamiltonian H (x,y) defined in section 1.3.1 (it is a global minimum
of the energy) while from a statistical physics viewpoint the mean defining MMSE
estimator in (3.1.3) is, for the Ising model, the value of the magnetization, i.e. the
average value of σi with respect to the Boltzmann distribution, for spin i. These
estimators coincide in the β → +∞ limit of (1.3.2) but only when the optimum is unique.

However, the computation of the MMSE estimators would often require hard and
impractical calculations. Let us consider the L2 regularization presented in section 2.2.1.2:
the posterior associated with this case is a multivariate Gaussian that can be efficiently
marginalized and maximized. The MAP estimators coincide with the MMSE estimators
and the predictions will be provided by the vector of the means of the posteriors.
Differently, the marginalization of the posterior in (2.2.5) is unfeasible as it would require
the hard computation of multidimensional integrals. As a consequence, one has to design
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some approximation technique to estimate the exact posterior P (x|y). The rest of this
section is devoted to introduce approximation techniques able to estimate intractable
distribution of this kind. One of this, the Variational Bayes method, is outlined in
example 5 while we discuss in detail how to use Belief Propagation in section 3.4.1 and
Expectation Propagation algorithm in section §3.5 to the same purpose.

3.2 Variational methods

As already mentioned in section §1.1 in the canonical ensemble the free energy potential
has a key role in the understanding of the behavior of a system at equilibrium. In fact,
elementary units forming the system will configure in a way that the free energy is
minimized. This important property can be equivalently stated as follows.

Let us consider a system defined in the gran-canonical ensemble distributed according
to an unknown probability density. We define the Gibbs free energy, or variational free
energy

F [Q] = U [Q]− TS [Q] (3.2.1)

for a certain distribution Q. We ask ourselves: “what is the distribution Q that describes
the physical system at equilibrium?” From our physical intuition and if variational
principle holds, the system will be described by the distribution Q∗ that minimizes
(3.2.1), that is

Q∗ = arg min
Q:
∑

x
Q(x)=1

F [Q] (3.2.2)

where the minimization is performed for all the distributions satisfying the normalization
constraint. As standard, we can add a Lagrange multiplier to (3.2.1) enforcing the
additional constraint as

F [Q] = U [Q]− TS [Q] + λ

[∑
x

Q (x)− 1
]

(3.2.3)

and minimize with respect to Q. It is easy to prove that the distribution that minimizes
the variational free energy is the Boltzmann distribution and the Helmholtz free energy
is just the Gibbs free energy computed at P (x):

F = F [P ] (3.2.4)
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In fact, the variational free energy can be always written as

F [Q] = F +DKL [Q∥P ] (3.2.5)

where DKL [Q∥P ] is the Kullback-Leibler divergence between the distribution Q and
the Boltzmann distribution P . It is a measure of “distance” between two probability
densities and its formal definition for discrete variables is

DKL [Q∥P ] .=
∑

x

Q (x) log Q (x)
P (x) (3.2.6)

This important observation is the starting point for a class of approximation techniques
able to estimate the partition function (and thus the free energy) when its computation
is impractical. This of course applies for both optimization and inference problems. The
idea is to choose a trial set of suitable probability distributions Q (x) (or, eventually,
distributions Q (x|θ) parametrized by θ) and associate with them a variational free
energy as defined in (3.2.3). Hopefully, the Gibbs free energy computed at its stationary
point is a good approximation of the intractable free energy. The most famous approxi-
mation methods used in statistical mechanics are the mean-field approximations that
are closely related to the discussion of this section. More precisely, mean-field methods
are characterized by the use of factorized trial probability distribution. We will show
in example 4 the most simple mean-field approximation, the “naif” mean-field. Two
more advanced mean-field techniques are presented in the rest of chapter 3: the Belief
Propagation algorithm and the Expectation Propagation algorithm. Both approximations
rely on a non-trivial factorization of the trial set of distributions.

Example 4. Naif mean-field

One of the simplest way of encompassing the ability of estimating the partition
function of a statistical model, is to use the (naif) mean-field approximation. Here,
mutual interactions among variables are approximated through the insertion of a fictitious
external field applied to all of them. It results that variables are now independent but
subjected to a sort of external interaction. Let us define the trial mean-field distribution
QMF that, in this approximation, trivially factorizes as QMF (x) = ∏

i qi (xi) . The
unknown marginal distribution qi are sought by minimization of the Gibbs free energy
functional associated with QMF . The computation leads to a set of self-consistent
equations involving the qi to be solved iteratively.

This method is able to catch the main behavior of a system of spins (as the one
in example 1) for instance it can predict phase transitions (for critical values of the
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temperature or of the magnetic field) but it is not accurate on the estimate of corre-
lations. To properly consider them one should deal with a more general set of trial
probability distributions. For instance, the Belief Propagation algorithm (or Bethe-Peierls
approximation technique) can be derived using a variational functional defined over more
complicated trial probability densities as shown in section 3.3.3.1.

Example 5. Variational Bayes
When the approach proposed in section §3.2 aims at approximating a posterior

distribution P (x|y), it takes the name of Variational Bayes (VB) method. Formally,
(3.2.6) becomes

DKL [Q∥P ] =
∑

x

Q (x) log Q (x)
P (x|y) (3.2.7)

=
∑

x

Q (x) log Q (x)
P (x,y) − logP (x) (3.2.8)

∝
∑

x

[Q (x) logQ (x)−Q (x) logP (x,y)] (3.2.9)

3.3 Belief propagation

The Belief propagation (BP) method is an iterative algorithm developed independently
in statistical physics as “Bethe-Peierls approximation” or “cavity methods”, in computer
science as “sum-product algorithm”. It consists in a set of closed equations defined on a
factor graph to be solved iteratively; at convergence it will provide an approximation of
single-node and eventually of two-nodes marginals. Although this method is exact only
on tree graph, it can be applied to general graphs giving a good estimate of marginals as
long as the factor graph is locally tree-like [37]. In this case, long range correlations are
negligible and BP is sufficient to catch the properties of the system.

Recently, BP algorithm (or variants of it) has been applied to a wide set of optimization
and inference problems [1, 10, 38]. In the following we briefly outline the definition of a
factor graph and then we present the message-passing algorithm following the approach
in [1].

3.3.1 Preliminaries: factor graph representation

A factor graph is a graphical way of representing factorized probability distributions. Its
purpose is essentially to represent interacting variables underlying their dependencies
and the constraints they must satisfy. The main advantage is to allow for the application
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of efficient algorithms, like the “sum-product” or “Belief Propagation” described in
section §3.3.

A factor graph is a bipartite graph composed by two families of nodes:

• Variable nodes: They represent the variables under investigation. We know their
support and their mutual dependencies;

• Factor nodes: They are the so-called compatibility functions involving, eventually,
subsets of the variable nodes. They represent hard constraints to be satisfied by
the variables.

Links of a factor graph either connect a factor node to their arguments, or connect
variable nodes to the compatibility functions representing the constraints they must
satisfy. For instance, let us consider the joint probability distribution of N variables
x = {x1 . . . , xN} as

P (x) = 1
Z

M∏
a=1

ψa (x∂a) (3.3.1)

where each of the M functions, {ψ1, . . . , ψM}, represents a constraint over the variables
identified as x∂a = {xi|i ∈ ∂a}. In a factor graph the x = {xi}i=1,...,N will be our variable
nodes (often drawn as circles), instead the family of functions {ψa} a=1,...,M will be the
factor nodes (represented as square nodes).

Example 6. A first arborescence representation for the Steiner tree problem
Here we briefly explain how to build a factor graph representing the Boltzmann

distribution of some auxiliary variables that allow us to map the Prize-collecting Steiner
tree problem introduced in section 2.1.1 into a statistical mechanics problem. We present
here the set of “pointer” variables of a factor graph, used in the works [20, 21], as an
introduction to the the slightly different formalism based on “depth” variables presented
in chapter 4

Consider a graph G (V,E) with weights w associated with edges, prizes c associated
with profitable nodes. Let us associate with each node i ∈ V of the original graph, a
two components variable (pi, di) where pi ∈ {j : j ∈ ∂i}⋃ {∗} and di ∈ {1, . . . , D}. In a
tree, pi points to one of the neighbors of i (let us called it j), while di is the length of
the unique path from node i to the root passing through pi within the Steiner tree. The
state pj = ∗ conventionally means that i is not a member of the tree. To ensure that the
configuration of the sets of variables (p,d) describe a tree, we must impose these two
hard constraints: (i) if pi = j then di = dj + 1, i.e. the distance decreases as we go closer
to the root, (ii) if pi = j and j is not the root, then pj ̸= ∗.
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Formally, we can define, for each couple of neighbors, a function

fij = 1− δpi,j

[
1− δdi,dj+1

(
1− δpj ,∗

)]
(3.3.2)

that takes value 1 if both constraints are satisfied or 0 otherwise. Of course, the same
holds in the opposite direction; thus, if fij = 1 (fij = 0) also fji = 1 (fji = 0). Let
us build a factor graph having the same structure of G in which the original node are
now variable nodes hosting the sets (p,d) and on each edge (i, j) ∈ E we draw a factor
node corresponding to the compatibility function ψ(i,j) (pi, pj, di, dj) = fijfji equals to
1 if connectivity constraints are satisfied or 0 otherwise. Clearly, we can re-formulate
the energy function in (2.1.1) as a function of our auxiliary variables. If we define an
additional weight wi∗ = ci, an equivalent formulation of the energy reads

H (p,d) =


∑
i∈V wipi

if ∏(i,j)∈E ψij (pi, pj, di, dj) = 1
+∞ otherwise

(3.3.3)

where we have set to infinity the energies of incompatible configurations. As explained in
section 1.2.2, minimizing (3.3.3) is equivalent to determine the configuration of variables
that maximizes

Pβ (p,d) = 1
Zβ
e−βH(p,d) (3.3.4)

in the β → +∞. It is possible to have an estimate of the marginals of this distribution
applying Belief Propagation or Max Sum algorithm in the factor graph described here.
We do not report here the details of the equations that are fully described in [20, 21].

3.3.2 Update equations

At each iteration t we associate with each edge (a, i) of the factor graph (where a is a
factor node and i is a variable node) two “messages” m(t)

i→a (xi), from variable-to-factor,
and m̂

(t)
a→i (xi), from factor-to-variable, flowing within the graph. They take values in

the space of probability distributions over the single variable configuration space, that
is, for the variable-to-factor message, m(t)

i→a =
{
m

(t)
i→a (xi) : xi ∈ X

}
. It also must satisfy

m
(t)
i→a (xi) ≥ 0 and the normalization condition ∑xi

m
(t)
i→a (xi) = 1. The same apply for

m̂
(t)
a→i. Messages satisfied closed equations solved iteratively through a “local” update:

“outgoing” messages (both from a variable and a factor node) will only depend on messages
coming from its neighbors at the previews time-step. Formally, the update rules consist
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in: m
(t+1)
i→a (xi) = 1

Zi→a

∏
b∈∂i\a m̂

(t)
b→i (xi)

m̂
(t+1)
a→i (xi) = 1

Ẑa→i

∑
x∂a\i

ψa (x∂a)
∏
j∈∂a\im

(t)
j→a (xj)

(3.3.5)

where Zi→a = ∑
xi
m

(t+1)
i→a (xi) and Ẑa→i = ∑

xi
m̂

(t+1)
a→i (xi). At t→ +∞ messages converge

to fixed point values m(∞)
i→a and m̂(∞)

a→i. From a probabilistic viewpoint, the former can be
interpreted as the probability of variable i to assume value xi in a modified graphical
model where the factor a has been erased. Equivalently, the latter is in some sense
the probability that node i assumes state xi where all the neighboring factors except a
have been deleted. Thus, we can approximate the marginal probability distribution for
variable i considering all the incoming messages as

Mi (xi) ∝
∏
a∈∂i

m̂
(∞)
a→i (xi) (3.3.6)

3.3.3 Pairwise graphical model

If the system interacts only via two-bodies interactions, the factor graph reduces to
a graph G (V,E) where each variable node is represented by a node i ∈ V and factor
nodes are just the links (i, j) ∈ E connecting the nodes of the graph. The corresponding
probability distribution reads

P (x) = 1
Z

∏
(i,j)∈E

ψij (xi, xj) (3.3.7)

In this scenario BP messages reduce to one family of messages, for instance the
variable-to-factor set mi→(ij) (xi); for sake of simplicity we will simply denote it as
mi→j (xi). The update rule becomes:

m
(t+1)
i→j (xi) ∝

∑
{xk:k∈∂i\j}

∏
k∈∂i\j

ψki (xi, xk)m(t)
k→i (xk) (3.3.8)

In this framework it is easy to define the one-variable and two-variables marginals as

Mi (xi) ∝
∑

{xj :j∈∂i}

∏
j∈∂i

ψij (xi, xj)mj→i (xj) (3.3.9)

Mij (xi, xj) ∝ mi→j (xi)mj→i (xj) (3.3.10)



3.3 Belief propagation 41

3.3.3.1 Beyond naif mean-field

Belief propagation is equivalent to the Bethe-Peierls approximation of statistical physics
[39]. The update equation in (3.3.8) can be formally derived from the minimization of a
variational free energy, the Bethe free energy. Fixed points of BP algorithm therefore
correspond to stationary points of the Bethe free energy.

The main feature of the Bethe-Peierls approximation is to assume that the joint
probability in (3.3.7) can be approximated through a trial distribution Q (x) expressed
in terms of single-variable and two-variables marginals, or “beliefs”, bi (xi) and bij (xi, xj)
as

Q (x) =
∏

(i,j)∈E

bij (xi, xj)
bi (xi) bj (xj)

∏
i

bi (xi) (3.3.11)

The derivation of the message-passing equations is reported in appendix A.

3.3.4 Optimization and Max Sum algorithm

Very often the exact computation of marginals requires hard, and analytically unfeasible,
computations; nevertheless we explained in section §3.3 how to properly approximate them
using the “message-passing” algorithm on a factor graph. In the context of combinatorial
optimization as well as in statistical inference we often face an assignment (or prediction)
problem, that is we aim at determining what are the most probable states of the variables
in interest. Given the approximate marginals in (3.3.6) our prediction, or our assignment,
will be

x∗
i = arg max

xi
Mi (xi) (3.3.12)

Notice that in principle BP equations are defined at positive temperature, i.e. finite
β. For optimization problems, we can simplify the BP equations computing explicitly
the limit β → +∞: the algorithm that follows is known as Max-Sum (MS) algorithm.
We underline that the limit is performed on the BP equations and therefore it is not
guaranteed that the fixed point of MS algorithm corresponds to the ground state of the
system, that is the zero-temperature limit of the associated distribution.

As a matter of example, let us consider the joint probability of a pairwise model in
(3.3.7) and let us rewrite the compatibility functions in a Boltzmann factors fashion:

ψij (xi, xj) = e−βHij(xi,xj) (3.3.13)
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The messages update rule in (3.3.8) become

mi→j (xi) ∝
∑

{xk:k∈∂i\j}

∏
k∈∂i\j

e−βHik(xi,xk)mk→i (xk) (3.3.14)

Let us define the set of messages in the β → +∞ as hi→j (xi) = limβ→+∞
1
β

lnmi→j (xi)
. Changing the variables in (3.3.14), we get

1
β

lnmi→j (xi) ∝
1
β

ln
∏

k∈∂i\j

∑
{xk:k∈∂i\j}

e−βHik(xi,xk)mk→i (xk)

∝ 1
β

∑
k∈∂i\j

ln
∑

{xk:k∈∂i\j}
e−βHik(xi,xk)+lnmk→i(xk)

(3.3.15)

If now we perform the β → +∞, the sum in (3.3.15) reduces to the dominant term

e
max{xk:k∈∂i\j}[−βHik(xi,xk)+lnmk→i(xk)]

and therefore

hi→j (xi) = max
{xk:k∈∂i\j}

∑
k∈∂i\j

[−Hik (xi, xk) + hk→i (xk)]− C (3.3.16)

where C is an additive constant ensuring that the normalization condition, that is
maxxi

hi→j (xi) = 0, is satisfied. The expression in (3.3.16) justifies the name “Max-
Sum”; in fact, one can easily derive this algorithm just replacing a “sum” in BP equations
with a “max” and a “product” with a “sum”. These messages take value in the interval
(−∞, 0].

We can also define the β → +∞ equivalent of the marginal in (3.3.9) and (3.3.10) as

Mβ→+∞
i (xi) ∝

∑
k∈∂i

max
xk

[−Hik (xi, xk) + hk→i (xk)]

Mβ→+∞
ij (xi, xj) ∝ hi→j (xi) + hj→i (xj) +Hij (xi, xj)

(3.3.17)

3.4 Belief propagation for continuous variables

The Belief Propagation algorithm described in section §3.3 deals with the approximation
of marginal probability distributions defined over discrete variables. A generalization to
continuous variables is possible; the algorithm that follows is known as relaxed Belief
Propagation (r-BP) [40, 26]. Briefly, BP messages are now difficult to compute but,
under the decorrelation hypothesis (or eventually weak correlation hypothesis) behind
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Figure 3.4.1: Factor graph associated with the distribution in (3.4.1)

the approximation, they can be approximated as Gaussian probability densities. In
the following we will present this algorithm applied to the compressed sensing problem
described in section 2.2.1.1.

3.4.1 BP equations for the CS problem

For sake of simplicity we rewrite (2.2.5) as

P (x|y) ∝
M∏
a=1

Pa (ya|x)
N∏
n=1

ψn (xn) (3.4.1)

where Pa is the compatibility function relative to each a-factor of the likelihood, that is
Pa (ya|x) = e− 1

2∆(ya−
∑

n
Fanxn)2

; notice that it is function of all the x. The constraint ψn
enforces the sparsity prior according to the L0 regularization, ψn (xn) = (1− ρ) δ (xn) +
ρ√
2πλe

− x2
n

2λ , applied to each single component.
Let us associate a factor graph with the posterior probability defined in (3.4.1). Each

of the factor nodes {ya} a=1,...,M is connected to all variables nodes {xi} i=1,...,N in a fully
connected graph whose edges are weighted according to Pa. Instead, factors associated
with each priors ψn are in one-to-one correspondence with variable nodes {xi} i=1,...,N .
The sketch is reported in figure 3.4.1.

Let us define two families of messages: a factor-to-variable ma→n (xn) and a variable-
to-factor mn→a (xn) passing through the fully connected graph in figure 3.4.1. Formally,
they satisfy ma→n (xn) = 1

Za→n

∫ ∏
m ̸=n dxmmm→a (xm)Pa (ya|x)

mn→a (xn) = 1
Zn→a

∫
dxnψn (xn)∏b̸=amb→n (xn)

(3.4.2)
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where Za→n =
∫
dxnma→n (xn) and Zn→a =

∫
dxnmn→a (xn). At difference to the discrete

case, the direct computation of (3.4.2) is intractable since for each variable node we
need to perform an N − 1 dimensional integral; nonetheless some approximations can be
performed.

Let us compute, for instance, the first term in (3.4.2)

ma→n (xn) ∝
∫ ∏

m̸=n
dxmmm→a (xm) e− 1

2∆

(∑
m ̸=n

Famxm+Fanxn−ya

)2

(3.4.3)

=
∫
dSe− (S+Fanxn−ya)2

2∆

∫ ∏
m̸=n

dxmδ

S − ∑
m̸=n

Famxm

mm→a (xm) (3.4.4)

The integral in (3.4.4) is the convolution of the messages that can be interpreted
as the probability of observing the weighted sum ∑

m ̸=n Famxm when the marginal
probability of each variable xm for m ̸= n is given by mm→a (xm). If the terms of this
sum are statistically uncorrelated, as the BP assumption states, we can use the Central
Limit Theorem (CLT) and approximate this probability with a Gaussian probability
density of mean Sµa→n = ∑

m ̸=n Famµm→a for µm→a =
∫
dxmxmmm→a (xm) and variance

Sσa→n = ∑
m ̸=n F

2
amσ

2
m→a for σ2

m→a =
∫
dxm (xm − µm→a)2 mm→a (xm). Thus

ma→n (xn) ∝
∫
dSe− 1

2∆ (S+Fanxn−ya)2
e

− (S−S
µ
a→n)2

2Sσ
a→n (3.4.5)

Integrating the Gaussian distribution in (3.4.5), we obtain

ma→n (xn) =
√
Aa→n

2π e− B2
a→n

2Aa→n e− Aa→n
2 x2

n+Ba→nxn (3.4.6)

where
Aa→n = F 2

an

(∆ + Sσa→n) Ba→n = Fan (ya − Sµa→n)
(∆ + Sσa→n) (3.4.7)

To close the equations we must specify the values for the set of the messages mn→a (xn),
the mean µn→a and variance σ2

n→a of the Gaussian message in (3.4.1); the derivation and
the explicit expressions are reported in appendix B.

This algorithm relies on the decorrelation assumption among variables that is even
underlined by the use of CLT in the convolution in (3.4.4). This is satisfied when
the rows of the matrix F are uncorrelated, for instance when F is a random matrix.
Although this is not the case in general setting, we can still use this algorithm keeping in
mind that the performances strongly depend on how much this hypothesis holds. For
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Figure 3.5.1: Picture of the EP marginalization for CS problem

low-correlated matrices, it may be applied achieving good performances but if entries are
strong correlated, for instance in structured matrices, BP often does not converge. We
will show some examples in section §6.3.

3.5 Expectation propagation

Expectation Propagation (EP) is an efficient algorithm introduced by Minka [41] in the
framework of Bayesian inference and by Opper et al. in statistical physics with the name
of Expectation Consistent [42–44]. EP is an iterative algorithm able to approximate
intractable and factorized probability distributions.

Here we present the Expectation Propagation algorithm from a new point of view.
Following the statistical inference approach for the compressed sensing problem, we present
EP as a way of overcoming the limitation of BP algorithm described in section 3.4.1. A
standard derivation of the EP algorithm is presented in appendix C.

3.5.1 EP algorithm for linear estimation problems

Consider the general setting of the CS problem described in section 2.2.1.1 and the
factor graph in figure 3.4.1. BP algorithm relies on a Gaussian approximation of the
messages flowing on a fully connected graph. This choice is certainly advantageous for
the computation of marginals, but it can be applied to a restrict set of instances.

Our idea is to (i) relax the hypothesis of weak correlation among x and thus among
the entries of F and (ii) keeping a Gaussian approximation to preserve the feasibility
in computing the marginals. One way of treating this problem is to use a Gaussian
approximation directly applied to prior factors in (3.4.1).
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Consider the picture in figure 3.5.1 where we have added N “factor nodes” 1 of the
type

φn (xn) ≡ 1√
2πbn

e− (xn−an)2
2bn n = 1, . . . , N (3.5.1)

parametrized by the mean an and variance bn. Each new function φn represents an
approximation of the exact prior ψn (xn) that is connected by an incoming arrow to
its argument xn and via outgoing arrows to all the other variables {xm}m ̸=n. Let us
define our estimate of the marginal probability distribution of variable xn as Q(n) (xn).
Consistently to the “message-passing” viewpoint and the graph in figure 3.5.1, it will
read

Q(n) (xn|y) ∝
∫ ∏

m̸=n
dxmP (y|x)ψn (xn)

∏
m ̸=n

φm (xm) (3.5.2)

where we have not specified the normalization constant. The argument of the integral in
usually called tilted or leave-one-out distribution of the nth variable as to underline its
dependency on the entire set of Gaussian distributions except for the nth one that it is
replaced with the associated exact prior ψn (xn). Formally, it is defined as

Q(n) (x|y) ∝ P (y|x)ψn (xn)
∏
m ̸=n

φm (xm) (3.5.3)

The goodness of this approximation strongly depend on how we determine the set of
parameters characterizing the Gaussian terms, that are the means a and the variances b.
In the following we describe how EP algorithm provide these parameters. Let us define
the full approximation of the posterior as the one containing all the Gaussian priors

Q (x|y) ∝ P (y|x)φn (xn)
∏
m̸=n

φm (xm) (3.5.4)

Of course we can compute a marginal probability for the variable xn as

Q (xn|y) ∝
∫ ∏

m ̸=n
dxmP (y|x)φn (xn)

∏
m̸=n

φm (xm) (3.5.5)

We expect that the estimate of the marginal in (3.5.3) will be more accurate than the one
in (3.5.5) since in the tilted distribution the prior associated with the variable in interest
is treated exactly. If this observation is true, and we assume it is, we can use it as a
criterion to determine the parameters of approximate prior φn (xn) associated with the

1Notice that the graph in figure 3.5.1 has not to be interpreted as a factor graph due to the presence
of directed edges. It has the purpose of visualizing in a graph the marginalization of each variable
according to EP algorithm, as in (3.5.2).
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variable xn. For each nth variable, we can ask ourselves: “how can we assign the values
of an and bn such that the marginal in (3.5.5) is as similar as possible to the marginal
in (3.5.3)?” To answer this question, one can compute a measure of the “distance”
between the two distributions and minimize it with respect to the two parameters. In
the framework of probability theory and information theory, such measure is given by
the Kullback-Leibler divergence for continuous variables that, according to the definition
in (3.2.6) , is given by

DKL

[
Q(n)∥Q

]
=
∫
dxQ(n) (x|y) log Q

(n) (x|y)
Q (x|y) (3.5.6)

Thus we seek at computing

(a∗
n, b

∗
n) = arg min

(an,bn)
DKL

[
Q(n)∥Q

]
(3.5.7)

As proven in appendix D, it is not surprising that the minimization in (3.5.7) is
equivalent to match the first and second moments of Q(n) (xn|y) and Q (xn|y). Formally:⟨xn⟩Q(n) = ⟨xn⟩Q

⟨x2
n⟩Q(n) = ⟨x2

n⟩Q
(3.5.8)

Notice that both the distributions in (3.5.3) and (3.5.4) have a common factor: the
likelihood times N − 1 Gaussian priors. Since for the CS problem as well as for all the
models described in Part II the likelihood function will take the form of a Gaussian
distribution, the common factor can be written as a multivariate Gaussian. Let us group
all the N − 1 approximate priors in (3.5.3) and (3.5.4) into a multivariate Gaussian
distribution as ∏

m̸=n
e− (xm−am)2

2bm = e− 1
2 (x−a)T D(n)(x−a) (3.5.9)

where D(n) is a diagonal matrix whose elements are Dmm = 1
bm

for m ̸= n and Dnn = 0
(of course out of diagonal elements are zeros). Grouping together the x-dependent terms
of the argument of the exponential in (3.5.3) and (3.5.4) we obtain

P (y|x)
∏
m̸=n

φm (xm) ∝ e
− 1

2(x−µ(n))T
Σ−1

(n)(x−µ(n)) (3.5.10)

where Σ−1
(n) is an inverse covariance matrix and µ(n) is a vector of averages that depend

on the nth variable we are updating. Thus the first and second moments in (3.5.8) will
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always take the form of

⟨xαn⟩Q(n) ∝
∫
dxnx

α
ne

− (xn−µn)2
2Σnn ψn (xn) (3.5.11)

⟨xαn⟩Q ∝
∫
dxnx

α
ne

− (xn−µn)2
2Σnn φn (xn) (3.5.12)

where α = {1, 2} and µn is the nth element of µ(n) and Σnn =
(
Σ(n)

)
nn

. Contrary
to what happens to the moments of the tilted distribution in (3.5.11) that strongly
depend on the form of the exact prior, the mean and the variance of the full Gaussian
approximation in (3.5.12) always give⟨xn⟩Q =

(
1
bn

+ 1
Σnn

)−1 (
an

bn
+ µn

Σnn

)
⟨x2

n⟩Q − ⟨xn⟩2Q =
(

1
bn

+ 1
Σnn

)−1 (3.5.13)

If we insert the expressions in (3.5.13) inside (3.5.8) one finds the EP update equations
in the most general framework:


bn =

(
1

⟨x2
n⟩

Q(n) −⟨xn⟩2
Q(n)
− 1

Σnn

)−1

an = bn
[
⟨xn⟩Q(n)

(
1
bn

+ 1
Σnn

)
− µn

Σnn

] (3.5.14)

The parameters a and b are iteratively updated until we reach a fixed point, or, in
other words, EP numerically converges. At each iteration t we compute an error ε which
measures how the approximate marginal distributions change in two consecutive iterations.
Formally, we define the error as the maximum value of the sum of the differences (in
absolute values) of the mean and second moment of the marginal distribution, that is

εt = max
n

∣∣∣⟨xn⟩t+1
Q(n) − ⟨xn⟩tQ(n)

∣∣∣+ ∣∣∣∣〈x2
n

〉t+1

Q(n)
−
〈
x2
n

〉t
Q(n)

∣∣∣∣ (3.5.15)

If εt is smaller than a predetermined precision (for instance 10−5), the iteration stops.

3.5.2 Divergence measures

Expectation Propagation algorithm is more than a heuristic method to estimate in-
tractable distributions; we explain here its link to variational techniques as explained in
[45].

As we have outlined in section 1.3.1 VB techniques aim at analytically seeking a
tractable approximation Q (ν|b) to the exact posterior P (ν|b). This distribution is
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determined requiring that the parameters characterizing Q are such that the Kullback-
Leibler divergence DKL [Q ∥ P ] is minimized. However, in many cases, due to the
intractable form of P (ν|b), this measure is not well defined. Differently, we could
perform the minimization of a generalization of the Kullback-Leibler divergence, called
α-divergence, that is defined, for continuous variables, as

Dα (P∥Q) ≡
∫
dNxαP (x) + (1− α)Q (x)− P (x)αQ (x)1−α

α (1− α) (3.5.16)

where for α → 0 we recover DKL [Q ∥ P ] and for α → 1 we obtain DKL [P ∥ Q]. Also
minimizing DKL [P ∥ Q] is impractical as we should compute averages with respect to
P (ν|b). In this perspective EP algorithm tries to perform at each iteration, a “local”
minimization of the α-divergence (for α→ 1) in the sense that the “exact” considered
distribution is not P (ν|b) but Q(n) (ν|b) that contains the exact expression of the prior
for the nth flux. In fact, at each step we determine the parameters an and bn minimizing
DKL

[
Q(n) ∥ Q

]
.

3.5.3 EP free energy functional

As we have seen in section 3.5.2 EP algorithm is not a standard variational method,
but still we can associate a free energy functional of EP approximation that, as for BP
algorithm, can be viewed as an approximation of the exact one. Fixed point of EP
algorithm corresponds to the stationary point of the free energy functional derived in
appendix E. We report here the final result

FEP = − logZQ −
∑
n

logZn (3.5.17)

where

ZQ =
∫
dNxP (y|x)

∏
n

φn (xn) (3.5.18)

Zn = 1
ZQ

∫
dNxP (y|x)ψn (xn)

∏
m̸=n

φm (xm) (3.5.19)

3.6 Other techniques

In this section we briefly outline several tools used to solve the problems presented in
chapter 2. For most of the cases, these approaches will be used to compare the results of
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our implementation of the BP, MS or EP algorithms applied to the problems in interest.
More precisely, we will present:

• Linear Programming methods. These approaches are used to solve the PCStP, the
CS problem (with the L1 and L2 regularizations) and to determine the space of
solutions of metabolic fluxes in particular cases. The last application falls under
the name of Flux Balance Analysis. We will also exploit this technique to solve
a maximum weighted matching problem in chapter 5 arising from the update
equations of Max Sum.

• Monte Carlo methods. We will briefly explain the Hit-and-Run Monte Carlo
algorithm able to sample the space of configurations of metabolic fluxes.

3.6.1 Linear Programming

In this section we will briefly outline the Linear Programming (LP) method to solve
optimization problems [46, 47]. A linear program consists in finding a vector x∗ among
all possible vectors x ∈ RN able to maximize (or minimize) an objecting function; as the
name suggests, vectors x must satisfy some linear constraints. Mathematically speaking,
we can express this problem as


maxx cTx :

Ax ≤ b

x ≥ 0

(3.6.1)

where c ∈ RN is the vector of coefficients of the objective function, A is a M × N

matrix formalizing the M linear constrains and b ∈ RM is the vector of constant terms.
Geometrically, the inequalities constraints define a convex polytope over which the
objective function must be maximized. Each vector x satisfying Ax ≤ b is a feasible
solution of the problem but only x∗is an optimal, if unique, solution. However, under
certain conditions, there exist infinite solutions or no solutions, if all the possible x are
unfeasible.

According to the duality theorem, the optimal value of the objective function is
bounded “from above” by the inequality

cTx ≤ bTy (3.6.2)
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where the vector y is the solution of the dual linear program


miny bTy :
ATy ≥ c

y ≥ 0

(3.6.3)

If both linear program and its dual linear program have feasible solutions, then the
solution is unique and the inequality in (3.6.2) satisfies the equality as:

cTx∗ = bTy∗ (3.6.4)

The computing time needed to solve a LP instance is polynomial.
In many practical problems one seeks integer solutions, that is vectors x ∈ ZN , but

unfortunately the integer linear programming formulation has been proved to belong to
the NP-hard class of problems. In practice, one can relax the problem and solve it for
real values of the unknowns.

3.6.1.1 Linear programming formulation of the PCStP

Often the problem of minimizing the objective function in (2.1.1) is expressed as a
constrained minimization problem over binary auxiliary variables; this mapping leads to
an integer linear program.

Due to its infeasibility, one relaxes the integer constraints and seeks a solution of the
linear program. There is not a unique mapping; we mention the works in [48, 17, 13] for
the interested readers.

As we have seen in (3.6.1), one often defines a dual formulation associated with the
linear minimization problem that consists, in this case, in a maximization problem. If
it can be solved to optimality, then also the corresponding minimization has a unique
solution. Unfortunately it is not always the case and often heuristics are used to solve
the dual program. The Goemans-Williamson heuristics is in fact an algorithm that tries
to solve a dual linear program associated with the PCStP. In the following, we briefly
present the Goemans-Williamson (GW) heuristics [19, 49] as described in [50].

3.6.1.1.1 Goemans-Williamson heuristics Let us consider a graph G (V,E) in
which we aim at solving the PCStP. The GW heuristics consists essentially in two steps:
the growing and the pruning stages. In the first one nodes are partitioned into disjoint
clusters. With each partition C we associate a “moat” variable yC ≥ 0 that can be
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interpreted as a variable of the dual problem. Clusters are said to be “active” if its
moat variable grows after one iteration of the algorithm and “non-active” otherwise.
Clusters are merged and deactivated until one active cluster remains. Moreover, edges
of the graph are “active” if both ends belong to (different) active clusters, “semi-active”
if only one end belongs to an active cluster and “non-active” if ends are members of
deactivated clusters or of the same active cluster. We define an auxiliary edges set F
which is returned at the end of the process.

At the beginning of the process each node is a singleton active cluster with zero moat
variable and F = ∅. We increase the moat variables associated with active clusters until
one of these possible events occurs:

• An “edge constraint” is tight. This means that there is an active (or semi-active)
edge e = (i, j) such that yCi

+yCj
= wij where Ci and Cj are the clusters containing

nodes i and j respectively. We merge the two sets in a way that the “new” active
cluster contains the history of their moat variables. Thus we add nodes of cluster
Cj to Ci and we increment yCi

← yCi
+ yCj

. We keep in memory Ci and we erase
Cj decreasing the number of active clusters. Edge e is deactivated and added to F .

• A “cluster constraint” is tight, meaning that there exists an active cluster C such
that yC = ∑

i∈C ci. In this case C is deactivated and the number of active clusters
is decreased.

The growing step can be simplified introducing the notion of time. Consider the first
iteration of the algorithm: all edges are active and all clusters contain only one node.
Since the dual variables associated with each cluster C increase at the same rate, we
face a tight edge constraint if there exists (i, j) : yCi

+ yCj
= 2yC = wij or a tight

cluster constraint if there exists Ci : yC = ci. Thus we determine the first event as the
one that will occur at time t = min(te, tC) where te = min(i,j)

wij

2 and tC = mini∈V ci.
After that, we pretend of resetting the time and we apply again the strategy of the
first move to the updated scenario taking into account the appearance of semi-active
edges, non-active clusters and/or merged clusters. The second event will then occur at
time t = min {tA, tSA, tC} in which tA = minactive (i,j)

wij

2 , tSA = minsemi−active (i,j) wij and
tC = minactiveC

∑
i∈C ci. Notice that tSA differs from tA since one end of a semi-active

edge belongs to a non-active cluster. We iterate this procedure until we end up with one
active cluster and a subset of edges F forming a tree.

The second step, called “pruning stage”, consists in pruning the tree build from F in
order to lower the objective function computed in F without affecting the connection of
nodes.
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We will show 3.6.1.1.1 how to re-weight the weights and the prizes to a graph in order
to significantly improve the performances of the Goemans-Williamson heuristics.

3.6.1.2 Convex optimization for CS problem

The priors introduced in section 2.2.1.2 allow us to solve the problem of maximizing
the posterior distribution of the CS problem, as a minimization problem of an objective
function in a convex space. Let us express the posteriors corresponding to the priors
(2.2.8) and (2.2.9) as

PL1 (x|y) ∝ e− 1
2∆ ∥y−Fx∥2e−β1∥x∥1 (3.6.5)

PL2 (x|y) ∝ e− 1
2∆ ∥y−Fx∥2e−β2∥x∥2 (3.6.6)

The MAP approach in section 3.1 is equivalent to solve the following two linear
programs minx

1
2∆ ∥y − Fx∥2 + β1 ∥x∥1 :
x ∈ R

(3.6.7)

minx
1

2∆ ∥y − Fx∥2 + β2 ∥x∥2 :
x ∈ R

(3.6.8)

using L1 or L2 regularizations respectively. The critical values of the measurements
rates αc are plotted as a function of the sparsity ρ of the signal in figure 2.2.1. Perfect
reconstruction is guaranteed for those values of α < αc. We will show in chapter 6 how
to achieve perfect reconstruction under the L1 line (red line in figure 2.2.1) using the EP
algorithm.

3.6.1.3 Flux Balance Analysis

One of the most used technique for having access to the solution of (2.2.12)(2.2.11) is
the Flux Balance Analysis (FBA) [51–53]. FBA adds to the system of equations in
(2.2.12)(2.2.11) the maximization constraint of the growth rate of the organism. Thus it
provides the configuration(s) of fluxes such that the biomass reaction has its maximum
allowed flux. Mathematically, we can express constraints (2.2.12)(2.2.11) along with the
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biomass (BM) maximization as a linear program:


maxνBM

∑M
i=1 Si,BMνBM :

Sν = b

νmin ≤ ν ≤ νmax

(3.6.9)

The solution is often unique and it corresponds to a point of the polytope. Many
experimental works confirm the prediction made by FBA, for instance the growth rate of in
silico Escherichia Coli [54], but its accuracy is debated under more generic environmental
conditions [55]. This tool will be used in chapter 7 to determine the lower bound of the
exchange glucose flux for a given growth rate.

3.6.2 Monte Carlo Methods

The Monte Carlo (MC) methods are a family of sampling techniques deeply used in
probability theory, statistical physics and combinatorial optimization[2, 1]. Let us suppose
that we want to sample a probability distribution P (x). Briefly, a Monte Carlo technique
consists in constructing a Markov chain that, starting from a random state x0 and using
predefined transition rules among configurations, converges to the desired probability
P (x). The sampling will be as good as the time spent in exploring the configurations is
large. Here we will focus on a specific implementation of MC that is called Hit-and-Run.

3.6.2.1 Hit-and-run Monte Carlo for constrained metabolic fluxes

Hit-and-Run is the most effective Monte Carlo sampling method used to sample convex
polytopes [56–58]. Here we briefly introduce the main steps of the algorithm applied to
the space of solution of metabolic fluxes.

At each iteration t we start from a point νt = (ν1, . . . , νN) within the polytope and
we choose a random direction θt and a step size λ ∈ R such that the point νt + λθt lies
on the boundary of the polytope. We then collect a predefined number of points between
νt and νt+1 = νt + λθt and we repeat again these steps starting from the new points
until we reach the desired number of explored configurations. To guarantee that the first
point lies within the solution space, one often uses linear programming techniques. This
method guarantees an estimate of the marginal probability distribution of the fluxes that
can be much more informative with respect to FBA outcomes. Nonetheless, it suffers
from several bottlenecks.
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It is clear that performances of this algorithm are as accurate as we densely sample the
polytope, being exact only on the asymptotic limit as standard Monte Carlo algorithms;
thus to obtain a reliable sample we need to collect as many points as we can, affecting
the overall computing time of the algorithm. It has been proved that this special
implementation of the Monte Carlo algorithm converges in polynomial time and the
number of steps required to reach convergence is bounded. To obtain a small error ε
between the true distribution and the approximated one, the minimum number of steps
scales logarithmically with ε but quadratically with respect to the system size times a
non-negligible factor 1010[59]. This method is also very sensitive to narrow angles in
high dimensions as it can spend a lot of time escaping from them if the directions of the
sampling are randomly chosen. A lot effort has been done to improve this strategy trying
to solve the issues reported above. We mention for instance the works in [60].

In chapter 7 we will deeply use the HR method to compare our estimate concerning
the marginal probability distributions of metabolic fluxes.



Part II

Main contributions





Chapter 4

Solving the PCStP on real-world
instances

As explained in section 1.2.2, a combinatorial optimization problem can be mapped
into a statistical mechanics problem, where the objective function plays the role of an
energy of interacting variables. This is what we are going to derive in the case of the
PCStP defined in section 2.1.1. Our goal is to find the ground state of the corresponding
statistical mechanics model such that it solves the PCStP. Notice that in addition to
the minimization constraint, we have to impose that the solution of the problem is
topologically a tree. This global connectivity constraint can be expressed as a set of local
constraints over proper variables of a factor graph over which we apply the Max Sum
algorithm presented in section 3.3.4.

Our formalism relies on a set of “depth” variables associated with edges that are
closely related to the node-based “pointer-variable” described in [21, 20] and briefly
mentioned in example 6. At difference to the “pointers” formalism, edge-based variables
allow a different formulation of the constraints, called the flat model (see section §4.3),
along with the application of modified heuristics (as explained in section §4.4), such as a
Max-Sum guided version of the Goemans-Williamson heuristics introduced in 3.6.1.1.1.
These improvements are able to provide good solutions for real-world instances (such as
grid graphs) where Max Sum alone does not even converge. Part of the developments
proposed in the following sections participated to the 11th DIMACS implementation
challenge on Steiner Tree Problem, which consisted in a competitive comparison of
different techniques on a set of instances chosen to be particularly hard to solve. Our
performances maintained a small gap (i.e. were just slightly worse) to the best bound in
most cases and obtained best results on several instances of the PCStP.

All the discussion presented in this section is part of the work in [61].
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4.1 Factor graph representation

Let us associate with the original graph G (V,E) a factor graph having the same topology
of the original one. Consider a feasible solution T of the PCStP where the distance from
the root r and any other leaves can be covered in D hops. Within the solution, we will
define for each edge (i, j) ∈ E an integer variable dij ∈ {−D, . . . , D} that is the distance
(in hops), or depth, from the farthest between i and j to r along the tree. For edges such
that both (i, j) , (j, i) /∈ ET , we conventionally set dij = 0. The sign of non-zero depths
will define the orientation of each edge (i, j) ∈ ET in the tree with respect to the root
r: if dij > 0 node i is “pointing” to the root, that is if one make a step towards j will
be closer to r. It is clear that in order to have a consistent representation, the vector
d = {dij : (i, j) ∈ E} so defined satisfies an anti-symmetric condition dij = −dji for each
(i, j) ∈ E.

To ensure that the assignment of the d variables corresponds to a tree, we need
to impose rigid constraints on this vector besides the anti-symmetric condition. As
mentioned in the introduction, the global connectivity constraint can be splitted in a
family of local constraints on sub-vectors of variables di = {dji : j ∈ ∂i} incident on
node i. For each node i we define a proper compatibility function ψi (di) to be intended
as a factor node of the factor graph. As the sign of dij represents the orientation of
edges along the tree, two mutually excluding situations can occur in the neighbor of i.
Either there exists exactly one neighbor j ∈ ∂i such that dij > 0, and for the remaining
neighbors k ∈ ∂i \ j, either dki = 0 or dki = dij + 1, or node i does not belong to T , and
so dij = 0 for each j ∈ ∂i. The root node r is special, as there is no neighbor closer to
r than itself and thus for each neighbor j ∈ ∂r, djr is either 0 or 1. Formally, allowed
configurations of di can be encoded by the nonzero arguments of the following functions:

ψi (di) =
∏
j∈∂i

δdji,0 +
∑
d>0

∑
j∈∂i

δdji,−d
∏

k∈∂i\j
(δdki,d+1 + δdki,0)

 for i ̸= r (4.1.1)

ψr (dr) =
∏
j∈∂i

(
δdjr,1 + δdjr,0

)
(4.1.2)

where the function ”δ” denotes the Kronecker delta.

This model applies for rooted and bounded instances; when this information is not
provided as an input of the problem, we need to determine the best root node and the
best value of D. We have proposed several rooting procedures along with a scheme to
determine D in [61].
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Figure 4.1.1: Solution to the MStP with a proper assignment of the “depth” variables

To give an example of a feasible assignment of these auxiliary variables, we plot in
figure 4.1.1 the depth variables associated with the edges of the solution of the MStP in
figure 2.1.1.

4.2 Max Sum algorithm

Once the variables nodes and the family of compatibility functions ψi are defined, the
cost function H in (2.1.1) can be re-written as a function of those variables d representing
some tree T , and in such case, H (T ) = H (d):

H (d) =

∞ if ∏i ψi (di) = 0∑
i

{
ciI [di ≡ 0] +∑

j∈∂iwijI [dij > 0]
}

if ∏i ψi (di) = 1
(4.2.1)

Thus the original optimization problem is equivalent to seek the optimal configuration

d∗ = arg min
d
H (d)

As we mentioned in section 1.2.2 we can define a Boltzmann distribution as

Pβ (d) = 1
Zβ
e−βH(d) (4.2.2)
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and eventually we investigate the β → +∞. In particular we are interesting in assigning,
for each edge (i, j) ∈ E the optimal state

d∗
ij = arg max

dij

P (dij) (4.2.3)

where P (dij) ∝
∑

d\dij
Pβ (d) is the marginal probability distribution of variables dij.

Unfortunately computing these marginals is as hard as the original problem and one
has to approach this computation using some approximation schemes. As described in
[61] we apply the Max Sum algorithm on the factor graph just presented, whose update
equations can easily derived following the explanations in section 3.3.4; they read

hij (dij) ∝ max
di\dij :
ψi(di)=1

−ciI [di ≡ 0]−
∑
k∈∂i

wkiI [dki > 0] +
∑

k∈∂i\j
hki (dki)

 if i ̸= r

(4.2.4)

hrj (drj) ∝


∑
k∈∂r\j max {hkr (1) , hkr (0)} for drj = −1, 0
−∞ for drj ̸= −1, 0

(4.2.5)

where the proportionality signs underline that the normalization condition maxdij
hij (dij) =

0 is missing. One iterates the equations in (4.2.4) and (4.2.5) until a numeric convergence
is reached. At convergence one can estimate the MS “beliefs” in the zero-temperature
limit as

Mβ→+∞
ij (dij) ∝ hij (dij) + hji (−dij) (4.2.6)

and finally determine the so called decisional variables

d∗
ij = arg maxMβ→+∞

ij (dij) (4.2.7)

that maximize Mβ→+∞
ij (dij). At convergence, the vector d∗ so defined constitutes a

tree on the original graph, in the sense that the inverse mapping d∗ 7→ (Vd∗ , Ed∗)with
Vd∗ = {i ∈ V : ∃k ∈ V : dki ̸= 0} and Ed∗ = {(i, j) : dij ̸= 0} represent an oriented tree
satisfying all the hard constraints that, hopefully, minimizes the energy function in (4.2.1)
(a short proof is reported at the end of the paragraph).

However, equations in (4.2.4) and (4.2.5) very seldom converge for arbitrary graphs.
A very powerful procedure that induces the algorithm to reach a fixed point, is to use a
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reinforced set of equations that, at iteration t+ 1, read

ht+1
ij (dij) = max

di\dij :
ψi(di)=1


−ciI [di ≡ 0]−

∑
k ∈ ∂i :
dki > 0

wki +
∑

k∈∂i\j
htki (dki)


+ (4.2.8)

+γtH t
ij (dij) (4.2.9)

H t+1
ij (dij) = ht+1

ij (dij) + ht+1
ji (−dij) + γtH

t
ij (dij) (4.2.10)

From the point of view of the factor graph the reinforcement scheme consists in adding
an extra factor to edge-variables that acts as external fields oriented in the direction of
the messages in the previous iteration. The perturbation is governed by the parameter γt
that increases linearly in time, that is γt = tγ0 for γ0 ∼ 10−5. For further details about
this procedure we refer the interest reader to [21, 61].

We mention that the update steps in (4.2.8)(4.2.10) can be performed in D |E| steps.

Proof Consider a generic graphical model of variable nodes x connected through
factor nodes a. The energy function can be written as H (x) = ∑

aHa (xa). The MS
equations, at the fixed point, satisfy the following relations:


hi→a (xi) = ∑

b∈∂i\a ub→i (xi)− C
ua→i (xi) = max{xj :j∈∂a\i}

[∑
j∈∂a\i hj→a (xj)−Ha (xa)

]
− C

Mi (xi) = ∑
a∈∂i ua→i (xi)− C

(4.2.11)

where C is an additive constant that imposes the normalization condition. Notice that
these are exactly the update equations in section 3.3.4 in an arbitrary factor graph.

If now we insert the first equation of (4.2.11) in the third equation of (4.2.11), we
obtain that each marginal Mi (xi) can be written as

Mi (xi) = hi→a (xi) + ua→i (xi)− C ∀a ∈ ∂i (4.2.12)

Using the second equation of (4.2.11) we get

Mi (xi) = hi→a (xi) + max
{xj :j∈∂a\i}

 ∑
j∈∂a\i

hj→a (xj)−Ha (xa)
− C ∀a ∈ ∂i (4.2.13)
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If the maximum of Mi (xi), namely

max
xi

Mi (xi) = max
xa

∑
j∈∂a

hj→a (xj)−Ha (xa)
− C ∀a ∈ ∂i (4.2.14)

is finite means that there exists a set of variables xa such that the energy is finite and,
thus, the hard constraints are satisfied. The decisional variables computed as

x∗
i = arg max

xi
Mi (xi) (4.2.15)

for each variable node, will constitute a feasible solution to the problem. Notice that
the maximum must be non-degenerate; to avoid degeneracy, i.e. to avoid different and
feasible solutions with equal energy, one can add small “noisy” terms to the energy terms.

4.3 The flat model

One of the main disadvantages of the formalism introduced in section §4.1 is that, as
the diameter of the sought solution is bounded by a constant D, the model cannot treat
variants of the PCStP where the distance between the root and the leaves of the tree
can be any. In principle one should take D = |V |to ensure that all nodes can be part of
the solution but this choice could severely affect the computing time of the MS update
equations. Here we propose a slightly different model for which a maximum allowed
depth of D = |K|, where K is the sub-set of profitable nodes, guarantees the covering of
the entire graph.

In this model, called the flat model, we allow chains of edges with identical depth
d in the two following cases. A chain can be built between two nodes, let us call them
v0 and vk if (i) none of the nodes within the chain are profitable vertices and (ii) any
node has degree exactly two within the tree. These two conditions ensure that (optimal)
configurations satisfying this relaxed set of constraints represent trees; extra cycles with
identical depth, containing no terminal, can of course be present, but are sub-optimal in
terms of cost. Formally, we would use, instead of the compatibility function in (4.1.1), a
function ψ′

i (di) defined as:

ψ′
i (di) = ψi (di) + ψflati (di) (4.3.1)

ψflati (di) = δci,0
∑
d>0

∑
k∈∂i

∑
l∈∂i\k

δdki,−dδdli,d

∏
j∈∂i\k,l

δdij ,0 (4.3.2)
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The update equations in the Max Sum formalism have to encompass also this case,
and thus

hij (dij) = max
di\dij :
ψ′

i(di)=1

{
− ciI [di ≡ 0]−

∑
k∈∂i

wkiI [dki > 0] +
∑

k∈∂i\j
hki (dki)

}
(4.3.3)

= max
{
Mij (dij) ,M flat

ij (dij)
}

(4.3.4)

where Mij (dij) is exactly what we would obtained in the previous model, that is (4.2.4),
and M flat

ij (dij) is derived from the compatibility function ψflati (di)

M flat
ij (dij) = −wijI [dij > 0] + max

di\dij :
ψflat

i (di)=1

∑
k∈∂i\j

{
htki (dki)− wkiI [dki > 0]

}
(4.3.5)

To give an example of the benefits carried by the flat representation, consider a
solution for the MStP on a two-dimensional squared lattice very few terminals. An
example is reported in figure 4.3.1: terminal nodes are red circled while red numbers
indicate the “depth”-variables associated with incoming edges of the solution. As we
can notice from the plot on the top, proceeding from the root node (here the “39” node)
to any of the leaves of the tree, we must increasing the distance for each “step” we
perform. The minimum value of the D parameter is 10. Differently, we can exploit the
flat representation and thus allow very long “chains” with the same depth as appears in
the path connecting terminal “13” to the root. In this case, the minimum value for D is
2.

4.4 Max Sum guided heuristics

At difference to local search algorithms for the PCStP [13, 18], MS does not provide any
trial solution as the decisional variables defined in (4.2.7), computed before convergence,
are in a state of inconsistency, meaning that the hard topological constraints may not be
fully satisfied. Here we present how to apply fast heuristics to a “re-weighted” graph
in order to obtain feasible solutions for the PCStP after few iterations of the algorithm.
Notice that in this case solutions can be sub-optimal in terms of cost but they have the
advantageous of resulting unbounded as now the diameter of the solution is not anymore
bounded by the parameter D.

The design of the re-weighting ensures that weights and prizes associated with edges
and nodes of the original graphs contain information carried by MS algorithm during
convergence. More precisely, we apply the following three algorithm:
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Figure 4.3.1: Solution for the MStP on a lattice with few terminals. Top plot: solution
in the original formalism representation. Bottom plot: solution in the flat representation
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• Minimum Spanning Tree and Shortest Path Tree

First, we seek a spanning tree TH(VH , EH) (using either Prim or Dijkstra’s algo-
rithm for the Minimum Spanning Tree (MST) or the Shortest Path Tree (SPT)
respectively) within a graph of temporary weights

{
wtij : (i, j) ∈ E

}
and temporary

prizes {cti : i ∈ V }; then we prune it to reduce extra-cost carried by edges that are
not responsible for “important” connections within the tree. More precisely, we
start from each leaf node i ∈ VH with ∂i = {j} and we check whether wij > ci. In
this case adding node i to the solution is energetically unfavorable and we delete i
and (i, j) from TH . We recursively repeat this procedure until no such leaf is found.
Weights wtij will be computed in two ways:

1. Re-weighting edges. A first way sets wtij = maxd̸=0

∣∣∣H t
ij (d)

∣∣∣. This quantity will
be strictly positive if the decisional variable d∗

ij = 0 and will be zero if d∗
ij ̸= 0.

2. Re-weighting nodes. A second way considers the presence of each vertex i in
the solution. From the equations, a decisional variable can be assigned to the
presence of node i at depth d ≥ 0 by setting

hi (d) = max
k∈∂i

htik(−d) +
∑
l∈∂i\k

max
{
htli (d+ 1) , htli (0)

} for d > 0

hi (0) =
∑
k∈∂i

htki(0)− ci (4.4.1)

We will thus force the presence of nodes i such that maxd>0 hi (d) > hi (0), by
adding a large prize C to edges connecting nodes not satisfying this property.

• Goemans-Williamson heuristics

Before applying the algorithm presented in 3.6.1.1.1 we modify prizes and weights
in the following way. For each node we compute hi = maxd hi(d) − hi(0) defined
in (4.4.1). If hi > 0 , node i is considered in the intermediate solution and so we
increase the prize ci of a large constant C; otherwise it keeps its original prize.
In this way we favor those clusters containing nodes with zero original prize but
predicted by MS as Steiner nodes. Edges connecting nodes i : hi < 0 have a penalty
equal to C so that clusters whose members are not included in MS solution are
penalized.
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4.5 Results

In this section we report some of the results shown in [61] as an example of the goodness
of the algorithms presented in this chapter. To quantitatively compare the different
developments, we compute a gap

Gap(x, y) = Ex − Ey
Ey

· 100 (4.5.1)

where Ex and Ey are the energies of solutions of implementation x and y respectively.
Experiments are labelled depending on which model, heuristics and assignment of weights
and/or prizes have been used. All the features of the final algorithm correspond to the
following labels:

• “O”: this is the original version of the algorithm which competed in the DIMACS
challenge. It consists in the Max-Sum algorithm for the normal model joined to the
MST; weights are modified as described in Re-weighting edges on the facing page.

• “N”: we implement the MST heuristics in which weights are computed according
to Re-weighting nodes on the preceding page.

• “J”: here we use the SPT heuristics and weights are modified as in Re-weighting
edges on the facing page.

• “W”: the heuristics is the GW.

• “F”: we use the flat model. If no additional labels are included, we refer to the
MST heuristics with modified weights as in Re-weighting edges on the preceding
page.

4.5.1 Max Sum against heuristics

To give an example of the benefits carried by the MS-guided heuristics we have applied
MS algorithm and all the modified heuristics to a set of grid graphs of size 10x10x10
containing {10, 110, 210, 310, 410}terminals where we solved the MStP. In fact, many
applications of the PCStP arising from electronics (like the VLSI [62]) where the design
of circuits can be mapped into variants of the MStP. Pins on a chip can be modelled as
nodes on a grid graph connected through several wires, the edges of the graph. For this
reason it is of utmost importance solving the PCStP on this kind of graphs. However,
being grids very loopy, long correlations among variables nodes of the factor graph
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Terminals “O” energy MS energy MS conv. MST energy
10 10.56 10.80 11/100 4/10 21.82
110 56.24 61.55 6/100 2/10 77.04
210 81.76 83.13 17/100 4/10 100.93
310 103.62 103.49 25/100 6/10 120.87
410 123.44 124.10 26/100 7/10 137.23

Table 4.1: Average energies for “O”, MS, MST and MS convergences for grid graphs
10x10x10 as a function of the number of terminals.

occur and, therefore, the hypothesis behind the Belief Propagation (and thus Max Sum)
approximation do not hold in this case. In fact, MS algorithm (even with in the reinforced
version) often does not converge. We show here that, instead, our guided heuristics
provide good results for the PCStP and the MStP after few iterations of the main
algorithms. Energies are always much more smaller than the ones associated with the
solution of the original heuristics.

In table 4.1 we report the energies achieved by “O” algorithm, MS and the MST
without the re-weighting scheme introduced in section §4.4. For each graph, having a
fixed number of terminals, we apply the MST algorithm to 10 realizations of each graph
and we compute the energy as the average value among the realizations. For both “O”
and MS we run the algorithms 10 times for each of the 10 realizations with different
initial conditions. We pick the best energy among the different initializations and then
we average over the 10 instances. The fraction of successes over the 10×10 attempts is
reported in the left column of “MS conv”. In the right column we count how many times
MS converged at least one time over the 10 initializations, and we normalize the number
of successes with respect to the number of instances per graph.

We can see that MS barely converges on this family of networks with an average
fraction of success of 17/100. The heuristic “O” always provides a solution but sometimes
is sub-optimal in terms of energy as we can notice from the comparison with the MS
ones. We underline that these energies are far below of the ones of the MST heuristic
with original edge weights.

4.5.2 3D grid graphs

Here we show the results obtained by our set of implementations for several instances of
3D grid-graphs. For these simulations, we created several 100x100x2 grid-graphs whose
edges have weights distributed uniformly in [0, 1] and whose nodes have prizes (only for
the PCStP) in the range [0, 3]. This choice of the grid size is very popular in the VLSI
chips as we will see in chapter 5. We report in the figures 4.5.1 and 4.5.2 the plots of the
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Figure 4.5.1: Left: Energy of the solution for the PCStP for a grid-graph 100x100x2
as a function of the number of terminals. Right: Energy gaps of the “N”, “J” and “W”
heuristics with respect to “O”.

energies (left) and energy gaps (gaps) provided by several algorithms as a function of the
number of terminals placed on the graph. In figure 4.5.1 we can appreciate how “N” and
“W” outperform the “O” and “J” variants while in figure 4.5.2 the “F” model provides
the best energies among all developments.

4.5.3 DIMACS results

In this section we summarize the results obtained by all the implementations of the Max
Sum algorithm as with the “normal” or “branching” model in section §4.1 as exploiting
the flat model introduced in section §4.3. Instances of the DIMACS competition have
been chosen to be particularly challenging as often the optimal solution is not known. A
complete set is available here http://dimacs11.cs.princeton.edu/competition.html.

Our implementation “O” participated to the challenge obtaining promising results:
energies provided by this implementation had on average a gap of ±0.3% with respect to
the best results of the competition. We report in table 4.2 the best improvements of the
energy carried by the new implementations in comparison with the “O” algorithm for
both MStP and PCStP instances. It is clear that the “N” modified heuristics obtained
best performances in the MStP instances while the “O” heuristics combined to the flat
model, that is “F”, and the modified Goemans-Williamson heuristics “W” significantly
improved the results for several instances of the PCStP. All these results correspond

http://dimacs11.cs.princeton.edu/competition.html
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Instance Problem Best energy Algorithm “O” energy Gap %
world666 MStP 122971 N 130516 -5.78
alut2625 MStP 40183 N 41501 -3.18
es10000fst01 MStP 733237957 N 764631264 -4.11
K400-7 PCStP 485587 W 523885 -7.31
i640-001 PCStP 2932 F J N W 3053 -3.96
i640-221 PCStP 8430 F 8626 -2.27
handsd04 PCStP 525.86 W 584.1 -9.97
handbd13 PCStP 13.23 F J N W 18.1 -26.91
metabol-expr-mice-1 PCStP 11346.93 F J N W 11901.9 -4.66

Table 4.2: Comparison between new implementations and “O” algorithm

to “unbounded” solutions, in the sense that, the parameter D can increase after few
iterations of MS algorithm.

We try now to fix D = |K| for the MStP instances of the competition and compare
our new implementations for a limited running time of 1200 s. For each heuristic, “N”,
“O” and “J”, we compute the time interval for which the same heuristics combined with
the flat model, “NF”, “F” and “JF”, provides a better solution then the normal model.
We plot these time thresholds in figure 4.5.3. It is clear that for es10000fst01 and G106ac
the flat model is more convenient when the running time at our disposal is limited.
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Figure 4.5.3: Time thresholds

4.6 Discussion

We have discussed here several improvements of the message-passing approach to the
Steiner Tree Problem on graphs. The first one is the incorporation of heuristics that are
able to provide after few iterations of the main algorithm feasible solutions using infor-
mation coming from the messages before convergence. This is of particular importance
because it forces the algorithm to output solutions even in cases in which the tree-like
approximation is inaccurate and reinforced Max-Sum equations do not converge. The
second one deals with the introduction of an “edge variables” formalism, that allows to
deal with a modified flat model that removes one limitation of past approaches, namely
the need of a large maximum distance D. This results in the “F” variant of the algorithm.
Moreover the “edge variables” formulation presented here is also in principle able to
accommodate other constraints, such as degree ones. The implementation defined as
“O” participated in the 2014 DIMACS Challenge with encouraging results and, as we
have shown here, the combinations of other heuristics (“W”, “N” , “F” and “J” ) even
improved the energies obtained during the competition.



Chapter 5

Packing of Steiner Trees

In the following we derive three Max-Sum algorithms, one for the V-DStP and two for
E-DStP, one more suitable for graphs where the density of terminals is low and the
second for instances with low connectivity. Unfortunately cavity equations turn out to be
intractable for the E-DStP: to overcome this problem, we introduce two different auxiliary
formalisms that allow to compute the equations. The first set of auxiliary variables,
called neighbors occupation variables, are binary numbers associated with edges of the
graph and indicate whether each edge is employed in any of the trees. The algorithm that
will follows have to be run over all possible configurations of these binary variables and
therefore its computing time results exponential in the (average) degree. In the second
case we will show that the computation of the MS update equations is equivalent to
solve a maximum matching problem on a small graph. The running time of this second
implementation grows exponentially with respect to the number of sub-trees but it is
polynomial in the degree. As for the PCStP in chapter 4 we can introduce a reinforced
update to facilitate the convergence of the algorithm along with two fast heuristics for
the PCStP able to provide fast solutions even in the multiple trees case.

5.1 An arborescence representation

Let us consider a graph G (V,E,M) as an instance of the V-DStP or the E-DStP and a
factor graph, having the same topology of the original graph. Let us define as Gµ the
tree of the solution for communication µ. As for the PCStP in chapter 4 we introduce
a formalism that will allow us to map each variant of the Packing of Steiner trees
problem into an optimization problem over proper variables. With each vertex i ∈ V
we associate a factor node obeying constraint ψi and with each edge (i, j) ∈ E a two
components variable (dij, µij). Compatibility functions ψi are defined in a way that
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allowed configurations of variables (d,µ) .= {(dij, µij) : (i, j) ∈ E} are in one to one
correspondence to feasible solutions of the Vertex-disjoint or Edge-disjoint version of the
problem. Our choice of the edge-variables is similar to the one adopted in chapter 4 but
here, in addition to a “depth” component we introduce a “communication” µij by which
we label edges forming different trees.

The variable µij takes value from the set {0, 1, . . . ,M} and denotes to which sub-
graph, if any, does the edge belongs; the state µij = 0 will conventionally mean that
no tree employs the edge (i, j). Components dij ∈ {−D, . . . , 0, . . . , D} have a meaning
of “depth” or “distance” within the sub-graph as for the single tree case described in
section §4.1. Thus, every edge satisfies µij = µji and the anti-symmetric condition
dij = −dji must hold. When dij = 0 we conventionally associate µij = 0.

In order to ensure Steiner sub-graphs to be trees, i.e. to be connected and acyclic,
we impose local constraints on variables di = {dij : j ∈ ∂i} and µi = {µij : j ∈ ∂i}.
For each node i we aim at defining a proper compatibility function ψi (di,µi) equals
to one if and only if the constraints are locally satisfied or zero otherwise. Being the
interactions among nodes different as we deal with the V-DStP or the E-DStP, we define
two compatibility functions, ψVi and ψEi , for the two problems.

5.1.1 Constraints for the Vertex-Disjoint Steiner trees problem

In the V-DStP a node can belong to none of the solution-trees or at most one sub-graph
Gµ; so, if a vertex i is member of a Steiner tree, all its neighbors can participate to the
same communication or being unemployed. A directed tree structure is guaranteed if
there exists only one neighbor j ∈ ∂i such that µij ≠ 0 and dij > 0, meaning that node
j is one step, or “hop”, closer than i to the root; all remaining neighbors k ∈ ∂i\j can
either not enter in any solution or be member of tree Gµij

at the distance dki = dij + 1
from root rµij

. We define a compatibility function ψVi , relative to each node i, which
takes value one if all topological constraints relative to its neighbors are satisfied and zero
otherwise. Being nodes sets of the solution non-overlapping, we can consider separately
the belonging of a vertex to a particular tree. Thus, this function can be expressed as
the sum over all possible trees of a single-tree compatibility function ψµi which takes into
account the constraints related to the depth components. Its mathematically expression
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is reported in (5.1.1).

ψVi (di,µi) =
M∑
µ=1

ψµi (di,µi) (5.1.1)

ψµi (di,µi) =
∏
j∈∂i

δµji,0δdji,0 + (5.1.2)

+
∑
d>0

∑
j∈∂i

δµ,µji
δdji,−d

∏
k∈∂i\j

(δµ,µki
δdki,d+1 + δµki,0δdki,0)



5.1.2 Constraints for the Edge-Disjoint Steiner trees problem

Differently from the V-DStP, in the E-DStP a vertex can belong either to none or can
host more than one communication with the constraint that the local tree structure must
be concurrently satisfied for any possible sub-graph. In the first case we must admit
configurations in which di = 0 if µi = 0. For the second case, as a subset of neighbors
Vk ⊆ ∂i are members of a Steiner tree µ their distances dki are different from zero if
µki = µ for any k ∈ Vk and in addition must satisfy the topological constraints. We can
mathematically express such conditions through the compatibility function

ψEi (di,µi) =
M∏
µ=1

∏
k∈∂i

δdkiδµki,µ,0 (5.1.3)

+
∑
d>0

∑
k∈∂i

δdkiδµki,µ,−d
∏

l∈∂i\k

(
δdliδµli,µ,d+1 + δdliδµli,µ,0

) (5.1.4)

Note that if we define d̃ki = dkiδµki,µ we can express again (5.1.3) as

ψEi (di,µi) =
M∏
µ=1

∏
k∈∂i

δd̃ki,0 +
∑
d>0

∑
k∈∂i

δd̃ki,−d
∏

l∈∂i\k

(
δd̃li,d+1 + δd̃li,0

) (5.1.5)

=
M∏
µ=1

ψµi
(
d̃i,µi

)
(5.1.6)

in which the function ψµi is equivalent to (5.1.2).

5.2 Boltzmann distribution and marginals

The formalism introduced in section §5.1 allows us to map each solution of the packing
of Steiner Trees to a certain assignment of variables d = {dij : (i, j) ∈ E}and µ =
{µij : (i, j) ∈ E} of the associated factor graph. The cost function in (2.1.3) can be then
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expressed in terms of the new variables satisfying the constraints, that is:

H (d,µ) =


∑M
µ=1

[∑
i∈V c

µ
i I [µi ̸= µ] +∑

dij>0:
µij=µ

wij

]
if

∏
i∈V ψi (di,µi) = 1

+∞ otherwise

(5.2.1)
where for sake of simplicity we consider the “homogeneous” case wµij = wij ∀µ and ψi can
be either equal to ψVi or ψEi . The expression µi ̸= µ means that none of the neighbors
k ∈ ∂i satisfies µki = µ.

The Boltzmann-Gibbs distribution associated with the energy H (d,µ) is given by

P (d,µ) =
∏
i ψi (di,µi) e−βH(d,µ)

Zβ
(5.2.2)

and the normalization constant reads

Zβ =
∑
d,µ

∏
i

ψi (di,µi) e−βH(d,µ)

As standard, we investigate the limit β → +∞ where the distribution will be concentrated
in the configuration(s) that minimizes H (d,µ) that are exactly the solutions of the
optimization problems. Thus we are interesting in determining, for each edge (i, j) ∈ E,
the assignment of variables that maximizes the marginal probability distribution Pij

defined as:
Pij

(
d̃ij, µ̃ij

)
=
∑
d,µ

P (d,µ) δdij ,d̃ij
δµij ,µ̃ij

(5.2.3)

Unfortunately the computation of (5.2.3) is as intractable as the original problem.

We aim at calculating an approximation of such marginals via BP or, eventually, MS
algorithm. At finite β the BP equations on our factor graph are:

mij (dij, µij) = 1

Zij

∑
{dki,µki}:
k∈∂i\j

ψi (di,µi) e
−β
∑

µ
cµ

i I[µi ̸=µ]∏
k∈∂i\j nki (dki, µki)

nki (dki, µki) = e−βwkiI[dki>0]mki (dki, µki)

(5.2.4)

where
Zij =

∑
{dij ,µij}

mij (dij, µij)
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is the normalization constant or partial partition function. The system of equations in
(5.2.4) can be seen as fixed point equations that can be solved iteratively. Starting from a
set of initial cavity marginals at time t = 0, we iterate the right-hand-side of (5.2.4) until
numerical convergence to a fixed point is reached. At this point we estimate marginals
in (5.2.3) computing the cavity fields defined as:

Mij (dij, µij) ∝ nij (dij, µij)nji (−dij, µij) (5.2.5)

The β → ∞ limit of the BP equations lead to the Max-Sum algorithm ad the
corresponding messages hij (dij, µij) flowing within the factor graph. At convergence we
can extract our optimal assignment of variables by the computation of the decisional
variables (

d∗
ij, µ

∗
ij

)
= arg max

(dij ,µij)
Mβ→+∞

ij (dij, µij) (5.2.6)

Mβ→+∞
ij (dij, µij) = hij (dij, µij) + hji (−dij, µij)− C ′ (5.2.7)

where C ′ is a constant that is added to guarantee that normalization condition in the
zero-temperature limit, that is max(dij ,µij) M

β→+∞
ij (dij, µij) = 0, is satisfied. In the

following sections we will show how to derive equations for the cavity marginals and
cavity fields, for finite β and in the limit β → +∞, depending on we are dealing with the
V-DStP or the E-DStP problem. Notice that for these variants it is possible to implement
the reinforcement scheme as in section §4.2.

5.3 The cavity equations

5.3.1 Vertex-disjoint Steiner trees Problem

To derive the Belief Propagation equations for the V-DStP problem is sufficient to impose
ψi (di,µi) = ψVi (di,µi) in (5.2.4). Equations for messages can be easily obtained by
using the properties of Kronecker delta functions in ψVi (di,µi) and then, by the change
of variables explained in (3.3.4), we will determine a Max-Sum algorithm for this variant.

We can differentiate three cases depending on we are updating messages mij for
positive, negative or null depth dij:
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mij (d, µ) = e−β
∑

ν ̸=µ
cν

i
∏
k∈∂i\j [nki (d+ 1, µ) + nki (0, 0)] ∀d > 0, µ ̸= 0

mij (d, µ) = e−β
∑

ν ̸=µ
cν

i
∑
k∈∂i\j nki (d+ 1, µ)×

×∏l∈∂i\{j,k} [nli (d, µ) + nli (0, 0)] ∀d < 0, µ ̸= 0
mij (0, 0) = e−β

∑
µ
cµ

i
∏
k∈∂i\j nki (0, 0) +∑

µ̸=0
∑
d<0 mij (d, µ)

(5.3.1)
Substituting hij (dij, µij) = limβ→+∞ nij (dij, µij) in (5.3.1) we obtain the Max-Sum

equations:

hij (d, µ) = −wij −
∑
ν ̸=µ c

ν
i +∑

k∈∂i\j max {hki (d+ 1, µ) , hki (0, 0)} ∀d > 0, µ ̸= 0
hij (d, µ) = −∑ν ̸=µ c

ν
i + maxk∈∂i\j [hki (d+ 1, µ) + wki +

+∑
l∈∂i\{j,k} max {hli (d, µ) , hli (0, 0)}

]
∀d < 0, µ ̸= 0

hij (0, 0) = max
{
−∑µ c

µ
i +∑

k∈∂i\j hki (0, 0) , maxµ̸=0 maxd<0 hij (d, µ)
}

(5.3.2)

5.3.2 Edge-disjoint Steiner trees problem

The Belief Propagation equations for the E-DStP are the following:

mij(dij, µij) =
∑

{dki,µki}:
k∈∂i\j

ψEi (di,µi) e
−β
∑

µ
cµ

i I[µi ̸=µ] ∏
k∈∂i\j

nki (dki, µki) (5.3.3)

To compute (5.3.3) we can define:

Zi =
∑

di,µi

ψEi (di,µi) e
−β
∑

µ
cµ

i I[µi ̸=µ] ∏
k∈∂i

nki (dki, µki) (5.3.4)

and then calculate messages mij (dij, µij) through (5.3.4) by temporarily setting

nji (dji, µji) = δ−dij ,dji
δµij ,µji

Due to the explicit expression of ψEi message-passing equations become intractable
and therefore they cannot be efficiently implemented. In the following subsections we
propose two different approaches for the computation of (5.3.4) where we make use
of two different auxiliary variables. The first algorithm is based on binary occupation
variables associated with nodes that scales exponentially in their degree but is linear in
M ; the second one consists in a mapping between the E-DStP update equations and
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the matching problem on a proper bipartite graph, that, in the β → +∞, becomes a
maximum matching problem which may be more efficient for vertices with large degrees;
however, it scales exponentially in M .

5.3.2.1 Neighbors occupation formalism

Suppose of associating with each vertex i ∈ V a vector x = {0, 1} |∂i|. A feasible
assignment of these auxiliary variables is guaranteed if, for every link (i, k) ∈ E incident
on i, we will impose xk = 1 if such edge belongs to a tree (i.e. dki ̸= 0 and consequently
µki ̸= 0) or xk = 0 otherwise (for µki = 0, dki = 0). Variables (di,µi) must locally satisfy
the following identity ∏k∈∂i I [xk = 1− δdki,0] = 1 for every node i ∈ V . We introduce
this expression in (5.3.4) obtaining:

Zi =
∑

di,µi

ψEi (di,µi) e
−β
∑

µ
cµ

i I[µi ̸=µ]∑
x

∏
j∈∂i

I
[
xj = 1− δdji,0

]
nji (dji, µji) (5.3.5)

=
∑

x

ZM
x (5.3.6)

where ZM
x is defined by taking q = M of the following expression

Zq
x ≡

∑
di,µi
µki≤q

ψEi (di,µi) e
−β
∑

µ
cµ

i I[µi ̸=µ] ∏
k∈∂i

I [xk = 1− δdki,0]nki (dki, µki) (5.3.7)

that can be computed using the following recursion:

Zq
x =

∑
y≤x

e−βcq
i

∏
k∈∂i
yk=0
xk=1

nki (0, 0) + (5.3.8)

+
∑
d>0

∑
j∈∂i
yj=0
xj=1

nji(−d, q)
∏

k∈∂i\j
yk=0
xk=1

[nki (d+ 1, q) + nki (0, 0)]

Zq−1
y

Z0
x = e−β

∑
µ
cµ

i
∏
j∈∂i

δxj ,0nji (0, 0) (5.3.9)

where with y ≤ x we mean all possible vectors y = {0, 1} |∂i| satisfying

yk =

yk ≤ xk if µki ̸= q

0 if µki = q
(5.3.10)
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We do not report here the proof of the equivalence between (5.3.8) and (5.3.7). We
can write the expressions above in the Max-Sum formalism. Define Fi = limβ→+∞

1
β

logZi
and express it as function of Max-Sum messages

hij (dij, µij) = lim
β→+∞

1
β

log nij (dij, µij) (5.3.11)

as

Fi = max
di,µi

ψE
i (di,µi)=1

max
x

∑
k∈∂i

log I [xk = 1− δdki,0] + hki(dki, µki)−
∑
µ

cµi I [µi ̸= µ]


(5.3.12)
where the function ∑

k∈∂i log I [xk = 1− δdki,0] takes value zero if variables satisfy the
constraints or minus infinity otherwise. As in the BP formulation, we rewrite it as:

Fi = max
x

FM
x (5.3.13)

with

FM
x = max

di,µi

ψE
i (di,µi)=1

∑
k∈∂i

[
log I [xk = 1− δdki,0] + hki (dki, µki)−

∑
µ

cµi I [µi ̸= µ]
]

It is computed recursively from

F q
x = max

y≤x

{
F q−1

y + max {f0, fd}
}

(5.3.14)

F 0
x = −

∑
µ

cµi + log I [x = 0] +
∑
k∈∂i

hki (0, 0) (5.3.15)

where

f0 =
∑
k∈∂i
yk=0
xk=1

hki (0, 0)− cqi (5.3.16)

fd = max
d>0

max
k∈∂i
yk=0
xk=1

hki (−d, q) +
∑
l∈∂i\k
yl=0
xl=1

max [hli (d+ 1, q) , hli (0, 0)]

 (5.3.17)
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5.3.2.2 Mapping into a weighted matching problem

We will show an alternative method for the computation of the update rules of the
messages. Let us introduce an auxiliary vector s ∈ {0, 1, . . . , D}M associated with any
vertex of the graph. Each component sµ takes value in the set of the possible positive
depths {1, . . . , D} if this node is member of communication µ or 0 otherwise. For a
non-root node i member of the communication µ, there exists exactly one neighbor k
such that dik > 0, dki = −sµki

µki = µ and for the remaining ones, dliδµli,µ = sµki
+ 1

or dliδµli,µ = 0, l ∈ ∂i\k. The compatibility function for E-DStP can be expressed as a
function of the new variables as:

ψEi (di,µi) =
M∏
µ=1

∑
sµ>0

∑
k∈∂i

δd̃ki,−sµ

∏
l∈∂i\k

(
δd̃li,sµ+1 + δd̃li,0

)
+
∏
k∈∂i

δd̃ki,0

 (5.3.18)

Let us define the binary vector t whose component tkµ takes value 1 if k ∈ ∂i is
member of communication µ and sµ > 0 or 0 otherwise; it can be proven that Zi can be
computed as

Zi =
∑

s

RsZs (5.3.19)

where
Rs =

∏
k∈∂i

[∑
ν

nki (sν + 1, ν) + nki (0, 0)
]

(5.3.20)

Zs =
∑

t

∏
µ

I

∑
k∈∂i

tkµ = 1− δsµ,0

 ∏
k∈∂i

I
[∑
µ

tkµ ≤ 1
]
×

×
∏
k∈∂i

∏
µ

e−βcµ
i I[sµ=0]

[
nki (−sµ, µ)∑

ν nki (sν + 1, ν) + nki (0, 0)

]tkµ
(5.3.21)

The term Zs is the partition function of a matching problem on the complete bipartite
graph G = (V = A ∪B,E = A×B) with A = ∂i and B = {µ : sµ > 0} where the
energy of a matching is

H (t) =
∑
kµ

tkµ log nki (−sµ, µ)∑
ν nki (sν + 1, µ) + nki (0, 0) − c

µ
i I [sµ = 0]

In general, the partition function Zs is hard to compute exactly, because it corre-
sponds to the calculation of a matrix permanent which is computationally intractable.
Fortunately, the situation is much easier in the β → ∞ limit: using hki (−sµ, µ) =
1
β

log nki (−sµ, µ) and taking the limit β →∞, the computation of Fi = 1
β

logZi reduces
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to the evaluation of

Fi = max
s

[
1
β

(logRs + logZs)
]

(5.3.22)

= max
s

∑
k∈∂i

max
[
max
µ

hki (sµ + 1, µ) , hki (0, 0)
]

+ Fs

 (5.3.23)

To evaluate the second term Fs = 1
β

logZs we need to solve a maximum matching
problem on a bipartite graph which can be done in polynomial time. More precisely, for
each assignment of the s we can define the weights wkµ associated with each edge (k, µ)
as:

wkµ =

hki (−sµ, µ)−maxν max {hki (sν + 1, ν) , hki (0, 0)} if sµ > 0
−cµi if sµ = 0

(5.3.24)

and solve the constrained maximization problem

Fs = max∑(k,µ) wkµtkµ :∑
k∈∂i tkµ ≤ 1 µ = {1, . . . ,M}∑
µ tkµ ≤ 1 {k : k ∈ ∂i}

(5.3.25)

Notice that variables t are binary variables and the system in (5.3.25) describe an integer
linear program. As discussed in section §3.6.1 one solves the corresponding linear program,
that is the same problem but with real variables t. This problem is known as the bipartite
maximum weighted matching problem whose optimal solution is proven to be integer, i.e.
for binary t.

5.4 Max Sum for loopy graphs

As we have described in chapter 4, a reinforcement procedure coupled to the use of
modified fast heuristics ensure to find good (and unbounded) solutions after few iterations
of the algorithm. The same can the implemented for the V-DStP and the E-DStP with
the following remark. Heuristics are applied to the graph for any communication and
we build the solution for E-DStP or V-DStP as a superposition of single-tree solutions.
Notice that heuristics are sequentially applied, i.e. we consider one communication at
the time, and depending on we are dealing with V-DStP or E-DStP, edges (and Steiner
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nodes for the V-DStP) selected in the first spanning trees cannot be further used by the
successive applications.

5.5 Preliminary results

5.5.1 VLSI

We report here some preliminary results for benchmark instances of circuit layout where
we solve the V-DStP. Instances are 3D grid graphs modeling VLSI chips where we pack
relatively many trees, usually 19 or 24, each of which typically contains few terminal nodes
(3 or 4). Such grid graphs can be seen as multi-layers graphs where we allow two different
kinds of connections. In the multi-crossed layers, each node is connected to all its possible
neighbors in all directions: the resulting graphs are cubic lattices. The multi-aligned
layers are similar to the multi-crossed ones but in each layer we allow only connections in
one direction, either east-to-west or north-to-south [16, 63]. In table 5.1 we first report
some information (type of the layers, size, number of sub-graphs and total number of
terminals) concerning each instance and our results. We show the energies achieved
by reinforced Max Sum along with the ones of the heuristics “J” and “N” explained in
section §4.5. Results are compared to the ones obtained through a state-of-the-art linear
programming (LP) technique [16] which is able to provide the energies of the optimal
solutions for these instances. In particular we measure the percentage gap between our
best energies and the LP ones as

Gap (our, LP ) =
(Eour − ELP )

ELP
· 100 (5.5.1)

The “-” sign in table 5.1 denotes that no solution has been found. Although we cannot
reach better solutions than the ones provided by LP, the gaps are always smaller than 5%
and in one case, for the augmenteddense-2 instance, we output the same solution. We
stress that these graphs are very loopy and far from being locally tree-like but nevertheless
we achieve good performances thanks to the reinforcement procedure along with the
introduction of the modified heuristics. In figure 5.5.1 we display four selected solutions
of the set presented in this section.

5.5.2 Fully connected graphs

Here we report the results for the V-DStP on fully connected (FC) graphs of 500 nodes
where we aim at packing three trees. Weights of the edges are assigned through two
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Type Size M T tot “J” “N” MS LP Gap %
augmenteddense-2 aligned 16x18x2 19 59 504 504 507 504 0 %
augmenteddense-2 crossed 16x18x2 19 59 503 - - 498 1.0 %

dense-3 crossed 15x17x3 19 59 487 488 485 464 4.0 %
difficult-2 aligned 23x15x2 24 66 535 538 538 526 1.7 %

modifieddense-3 crossed 16x17x3 19 59 492 496 495 479 2.6 %
moredifficult-2 aligned 22x15x2 24 65 542 542 546 522 3.8 %

pedabox-2 aligned 15x16x2 22 56 405 405 405 390 3.8 %
terminalintensive-2 aligned 23x16x2 24 77 599 617 620 596 0.5 %

Table 5.1: Results for circuit layout instances

(a) augmenteddense-2 multi-aligned (b) terminalintensive-2

(c) augmenteddense-2 multi-crossed (d) dense-3

Figure 5.5.1: Examples of solutions for the V-DStP on VLSI circuits for multi-aligned,
(a) and (b) figures, and multi-crossed, (c) and (d) figures, layouts
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different processes that will be made explicit in the following two subsections; terminals
are randomly chosen among the nodes of the graphs.

We compare our performances against a “greedy” procedure: first, we sequentially
apply the MS algorithm for the single-tree MStP to each communication and then we
compute the “greedy” energy as the sum of energies of single-tree solutions. As in the
case of the heuristics described in section §5.4 the input graph is carefully modified in
order not to use edges in more than one sub-graphs. Notice that this “greedy” procedure
is actually hard as the packing problem, since even solving the MStP belongs to NP-hard
class of problem; nevertheless this procedure will be useful to underling the benefits
carried by the parallel (packing) search against a sequential one. We decide to deal with
fully connected graphs because here there always exist configurations of variables such
that the hard constrained are satisfied. For instance, to have a candidate solution, it
suffices to connect all terminals through a chain.

We report here the values of the energies and gaps Gap (Greedy,MS), averaged
over about 102 instances, as functions of the number of terminal nodes. We run both
algorithms, denoted as “MS” and “Greedy”, with fixed parameters D = {3, 5, 10} and
fixed reinforcement factor γ0 = 10−5.

5.5.2.1 Independently distributed edge-weights

For these experiments we created several instances of FC graphs where with the edges of
the graphs we associate uniformly and independently distributed weights in the interval
[0, 1]. Results in figure 5.5.2 show that the energies provided by MS algorithm are always
smaller then the ones of the greedy solutions. In fact, the energy gaps are always positive
for any assignment of terminals and for any depth D; gaps reach their maximum values
when the number of terminals, for each communication, lies in the range [60, 100]. We
notice that energies decrease as we increase the value of the diameter D of the solution;
we mention that the computation time, in seconds, required by the simulations (using
both strategies) for the largest value of D is orders of magnitude larger then the time
needed for D = 3.

5.5.2.2 Correlated edge-weights

To underline the benefits carried by the optimized strategy, we run reinforced and greedy
reinforced Max-Sum on complete graphs with correlated edge weights. With each node i
we assign a uniformly distributed random variable xi in the interval [0, 1] and for each
edge (i, j) we pick a variable yij ∈ (0, 1). Then an edge (i, j) will be characterized by
a weight wij = xixjyij. We denote this kind of graphs as “FCW”. Results shown in
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Figure 5.5.2: Average values of the energies and of the energy gaps for fully connected
graphs as functions of terminals

figure 5.5.3 reveal that in this particular assignment of the weights, the energy gaps
reach very large values (like 60-70 % in some cases) suggesting that the MS algorithm
outperform the sequential greedy procedure.

5.6 Discussion

We have shown in this section how to treat two packing variants of the Steiner tree problem,
the Vertex-disjoint Steiner tree problem and the Edge-disjoint Steiner tree problem, using
an edge-variable formalism similar to the one used in [61]. The methodologies derive from
the message passing algorithm at zero-temperature, also known as Max Sum algorithm.
We have discussed how to implement three algorithm, one for V-DStP and two for the
E-DStP problem; in particular the two concerning the E-DStP scale differently with
respect to the system size and can be more or less advantageous depending on the
properties of the graph. The edge-based formalism along with the partial information
carried by messages before convergence have allowed us to implement fast heuristics able
to provide feasible solutions even in hard instances like grid graphs. We have reported
several preliminary results of the algorithm for the V-DStP applied to fully connected
graphs and to some benchmark VLSI grids on which the optimal solution is known.
In the first case MS algorithm always provide better results then the outcomes of a
“greedy” procedure reaching energy gaps of 60-70 % for fully connected graphs which
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Figure 5.5.3: Average values of the energies and of the energy gaps for fully connected
graphs with correlated edge weights as functions of terminals.

edge weights are correlated with one another. In the latter case, energies do not exceed
the 5% of the optimal energies computed via linear programming techniques. Further
developments regard the efficient implementation of the algorithms for the E-DStP to
cope with real-world instances as the VLSI grids.



Chapter 6

EP algorithm for the CS problem

This section is devoted to complete the derivation of the EP algorithm in section 3.5.1
and to report and analyze the preliminary results obtained by EP for the CS problem
described in section §2.2.1. In the following we will explicitly compute the moments of
the tilted distributions in (3.5.3) for the posterior in (2.2.5). We underline that we are
introducing an L0 regularization differently to the work in [64] where an EP algorithm
is presented for a model based on the L1 regularization. Within this section we will
additionally present an approach able to reduce the computing time of EP by a factor
N ; this procedure will be always applied to all the other inference problems presented in
the thesis.

We will show several results for different realizations of the matrix of measurements
F and we will compare our predictions for different values of α and fixed ρ to the ones
obtained by BP algorithm. Our purpose is to roughly estimate a critical value for α such
that perfect reconstruction is guaranteed or, in other word, we want to investigate the
limit of applicability of EP algorithm. Results in this section are very naif as they rely
on few simulations; a more rigorous analysis will be contemplated in future works.

6.1 Moments of the tilted distribution for the CS
problem

Let us specify the tilted distribution associated with the exact posterior probabil-
ity in (2.2.5) and let us compute its first two moments. Assuming that each prior
ψn (xn) = (1− ρ) δ (xn)+ ρ√

2πλe
− x2

n
2λ can be approximated as a Gaussian density φn (xn) =
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1√
2πbn

e− (xn−an)2
2bn , the tilted distribution for nth unknown reads

Q(n) (x|y) ∝ e− 1
2∆ (y−Fx)T (y−Fx)ψn (xn)

∏
m̸=n

e− (xm−am)2
2bm (6.1.1)

where we have not made explicit the normalization constant. As discussed in section 3.5.1
this equation can be further reduced to a multivariate Gaussian times an exact prior
ψn (xn) as

Q(n) (x|y) ∝ e
− 1

2(x−µ(n))T
Σ−1

(n)(x−µ(n))ψn (xn) (6.1.2)

where Σ−1
(n) = 1

∆FTF + D(n)

µ(n) = Σ(n)
(

1
∆FTy + D(n)a

) (6.1.3)

Thus we can compute the two first moments of Q(n)as

⟨xn⟩Q(n) = 1
ZQ(n)

∫
dxnxne

− (xn−µn)2
2Σnn

[
(1− ρ) δ (xn) + ρ√

2πλ
e− x2

n
2λ

]
(6.1.4)

= 1
ZQ(n)

ρ

√
Σnn

Σnn + λ

λµn
Σnn + λ

〈
x2
n

〉
Q(n)

= 1
ZQ(n)

∫
dxnx

2
ne

− (xn−µn)2
2Σnn

[
(1− ρ) δ (xn) + ρ√

2πλ
e− x2

n
2λ

]
(6.1.5)

= 1
ZQ(n)

ρ

√
Σnn

Σnn + λ

 λΣnn

Σnn + λ
+
(

λµn
Σnn + λ

)2


where the normalization constant reads

ZQ(n) = (1− ρ) e
−λµ2

n
2Σnn(Σnn+λ) + ρ

√
Σnn

Σnn + λ
(6.1.6)

Now that we have specified the moments of the tilted distributions, we can update
the parameters an and bn as (3.5.14). This procedure is iteratively applied to all the
unknown variables as to refine the complete set of parameters a and b until we reach the
numeric convergence as explained in section 3.5.1.
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6.2 Fast computation of EP update equations

The algorithm described in this section requires O (N4) iterations which is quite time
consuming. In fact, for each one of the N variable, we have to invert the N ×N matrix
Σ−1

(n) which needs O (N3) operations. We show here how to reduce the computing time
by a factor N .

Let us consider the following system of equationΣ̄−1 = 1
∆FTF + D

µ̄ = Σ̄
(

1
∆FTy + Da

) (6.2.1)

where D is a full diagonal matrix of entries Dnn = 1
bn

or, equivalently, can be expressed
as a function of D(n) as D = D(n) + 1

bn
eneTn for en , the Euclidean versor. The covariance

matrix Σ̄ and the vector µ̄ parametrize the full approximate distribution Q (x|y) in
(3.5.4). The elements Σnn and µn relative to the matrix Σ(n)and the vector µ(n) in (6.1.3)
can be expressed as functions of the elements Σ̄nn and µ̄n entering in (6.2.1) as

Σnn = Σ̄nn

1− Σ̄nn
1
bn

(6.2.2)

µn =
− 1
bn
anΣ̄nn + µ̄n

1− Σ̄nn
1
bn

(6.2.3)

Proof Let us left multiply Σ−1 to the second equation in (6.2.1) as
( 1

∆FTF + D
)

µ̄ = y + Da (6.2.4)

for y = 1
∆FTy. The same can be done for the system in (6.1.3) obtaining

( 1
∆FTF + D− 1

bn
eneTn

)
µ(n) = y +

(
D− 1

bn
eneTn

)
a (6.2.5)

Performing (6.2.5) - (6.2.4) and left multiplying by eTn , one finds

µn =
− 1
bn
anΣ̄nn + µ̄n

1− Σ̄nn
1
bn

(6.2.6)

A similar procedure can be sought to compute Σnn. Let us define t the solution of
equation Σ−1

(n)t = en, that is t is the nth column of Σ(n). Now consider the homogeneous
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equation Σ̄−1t̄ = 0 which has solution t̄ = 0. We write the system of equations:
(

1
∆FTF + D− 1

bn
eneTn

)
t = en(

1
∆FTF + D

)
t̄ = 0

(6.2.7)

If we subtract the first equation to the second and left multiplying by eTn we get

Σnn = Σ̄nn

1− Σ̄nn
1
bn

(6.2.8)

Notice that this procedure will be apply for all the following EP algorithm described
in section §7.2, section §8.2 and section §9.2.

6.3 Preliminary results

In this section we report several results of our EP algorithm for CS problem. Our
prediction will be compared to the outcomes of the implementation of the BP algorithm
presented in [26] and available in http://aspics.krzakala.org/. We attempt to solve the
CS problem for two families of measurement matrices: random matrices having Gaussian
independent entries and correlated matrices.

6.3.1 Random matrices

For these experiments we have chosen to infer a signal s of N = {50, 100, 200} components
having K = 0.3 ·N randomly chosen non-zeros; the sparsity of the signal is thus equal
to ρ = 0.3. We design 5 measurements matrices F as random matrices of dimension
M ×N whose elements are independently distributed random variables picked from a
Gaussian distribution of zero mean and unitary variance. We modify M in the range
[0.3 ·N, 0.7 ·N ] that is, for a measurement rate α ∈ [0.3, 0.7]. The (inverse) variance of
the noise 1

∆ has been taken equal to 109 and it is considered as known.
As a first experiment, we attempt to seek a solution to the compressed sensing

problem for a single instance of N = 200 components. More precisely, for each of the 5
measurement matrices, we create a signal of the pre-defined sparsity and try to solve
the inverse problem using both EP and BP algorithms. Results are shown on the top of
figure 6.3.1. We can notice that both BP (green line) and EP (cyan line) algorithm fails
to retrieve the original signal (red line) for very small values of α but then, for about
α ≃ 0.50, they achieve a good reconstruction. To better understand the behavior of

http://aspics.krzakala.org/
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both algorithms we perform the same experiment 50 times for each of the 5 matrices
and for the three values of N ; in the bottom of figure 6.3.1, we report two measures of
the quality of these results. In the left plot we show the (normalized) L2−norm of the
difference of the reconstructed signal x (either BP or EP) and the exact one s

Norm2 (x− s) = (x− s)T (x− s)
xTx + sTs

(6.3.1)

as a function of α. On the right, we plot the fraction of the “true-positive”

TP = 1
N

∑
n

{I [xn = 0] I [sn = 0] + I [xn ̸= 0] I [sn ̸= 0]} (6.3.2)

as a function of α. Error bars are computed through the standard error of the measure-
ments. We also report as a vertical green line the critical value of α, called αL1

c computed
according to [30] when the prior is of type L1. As shown in the plots both BP and EP
reach optimal reconstruction for a range of values of α smaller than αL1

c . Concerning
the comparison between BP and EP, it seems that EP achieves slightly better results but
clearly the number of samples used for these results is insufficient to determined their
critical values.

6.3.2 Correlated matrices

In this section we perform the same experiments described in section 6.3.1 with correlated
matrices. To ensure that rows of the matrix F are at the same time correlated and
linearly independent, we pick each entry of F from a multivariate distribution of zero
means and a carefully designed N × N covariance matrix S. The matrix S has been
created as follows. We start from a k × N matrix T of independently and Gaussian
distributed elements with zero mean and unitary variance, and a diagonal matrix D
having the same kind of (only positive) entries in the diagonal. The covariance matrix is
defined as

S = TTT + D (6.3.3)

Notice that the product TTT guarantees that (i) S is semi-positive definite as its
elements correspond to the variances or covariances of the multivariate distribution and
(ii) S is symmetric in agreement with the properties of the covariances. The introduction
of D ensures that S is a full rank matrix without affecting the signs of the variances.

We present in figure 6.3.2 and in figure 6.3.3 the results for k ∈ {5, 20}. In both the
simulations, BP converges when N = 50 but for larger values of N does not converge for
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Figure 6.3.1: Single instance (top) and averaged (bottom) results of EP and BP for the
CS problem. Random matrix case.
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any value of α; in these cases BP predictions are computed using messages in a state of
inconsistency. In fact, as shown in the single-instance results on the top of figure 6.3.2
and figure 6.3.3, the recovered signals are quite far from the desired ones. On the bottom
of figure 6.3.2 and figure 6.3.3 we can see that both the L2−norm and the fraction of
true-positive remark the inaccuracy of BP results (especially for N = {100, 200}): the
L2−norm in (6.3.1) is not converging to zero and the fraction of true positive apparently
does not reach the value 1 even though α increases up to 0.7. This is quite unexpected;
since the absolute values of the non-diagonal elements of S must behave as |Sij| ∼ k1/2

for j ≠ i, we expect that for N ≫ k, the correlations among the entries of F should
decrease and thus BP should converge.

At difference to BP, EP is able to retrieve the original signal reaching a perfect
recovering for α = 0.60 as in the case of the random matrices. Correlations within these
structured matrices have not affected the performances of EP algorithm.

6.4 Discussion

We have discussed in this chapter how to implement an EP algorithm able to approximate
the exact posterior for the CS problem in (2.2.5). We have also shown how to speed up
the main loop of the EP algorithm by a factor N with a method that requires only one
inversion of an N ×N matrix per iteration. This approach will be applied for all the
other EP algorithms presented in this thesis.

We have reported some preliminary results that remark the huge range of applicability
of our implementation of the EP approximation for the CS problem. We have seen
that the performances of our algorithm seem not to be affected by strong correlations
presented in the measurement matrices. This is an important advantage as in real world
applications of the CS problem these matrices are often structured and, as we have shown,
cavity-based algorithms fail to converge in these cases. In addition, we have shown that
the critical value of the measurement rate above which this standard implementation of
EP guarantees a good solution is closer to the theoretical limit (the L0 curve) than the
BP one. This allows to compress data in a strong under-sampling regime which can be
significantly advantageous in practical applications.

We intend to deeply and rigorously analyze the behavior and the achievable perfor-
mances of this algorithm in future works.
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Figure 6.3.2: Single instance (top) and averaged (bottom) results of EP and BP for the
CS problem. Structured matrix case with k = 5
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Figure 6.3.3: Single instance (top) and averaged (bottom) results of EP and BP for the
CS problem. Structured matrix case with k = 20



Chapter 7

EP approximation for inferring
metabolic fluxes

As discussed in section §2.2.2 the problem of determining the metabolic fluxes satisfying
(2.2.11) and (2.2.12) is hard to solve exactly. Although sampling techniques may provide
an estimate of the polytope associated with the solution, it suffers from several drawbacks
as illustrated in section §2.2.2. Here we describe an EP based algorithm following
the indications in section 3.5.1. The approximation of the marginals provided by this
approach turns out to be well comparable to the HR prediction in the asymptotic limit
for a set of state-of-the-art large metabolic networks of several kind of organisms. We
underline that the EP running time is order of magnitude smaller then the sampling
time of HR that, in some cases, is unfeasible.

Moreover, we will explain how to investigate the behavior of fluxes when some
marginals are constrained; we show how to modify EP update equations to impose
a desired profile to a marginal posterior. We will test this modified version of the
algorithm trying to infer the behavior of the metabolic fluxes of Escherichia Coli when
its growth rate is constrained. The profile of the biomass has been chosen to fit with real
experimental data extracted from [65].

All this section of the thesis is part of the work in [66].

7.1 Bayesian model

In the following we describe how to map the problem in section §2.2.2 into a Bayesian
inference problem. Let us define a non-negative energy function underlining the linear
constraints in (2.2.11) as
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H (ν, b) = 1
2 (Sν − b)T (Sν − b) (7.1.1)

Notice that the minimum(s) of this energy lies on the configurations of ν and b

satisfying Sν = b. Equivalently, we can ask what is the probability of observing the
intakes/uptakes b given a set of fluxes, or, in other words, what is the likelihood. As we
did for the CS problem in section 2.2.1.1 we model it as a Boltzmann distribution

P (b|ν) =
(
β

2π

)M
2

e− β
2 (Sν−b)T (Sν−b) (7.1.2)

where now we set β → +∞ to favor those configurations of fluxes satisfying (2.2.11),
i.e. minimize the energy function. Finally we need to specify the prior probability of
fluxes: the only prior knowledge that we can include in the model is that they can assume
bounded values as indicated in (2.2.12). Thus the prior P (ν) reads

P (ν) =
N∏
n=1

I [νminn ≤ νn ≤ νmaxn ]
νmaxn − νminn

=
N∏
n=1

ψn (νn) (7.1.3)

According to Bayes’ theorem in (1.3.1), the posterior probability is given by

P (ν|b) = 1
P (b)

(
β

2π

)M
2

e− β
2 (Sν−b)T (Sν−b)

N∏
n=1

ψn (νn) (7.1.4)

from which we seek to compute the marginal probability of each flux, that is to calculate
P (νn|b) for n = {1, . . . , N}. Unfortunately, the direct marginalization of (7.1.4) will
require the evaluation of high dimensional integrals that, due to the functional form
of the priors, is not analytically computable. One way of treating the integration is to
approximate each factor of the prior via a Gaussian probability density whose moments
are easily evaluable. We present in the next section how to derive an EP algorithm for
determining the parameters (the means and the variances) of the Gaussian probability
densities of the approximation.

7.2 EP equations

Let us approximate the exact posterior in (7.1.4) with a multivariate Gaussian of the
type

Q (ν|b) ∝ e− β
2 (Sν−b)T (Sν−b)

N∏
n=1

φn (νn) (7.2.1)
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where the functions {φn}n=1,...,N are Gaussian probability densities of the form φn (νn) =
1√

2πdn
e− (νn−an)2

2dn of mean an and variance dn that have to be determined. Our purpose is
to estimate these parameters through the EP algorithm discussed in section §3.5.

Let us specify the tilted distribution associated with the approximation in (7.2.1)

Q(n) (ν|b) ∝ e− β
2 (Sν−b)T (Sν−b)ψn (νn)

∏
m̸=n

φm (νm) (7.2.2)

or, as we have explained in section §6.1 for the CS problem, it can be expressed in
standard form as

Q(n) (ν|b) ∝ e
− 1

2(ν−µ(n))T
Σ−1

(n)(ν−µ(n))ψn (νn) (7.2.3)

where Σ−1
(n) and µ(n) satisfy

Σ−1
(n) = βSTS + D(n)

µ(n) = Σ(n)
(
βSTb + D(n)a

) (7.2.4)

As usual D(n) is a diagonal matrix whose elements satisfy Dmm = 1
dm

for m ̸= n and
Dnn = 0. To obtain an implementable version of the update equations in (3.5.14) we
need to explicit the first and second moments of the distribution in (7.2.3) and thus
compute

⟨νn⟩Q(n) ∝
∫
dνnνnψn (νn) e− (νn−µn)2

2Σnn (7.2.5)〈
ν2
n

〉
Q(n)
∝
∫
dνnν

2
nψn (νn) e− (νn−µn)2

2Σnn (7.2.6)

If we notice that the marginal probability Q(n) (νn|b) ∝ ψn (νn) e− (νn−µn)2
2Σnn is a trun-

cated Gaussian in the interval [νminn , νmaxn ], we can express the two moments in standard
form

⟨νn⟩Q(n) = µn +
N
(
νmin

n −µn√
Σnn

)
−N

(
νmax

n −µn√
Σnn

)
Φ
(
νmax

n −µn√
Σnn

)
− Φ

(
νmin

n −µn√
Σnn

) √Σnn (7.2.7)

⟨ν2
n⟩Q(n) − ⟨νn⟩2Q(n) = Σnn

1 +
νmin

n −µn

Σnn
N
(
νmin

n −µn√
Σnn

)
− νmax

n −µn√
Σnn

N
(
νmax

n −µn√
Σnn

)
Φ
(
νmax

n −µn√
Σnn

)
− Φ

(
νmin

n −µn√
Σnn

) + (7.2.8)

−

N
(
νmin

n −µn√
Σnn

)
−N

(
νmax

n −µn√
Σnn

)
Φ
(
νmax

n −µn√
Σnn

)
− Φ

(
νmin

n −µn√
Σnn

)
2
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where N (x) = 1√
2πe

− x2
2 is the standard normal distribution of mean 0 and unitary

variance and Φ (x) =
∫ x

−∞
e− y2

2√
2π dy = 1

2

[
1 + erf

(
x√
2

)]
is its cumulative. Unfortunately, the

above exact expressions suffer from numeric instabilities when the argument |x| → +∞.
Here the difference Φ

(
νmax

n −µn√
Σnn

)
− Φ

(
νmin

n −µn√
Σnn

)
is not numerically appreciable and the

ratios in (7.2.7) (7.2.8) are undetermined. To overcome this problem it is useful to replace
the cumulative Φ (x) in (7.2.7)(7.2.8) with its expansion in the limit |x| → +∞ that is,
up to the 5th order,

Φ(x) ≃ 1
2 −N (x)

[1
x
− 1
x3 + 3

x5 − o
( 1
x7

)]
(7.2.9)

The threshold value of |x| over which the exact expressions are replaced by the ones
obtained from the expansion, has been chosen ad-hoc after several numerical trials.

7.3 Update equations for a constrained marginal

Consider the problem outlined in section 2.2.2.1 and let us investigate how to deal with
this case in the Bayesian framework introduced in section §7.1. Let us define f (νi) as
the (marginal) posterior of the experimental measured flux i. How the posteriors of
other fluxes would modify in order to fit with the experimental results? According to
maximum entropy principle [11] the most unconstrained distribution which is consistent
with the experiment, the prior distribution in (7.1.3) and flux conservation in (2.2.11), is

P (ν|b) ∝ e− β
2 (Sν−b)T (Sν−b)

N∏
n=1

I
[
νinfn ≤ νn ≤ νsupn

]
g (νi) (7.3.1)

for β →∞ and g (νi) the (exponential of the) function of unknown Lagrange multipliers.
This function has to be determined in order for the constraint

f (νi) =
∫ ∏

n̸=i
dνnP (ν|b) (7.3.2)

to be satisfied. Let us consider the case in which f (νi) can be reasonably fitted by a
Gaussian distribution N (νi|aexpi , dexpi ), then it is sufficient to consider also a Gaussian
g (νi) = N (νi|ai, di) = φi (νi; ai, di) parametrized by ai and di. We will show here how to
modify the EP algorithm for flux i in order to determine the two parameters; this part
can be included in the main loop of original EP without affecting the computing time.
Assuming as before that the prior of each flux n ≠ i can be approximated as a Gaussian
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density φn (νn; an, dn) of (unknown) parameters an and dn, also to be determined, we
must impose that

N (νi|aexpi , dexpi ) ∝ N (νi|ai, di)
∫ ∏

n̸=i
dνnQ (ν|b) (7.3.3)

∝ φi (νi; ai, di) e− (νi−µi)2

2Σii (7.3.4)

where the distribution Q (ν|b) is the one in (7.2.1). Since both the left-hand side and
the right-hand side of (7.3.4) contain Gaussian distributions, the relations for ai and di

can be easily computed and take the form

di =

(
1

dexp
i
− 1

Σii

)−1

ai = di
(
aexp

i

dexp
i
− ν̄i

Σii

) (7.3.5)

This expression is exactly the same in (3.5.14) if we replace the mean and the variance
of the tilted distribution with the experimental ones.

7.4 Results

In this section we report a representative part of the results reported in [66].

7.4.1 Two large scale metabolic networks

Let us compare our estimate of the marginal probabilities evaluated according to (7.2.3)
against the HR distributions obtained through the sampling procedure explained in
section 3.6.2.1. We apply both EP and HR algorithms to two models chosen from the
Bigg Model database [67]: GLUnorm model [68] describing the Glutamatergic neuron
and RECON1 model [69] for Homo Sapiens. In particular the last one is very complex
as it involves 2469 reactions among 1587 metabolites.

Before applying the two methods, we pre-process the stoichiometric matrix in order
to erase all the fluxes that can be only produced or only degraded. Then, we run EP
and HR (more precisely an optimized implementation of HR, called optGpSampler [60])
both implemented in Matlab codes.

Regarding the HR simulations we set the number of sampled points to be equal
to 104 for an increasing number of explored configurations T from 104 to 107 for the
GLUnorm and up to T ∼ 109 points for RECON1. Differently, numerical convergence of
EP depends on the refinement of parameters a and d or, more precisely, on the estimate
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of the marginal distributions of fluxes as discussed in (3.5.15). The parameter β has been
set to 1010 for GLUnorm and 109 for RECON1 model.

To quantitatively compare the two approaches we report here the scatter plots of
variances and means of the approximate marginals computed via HR and EP along
with a measure of the correlation among the two sets of parameters. This quantity is
computed through the Pearson product-moment correlation coefficient defined as

ρXHRXEP
= cov (XHR, XEP )

σXHR
σXEP

(7.4.1)

where XHR and XEP can be the population of means or variances computed according
to HR prediction and our algorithm respectively; cov and σ denote the covariance and
the standard deviation of the sets under investigation.

In figures 7.4.1 and 7.4.2 we show the results for Glutamatergic neuron and Homo
Sapiens respectively. Each figure shows several plots:

• Left plots. On the bottom-left we plot the running time of both algorithm and
on the top-left the correlation coefficients for the means and the variances of the
marginal posteriors. The two measures are plotted as functions of the configurations
T explored by HR. As shown in these plots, we can notice that to reach correlation
close to 1 we need to fairly sample the polytope by employing a computing time
that is always several orders of magnitude larger than the EP running time. The
most significant time-gap appears in figure 7.4.2 where EP takes hours to converge
at difference to HR which needs several days to finish the sampling.

• Scatter plots. The rest of the figures show the scatter plot of the means (top) and
the variances (bottom) in different regimes. The y−axis hosts the means (variances)
of EP predictions plotted against the HR means (variances) for increasing T as
specified in the x−axis. It is clear that as HR explores more configurations as the
values of the means and variances approach the EP estimates. This is particularly
clear for the Glutamatergic neuron in figure 7.4.1.

7.4.2 Escherichia Coli metabolism for constrained growth rate

Consider the problem presented in section 2.2.2.1 and let us test the (modified) EP
algorithm shown in section §7.3 on the iJR904 model [70] of Escherichia Coli. As a
matter of example we decide to fix the biomass of Escherichia Coli as indicated in the
growth rate labeled as Glc (P5-ori) reported in figure 3(a) of [65]. The profile can be
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Figure 7.4.1: Comparison between EP and HR results for Glutamatergic neuron
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Figure 7.4.2: Comparison between EP and HR results for Homo Sapiens
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EX_glc(e) lower bound Maximum value of the biomass
-343 11.00
-243 8.00
-143 5.01
-43 2.02

Table 7.1: Maximum value of the biomass (computed through FBA) when we fix the
lower bound of EX_glc(e) flux

well fitted by a Gaussian probability density of mean 0.92 h−1 and variance 0.0324 h−2.
We have chosen the iJR904 model because, in principle, it can catch the main features of
the so-called minimal substrate culture medium where these bacteria lived. The bounds
on the glucose exchange flux EX_glc(e) has been designed in a way that the maximum
allowed biomass flux (computed in terms and units of growth rate by FBA, about 2 h−1)
contained all experimental values of the used profile. As shown in table 7.1, the lower
bound of the exchanged glucose that guarantees the desired threshold shift of the biomass
is −43 mmol (gDW)−1 h−1.

Then we apply EP algorithm to the modified iJR904 model when (i) we do not
impose any additional constraint and (ii) we fix the experimental profile of the growth
rate. As desired, in the second case, the growth rate marginal is exactly the experimental
one, but other fluxes changed their marginal probabilities. Let us identify those fluxes
that have been more affected by the constrained growth rate. We report in figure 7.4.3
the plot of the ratio between the means (figure 7.4.3 (a)) and the variances (figure 7.4.3
(b)) in the unconstrained case and in the constrained case. In figure 7.4.3 (a) the x−axis
is the logarithm of the absolute value of the unconstrained means to differentiate those
fluxes having means close to zero and all the other cases. The ratios of the variances
are instead plotted as a function of the unconstrained variances in semi-log scale. We
have reported the name of the reactions with the most significant changes; for instance,
the marginal of the TKT2 reaction has reduced its mean of more than one third, while
many reactions involving aspartame have significantly lowered their variances.

7.4.3 Red blood cell

In figure 7.4.4 we report the 46 marginal posterior distributions of all the fluxes of the
red blood cell model in [71]. The blue bars are obtained through HR sampling while the
orange line and the red line are the profiles of the marginals according to BP algorithm
implemented in [72] and to EP respectively. We notice that the EP estimates are always
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Figure 7.4.3: Comparison between the means (a) and variances (b) of the marginal
probability densities for all the fluxes computed without the additional constraint (un-
constrained case) and with the constrained on the biomass (constrained case). The green
point indicates the biomass flux.

very similar to the marginals predicted by HR and that, for several fluxes (for instance
AK, AMPase and NADP), the profiles are much more accurate than the BP ones.

7.5 Discussion

In this chapter we have discussed in detail how to express the problem of describing the
space of solution of metabolic fluxes in a Bayesian framework and how to approximate
the marginal posterior of each flux as a truncated Gaussian distribution. The parameters
of the approximation have been derived through the EP algorithm. The comparison of
the first and second moments of the marginal distribution estimated through EP and HR
shows that in almost all cases (up to the number of configurations explored by HR in
the available time, sometimes up to 20 days), the difference between HR and EP results
is monotonically decreasing with the number of configurations. This suggests that EP
results are to be preferred over HR results for any smaller number of samples than the
ones we analyzed. Thus, if the assumption of the exactness of HR in the asymptotic
limit is correct, our results resemble the “true” marginals; we underline that we do not
know the “ground-truth” related to this problem.

We have shown how to investigate the behavior of metabolic fluxes in the cases of a
constrained flux. This is quite remarkable as it appears that sampling techniques are
not able to cope to this different problem in an efficient way. We have also reported
a complete list of marginals relative to the red blood cells fluxes in comparison with a
state-of-the-art implementation of the BP algorithm and HR sampling. Our results are
clearly more similar to the HR estimates then the BP ones.
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Figure 7.4.4: Marginal probability densities of the fluxes of red blood cell estimate by
HR (blue bars), BP (orange line) and EP (red line)
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In real cases variances of the marginal distributions can span several orders of
magnitude. As a consequence also the variances of the approximation need to allow both
very small and huge values. To prevent the numeric problems that may arise, we allow
parameters d to vary in a finite range of values, in our case [10−50, 1050], with, in principle,
the drawback of limiting the set of allowed Gaussian densities of the approximation.
Fortunately, we have observed that at convergence the value of d vary in the range
[10−10, 1048] so the interval is sufficient to catch all the flux profiles presented in this
work.

The parameter β can be seen as the inverse-variance of a Gaussian noise affecting
the stoichiometric equations. The nature of this noise could depend on the spatial
heterogeneity of the cell or on real thermal noise. In this case, an optimization of the
free energy with respect to β can in principle lead to better predictions.

We underline that the relevance of EP algorithm is twofold. First, its predictive
accuracy in a fraction of the computing time with respect to state-of-the-art alterna-
tives allows for the study of much larger models, such as the ones describing the joint
metabolism of symbiotic systems of different organisms. Second, the analytic nature
of the approach makes it specially adapt to accommodate additional constraints in an
efficient way. Besides allowing to incorporate evidence from experiments (such as the
distribution of cell growth rate), this point is of utmost importance for the study of
new and more detailed models models of cell metabolism that e.g. may add additional
constraints to encode information from regulatory processes. The work presented in this
chapter opens new research perspectives in the study of metabolic fluxes that will be
contemplated in future developments.



Chapter 8

Inferring active regions in EEG
inverse problem

As mentioned in section §2.2.3 the inverse problem of the EEG can be described by a
model whose formalism is equivalent to the CS problem. However, current densities must
satisfy additional constraints that enforce a proper spatial localization of the sources. To
group together those currents that belong to the same functional area we will use the
so-called dictionary which enables the partition of the electric lead field according to
some atlas of the brain. We will see how to exploit the EP algorithm for the CS problem
explained in section §6.1 to predict active regions within the brain in this modified
scenario.

8.1 A Bayesian model for EEG inverse problem

Let us model the problem introduced in section §2.2.3 in a Bayesian framework. Following
the same argument of section 2.2.1.1, we assume that the noise ε affecting the voltage
measurements v is a collection of independently distributed Gaussian random variables
of zero mean and variance 1

β
. The likelihood of measuring v given a set of currents j is

P (v|j) =
(
β

2π

)Ne

e− β
2 (v−Kj)T (v−Kj) (8.1.1)

Instead of encoding the spatial localization of the currents in the design of the prior,
we can add the structural information of the Na functional areas at the level of the
matrix K. Let us define an auxiliary matrix, the dictionary A, of dimension Ng × N
where N ∈

[
Na, 2Na

]
. To give an example of how this matrix works, let us suppose
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N = Na. Each column i of the matrix A has non-zero entries in correspondence of those
j-components which belong to area i. In particular the values of the non-zero entries
can shape a Gaussian profile to ensure a smooth decay forward non-active regions. If we
now define K̃Ne×Na = K ·A we can seek a vector j̃ such that v − K̃ · j̃ = ε; of course
this constraint is equivalent to the one enforced in (8.1.1). Assuming that only few areas
provide to the electrical activity of the brain for fixed time, the signal j̃ can be considered
as K sparse, with a fraction ρ = K

Na
of non-zero entries. Thus we can write the prior for

vectors j̃ as

P
(
j̃
)

=
∏
n

[
(1− ρ) δ

(
j̃n
)

+ ρ√
2πλ

e− 1
2λ
j̃2

n

]
(8.1.2)

The posterior now reads

P
(
j̃|v,A, ρ, λ, β

)
∝
(
β

2π

)Ne

e− β
2 (v−K̃·j̃)T (v−K̃·j̃)∏

n

[
(1− ρ) δ

(
j̃n
)

+ ρ√
2πλ

e− 1
2λ
j̃2

n

]
(8.1.3)

where we have underlined the parameters dependency of the model we are using. Thus
we can solve the CS problem for the auxiliary variables j̃, or equivalently, in the “space
of the areas”. Notice that adding to the columns of A combinations of such areas, we
can recover solutions in which also combinations of different regions can be responsible
to voltages on the scalp. Smoothness in the “real space” can also be introduced in the
values of the entries of the dictionary along with the parameter λ of the prior. Once the
CS problem has been solved, we can easily recover the original distributions through the
relation j = A · j̃.

As for the CS problem, the computation of marginal distributions from (8.1.3) is
intractable. Notice that in principle one can use the BP algorithm for continuous variables
in section 3.4.1; however, the rows of a (realistic) matrix K are strongly correlated and
BP fails to converge.

8.2 EP algorithm

We show here how to approximate the distribution in (8.1.3) applying the EP algorithm
in section 3.5.1 (in the following we will simplify the notation using jn instead of j̃n). As
standard we need to compute the first two moments of the tilted distribution associated
with the posterior in (8.1.3), that is

Q(n) (j|v) ∝ e− β
2 (v−Kj)T (v−Kj)ψn (jn)

∏
m̸=n

e− (jm−am)2
2bm n ∈ {1, . . . , N} (8.2.1)
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where we have used a short notation for the exact prior of the nth current

ψn (jn) =
[
(1− ρ) δ (jn) + ρ√

2πλ
e− 1

2λ
j2

n

]
(8.2.2)

Notice that the functional form of (8.2.1) is equivalent to (6.1.1) and therefore the
mean and variance are equal to

⟨jn⟩Q(n) = 1
ZQ(n)

∫
djnjne

− (jn−µn)2
2Σnn

[
(1− ρ) δ (jn) + ρ√

2πλ
e− j2

n
2λ

]
(8.2.3)

= 1
ZQ(n)

ρ

√
Σnn

Σnn + λ

λµn
Σnn + λ

(8.2.4)

〈
j2
n

〉
Q(n)

= 1
ZQ(n)

∫
djnj

2
ne

− (jn−µn)2
2Σnn

[
(1− ρ) δ (jn) + ρ√

2πλ
e− j2

n
2λ

]
(8.2.5)

= 1
ZQ(n)

ρ

√
Σnn

Σnn + λ

 λΣnn

Σnn + λ
+
(

λµn
Σnn + λ

)2
 (8.2.6)

where the normalization constant reads

ZQ(n) = (1− ρ) e
−λµ2

n
2Σnn(Σnn+λ) + ρ

√
Σnn

Σnn + λ
(8.2.7)

The terms µn and Σnn now satisfy the relationΣ−1
(n) = βKTK + D(n)

µ(n) = Σ(n)
(
βKTv + D(n)a

) (8.2.8)

8.3 Inference of the parameters

The model that we have shown in section §8.1 depend on three parameters, β, ρ and
λ, along with the dictionary matrix. These parameters have to be tuned in order to
reproduce the best possible estimate of the currents. We stress that, in this particular
problem, β and ρ are actually related to some physical quantities: the first one estimates
the variance of the noise affecting the measurements while the second one (for a dictionary
having a number of columns equal to the number of areas) is a measure of “sparsity” in
the sense that it provides the fraction of active regions within the brain.
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In statistical inference, there exist several strategies to infer the parameters of a
model along with the inference of a certain set of variables; we mention, for instance, the
Expectation Maximization (EM) [73] strategy for VB methods and Gradient Descent
(GD) methods [74]. We have shown in section 3.5.2 that EP fixed point corresponds to
the stationary point of the free energy functional in (3.5.17) which approximates the
exact free energy. To estimate the three parameters introduced above, we will show how
to design a GD scheme over the (approximate) free energy FEP (ρ, λ, β).

Let us first explicitly compute the free energy for this problem:

FEP = (Ng − 1) logZQ −
∑
n

log
∫
dNjQ(n) (j|v) (8.3.1)

where Q(n) (j|v) is the tilted distribution in (8.2.1) and

ZQ =
∫
dNje− β

2 (v−Kj)T (v−Kj)∏
n

e− (jn−an)2
2bn (8.3.2)

Performing the two integrals one finds

FEP =Ne

2 (log 2π − log β) + (Ng − 1)
2

(
log det Σ̄ + µ̄T Σ̄−1

µ̄
)

+ 1
2βvTv

− 1
2
∑
n

{(
log det Σ(n) − log Σnn + µ(n)TΣ−1

(n)µ
(n)
)

+

− log
e− µ2

n
2Σnn (1− ρ) + e− µ2

n
2(λ+Σmm)ρ

√
Σnn

λ+ Σnn


(8.3.3)

where the matrix Σ(n) and the vector µ(n) are defined for each nth tilted distribution
and satisfy (8.2.8). The matrix Σ̄ and the vector µ̄ are instead defined for the full
approximation as Σ̄−1 = βKTK + D̄

µ̄ = Σ̄
(
βKTv + D̄a

) (8.3.4)

in which the matrix D̄ is full diagonal of elements D̄nn = 1
bn

for n = {1, . . . , Ng}.

The standard GD scheme prescribes that, starting from a trial set of parameters, we
update them against the direction of the gradient of the free energy, or, equivalently, we
move towards its minimum. Instead of performing the update step after the convergence
of EP algorithm (i.e. at the fixed point of a and b), we can encode the learning step
of the parameters within the main loop of the algorithm. Thus, at each iteration t we
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update β, ρ and λ according to

βt = βt−1 − γ ∂FEP
∂β

(8.3.5)

ρt = ρt−1 − γ ∂FEP
∂ρ

(8.3.6)

λt = λt−1 − γ ∂FEP
∂λ

(8.3.7)

where γ is a small constant (γ ∼ 10−5) that governs how fast we move towards the
minimum. Notice that now convergence of EP must also depend on the refinement of
these parameters. In this specific work, when have used an optimized update rule for the
parameters which speed up convergence and it is called adagrad [75].

8.4 Results

We will show in this section some preliminary results on a 2D model of the brain, also
called ring or anulus, and on a 3D model. The electric lead field matrices K along
with the atlas A of the brain were kindly provided by Martínez-Montes of the Cuban
Neuroscience Center.

8.4.1 Results for the ring brain

The model of the brain used for these simulations consists in 720 generators lied on a ring
shaped cerebral cortex. Each generator jn for n ∈ {1, . . . , 720} has to be intended as the
euclidean norm of a vectorial current density jn = (jxn, jyn, jzn). The number of electrodes
that provides the voltage measurements are 32. Generators are grouped together in 34
functional areas provided by a brain standard atlas of the Montreal Neurological Institute
[76]. These areas are shown in figure 8.4.1.

The dictionary A is a matrix of dimension 720× 34 where the entries of each column
i corresponds to a Gaussian centered in the middle of area i and bounded in the region
i; variances are designed in a way that the 99% of the more significant points of the
Gaussian lie within the area i. To simulate the functioning of the brain we randomly
pick K regions among 34 and we construct, for each area, a Gaussian shaped current j

centered in the neighbors of the centroid of the picked areas and having variance equal
to the one of the corresponding column of the dictionary. This has been done to test the
“robustness” of the approach as we would like to recognize from which area of the brain
the currents arrive, independently on the exact distribution of the currents within the
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Figure 8.4.1: Ring brain partitioned in 34 functional areas

regions. Then we build the measurement vector v as v = Kj and add to each component
of the voltage some noise that we have considered as known. For these simulations, each
component of the noise has been picked from a Gaussian distribution of zero mean and
variance ∼ 10−2, i.e. β ∼ 102. Finally we apply EP algorithm to solve the CS problem
over the j̃ as explained in section §8.2 along with the learning of the parameters λ and ρ
outlined in section §8.3. We notice that the inference of the currents is more accurate
if we let the algorithm learn these two parameters instead to fixing them to their real
values.

We show some results for K = {1, 3} in figure 8.4.2 and figure 8.4.3. The top-left
plots of both figures show the vector j in the “real” space while on the top-right plots
we have shown the corresponding vector j̃ in the “area” space. On the bottom we report
a picture of the active regions within the subdivision reported in figure 8.4.1. We can see
that even though the signals, in the “real” space, do not exactly overlap in both figures
the regions shown in the bottom plots exactly coincide.

8.4.2 Results for the 3D brain

These simulations concern the inference of the active regions in a 3D model of the brain.
The number of generators is now 11246 while the electrodes put on the scalp are only 19.
Voxels are grouped in 67 areas which correspond to functional regions; this partitioning
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Figure 8.4.2: Result for the ring brain, one active region
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Figure 8.4.3: Result for the ring brain, three active regions
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corresponds to the “Probabilistic Magnetic Resonance Imaging Atlas” developed at the
Montreal Neurological Institute [77, 78] and it is pictured in figure 8.4.4. The dictionary
matrix has been designed as in the case of the ring brain, that is each column i contains
a Gaussian centered in the centroid of the volume of area i and properly bounded within
the region. The generation process of the signals is exactly the same of the previous case.
As for the anulus, we attempt to infer 1 and 3 regions and learning the parameters λ
and ρ. This data has been created in a low-noise regime, i.e. imposing β ∼ 108. Results
plotted in the top figures of figure 8.4.5 and figure 8.4.6 show a very good overlap between
the signals as in the real space as in the area space; this is remarked by the 3D plots of
the active regions reported on the bottom figures of figure 8.4.5 and figure 8.4.6.

8.5 Discussion

In this chapter we have presented how to map the problem of inferring currents density
within the brain into a compressed sensing problem of active regions in the “areas” space.
The mapping has been done introducing an auxiliary matrix, the dictionary, whose design
reflects our knowledge about the brain functional structure. The CS problem has then
been solved by the EP algorithm introduced in chapter 6. In addition to the inference
of the currents we have also shown how to learn the parameters of the model, that is,
the variance of the prior λ, the sparsity in the areas space ρ, and the inverse variance
of the noise β through a gradient descent method over the (approximate) free energy
functional. Preliminary results concerning synthetically generated currents suggest that
the method is able to predict up to 3 simultaneously activated regions as for the ring
brain as for the 3D model.

In this case the learning of the parameters λ and ρ have helped to infer the signals.
However, the application of the gradient descent scheme significantly slows the main
loop of the EP algorithm (as it requires many iterations to let the parameters converge)
even with the use of optimized version of GD, the adagrad method. An improved GD
technique may allow the simultaneously inference of all the three parameters of the model
(λ, ρ and β). In general, the computation of the main EP loop is dominated by the
inversion of a matrix of size Na ×Na where Na is the number of areas of the brain and
depends on the employed dictionary. We mention that the change of variables and the
investigation in the “area” space is only possible if the matrix multiplication K ·A can
be performed, i.e. the number of generators Ng is not huge.

We underline that our results deeply depend on the design of the dictionary A. In
light of a future application to real EEG signals, it may be very interesting to infer also
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Figure 8.4.5: Result for the 3D brain, three active regions
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Figure 8.4.6: Result for the ring brain, three active regions
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the parameters of the dictionary and so obtaining some information about the functional
structure of the brain.



Chapter 9

Reconstruction of tomography
images via EP

This chapter is devoted to illustrate how to treat the problem of the reconstruction
of tomographic images, illustrated in section 2.2.4,within a Bayesian framework. The
model we propose relies on specific choices of the prior that encompass the ability of
coupling neighboring intensities/pixels within the image, of bounding their value to a
pre-defined range and, eventually, of encoding a priori information about the image. The
posterior probability that we will propose is “similar” to the one presented in [79] where,
at difference to the case considered here, pixels are only modelled as binary variables.
We propose several implementations of the EP algorithm able to reconstruct, as shown
in the results section, a benchmark tomographic image employing very few projections.
In addition, we briefly mention how to address this inference problem where the noise
affecting the measurements is multiplicative, instead of additive.

All the developments presented here are part of an in progress work in collaboration
with Pérez Castillo of UNAM (Universidad Autónoma de México) and his group.

9.1 Bayesian approach to tomographic imaging

As for the CS problem in section 2.2.1.1, we assume that the noise in (2.2.16) is distributed
according to a Gaussian distribution of zero mean and variance 1

β
. Thus the likelihood of

observing a measurements vector y can be expressed as the likelihood of observing the
noise w as

P (y|x) ∝ e− β
2 (y−Fx)T (y−Fx) (9.1.1)
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In the prior of variables x we need to impose a spatial coupling of neighboring pixels as
we assume that their intensity must change smoothly within the image. Let us introduce
a prior

P2 (x) ∝ e
− 1

2
∑

(i,j) J(xi−xj)2
= e− J

2 xT L̄x (9.1.2)

where J is a positive constant which governs the strength of the smoothness (or the
coupling) among neighboring pixels. The matrix L̄ is the graph Laplacian defined as
L̄ = G−A where G is the degree matrix and A the adjacency matrix associated with
the lattice underlying the L × L image. Instead of using the direct definition of the
Laplacian matrix, we will use the (equivalent) Laplacian defined as L = G− 1

2 L̄G− 1
2 . The

subscript ”2” in (9.1.2) underlines the quadratic dependency on the x; we mention that
this kind of prior is similar to the LORETA prior usually used for the EEG inverse
problem.

As explained in section §2.2.3, each pixel xi takes value in a limited range of intensity;
this knowledge is included in a second prior

P (x) =
∏
i

I [xmini ≤ xi ≤ xmaxi ]
xmaxi − xmini

=
∏
i

ψi (xi) (9.1.3)

Finally, we can write the posterior of the image x given the projections y as

P (x|y) ∝ e− β
2 (y−Fx)T (y−Fx)e− J

2 xT Lx
∏
i

ψi (xi) (9.1.4)

As standard, one would like to make a prediction for each component xi as

x∗
i =

∫
dxixiP (xi|y) (9.1.5)

but an efficient computation of these measures is intractable. In fact, the integration of
several indicator functions in (9.1.4) is hard to perform. We present in section §9.2 how
to derive the EP algorithm that approximates the exact posterior in (9.1.4).

9.2 EP equations

Let us define the leave-one-out distribution as

Q(i) (x|y) ∝ e− β
2 (y−Fx)T (y−Fx)e− J

2 xT Lxψi (xi)
∏
j ̸=i

φj (xj) (9.2.1)
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where each function φj (xj) = 1√
2πbj

e
− 1

2bj
(xj−aj)2

is aimed at approximating each exact
prior ψj (xj). As discussed in section 3.5.1 the parameters a and b are iteratively tuned
according to the update equations in (3.5.14) until we reach numeric convergence. To
implement the algorithm we need to specify the mean and the variance of the tilted
distribution. If we define

Σ−1
(i) = βFTF + JL + D(i)

µ(i) = Σ(i)
(
βFTy + D(i)a

) (9.2.2)

the tilted distribution reads

Q(i) (x|y) ∝ e
− 1

2(x−µ(i))T
Σ−1

(i) (x−µ(i))ψi (xi) (9.2.3)

Notice that the expression in (9.2.3) is formally equivalent to the one in (7.2.3) and
thus the mean and the variance of Q(i) are just equal to

⟨xi⟩Q(i) = µi +
N
(
xmin

i −µi√
Σii

)
−N

(
xmax

i −µi√
Σii

)
Φ
(
xmax

i −µi√
Σii

)
− Φ

(
xmin

i −µi√
Σii

) √Σii (9.2.4)

⟨x2
i ⟩Q(i) − ⟨xi⟩2Q(i) = Σii

1 +
xmin

i −µi

Σii
N
(
xmin

i −µi√
Σii

)
− xmax

i −µi√
Σii
N
(
xmax

i −µi√
Σii

)
Φ
(
xmax

i −µi√
Σii

)
− Φ

(
xmin

i −µi√
Σii

) + (9.2.5)

−

N
(
xmin

i −µi√
Σii

)
−N

(
xmax

i −µi√
Σii

)
Φ
(
xmax

i −µi√
Σii

)
− Φ

(
xmin

i −µi√
Σii

)


2 (9.2.6)

where N (x) = 1√
2πe

− x2
2 is the standard normal distribution of zero mean and unitary

variance and Φ (x) =
∫ x

−∞
e− y2

2√
2π dy = 1

2

[
1 + erf

(
x√
2

)]
is its cumulative. Also in this case

it is useful to use the expansion in (7.2.9) when |x| → +∞.

9.2.1 Estimate of the parameters

The model presented in section §9.1 introduces two parameters, β and J , that needed to be
estimated. One way of determining their values is to build an Expectation Maximization
scheme [73] that consists in alternating an “expectation” step, in our case an EP step
for fixed values of β and J , and a “maximization” step, where the two parameters are
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updated in a way that the probability of observing the data is maximized. Here we
briefly derive how to perform the “maximization” step.

Let us call the probability of observing the data y and the parameters β and J as

P (y, β, J) =
∫
dNxP (y, β, J |x)P (x) (9.2.7)

=
∫ ∏

i

dxie
− β

2 (Fx−y)T (Fx−y)e− J
2 xT Lx

∏
i

ψi (xi) (9.2.8)

and let us define an energy function

FEM = − logP (y, β, J) (9.2.9)

The optimal values of β and J , let us call them as β∗ and J∗, are the ones that
minimize the energy function in (9.2.9), so we can impose that

∂FEM
∂β

= − 1
P (y, β, J)

∂P (y, β, J)
∂β

= 0 (9.2.10)

∂FEM
∂J

= − 1
P (y, β, J)

∂P (y, β, J)
∂J

= 0 (9.2.11)

If we perform the derivatives within the integral in (9.2.8), we find that

β∗ = M〈
(Fx− y)T (Fx− y)

〉
P (y,β,J)

(9.2.12)

J∗ = N

⟨xTLx⟩P (y,β,J)
(9.2.13)

Unfortunately, the expectations in (9.2.12) (9.2.13) cannot be efficiently computed
as they require the integration of multiple error functions, but, nonetheless, as a first
approximation, we can replace the computation of the first and second moments of
P (y, β, J) with multiplications of expectations of the variables x computed through the
EP algorithm. Thus the optimal values of β and J read

β∗ = M(
F ⟨x⟩QEP − y

)T (
F ⟨x⟩QEP − y

) (9.2.14)

J∗ = N

⟨xT ⟩QEP L ⟨x⟩QEP

(9.2.15)
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9.3 Other priors

The two priors used in section §9.1, namely the “coupling” and the “bounding” terms
P2 (x) and P (x), are very general as they reflect the properties of tomographic, and also
natural, images. We notice that, under certain conditions and for several sets of images,
we can exploit much more information that can be easily encoded in the EP formalism
by changing the prior P (x).

Suppose that we know a priori that the image we aim at inferring is sparse, in the
sense that a big fraction of the pixels represent a black background. In this case it is
possible to introduce a prior that forces the sparsity of the image like

Psp (x) =
∏
i

ρδ (xi) + (1− ρ) I [xmini ≤ xi ≤ xmaxi ]
xmaxi − xmini

(9.3.1)

where ρ is the fraction of black pixels. Notice that this prior is similar to the L0

regularization presented in (2.2.4). Differently, for binary images, it is straightforward to
impose a binary prior of the form

Pbin (x) =
∏
i

ρδ
(
xi = xmini

)
+ (1− ρ) δ (xi = xmaxi ) (9.3.2)

We do not report here the derivation of the EP update equations for these cases.

9.4 Difference variables

The main purpose of the introduction of a prior like P2 (x) is to impose a coupling among
neighbor pixels and, more importantly, to minimize the (discrete) second derivative of the
image. It is well known, in fact, that images are usually sparse in the gradient [80, 81]
and one can perform an L1 or L2 regularization as explained for the CS problem in
equation (2.2.4). The functional forms of the corresponding priors are designed in a way
that linear programming (or more generally convex optimization [82]) techniques can
handle the constrained minimization problem but they cannot accommodate arbitrary
distributions and, thus, the minimization of non-convex functions. This limitation is
not present in the EP approximation. Our idea is to empirical study the probability
distributions of the difference of pixels from images of our interest (in this particular
case, a set of tomographic images of a certain portion of the body) and then design the
prior according to this distribution. We also underline that, in this scenario, one can
think of additionally imposing a prior over non-neighboring pixels.
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Figure 9.4.1: Left: tomographic image. Right: empirical probability distribution of the
difference f

Formally, let us define as fij = xi − xj the difference of the intensity of pixels xi
and xj if, in the first place, are neighbors. These new variables so defined take value
in the interval fij ∈ [xmin − xmax, xmax − xmin]. The trial image over which we have
estimated the probability of the difference variables is shown in figure 9.4.1 and it is
taken from Wikipedia. For sake of simplicity, we have computed an empirical “mean-field”
probability distribution P (f), for a generic difference f , that does not take into account
the spatial location of the intensities. The specific localization of the differences can be
easily considered by designing a set of probabilities, one for each difference-variable. Two
plots of the distribution P (f), differing in the scale, are reported in figure 9.4.1.

The log-scale plot in figure 9.4.1 clearly shows that this empirical distribution can be
well fitted by a function of the form

P (f) = ρδ (f) + (1− ρ) e− λ
2 f

2 (9.4.1)

whose parameters ρ and λ may be fitted by the data or inferred, within the EP approxi-
mation scheme, as explained in section §8.3.

9.4.1 EP approximation

Let us introduce a Bayesian model for inferring tomographic images, known an empirical
distribution for the difference-variables. The posterior probability of observing the pixels
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x and the differences f , known the projections y, reads

P (x,f |y) ∝ e− β1
2 (F x−y)T (F x−y)e

− β2
2
∑

(i,j)(xi−xj−fij)2
× (9.4.2)

×
∏
i

I
[
xmini ≤ xi ≤ xmaxi

] ∏
(i,j)

[
ρδ (fij) + (1− ρ) e− λ

2 f
2
ij

]

where the second factor of (9.4.2) imposes (for β2 → +∞) the constraints among
intensity-variables x and the differences; the last factor is exactly the empirical prior.

For sake of simplicity, let us call E the number of difference-variables and let us define
a unique vector of unknown variables t =

(
x
f

)
. The linear constraints involving the new

unknowns can be encoded in the matrix

S(M+E)×(N+E) =
 √

β1F 0M×E√
β2RE×N −

√
β2IE×E

 (9.4.3)

where F is the matrix of the projections, 0 is the null matrix, R has zero-elements except
for R(i,j),i = 1, R(i,j),j = −1 for every couple of pixels (i, j) and I is the identity matrix.
The posterior probability in (9.4.2) can be rephrased as

P (t) ∝ e− 1
2 (St−ỹ)T (St−ỹ)

N∏
i=1

I
[
xmini ≤ ti ≤ xmaxi

] N+E∏
i=N+1

[
ρδ (ti) + (1− ρ) e− λ

2 t
2
i

]
(9.4.4)

in which ỹ =
(

y
0

)T
. We underline that the difficulty of the problem is the same as the

original problem since we have added as many unknowns as equations, as it is clear from
the definition of (9.4.3).

As for the problem presented in section §9.1, we can apply the EP algorithm to
estimate the marginal probabilities of the variables t, and then reconstruct the image
from the first N components of t. Since the exact prior is different as we deal with
intensity or difference variables, we must specify two tilted distributions

Q(i) (ti|y) ∝

e
− 1

2(t−µ(i))T
Σ−1

(i) (t−µ(i))I [xmini ≤ ti ≤ xmaxi ] if i ≤ N

e
− 1

2(t−µ(i))T
Σ−1

(i) (t−µ(i)) [ρδ (ti) + (1− ρ) e− λ
2 t

2
i

]
if i > N

(9.4.5)

where Σ−1
(i) = STS + D(i)

µ(i) = Σ(i)
(√

β1ST ỹ + D(i)a
) (9.4.6)
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Apparently, the inversion of the matrix Σ−1
(i) requires O

(
(N + E)3

)
operations that is

computationally prohibitive, but, fortunately, since Σ−1
(i) is a block matrix, it is possible to

extract the diagonal blocks of Σ(i) in a reduced computational cost of O (N3) operations
as for the intensity-variables model. In fact, if Σ−1

(i) is

Σ−1
(i) =

 β1FTF + β2RTR + D1 −β2RT

−β2R β2I + D2

 (9.4.7)

=
 L M

N O

 (9.4.8)

where D1 and D2 are diagonal matrices containing the values of 1/b for the intensity
variables and the difference variables respectively, and L, M, N, O are auxiliary matrices,
the diagonal blocks of the matrix Σ(i) read

Σ(i) =
 (L−MO−1N)−1

...

... O−1N (L−MO−1N)−1 MO−1 + O−1

 (9.4.9)

In (9.4.9) we must perform two inversions, (L−MO−1N)−1 and O−1, but, fortunately,
computing O−1 is easy because O is diagonal and (L−MO−1N) has size N ×N . The
non-diagonal blocks of Σ(i) are not considered and thus the vector µ(i) can be determined
component-wise solving the linear problem Σ−1

(i) µ(i) =
(√

β1ST ỹ + D(i)a
)
.

To specify the EP update step, we must compute the first and second moments of
(9.4.5). We only notice that they are formally equal to the ones reported in (7.2.7) (7.2.8)
and in (6.1.4) (6.1.5) and are not shown here.

9.5 Multiplicative noise

In the model presented in section 2.2.4 the noise has been modelled as a Gaussian random
variable that is added to each component of the measurements vector y. This is not the
only existing choice for dealing with noisy measurements: another idea is to introduce a
multiplicative noise. We will briefly present here how to set up a Bayesian model to solve
this similar inference problem to which apply, eventually, the EP algorithm. We mention
that, formally, the problem is equivalent to the blind sensor calibration problem [83, 84].
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As before, let us call as w the collection of Gaussian random variables affecting the
noiseless projections ŷ = Fx. Formally, each linear constraint in (2.2.16) becomes

y = w ⊙ Fx (9.5.1)
= w ⊙ ŷ (9.5.2)

where the symbol ⊙ denotes the component-wise product. One way of treating this
problem, is to consider each ŷn as a new unknown variable to be inferred with a prior
probability that can be derived from the distribution of each component of the noise
P (wn). Consider the probability Pw (w) dw for w ∈ (0,+∞), performing the change of
variables w = y

ŷ
, we get the distribution of the ŷ ∈ (0,+∞) as Pŷ (ŷ|y) dŷ = Pw

(
y
ŷ

)
y
ŷ2dŷ.

We can write the joint probability of observing x and ŷ, given y, as

P (x, ŷ|y) ∝ e− β
2 (Fx−ŷ)T (Fx−ŷ)∏

n

Pŷ (ŷn|yn)
∏
i

ψi (xi) (9.5.3)

where ψi (xi) is the prior over the pixel i and β → +∞. As for the difference-variables
formalism in section §9.4, let us define a vector t =

(
x
ŷ

)
and matrix

S(N+M)×(N+M) =
 FTF FT

F I

 (9.5.4)

such that (9.5.3) becomes

P (t|y) ∝ e− β
2 tT St

∏
i≤N

ψi (ti)
∏
i>N

Pŷ (ti|yi−N) (9.5.5)

Also in this case it is possible to have an estimate on the marginals of P (t|y) by
applying the EP approximation scheme. The details of the computation are omitted.

9.6 Preliminary results

In this section we report the results of several implementations of the EP algorithm, one
for each of the presented priors,applied to a very popular benchmark tomographic image,
the Shepp-Logan phantom [85], that represents a simplified picture of the human brain.
The image is reshaped to size 40×40 pixels. We will compare our results to the outcomes
of a convex optimization tool implemented in Matlab as the quadprog subroutine; in
the following we will refer to this method as QuadProg. The inference problem, in this
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formalism, reads
xQuadProg = arg min

x :
Fx = y

1
2xTLx (9.6.1)

Being this image in a gray-scale we will use EPInt (EP algorithm with flat prior on
the interval as in section §9.1), EPSparse presented in section §9.3 and EPdiff where we
make use of the empirical prior and the difference-variables introduced in section §9.4.
The parameters ρ and λ of the difference-variables prior have been estimated by EP as
explained in section §8.3.

We run EP algorithms for different values of α = M
N

where M = nθ · 40 is the number
of measurements which define the dimension of the projection matrix F. The design of
these matrices must fit with the features of the scanning device. Often the detector can
completely rotate around the object that we want to investigate and thus θ ∈ [0, 2π]
or, if the rotation is limited, it can move in bounded portions of the space. To mimic
the acquisition process of a beam incident on the image, we create matrices F where
the non-zero entries of each row draws a straight line between two boundary pixels
that crosses the image. Each element Fai is the length of the portion of ray a passing
through pixel i. The directions of the lines has been uniformly randomly chosen in the
interval [0, π] and no noise has been added to the signals.We estimate the goodness of
the prediction, computing

Norm2 (xInference − x) = 1
N

√∑
i

(
xiInference − xi

)2
(9.6.2)

where xInference is the image recovered by all the EP implementations or QuadProg.
We plot in figure 9.6.1 the measure Norm2 (xInference − x) as function of α for single
runs of EP (one for each value of α) for reconstructing the Shepp-Logan image. In
figure 9.6.2 we plot the original image and several reconstructed images. As shown in
the plots in figure 9.6.1 and as underlined by the direct comparison of the images in
figure 9.6.2, EP algorithm and QuadProg improve the predictions as we increase the
number of measurements until we reach a perfect reconstruction. The behavior can be
interpreted as a phase transition between a “hard” phase (in which inferring the image is
very difficult) and an “easy” phase (where inference is accurate). The switch between
the two regimes appears at the critical value of α, let us call it αc, such that for α < αc

we are in the “hard” region while for α > αc we jump to the “easy” region. As shown in
figure 9.6.1 for this simplified single-run analysis we can estimate αc ∼ 0.57 for EPInt,
EPSparse and Quadprog. The parameters of EPInt and EPSparse have been optimized



9.6 Preliminary results 129

0.3 0.4 0.5 0.6 0.7
10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

Figure 9.6.1: Reconstruction error of the Shepp-Logan image for increasing values of α

following the procedures in section 9.2.1 and section §8.3. EPdiff, differently, provides
an almost perfect reconstruction in a very low regime, for α = 0.39, that improves in
quality for higher values of α.The performance of EPdiff also depend on the choice of β1

and β2. For this run only β1 has been determined through the procedure in section 9.2.1;
estimating also β2 could provide a better reconstruction.

Notice that the regime in which the errors are smaller then 10−4 correspond to a
visually perfect reconstruction of the image as it is clear from the reconstructed images
in figure 9.6.2.

Discussion
As we have shown in the results above our several implementations of the EP algorithm

are able to cope the problem of reconstructing tomographic images, in particular, in the
case of additive noise. Results are very promising as the values of the critical α for the
Shepp-Logan phantom, seems to correspond to very few projections and thus to very
few measurements, matching the performance of a state-of-the-art convex optimization
technique, the quadratic programming. We underline that these are preliminary results
and a more rigorous analysis have to be done to estimate the goodness of the algorithms
for real images and for measurements affected by noise; this is what we would like
to face in future works. Moreover, the use of some auxiliary variables, the difference-
variables, and the ability of EP of introducing empirical priors, open new perspectives of
investigation. In fact, one could introduce other variables, linked to the intensity of the
pixels through some linear transformations, and impose ad-hoc priors, learned from a
training set, to the auxiliary variables.
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Figure 9.6.2: Reconstructed images of the Shepp-Logan image for increasing values of α
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However, this method has the main bottleneck of scaling as a power 3 of the system
size (see section §6.2) that is, in this case, the total number of pixels, N . For high
resolution images both memorizing and inverting the matrix Σ−1 that has dimension
N ×N is barely possible. What it must be done is to seek another way of performing
the inversion that, eventually, does not require to save all the data at the same time.



Appendix A

Bethe approximation

In the following we draft the main points of the Bethe approximation as in [37, 86, 1].

Let us consider the probability distribution in (3.3.11); being the beliefs marginal
probabilities, they must satisfy the marginalization conditions

bi (xi) =
∑
xj

bij (xi, xj)

bij (xi, xj) =
∑

x\{xi,xj}
Q (x)

(A.0.1)

As standard, we can derive a variational free energy as indicated in section §3.2 that
in the case of the trial distribution in (3.3.11) and in a pairwise graphical model of
probability

P (x) = 1
Z

∏
(i,j)

ψij (xi, xj) = 1
Z
e

−β
∑

(i,j) Hij(xi,xj)
, (A.0.2)

takes the form of
FBethe [Q] = UBethe [Q]− 1

β
SBethe [Q] (A.0.3)

Let us specify the terms UBethe [Q] and SBethe [Q]:

UBethe [Q] = − 1
β

∑
x

∑
(i,j)

Q (x) lnψij (xi, xj) (A.0.4)

= − 1
β

∑
(i,j)

∑
xi,xj

bij (xi, xj) lnψij (xi, xj) (A.0.5)
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SBethe [Q] = −
∑

x

Q (x) ln
∏

(i,j)

bij (xi, xj)
bi (xi) bj (xj)

∏
i

bi (xi)
 (A.0.6)

= −
∑

x

Q (x)
∑

(i,j)
ln bij (xi, xj)−

∑
i

(di − 1) ln bi (xi)
 (A.0.7)

= −
∑
(i,j)

∑
xi,xj

bij (xi, xj) ln bij (xi, xj) +
∑
i

(di − 1)
∑
xi

bi (xi) ln bi (xi) (A.0.8)

where di is the degree of node i. The Bethe free energy will read:

FBethe [Q] =− 1
β

∑
(i,j)

∑
xi,xj

bij (xi, xj) lnψij (xi, xj)−
∑
(i,j)

∑
xi,xj

bij (xi, xj) ln bij (xi, xj) +

+
∑
i

(di − 1)
∑
xi

bi (xi) ln bi (xi)
]

(A.0.9)

Additionally we need to ensure that: (i) one and two-nodes belief are normalized and
(ii) the condition expressed in (A.0.1) is satisfied. According to the Lagrangian formalism,
we add as many Lagrange multipliers as the constraints to the free energy in (A.0.9):

F [Q] =FBethe [Q] +

+
∑
i

λi

[∑
xi

bi (xi)− 1
]

+
∑
i

∑
j∈∂i

∑
xi

λ(i,j)→i (xi)
∑
xj

bij (xi, xj)− bi (xi)


Now if we set the derivatives of F with respect to the Lagrangian multipliers to be
zero, we encounter the marginalization and normalization constraints. Instead, imposing
the derivatives with respect to the beliefs to zero, we find

0 = ∂F
∂bi(xi) = − (di − 1) [ln bi (xi) + 1] + λi −

∑
j∈∂i λ(i,j)→i (xi)

0 = ∂F
∂bij(xi,xj) = − lnψij (xi, xj) + [ln bij (xi, xj) + 1]− λ(i,j)→j (xj)− λ(i,j)→i (xi)

(A.0.10)
Thus the beliefs at the stationary point are given by

b
∗
i (xi) ∝ e

1
di−1

[
λi−
∑

j∈∂i
λ(i,j)→i(xi)

]
b∗
ij (xi, xj) ∝ ψij (xi, xj) e[−λ(i,j)→i(xi)−λ(i,j)→j(xj)]

(A.0.11)
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where the Lagrange multipliers must be chosen in a way that the marginalization
condition of the beliefs is satisfied (normalizing (A.0.11) one finds λi as a function of the
other Lagrange multipliers). We left to show that this set of Lagrange multipliers is in
one-to-one correspondence to Belief Propagation fixed points.

Let us introduce the messages

mi→(i,j) (xi) ∝ e−λ(i,j)→i(xi) m(i,j)→i (xi) ∝
∑
xj

ψij (xi, xj) e−λ(i,j)→j(xj) (A.0.12)

that surely satisfy
m(i,j)→i (xi) ∝

∑
xj

ψij (xi, xj)mj→(i,j) (xj) (A.0.13)

If we combine the second equation of (A.0.11) to (A.0.12) we obtain

∑
xj

bij (xi, xj) ∝ mi→(i,j) (xi)m(i,j)→i (xi) (A.0.14)

while using the first equation of (A.0.11) together with (A.0.12) we get

bi (xi) ∝
∏
j∈∂i

[
mi→(i,j)

] 1
di−1 (A.0.15)

Replacing the beliefs in (A.0.14) and in (A.0.15) within the first equation of (A.0.1)
we find the following relation for the messages

∏
k∈∂i

[
mi→(i,k) (xi)

] 1
di−1 ∝ mi→(i,j) (xi)m(i,j)→i (xi) (A.0.16)

Multiplying both the left-hand side and the right-hand side of (A.0.16) by ∏j∈∂i\k

and for ψij > 0, we obtain

mi→(i,k) (xi) ∝
∏

j∈∂i\k
m(i,j)→i (xi) (A.0.17)

Notice that equations (A.0.13) and (A.0.17) represent the fixed point equations of the
BP algorithm. Thus, given a set of Lagrange multipliers at the stationary points of the
Bethe free energy functional, we can define, as in (A.0.12), a set of messages that satisfy
the fixed point BP equations. On the other hand, from the fixed point of BP, we can
invert the relations in (A.0.12) and together with the marginalization condition, obtain a
the Lagrange multipliers at the stationary point of the Bethe free energy.
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BP equations for the CS problem

From the definition of mn→a (xn) and the final expression of message ma→n (xn), we
obtain

mn→a (xn) ∝ 1
Z̃n→a

(1− ρ) δ (xn) + ρ

√
1

2πλe
− x2

n
2λ

 e− x2
n
2
∑

b ̸=a
Ab→n+xn

∑
b ̸=a

Bb→n (B.0.1)

where the normalization factor is computed as

Z̃n→a = (1− ρ) + ρ

√√√√ 1
1 + λ

∑
b̸=aAb→n

e

(
λ
∑

b ̸=a
Bb→n

)2

2
(

1+λ
∑

b ̸=a
Ab→n

)
(B.0.2)

We can now explicit the first and second moments of the approximate Gaussian
message as

µn→a =
∫
dxnxnmn→a(xn)

= 1
Z̃n→a

ρ

√
1

2πλe

(∑
b̸=a

Bb→n

)2

2
(

λ+
∑

b ̸=a
Ab→n

) ∫
dxnxne

−

(
1+λ
∑

b ̸=a
Ab→n

)
2λ

(
xn−

λ
∑

b ̸=a
Bb→a

1+λ
∑

b̸=a
Ab→n

)2

= 1
Z̃n→a

ρ

√√√√ 1
1 + λ

∑
b̸=aAb→n

e

(
λ
∑

b ̸=a
Bb→n

)2

2
(

1+λ
∑

b ̸=a
Ab→n

)
λ
∑
b̸=aBb→n

1 + λ
∑
b ̸=aAb→n

(B.0.3)
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σ2
n→a = 1

Z̃n→a

∫
dxnx

2
n

(1− ρ) δ (xn) + ρ

√
1

2πλe
− 1

2λ
x2

n

 e− 1
2x

2
n

∑
b ̸=a

Ab→n+xn

∑
b ̸=a

Bb→n − µ2
n→a

= 1
Z̃n→a

ρ

√√√√ 1
1 + λ

∑
b ̸=aAb→n

e

(
λ
∑

b ̸=a
Bb→n

)2

2
(

1+λ
∑

b ̸=a
Ab→n

)  λ(
1 + λ

∑
b ̸=aAb→n

) +
(

λ
∑
b̸=aBb→n

1 + λ
∑
b ̸=aAb→n

)2

+

− 1
Z̃n→a

ρ

√√√√ 1
1 + λ

∑
b ̸=aAb→n

e

(
λ
∑

b ̸=a
Bb→n

)2

2
(

1+λ
∑

b ̸=a
Ab→n

) (
λ
∑
b ̸=aBb→n

1 + λ
∑
b̸=aAb→n

)2


(B.0.4)

If one defines

Wn→a = ρ

√√√√ 1
1 + λ

∑
b̸=aAb→n

e

(
λ
∑

b ̸=a
Bb→n

)2

2
(

1+λ
∑

b ̸=a
Ab→n

)
(B.0.5)

we get

µn→a = 1
Z̃n→a

Wn→a

λ
∑
b̸=aBb→n

1 + λ
∑
b ̸=aA

t
b→n

σ2
n→a = 1

Z̃n→a

Wn→a

( λ
∑
b ̸=aBb→n

1 + λ
∑
b ̸=aAb→n

)2 (
1− Wn→a

Z̃n→a

)
+ λ(

1 + λ
∑
b ̸=aAb→n

)


(B.0.6)



Appendix C

Standard derivation of EP algorithm

Minka has presented EP algorithm in [41] as a powerful tool to approximate posterior
probabilities. The main idea behind his approach is to improve an online learning
algorithm, the Assumed Density Filtering (ADF) [87–89], which sequentially modifies
the posterior including, one by one, any intractable term coming from new observations
of data. EP can be seen in this prospective as the batch version of ADF where the
intractable terms iteratively modify the posterior until we reach a convergence condition.
Differently from the approximation described in section 3.5.1, Minka’s derivation and
ADF deal with a posterior distribution in which the Gaussian approximation is performed
on an intractable likelihood. First, let us briefly introduce the ADF algorithm.

Suppose of observing a set of data D = {y1, . . . ,yN} from which we want to infer a
hidden vector x. Let us specify the likelihood and the prior that, via Bayes’ theorem,
enter in the joint distribution of x, that is P (x|D). Since D is a collection of N
independent observations we assume P (D|x) = ∏N

a=1 P (ya|x). Even if the prior P (x)
can be tractable, the computation of the posterior P (x|D) can be hard to treat depending
on the form of the likelihood functions.

The idea of Lauritzen et all [89] is to sequentially modify a trial probability Q (x) as
we observe a new set of data. First, we choose to which approximate family Q (x) must
belong; if the prior is a tractable distribution one can think of choosing an objective
distribution of the same family. For sake of simplicity we consider the latter case and we
initialize Q (x) = P (x).
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Let us consider the set of data y1 and let us modify the posterior accordingly to the
first measures:

P a=1 (y1|D) = Q (x)P (y1|x)∫
x Q (x)P (y1|x) (C.0.1)

In order to compute a new approximate distribution Qnew (x) as similar as possible to
P a=1 (x|D) we can minimize DKL [P a=1∥Qnew] or, equivalently, modify the parameters
of Qnew to let the first and second moments of P a=1 and Qnew match. We then update
Q = Qnew and we propagate these moments in the sense that if now observe y2 and
we build the partial posterior P a=2 (x|D) ∝ Q (x)P (y2|x), the information regarding
y1 is absorbed in the expectations of Q (x). We repeat the same procedure as before
updating Q until we observe all N measures. The main weakness of this algorithm is
that is strongly dependent on the order on which we observe the data. This drawback
is successfully overcame by EP that can be seen, in this perspective, as an iteratively
refinement of the approximate probability Q (x) introduced by ADF.
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Moments matching condition

Let us now rewrite the probability distributions (3.5.3) and (3.5.4) pointing out the
co-factor (3.5.10) and making explicit the dependency of the normalization factors with
respect to the parameters an, bn:

Q(n) (x|y) = 1
Z̃Q(n)

e
− 1

2(x−µ(n))T Σ−1
(n)(x−µ(n))ψn (xn) (D.0.1)

Q (x|y) = 1
Z̃Q (an, bn)

e
− 1

2 (x−µ(n))T Σ−1
(n)(x−µ(n))

e− (xn−an)2
2bn (D.0.2)

where the partition functions take the values

Z̃Q(n) =
∫
dNxe

− 1
2(x−µ(n))T Σ−1

(n)(x−µ(n))ψn (xn) (D.0.3)

Z̃Q (an, bn) =
∫
dNxe

− 1
2(x−µ(n))T Σ−1

(n)(x−µ(n))e− (xn−an)2
2bn (D.0.4)

Let us compute DKL

[
Q(n)∥Q

]
step-by-step

DKL

[
Q(n)∥Q

]
=
∫
dNxQ(n)(x|y) log

[
ψn (xn) Z̃Q (an, bn)
φn (xn) Z̃Q(n)

]

=
∫
dNxQ(n)(x|y)

[
(xn − an) 2

2bn
+ log Z̃Q (an, bn)

]
+ const

=
⟨(xn − an)2⟩Q(n)

2bn
+ log Z̃Q (an, bn) + const

(D.0.5)
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where const contains all the terms not depending neither on an nor on bn. Let us
minimize DKL

[
Q(n)∥Q

]
with respect to an and bn:

∂DKL

[
Q(n)∥Q

]
∂an

=
−⟨xn⟩Q(n) + an

bn
+ 1
Z̃Q

∂Z̃Q
∂an

(D.0.6)

∂DKL

[
Q(n)∥Q

]
∂bn

= −
⟨(xn − an) 2⟩Q(n)

2b2
n

+ 1
Z̃Q

∂Z̃Q
∂bn

(D.0.7)

Since we can move the derivative inside the integration in ∂Z̃Q

∂an
and in ∂Z̃Q

∂bn
we get:

1
Z̃Q

∂Z̃Q
∂an

= 1
Z̃Q

∫
dNxe

− 1
2(x−µ(n))T Σ−1

(n)(x−µ(n))e− (xn−an)2
2bn

(xn − an)
bn

= ⟨xn − an
bn

⟩Q

1
Z̃Q

∂Z̃Q
∂bn

= 1
Z̃Q

∫
dNxe

− 1
2(x−µ(n))T Σ−1

(n)(x−µ(n))e− (νn−an)2
2bn

(xn − an)2

2b2
n

= ⟨(xn − an)2⟩Q
2b2
n

Setting the derivatives in (D.0.7) to 0 and assuming bn ̸= 0 we finally get
0 =

−⟨xn⟩
Q(n) +an

bn
+ ⟨xn⟩Q−an

bn

0 = −
⟨(xn−an)2⟩

Q(n)

2b2
n

+ ⟨(xn−an)2⟩Q

2b2
n

(D.0.8)

⟨xn⟩Q(n) = ⟨xn⟩Q
⟨x2

n⟩Q(n) = ⟨x2
n⟩Q

(D.0.9)

and thus the moment matching condition in (3.5.8) turns out to be equivalent to the
Kullback-Leibler divergence minimization condition.



Appendix E

EP free energy functional

Let us define QEP (x) the normalized probability density approximating an exact posterior
P (x|y). The partition function can be written as

ZEP = ZEP

∫
dNxQEP (x) (E.0.1)

The distribution QEP is exactly the distribution in (3.5.4) at the fixed point of the
algorithm. This is the product ofN+1 factors {φ0, φ1, . . . , φN} constituting with their own
unknown normalization factors {Z0, Z1, . . . ZN+1}. In particular, φ0 (x) = P (y|x), Z0 =∫
dMyP (y|x) whereas the functions φn (xn), n = {1, . . . , N}, are Gaussian distributions

that at convergence satisfy the moment-matching constraint in (3.5.8). Thus

ZEP =
∫
dNx

∏
n

Znφn (x) (E.0.2)

=
(∏

n

Zn

)∫
dNxφ0 (x)

∏
n>0

φn (xn) (E.0.3)

=
(∏

n

Zn

)
ZQ (E.0.4)

As stated in appendix D, the parameters of the functions φn (νn), n = {1, . . . , N}
minimize of the Kullback-Leibler divergence in (3.5.6) or, using a shorter notation, the
Gaussian distributions satisfy

arg min
φn

DKL

[
Q(n) (ν|b) ||Q (ν|b)

]
n = {1, . . . , N} (E.0.5)

Equivalently we aim at determining each partial partition functions Zn as

arg min
Zn

DKL

[
Q(n) (ν|b) ||Q (ν|b)

]
n = {1, . . . , N} (E.0.6)
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If we set to zero the derivatives with respect to Zn we finally obtain an expression of
the partial partition function:

Zn = 1
ZQ

∫
dNx

∏
m

φm (xm)
[
ψn (νn)
φn (νn)

]
(E.0.7)

=
〈
ψn (νn)
φn (νn)

〉
Q

(E.0.8)

Now we can define a free energy functional FEP = − logZEP :

FEP = − logZQ −
∑
n

logZn (E.0.9)
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