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Abstract 

Intense and high energy proton beams are impacted with fixed materials (targets) in order to produce new 

particles and secondary beams at CERN. In some of these targets, the requirement of reaching high yield 

production of secondary particles points out to the use of high density materials. The interaction of the 

beam with the atoms and nuclei of these materials produce extremely fast depositions of energy, highly 

soliciting them from thermo-structural point of view due to subsequent rise of temperature and pressure 

waves. Iridium is a good candidate material since exhibits very high density, high melting point, good 

strength and stability at high temperature, and resistance to thermal shock.  

The main goal of this study is the investigation of the mechanical behaviour at different temperatures and 

strain-rates in tensile loading condition of pure iridium. A series of tests at room temperature at different 

strain-rates (from 10-3 s-1 up to 104 s-1) was performed in order to obtain information about strain and 

strain-rate sensitivity of the material. In addition, a series of tests at different temperatures in both quasi-

static and high strain-rate loading conditions was performed in order to obtain information about the 

thermal softening of the material (from room temperature up to 1250 °C). The experimental data were 

used to identify a strength model able to predict the material behaviour over wide ranges of variation of 

the variables of interest. 

 

Keywords 

Refractory metal; High temperature; High strain-rate; Johnson-Cook, Recrystallization temperature; 

Fracture analysis 
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1. Introduction 

Iridium is a very rare metal belonging to the platinum group, which possesses a unique combination of 

properties such as very high density (it is the second densest element after osmium with a density of 22.46 

g/cc), high melting point, excellent oxidation and corrosion resistance, and high strength even at high 

temperature [1-3]. Due to its properties and despite its elevated price, iridium found several applications as 

structural material in the high technology and nuclear field such as material for the nozzles of rockets or 

capsules for radioisotope heat sources in spacecraft among others [4-5]. In addition, iridium has found 

application in the particle accelerators field, in particular as target material of the CERN’s Antiproton 

Decelerator Target (AD-Target) for the production of new particles and secondary beams. Since a very 

compact target is necessary, a very high dense material has to be used: the core of the current AD-Target 

design used since 1987 consists on a thin rod of iridium, 3 mm diameter 55 mm length [6]. During 

operation, this core material is impacted by intense 26 GeV primary proton beams from the CERN Proton 

Synchrotron perpendicularly to one base (the beam axis is coaxial with the iridium rod). The interaction 

with the beam produces extremely fast depositions of energy in its interior with a subsequent rise of 

pressure and temperature, with shock waves generation [7-8]. The pressure distribution assumes an 

axisymmetric profile around the beam axis and a Gaussian-like profile longitudinally [8]. The pressure 

provokes the bulge of the material and radial cracks are developed due to high Hoop strains. Moreover, the 

pressure gradients induces plasticity, which develops in high temperature and high strain-rate conditions. 

An example of damage induced in the material is reported in Fig. 1 [7, 9]. 

 

Fig. 1: Damage induced in Iridium rod as a consequence of high energy proton beam impact (the beam is 

coaxial with the rod and hits the rod at the centre of one base) during the HRMT27 experiment, in which 

equivalent conditions as the ones reached in the AD-target core were recreated [7, 9]. 

 

With the aim of understanding these complex phenomena numerical simulations represent an extremely 

useful tool, but the accuracy of the results depends on the use of proper material strength models which 

can accurately predict the material behaviour beyond yielding at the high temperatures and strain-rates. 

For these reasons, the main objective of this work is the calibration of the parameters for the Johnson-Cook 
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model starting from the data coming from a testing campaign which was performed in tension on pure 

iridium at different temperatures in both static and high dynamic loading conditions.  

The material analysed in the present paper was supplied by Goodfellow in form of 4 mm diameter rod. The 

material is declared to be 99% purity polycrystalline iridium, produced from a drip melted ingot by Electron 

Beam melting, forged and swaged into a rod. The material is considered as free of elements judged as 

dangerous contaminants such as C, O, N, H and Re [1-2]. The concentration of others impurities is given in 

Table 1.  

 

 

Fig. 2 Microstructure observation on pristine iridium sample. 

 

 

Table 1 – Concentration of impurities in iridium samples in p.p.m. 

Al, Ca, Mo Fe Li Si Ru Pd Pt W 

6  3  7  2  115  15 80  554 

 

No more information was available hence a preliminary investigation of the microstructure was performed 

by SEM analysis, as reported in Fig. 2, from which it was possible to conclude that the microstructure is 

heterogeneous, the grain size is in the order of magnitude of some microns and some cracks were present. 

 

2. Bibliographic review 

2 mm
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Due to its rareness, elevated price and restricted applications, only few previous studies of mechanical 

stress-strain properties of pure iridium have been found in the literature.  The tensile properties in static 

conditions (5·10-3 s-1) and up to 2000 ºC where studied in [10]. This study showed a considerably increase of 

iridium ductility at high temperatures, from a yield strength (at 0.1% strain) of 990 MPa at room 

temperature down to 40 MPa at 1600 ºC with a sharp transition around 800 °C. In the same way, the 

observed elongation to failure varied from 1.1% at room temperature up to 10.2% at 1500 ºC. Iridium, 

unlike most of others Face-Centered-Cubic (FCC) metals, exhibited a brittle-ductile transition and only 

moderate ductility at high temperatures. Different modes of fracture were observed: at low temperatures 

the observed fracture was brittle intergranular fracture (BIF); from 900ºC to 1600ºC the metal became 

increasingly ductile and failure was partially intergranular and partially transgranular (BTF), probably due to 

recrystallization processes; above 1600ºC the fracture observed was again entirely intergranular. The 

brittleness of iridium at low temperature (in comparison to the rest of FCC metals) was studied more in 

detail in [11], suggesting that below 1000ºC iridium fails intrinsically by BIF. This is, however, a matter of 

discussion in the literature. Further studies on iridium, e.g. [12-14], were performed on fracture mode 

(intergranular and transgranular) and on its relation to impurity content. The comparison with the results 

from tests performed on iridium single crystals suggest that BTF is the inherent fracture mode of 

polycrystalline iridium, while BIF in iridium may be considered as an impurity-induced fracture mode.   

Concerning the dynamic regime, not a single study of the dynamic response of pure iridium has been found 

in the literature apart from a few publications on stress-strain properties under dynamic and impact 

loading of DOP-26 (an iridium alloy containing 0.3 % of W to aid fabrication and approximately 40 ppm of 

Th to improve grain boundary cohesion at high temperatures), mainly motivated by the use of this material 

as cladding for radioisotope thermo-electric generator [15-16].  More recent publications have been found 

in the literature on the dynamic testing of DOP-26 alloy in tension [17-18] and compression [19] at different 

temperatures. In [18], an approach similar to those here proposed was applied to investigate the 

mechanical behaviour of the iridium alloy DOP-26 between 103 s-1 and 3×103 s-1 at high temperature 

(between 750 °C and 1030 °C). The high strain-rate loading conditions were obtained by using a direct-

tension Kolsky bar. These studies revealed that the stress–strain response of the iridium alloy shows 

significant sensitivity to both strain rate and temperature.  

Nevertheless, even if the cited studies can give a broad idea of the response of iridium in dynamic and high 

temperature regimes, all the dynamic works found were performed in DOP-26 alloy and not pure iridium: 

the mechanical behaviour of DOP-26 can be significantly different due to influence of this Th precipitates in 

the grain boundaries. The different mechanical response was confirmed by the results reported in the next 

section. 

 

 

 

3. Experimental procedure 

As anticipated in previous paragraphs, the mechanical characterization of pure iridium was performed in 

tension at different temperatures and strain-rates on dog-bone specimens. A series of tests at room 

temperature at different strain-rates was performed in order to obtain information about strain and strain-

rate sensitivities of the material. The strain-rate sensitivity was investigated starting from 10-3 s-1 up to 103 
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s-1. The medium-low strain-rate tests were performed using electro-mechanical testing machine. The high 

strain-rate condition was reached by mean of Kolsky Bar setups in direct configuration (see Figures 3 and 

4). In addition, a series of tests at different temperatures, in both quasi-static and high strain-rate loading 

conditions, was performed in order to obtain information about the thermal softening of the material. The 

investigated range was from room temperature up to 1250 °C. Both for quasi-static and high dynamic 

loading conditions, the specimen was heated using an induction coil system, controlled with a feedback on 

the temperature measurement obtained using thermocouples directly welded on the specimen surface. A 

more exhaustive description of the setups can be found in [20-22], but for this test campaign the 

improvement was represented by the use of a different solenoid, which was properly designed to allow 

having optical access to the specimens. A picture of a specimen mounted on the setups used for tests at 103 

is reported in Figure 3.a, from which it is possible to see the solenoid, which was the same used also for 

quasi-static tests. The optical access to the specimen gave the possibility to record the video of each test, in 

order to obtain the information about the deformation history. The tests at low strain-rate were recorded 

by using a high resolution camera (Pixelink), with a framerate of 2 fps at a resolution of 2592×920 pixels. 

For the tests at high strain-rate a high speed camera was used (Photron SA5): tests were recorded at 

100000 fps with a resolution of 512×128 pixels. For this setup, the signal on the input bar is used as trigger 

for switching-off of the induction system and switching-on (with a programmable delay) of the high speed 

camera and lighting system. The video data are used to measure the specimen gage length history, to 

evaluate the deformed shape and the failure mode of the specimen and finally, to check the applied 

velocity and the specimen equilibrium. 

 

       

Fig. 3.  

Detailed picture of the experimental setup used for tests at high temperatures at 103 s-1 (a); sketch of the 

specimens S1 used for the testing campaign (b). 

 

For the testing campaign, dog-bone specimens (labelled S1) with gage length of 3 mm and gage diameter of 

1.5 mm were used. As anticipated in the introduction, pure iridium is a rare and highly expensive material, 

hence the dimension of the specimens was comparable to the size of the real component [7] and the 

number of available samples was limited to 25. 

Induction
heating system

Molybdenum
adapter

Cold air jet

High speed
camera

Thermocouple 2

S1 

a 
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After testing, fracture surfaces were examined with the help of the digital microscope KEYENCE VHX 1000 

and the scanning electron microscope (SEM) field emission gun FEG Sigma (ZEISS), with the Everhart-

Thornley Secondary Electron (SE2) and back-scattered electron (AsB) detectors. 

 

 

 

Fig. 4.  

Schematic representation of the experimental setup used for tests at 103 s-1. 

 

 

4. Experimental results 

Due to the limited number of specimens, it was not possible to evaluate the data scatter for all the loading 

conditions. In order to validate the obtained results in the investigated range of temperature, a lot of 

intermediate temperatures (between room temperature and 1250°C) were investigated: from a statistical 

point of view, this allows controlling the reliability of each result (instead of performing a certain number of 

repetitions of the same loading condition). Nevertheless, in some cases, more than one test was 

performed.  
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Fig. 5.  

Experimental results – engineering stress vs. engineering strain curves at different strain-rates and 

temperatures. 

 

For all the tests, the load applied by the testing equipment and the deformation of the specimen, measured 

from the videos, were managed and starting from these data, the engineering stress vs. engineering strain 

curves were obtained as reported in Figure 5. The deformation of the specimen was directly measured on 

the video by following the displacement of some points on the surface and using digital images elaboration 

techniques: this allowed to obtain a more precise evaluation of the deformation avoiding correction 

introduced by clearance, deformation of specimen outside the gage length and machine compliance. In 

Hopkinson bar tests, the strain-gage signals were used to determine the force; the deformation 

measurements coming from video elaboration and strain-gages signals were compared for a crosscheck. 

The last frames extracted from the recorded videos are reported in Figure 6 for both quasi-static and 

dynamic tests at different temperatures. In Figure 7, the sequence of the dynamic test at 1250 °C is shown. 

 

25 °C

1000°C

500 °C

250 °C

750 °C

875 °C

25 °C

1000°C

500 °C

250 °C

750 °C

875 °C

1250°C

10-3 s-1 103 s-1 
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Fig. 6.  

Experimental results – last frames extracted from recorded videos of tests at different temperatures: quasi-

static tests (a); dynamic tests nominally at 103 s-1 (b). 

 

From the results it is possible to notice that the material is sensitive to both strain-rate and temperature, 

but it exhibits a different behaviour as a function of temperature at low and high strain-rates. A more 

detailed analysis in this sense is presented in paragraphs 4.1-4.4.  

 

25°C

250°C

500°C

750°C

875°C

1000°C

25°C

250°C

500°C

750°C

875°C

1000°C

a b 
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Fig. 7.  

Sequence of frame extracted from the video recorded for the test at 103 s-1 of strain-rate and 1250 °C of 

temperature (the time interval between the reported images is 50 µs). 

 

4.1 Low temperatures for quasi-static and dynamic regimes. 

Both in quasi-static and dynamic regimes, the mechanical behaviour at low temperature is characterized by 

a uniform elongation phase, followed by a brittle fracture, as confirmed by the microscopic observations of 

the fracture surfaces presented in Figures 8.a and 8.b. The fracture surface displays the typical elements of 

BTF [23-25]: classic cleavage with river patterns, cracked grain boundaries and several cleavage steps. 

 

a 

 

b 

 
 

Fig. 8.  
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SEM images (secondary electrons): Fracture surfaces at 25°C: a) in quasi-static and b) in dynamic regimes. 

The images show: classic cleavage with river patterns (e.g. 1), cracked grain boundaries (e.g. 2) and several 

cleavage steps (e.g. 3). 

 

4.2 Medium temperatures for quasi-static and dynamic regimes. 

Between 250°C and 850°C, at low strain-rate, the mechanical response shows an early localized necking 

with a limited or absent hardening phase. Under these loading conditions, a radical change of the fracture 

behaviour starts to be visible. At 500°C, the fracture mode of the material corresponds still mainly to BTF 

(Figure 9.a), while at 750°C, the surface displays a mixed brittle fracture mode: BTF accompanied with a 

considerable portion of BIF (Figure 9.b) [12, 24].  

On the contrary, by increasing the strain-rate, the material shows uniform elongation and hardening before 

necking. At 500°C the fracture mode continues to be pure BTF (Figure 10.a), at 750°C the presence of BIF 

starts to appear in the surface (Figure 10.b). However, in this case, the ratio between BTF and BIF regions is 

about 7:1. 

a 

 

b 

  
 

Fig. 9.   

SEM images (secondary electrons): Fracture surfaces at 500°C (a) corresponding mainly to BTF (black 

arrow), and 750°C (b), in quasi-static regime mixed fracture mode BTF-BIF (black and white arrows, 

respectively) is visible. 

 

a 

 

b 

 
 

10 mm
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Fig. 10.  

SEM images (secondary electrons): Fracture surfaces at 500°C (a) showing a pure BTF fracture and 750°C 

(b), in dynamic regime ), where in addition to BFT, presence of BIF is visible (white arrows). 

 

4.3 At high temperature for quasi-static and high strain rates. 

By increasing the temperature (over 1000 °C), independently from the strain-rate, uniform elongation with 

necking was present and material was practically behaving the same way (Figure 3). As shown in Figure 

11.a, at 1000°C and in static regime, the BIF ratio increases, to reaching the 75-80%. At 1000°C and high 

strain rates, the mixed (BTF and BIF) brittle fracture remains but BTF is still predominant (Figure 11.b). 

 

a 

 

b 

 
 

Fig. 11.  

SEM images (secondary electrons): fracture surfaces at 1000°C, in quasi-static (a) regime, where BIF 

reaches 75-80% of the fracture surface, while in dynamic regimes (b) BTF mode remains predominant. 

 

4.4 Influence of the strain rate 

While at high strain-rates, BTF stays predominant whatever the temperature, in quasi static conditions, a 

clear transition is observed from a mainly BTF fracture surface to a mainly BIF fracture surface. This change 

of behaviour is linked to the recrystallization phenomenon, observed in Figure 12.a, taking place in a large 

extend in static conditions. From the bibliography, recrystallization is expected to occur around 1000°C [13, 

24]. The recrystallization leads to a modification in the fracture mode of the material, from BTF to a mixture 

of BIF and BTF [14]. At high strain-rate the BTF mode stays predominant since the recrystallization reached 

a less advanced stage than in quasi-static mode where the material stays longer at high temperature.  
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a 

 

b 

 
    
Fig. 12.  

SEM images (backscattered electrons): Fracture surfaces at 1000°C, in quasi-static (a) and dynamic (b) 

regimes: the recrystallization is more advanced in the quasi-static tested specimen than in the dynamically 

tested one.  

 

4.5 Strain to failure 

In order to estimate the strain at failure, for each specimen, the post-mortem diameter (d), measured from 

SEM frontal images of the fracture surface, was used to estimate the strain at fracture by the relation: 

 

d

d
f

0ln2
 (1) 

 

where d0 is the initial diameter of the gage section. In Figure 13, the calculated strains at failure vs. 

temperature are reported: the data obtained in quasi-static and dynamic loading conditions are compared. 

As it is possible to notice, the strain at failure is independent from the strain-rate, even if, the data scatter 

seems to be lower at high strain-rate. The data were interpolated with a linear model, in accordance with a 

simplified formulation of the Johnson-Cook fracture model [26], which expresses the strain at failure as 

follows: 















rm

r
f

TT

TT
DD 51 1  (2) 

 

Where Tr is 298 K and Tm is 2683 K. The coefficient obtained are D1=0.1 and D5=-26.09 (D1 is the average 

value of strain at fracture obtained from the tests at 25 °C). 

The SEM pictures of the fracture surfaces are reported for some loading conditions in Figures 14 and 15.   
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Fig. 13.  

Strain at failure obtained from the post-mortem measurements of the diameter: data fit with a linear 

model as a function of temperature. 

 

 

 

 

 

a 

 

b 

 

 

c 

 

d 

 

 

Fig. 14.  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

SEM frontal images of the fracture surface for tests in quasi-static regime at 25°C (a), 500°C (b), 750°C (c) 

and 1000°C (d). 

 

a 

 

b 

 

c 

 
      
d 

 

e 

 

f 

 
 

Fig. 15.  

SEM frontal images of the fracture surface for tests at high strain-rate regime at 25°C (a), 500°C (b), 750°C 

(c) 875°C (d), 1000°C (e) and 1250°C (f). 

 

 

5. Data analysis 

The aim of this work is to get suitable strength model(s) able to reproduce the experimental behaviour of 

the material over the entire investigated ranges of temperature and strain-rate in terms of flow stress 

description. Some preliminary considerations have to be done.  

In Fig. 16, the ultimate strength as a function of temperature obtained from the testing campaign was 

reported and compared with the data available from scientific literature for pure iridium in quasi-static 

loading condition and DOP-26 both in quasi-static and dynamic regimes. By comparing the data, it is 

possible to conclude that the material tested in [10] has a different microstructure, which is responsible of 

a lower material strength at low temperature with a less pronounced transition; obviously after 

recrystallization, the ultimate stress values are more comparable for the two materials. The comparison 

with DOP-26 data reveals that the alloy shows a lower strength as well as a different thermal softening 

behaviour, hence it is not possible to use these data to predict or deduce the pure iridium behaviour.   
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Fig. 16.  

Ultimate strength vs. temperature: comparison with data coming from scientific literature. 

 

By looking the results of Figure 5, it is possible to assess that by considering the commonly used material 

models, such as Johnson-Cook [26] and Zerilli-Armstrong [27-28], as well as more complicated and 

physically-based models such as Steinberg-Guinan [29] and MTS [30], it will not be possible to describe with 

a unique model the material behaviour in quasi-static regime between 250 and 875 °C within the other 

loading conditions: in all the other loading conditions the material shows a significant uniform elongation 

before fracture or necking, while that range was characterized by early necking. In this perspective, starting 

from the data expressed in terms of engineering stress-strain curves (quasi-static and dynamic cases), 

under the hypothesis of uniform stress and volume conservation, the engineering curves were transformed 

into logarithmic (true) stress vs. effective plastic strain. Obviously, this elaboration is valid until the 

instability condition is reached. The idea was to use the Johnson-Cook model to fit these data: 

 

 









































m

rm

rn

TT

TT
CBA 1ln1

0








 (3) 
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in which A, B and n define the hardening part, C the strain-rate sensitivity and m the thermal softening.  

As first step, a preliminary data fit was performed by using an analytical model: in this phase a single case 

optimization for each loading condition was performed from which it was possible to obtain smoother 

equivalent stress vs. equivalent plastic strain data (this, for example, eliminates the typical oscillation in the 

first phase of the Hokinson Bar results). For this purpose, the hardening part of the Johnson-Cook model 

was used. By plotting the obtained yield stress values as a function of temperature (see the markers in 

Figure 16), it was possible to notice that the material behaviour can not be adequately described by a 

unique strength model due to the presence of the sharp transition, which is in accordance with the results 

found in [10]. For this reason, two different sets of parameters were identified: one (JC1) to be adopted 

before and the other (JC2) after the transition. On the range 750°C-1000°C the material shows a 

discontinuity in its mechanical response. This is related with the recrystallization phenomenon explained 

here above. The adopted procedure is a multi-cases optimization, based on the minimization of the mean 

square error between predicted and experimental-derived data. In particular, two different optimizations 

were performed, one for each region of temperature (before and above the recrystallization temperature), 

in which in the meantime all the corresponding experimental data were considered as target functions: this 

allowed finding the two sets of parameters that produce the best global comparison. The variables of 

optimization were A, B, n, Tm and m for the JC1 while A, B, n and m for the JC2. For temperatures under the 

recrystallization, the melting temperature was considered a variable of optimization in order to improve 

the quality of the data fit, while Tm was fixed to the melting temperature of pure iridium in the second 

range, in order to constrain the material strength to zero at that value. The reference temperature Tr was 

set equal to 25 °C for JC1 and to 875 °C for JC2. In both the ranges, the reference strain-rate was fixed to 

0.001 s-1, which corresponds to the minimum strain-rate. The final sets of parameters were reported in 

Table 2. The models prediction for the yield stress in the two regions is reported in the diagram of Figure 17 

and compared with those obtained from the single-case optimization step. As it is possible to notice, the 

two sets of parameters are able to correctly reproduce the yield stress reduction as a function of 

temperature. In the diagram of Figure 17, also the model prediction at higher strain-rate (104 s-1) is shown, 

since it will be useful for the analysis presented in the following. 
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Fig. 17.  

Yield stress as a function of temperature: comparison between single-case optimization results (i.e. 

experimental data) and Johnson-Cook model prediction; identification of the recrystallization temperature 

 

Table 2 - optimized sets of parameters. 

Parameter (Units) JC1 JC2 

A (MPa) 1054 247 

B (MPa) 1632 499 

n (-) 0.401 0.5 

C (-) 0.013 0.065 

  ̇ (s-1) 0.001 0.001 

Tr (K) 298 1148 

Tm (K) 1996 2683 

m (-) 1.25 0.357 

 

 

5.1 Models validation 

The obtained sets of parameters were then used in FE simulations which reproduce each loading condition. 

All the simulations were performed in LS-DYNA with an explicit integration method on a 2D axisymmetric 

model with sub-integrated elements (one integration point for each element). The boundary conditions 
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were applied to the specimen ends in terms of velocity profiles. A 2D-remeshing algorithm was applied in 

order to control the element dimension and get reliable results even if high value of plastic strain was 

reached during the necking phase. 

The models predictions over the entire range of strain are reported in Figure 18 in term of engineering 

stress vs. engineering strain and compared with the corresponding experimental data. The two sets of 

parameters were obtained by considering the experimental data up to necking initiation, but the validity of 

the previsions were checked also in necking regime up to fracture. As expected, the models are able to 

reproduce the experimental data during uniform elongation with a sufficient level of accuracy for all the 

loading conditions, except for the cases in which localized necking is present since the end of the elasticity. 

In dynamic case at 875 °C, the obtained poor quality results can be explained as the unpredictable response 

of the material within the recrystallization range. Especially at very high temperature, in which the uniform 

elongation phase is followed by a considerable necking phase, the model previsions are able to reproduce 

with a sufficient level of accuracy the material responses over the most part of necking. 

 

Fig. 18.  

Computed (FE simulations) vs. experimental engineering stress-strain data: a) low strain-rate; b) high strain-

rate. 

 

A qualitative comparison between experimental and computed deformed shape is reported in Fig. 19, from 

which it is possible to conclude that the strength model can correctly reproduce the material response also 

in terms of deformed shape during the necking regime. 
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Fig. 19.  

Comparison of the final deformed shape (before fracture) obtained from computed and experimental 

results for the test performed at 103 s-1 of strain-rate and 1000 °C of temperature. 

 

In order complete the models validation and to test their capability to predict the material behaviour also 

at higher strain-rate, new experimental tests were performed at ultra-high strain-rate about 104 s-1. This 

loading conditions was obtained by using a miniaturized Kolsky setup in direct configuration [21]. In Figure 

20, a picture of the specimen mounted in the setup is reported as well as the sketch of the specimen, which 

is a miniaturized sample (labelled S2) with gage length of 1.5 mm and gage diameter of 1.5 mm (only 7 

specimens were available for S2 geometry).  

 

           

Fig. 20.  

Picture of the specimen mounted on the miniaturized Kolsky bar setup for tests at 104 s-1 (a), sketch of the 

specimens S2 used for the testing campaign (b). 

 

With respect to the setup described in [21], some important developments were carried out. An induction 

heating system was coupled also with this setup, allowing to perform tests at high temperature (the 

maximum temperature reachable was 750 °C, hence only the JC1 model could be validated). With respect 

to the system used for test on S1 geometry, in this loading condition, a smaller opened solenoid was used 

and it was placed under the specimens (see Figure 20). The design of the solenoid allowed to keep the 

S2 

a 
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optical access and to record the tests: the high speed camera Photron SA5 was used and the videos were 

recorded at 300000 fps with a resolution of 320×56 pixels. Another other important improvement came 

from the video: as a matter of fact, in this loading condition the most (i.e. unique) reliable data on the 

specimen deformations was obtained from the image analysis. The entire pulse duration is about 100 µs 

and the input bar is moved at 25-30 m/s in 20 µs, which corresponds to an acceleration greater than 105 g. 

In these conditions, it is impossible to obtain reliable data from any wired measuring system (e.g. strain-

gage). Here, the strain-gage signal on the input bar is only used for trigger purpose. 

 

Fig. 21.  

Experimental results at 104 s-1 – engineering stress vs. engineering strain curves at different strain-rates and 

temperatures and comparison with the corresponding computed (FE simulations) quantities. 

 

In Figure 21, the results of tests performed at different temperatures at ultra-high strain-rate are reported 

for three different testing conditions in temperature in term of engineering stress vs. strain curves. These 

data were finally compared with those obtained from the FE simulations of these tests. The comparison is 

shown in Figure 18 and allowed to conclude that the JC1 model is able to reproduce the material behaviour 

with a sufficient level of accuracy also at this strain-rate at different temperatures. 

 

6. Conclusions 

In this work, the investigation of the mechanical response of pure iridium was performed in tension at 

different temperatures and strain-rates in order to obtain valuable information for the use of this material 

in the fixed-target physics programme at CERN, in particular applicable to the antiproton production target. 

A methodology for testing materials at high and ultra-high strain-rates at various temperatures was 

applied. The methodology consists of performing dynamic tensile tests using Kolsky Bar setups (standard 

for tests at 103 s-1 and miniaturized for tests at 104 s-1) coupled with an induction heating system, which is 

properly design to concentrate the heat flux in the gage length of the specimen. The investigated range in 

temperature was from room temperature up to 1250 °C. The Improvement of the setups allows the fast 
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video recording of the tests at high temperature and strain-rates. A post-mortem analysis was performed 

to evaluate the strain at failure as a function of temperature as well as to identify the mode of fracture. 

Two microscopic modes of fracture have been observed depending on temperature and strain-rate; at 

temperatures below 750°C the BTF mode is predominant in both quasi-static and dynamic conditions while 

above 750°C the observed fracture starts to be mixed BIF and BTF. The higher the temperature the higher 

BIF to BTF ratio. This change of mode of fracture is attributed to recrystallization processes and grain 

growth at high temperatures. Regarding the strain-rate influence, it was observed that at high temperature 

and high strain-rate the BTF is more common than BIF in comparison to quasi-static. This is mainly 

attributed to the fact that at high strain-rate tests the recrystallization is less developed since the 

specimens were exposed less time to high temperature.   

In addition, the experimental data obtained from quasi-static and dynamic tensile tests are processed in 

order to get the material model identification. For each loading condition, the logarithmic stress-strain 

curves were fitted to get equivalent stress-strain curves up to necking initiation. Two different Johnson-

Cook models were identified, in order to model the material behaviour at low and high temperature: the 

material exhibits recrystallization around 800 °C, which is inside the investigated range.  

The validity of the obtained models was investigated via FE numerical simulations: a model of each 

experimental tests was realized and the computed results in terms of macroscopic engineering stress-strain 

curves were compared with experimental data. Moreover, the capability of the models to extrapolate the 

material behaviour at different strain-rates was demonstrate by comparing the computed results with 

experimental ones at 104 s-1. Finally, the extracted strength models will be also used in numerical 

simulations and confronted with experimental data of dynamic response of iridium targets recorded during 

the HRMT27-Rodtarg experiment at CERN [7-8], which is related to the motivation of this work, i.e, dynamic 

response of fixed-targets in accelerator technology when impacted by intense high energy proton beams.   
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