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Abstract

Over the past 20 years, the Internet saw an exponential grown of traffic, users,
services and applications. Currently, it is estimated that the Internet is used everyday
by more than 3.6 billions users, who generate 20 TB of traffic per second. Such
a huge amount of data challenge network managers and analysts to understand
how the network is performing, how users are accessing resources, how to properly
control and manage the infrastructure, and how to detect possible threats. Along with
mathematical, statistical, and set theory methodologies machine learning and big
data approaches have emerged to build systems that aim at automatically extracting
information from the raw data that the network monitoring infrastructures offer.

In this thesis I will address different network monitoring solutions, evaluating
several methodologies and scenarios. I will show how following a common workflow,
it is possible to exploit mathematical, statistical, set theory, and machine learning
methodologies to extract meaningful information from the raw data. Particular
attention will be given to machine learning and big data methodologies such as
DBSCAN, and the Apache Spark big data framework.

The results show that despite being able to take advantage of mathematical,
statistical, and set theory tools to characterize a problem, machine learning method-
ologies are very useful to discover hidden information about the raw data. Using
DBSCAN clustering algorithm, I will show how to use YouLighter, an unsupervised
methodology to group caches serving YouTube traffic into edge-nodes, and latter by
using the notion of Pattern Dissimilarity, how to identify changes in their usage over
time. By using YouLighter over 10-month long traces, I will pinpoint sudden changes
in the YouTube edge-nodes usage, changes that also impair the end users’ Quality of
Experience. I will also apply DBSCAN in the deployment of SeLINA, a self-tuning
tool implemented in the Apache Spark big data framework to autonomously extract
knowledge from network traffic measurements. By using SeLINA, I will show how



v

to automatically detect the changes of the YouTube CDN previously highlighted by
YouLighter.

Along with these machine learning studies, I will show how to use mathematical
and set theory methodologies to investigate the browsing habits of Internauts. By
using a two weeks dataset, I will show how over this period, the Internauts continue
discovering new websites. Moreover, I will show that by using only DNS information
to build a profile, it is hard to build a reliable profiler. Instead, by exploiting
mathematical and statistical tools, I will show how to characterize Anycast-enabled
CDNs (A-CDNs). I will show that A-CDNs are widely used either for stateless and
stateful services. That A-CDNs are quite popular, as, more than 50% of web users
contact an A-CDN every day. And that, stateful services, can benefit of A-CDNs,
since their paths are very stable over time, as demonstrated by the presence of only a
few anomalies in their Round Trip Time.

Finally, I will conclude by showing how I used BGPStream an open-source
software framework for the analysis of both historical and real-time Border Gateway
Protocol (BGP) measurement data. By using BGPStream in real-time mode I will
show how I detected a Multiple Origin AS (MOAS) event, and how I studies the
black-holing community propagation, showing the effect of this community in the
network. Then, by using BGPStream in historical mode, and the Apache Spark
big data framework over 16 years of data, I will show different results such as the
continuous growth of IPv4 prefixes, and the growth of MOAS events over time.

All these studies have the aim of showing how monitoring is a fundamental task
in different scenarios. In particular, highlighting the importance of machine learning
and of big data methodologies.
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Chapter 1

Introduction

Every day we spend a lot of effort to monitor different aspects of our lives. We
monitor the weather, the urban traffic and we use cameras to monitor different areas.
Thanks to our smartphones and smartwatches we track our daily activities, how much
we walk, how much we sleep, and many other every day activities. Furthermore, the
rise of the Internet of Things (IoT) and sensors increases continuously our monitoring
capabilities.

In the networking environment, monitoring, has always played a fundamental
role in understanding how the network is performing, how users are accessing
resources, and how to properly control and manage the infrastructure. The growth of
the internet which increased from 100 GB per second and 587 millions users in 2002,
to the current 20 TB per second [1] and 3.6 billions users [2], presents an everyday
challenge to network analysts, making monitoring a harder task.

On the one hand, this rapid evolution increases the complication of the network,
making frequent studies fundamental in keeping the acquired knowledge updated.
On the other hand, the growth in term of traffic and available data, calls for the
application of novel methodologies, and tools to analyze the network data.

For these reasons in literature, most of the researches target specific problems,
e.g., monitoring of a CDNs [3, 4], detecting anomalies [5, 6], profiling behaviours [7].
Although they have different goals, all of them follow a common workflow.

First, data analysts needs to collect network data through active or passive
monitoring. Active monitoring refers to the injection of test traffic into a network to



2 Introduction

monitor the flow of the traffic. Passive monitoring is an observational study done
by placing probes or sniffer in the network to monitor the traffic already present
in it. Since these two solutions offer different views of the network, they can be
used in synergy to take advantage of both solutions as we will see in Cap. 4 and
Cap. 6. Then, after the data acquisition, network analysts have to perform a feature
selection phase to extract relevant information (features) for the addressed problem.
It is possible to perform this phase either manually, by having the required domain
knowledge, or by using techniques such as the Minimum redundancy-maximum-
relevance (mRMR) [9].

After these two steps the data are ready to be analyzed and the skill of the
data analysts take in place to extract meaningful information out of them. Along
with mathematical and statistical solutions [10, 11], machine learning and big data
approaches have emerged to build systems able to extract meaning information
from the raw data. Born from pattern recognition, machine learning refers to all
the approaches that give computers the ability to learn autonomously. These ap-
proaches, which overcome strictly static programs for their ability to predict and
make decisions based on the data input, were used for the first time in 1952 by
Arthur Samuel for a game of checkers. After that, machine learning algorithms have
been widely adopted in different fields such as business [12], medicine [13], or com-
puter science [14, 15], as well as in many other fields. Their extensive application
is due to their capabilities to automatically extract information from the data. In
networking, machine learning techniques have been used with different goals such
as profiling [16], anomaly detection [17, 18], intrusion detection system [19], pattern
discovery [20] or monitoring [4].

In addition to the adoption of new methodologies, the exponential growth of the
internet creates the necessity of scalable algorithms and tools to process a lot of
data in a short time. Big data frameworks address these issues facing three different
aspects: (i) the volume of the data as there are a lot of data, (ii), the velocity as data
may arrive very quickly and have to be processed fast e.g., streaming application,
(iii) the variety of data, as nowadays data, are very heterogeneous e.g., email, videos,
audio.

Big data frameworks like hadoop [21] and Spark [22] emerged to solve these
problems. Their ability to process a huge amount of data in a short time is due to their
distributed architecture, and the possibility to speed-up the process by increasing the
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available hardware resources e.g., the number of servers (nodes) of the cluster of
computers. To take advantage of a distributed architecture, these big data frameworks
apply a MapReduce programming model. This model created by Google is divided
in two phases, first a map, and then a reduce phase. The map phase is executed in
each note separately and it is in charge of reading data from a distributed file system
e.g., hadoop file system (hdfs) and perform operation such as filtering or grouping.
The result is that each node loads only part of the data and perform the operations
only on that part. After that, the reduce phase groups all the results from all nodes to
compute the final result. The key aspect of this model is that by dividing the dataset,
each node needs to perform the operations only on part of it. Making the parallel
computation extremely fast. However, this programming model works only if it is
possible to perform the same operation on each part of the dataset autonomously.
These aspects are playing a key role to perform monitoring analysis that would be
unsuitable without them.

In this thesis I will provide a broad study of different monitoring solutions in
different scenarios and about some anomaly detection techniques. The goal of the
thesis is to show how to characterize the data using solutions from the mathematical
and statistical world, how to exploit different machine learning solutions to analyze
the data and to perform anomaly detection, and finally to show how a big data
framework nowadays represents almost a mandatory skill for any data analyst. For
each scenario I will address different problems such as: I) How to retrieve the
network data II) Which features represent the problem more accurately III) Which
methodology needs to be adopted to solve the problem.

This thesis is structured as follows: Cap. 2 describes YouLighter, an unsupervised
methodology to unveil changes in the YouTube CDN infrastructure. YouLighter
is based on DBSCAN a well known clustering algorithm which group caches that
appear colocated and identical into edge-nodes. This automatically unveils the
YouTube edge-nodes used by the ISP customers. Next YouLighter compares the
clustering results obtained from two different time snapshots to pinpoint sudden
changes exploiting a new metric called Pattern Dissimilarity. Cap. 3 investigates
the browsing habits of Internauts. By looking the DNS traffic I first present a
characterization about how Internauts visit the web. Then, I evaluated if by using
the DNS traffic it would be possible to build users’ profiles to be used to identify
the same user in different time windows. Cap. 4 characterizes the pervasiveness
of Anycast-enabled CDNs (A-CDN). First, I show how A-CDNs are used on the



4 Introduction

internet, giving some insight into eight networks of interest. Then I will present two
examples of anomalous change in the RTT behaviour suggesting a possible change
in routing information for two A-CDNs. Cap. 5 presents SeLINA a self-tuning tool
running on Apache Spark big data framework, to extract knowledge from network
traffic measurements. By combining both unsupervised and supervised approaches
SeLINA mine data with a scalable approach to check if the new data fits the previous
model, to detect possible changes in the traffic, and to, possibly automatically, trigger
model rebuilding. Cap. 6 presents BGPStream an open-source software framework
for the analysis of both historical and real-time Border Gateway Protocol (BGP)
measurement data. By exploiting BGPStream capabilities in different scenarios, I
will show how to analyze BGP information through a traditional approach, and how
to exploit BGPSteram and Spark big data framework to perform an historical analysis
over 16 years of data. In cap. 7 I will draw some considerations and conclusions.

1.1 Datasets

In most of the next chapters I will rely on datasets obtained from passive traces
collected from different Points-of-Presence (PoP) of an operational network in an
European country-wide ISP. As such, although the dataset will monitor thousands of
customers from different areas, they will be bounded in a national area characterized
by some geographically and culturally characteristics. Therefore, although the huge
amount of clients should represents an heterogeneous scenario, some of my future
findings might be biased by the end-users’ culturally similarity.

ISP
network Internet

Border router

Fig. 1.1 Tstat probe to monitor an ISP PoP

To collect the passive traces, I instrumented several border routers of an European
country-wide ISP with a passive probe as depicted in Figure 1.1.
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The probe runs Tstat [23] 1, a passive monitoring tool that observes packets
flowing on the links connecting the PoP to the ISP backbone network. The probe
uses professional Enhance cards to guarantee all packets are efficiently exposed in
user-space for processing and able to perform live traffic monitoring up to few Gb/s
using off-the-shelf hardware [24, 25]. No sampling is introduced, and the probe is
able to process all packets [26]. Tstat rebuilds in real time each TCP and UDP flow,
tracks it, and, when the flow is torn down or after an idle timer, it logs more than 100
statistics in a simple text file such as the client IP address, the server IP addresses,
the application (L7) protocol type, the amount of bytes and packets sent and received,
the TCP Round Trip Time (RTT), The Time To Live (TTL), etc..

To remove any privacy sensitive information from the logs, Tstat anonymizes
the client IP address by using irreversible hashing functions, and only aggregate
information is considered. The deployment and the information collected for this
have been approved by the ISP security and ethic boards. Since Tstat is installed in
the middle of the network, in order to monitor the RTT Tstat measures the RTT as the
time difference between the server acknowledgement segment and the corresponding
client data segment. By evaluating this piece of information Tstat collects all RTT
samples and it computes the minimum, the average, and the maximum RTT as the
minimum, the average, and the maximum of all samples. Instead The Time To Live
(TTL) is directly extracted from the IP header and Tstat compute the same value as
the RTT.

Note that Tstat can compute all these metrics considering only TCP segments,
and do not require access to application payload. On the one hand, this avoids any
privacy issues. And other hand, it allows us to collect all needed statistics even in
presence of encryption, e.g. when HTTPS is used.

Tstat implements also DN-Hunter [27], a plugin that annotates each TCP flow
with the server Fully Qualified Domain Name (FQDN) the client resolved via
previous DNS queries. In more details, when a browser is used to access a website, it
has first to perform DNS resolutions of the hostnames associated to the objects found
in the page. For each hostname, this returns the IP address(es) of server(s) to contact
to fetch the desired object. DN-Hunter parses DNS requests and responses, allowing
Tstat to annotate the subsequent TCP flow originated by the same client, and directed
to a returned IP address of a server with the original hostname of the service being

1http://www.tstat.polito.it

http://www.tstat.polito.it
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contacted. Since DNS messages are not encrypted, this allows Tstat to extract the
hostname for both HTTP and HTTPS traffic with a very limited complexity, thus
offering visibility on Web traffic even in presence of encryption.

For instance, assume a client would like to access to www.acme.com. It first
resolves the hostname into IP address(es) via DNS, getting 123.1.2.3. DN-Hunter
caches this information. Then, when later the same client opens a TCP connections
to 123.1.2.3, DN-Hunter returns www.acme.com from its cache and associate it to the
flow. Client DNS cache is rebuild in Tstat, resulting in more than 95% accuracy [27].
With the help of DN-Hunter, it is possible to unveil the hostname being offered by
the server having IP address 123.1.2.3, even in presence of encrypted (e.g., HTTPS)
or proprietary protocols.



Chapter 2

YouLighter: A Cognitive Approach
to Unveil YouTube CDN and Changes

2.1 Introduction

This chapter presents YouLighter: A Cognitive Approach to Unveil YouTube CDN
and Changes a paper published in the journal IEEE Transactions on Cognitive
Communications and Networking.1

YouTube is one of the most popular and demanding Internet services. It accounts
for 1 billion users distributed world-wide, who watch 6 billion hours of videos
per month.2 Due to its popularity and the nature of the content that it distributes,
the demanded load to handle is huge, and guaranteeing a satisfactory Quality of
Experience (QoE) for the users is a challenging task to accomplish. To this end,
YouTube leverages a massive, globally distributed Content Delivery Network (CDN),
the Google CDN [28]. It consists of hundreds of edge-nodes scattered in the Inter-
net. Each edge-node hosts hundreds of video servers, or caches, which can each
potentially serve any video any user may request [29].

Google, as many other Over-the-Top content providers, places its edge-nodes
close to users, usually at aggregation points directly peering with Internet Service

1Danilo Giordano, Stefano Traverso, Luigi Grimaudo, Marco Mellia, Elena Baralis, Alok Ton-
gaonkar, and Sabyasachi Saha "YouLighter: A Cognitive Approach to Unveil YouTube CDN and
Changes" in IEEE Transactions on Cognitive Communications and Networking, vol. 1, no. 2, pp.
161-174, June 2015. doi: 10.1109/TCCN.2016.2517004

2https://www.youtube.com/yt/press/statistics.html

https://www.youtube.com/yt/press/statistics.html
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Providers (ISPs).3 Hence, Google uses the ISP’s network as the “last mile” to deliver
YouTube videos. Despite this localized setup, once a user requests a video playback,
the CDN load balancing algorithm directs the request to one of the caches, and there
is no mean to predict which cache, or even which edge-node will be used [30, 31].
This is particularly critical for the ISP, which on the one hand is compelled to
deliver YouTube videos to the customers without impairing the QoE, while on the
other aims at minimizing the delivery costs. Hence, the ISP spends a significant
effort in monitoring the CDN infrastructure and designing ad hoc traffic engineering
policies for YouTube traffic [32]. However, the YouTube CDN allocation policy
frequently changes caches being used to serve videos, and changes may involve
modifications in the infrastructure, e.g., the activation of a new cache, or in the load
balancing algorithm decision, e.g., a sudden switch of caches to serve requests, or
an eventual change on the path to those caches, e.g., due to congestion, or route
change. Conversely, the ISP’s policies are often static and hardly cope with the
continuous evolution of the Google CDN: any sudden change can make the ISP’s
optimization obsolete, and thus ineffective, possibly causing abrupt disruptions or
QoE degradations. This constitutes an issue for the ISP, as it sees its reputation
degrade when a change happens, even if Google caused it.

2.1.1 My Contribution

In this chapter, I present YouLighter, a novel methodology to automatically monitor
and pinpoint changes in how the YouTube CDN serves traffic. YouLighter relies on
an unsupervised learning approach that, as such, does not require any knowledge of
the YouTube infrastructure. It builds upon a cognitive approach, where automatic and
unsupervised algorithms are used to extract a model of the system status. YouLighter
only assumes that the ISP has deployed passive traffic probes, which expose TCP flow
level logs summarizing video requests from users. Considering a given observation
window of, say one day, YouLighter aggregates these flow logs to constitute a
snapshot of the traffic exchanged with YouTube caches. Based on DBSCAN [33],
a well-established unsupervised machine learning algorithm, YouLighter is able to
automatically group thousands of caches into a bunch of edge-nodes using simple
features that characterize the network distance of caches from the vantage point.

3https://peering.google.com/about/index.html

https://peering.google.com/about/index.html
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YouLighter periodically runs DBSCAN on consecutive snapshots, extracting for
each of them a model of the status of the CDN. The problem becomes then how
to compare the two models to highlight eventual changes. I solve it with some
ingenuity, I summarize the corresponding models into patterns, and compare them
using the notion of Pattern Dissimilarity, a metric similar to others presented in the
literature, but which satisfies my specific requirements (see Sec. 2.2 for a detailed
discussion). The bigger the distance between two snapshots is, the more different the
sets of YouTube caches to serve ISP customers during the two periods of time are.

YouLighter highlights several kinds of changes, including deviations from the
typical behavior of edge-nodes possibly induced by congestion arising in the network.
In general, YouLighter triggers alarms corresponding to sudden changes happening
in the YouTube CDN infrastructure which may be responsible of QoE issues for ISP
customers. Resulting alarms are then offered to the ISP network administrator who
can take countermeasures to mitigate the problem.

I validate my methodology over traces I collect from four different vantage points
that I have deployed in two ISPs in two different countries. First, I demonstrate that
the cognitive algorithms YouLighter adopts are effective at identifying and grouping
YouTube caches belonging to different edge-nodes. Second, I run YouLighter over
different collected snapshots considering a longitudinal dataset, which, overall,
accounts for more than 33 months of traffic. I pinpoint several examples of sudden
and previously undiscovered changes in the YouTube CDN. For some of them, I
investigate the impact on the QoE of ISP customers, revealing the sudden drop of
average video download throughput to less than 250 kb/s, which hampers even the
possibility of watching a video.

I believe that YouLighter is a promising tool for ISPs, network administrators and
researchers to monitor the YouTube CDN and the traffic it generates. Importantly,
thanks to its design, YouLighter offers the capability of automating and accelerating
the troubleshooting procedures. In fact, ISPs may use YouLighter to quickly react
to changes possibly harming customer’s QoE. For instance, ISPs may adopt traffic
engineering algorithms to optimize routing to under-performing edge-nodes, e.g., by
means of BGP policies, or to implement DNS policies overruling YouTube choices
and re-directing traffic from caches with bad QoE to changes with a good QoE.
However, YouLighter’s task is limited to notifying the occurrence of change events
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in the YouTube CDN. The investigation and troubleshooting of issues notified by
YouLighter are out of the scope of this chapter.

The remainder of this chapter is structured as follows: Sec. 2.2 discusses the
related work. Sec. 2.3 describes the details of my datasets, and shows the dynamicity
of YouTube cache selection policies. Sec. 2.4 presents my methodology, introduces
the notion of Pattern Dissimilarity, and discusses YouLighter’s complexity. Sec. 2.5
presents my results: First, I evaluate the sensitivity of YouLighter’s parameters, and,
second, I show how effective YouLighter is at pinpointing changes in YouTube CDN
employing my traces. Sec. 2.7 suggests some countermeasures an ISP can use to
improve users’ QoE in case of changes. Finally, Sec. 2.8 concludes the chapter.

2.2 Related Work

A large body of work has analyzed the YouTube delivery infrastructure and its
evolution over time [28–30, 34, 32]. They show YouTube is a highly dynamic system
which keeps changing over time due to continuous upgrades in the infrastructure [28,
29] or due to the dynamicity of the cache selection policies [30, 34]. Some of the
findings are already outdated. For instance, the load-balancing policy based on
HTTP redirections which is described in [30, 34] is no longer in place, and YouTube
dismissed the naming scheme described in [29] at the end of 2011. In this work, I do
not aim to offer an updated view or characterization of YouTube. Instead, I present a
methodology that allows to automatically identify changes in both the infrastructure,
e.g., the appearance of new edge-nodes, and in the day to day management of the
infrastructure, e.g., a change in the load-balancing algorithm that may affect millions
of customers.

My contribution is in line with the body of works focusing on anomaly detection,
for which [35, 36] offer good surveys. In particular, my work belongs to the family of
studies which addresses the problem of performing anomaly detection in large scale
operational networks. [37, 38] are notable examples of supervised methodologies
which leverage data from passive probes, topology information, routing tables and
Simple Network Management Protocol (SNMP) logs to match predictions to actual
measurements to pinpoint deviations.
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Other works propose methodologies to perform anomaly detection on CDN
infrastructures for video delivery specifically [39, 40, 32]. Authors of [39] consider
a collection of video download sessions, out of which they extract measurements
for specific features, and manually set thresholds to label degradation-affected
sessions. Then, by applying graph techniques, they identify clusters and outliers
possibly associated to performance issues. [40] analyzes different CDN providers,
among which YouTube. The paper presents a characterization of the YouTube cache
selection policy and apply an anomaly detection system based on subnet usage to
detect unexpected cache selection in a time window of minutes. Finally, [32] focuses
on the YouTube case too and proposes a methodology for anomaly detection which
requires a significant manual effort, and the paper mostly presents results about
the characterization of the YouTube service in terms of traffic characteristics and
QoE perceived by the users. YouLighter differs from the supervised methodologies
described in above studies. In fact, YouLighter does not assume any knowledge of a
baseline, and leverages unsupervised algorithms to automatically unveil changes on
the YouTube infrastructure. I design it with this specific requirement in mind, as it
has to target the YouTube CDN, for which the ground truth is a moving target that is
very difficult to know.

The application of cognitive and unsupervised machine learning techniques – in
particular clustering techniques – to perform anomaly detection based on network
traffic is not new. For instance, [17] proposes a flow-based anomaly detection
algorithm based on K-Means, while [18] uses DBSCAN to group P2P sessions
and identify anomalous clusters. However, in all the cases, clustering is used to
study the same given dataset. My goal is anomaly detection algorithm builds on
the comparison between clustering patterns obtained at different times. The task
of identifying anomalies by comparing clustering results attained from different
datasets (e.g., different time snapshots, etc.) translates in the problem of measuring
the dissimilarity of two distinct patterns. The comparison and quantification of
the similarity obtained from evolving-in-time clustering is addressed within a sub-
domain referred to as online clustering or streaming clustering. See [41, 42] for
notable examples. In particular, [41] defines a metric to quantify the dissimilarity
between consecutive clustering patterns, namely the History Cost, which is similar
to the Pattern Dissimilarity presented in this work. However, the History Cost is
designed to compute the distance between clustering patterns built by K-Means,
for which the number of clusters is constant across different patterns. Instead, the
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Pattern Dissimilarity takes into account the case in which the number of clusters
across different patterns is different. Another work which goes in a similar direction
is [43] whose authors propose to measure similarity between sets of overlapping
clusters from complex networks, in which groups of nodes form tightly connected
units linked to each other. Since points are not embedded in a metric space, authors
of [43] define ad-hoc distances.

YouLighter differs also from techniques for the tracking of moving clusters and
objects as in [44, 45]. Indeed, their goal is to track the movements of the same
clustered objects over time, e.g., a group of migrating animals. On the contrary,
YouLighter has no insights about the CDN infrastructure and it cannot track single
objects, which may disappear and reappear freely.

Finally, other approaches as [46] measure the similarity among sample distribu-
tions obtained at different time intervals. However, directly relying on distributions
to perform the comparison considerably complicates the detection of the edge-nodes
behind the changes. And from the datamining community evolutionary clustering
techniques such as [41, 42] have been used to study how clustering results evolve
over time. Instead, YouLighter extracts and compares clustering patterns, which are
simpler to process in an automatic manner, and allow to immediately pinpoint the
edge-nodes (i.e., the clusters) responsible for possible deviations.

A preliminary version of this work has been presented [47]. In this extended
version I present more thorough performance analysis and sensitivity study of
YouLighter algorithms, present a complexity evaluation and discuss possible counter-
measures ISP can take to mitigate eventual problems.

2.3 Datasets

I assume the ISP has instrumented each border router of its network with passive
probes, which collect statistics from traffic flows carrying YouTube videos. In this
work, I rely on passive probes running Tstat as previously explained in Sec. 1.1 ad
depicted in Fig.2.1. Among Tstat features I exploit its capability to classify TCP
flows that carry YouTube videos. For each request, among all Tstat metrics I use: i)
the anonymized client IP address, ii) the server IP address, iii) the hostname of the
server as returned by DN-Hunter, iv) the TCP minimum Round Trip Time (RTT),
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Edge-node 2

Edge-node 3Edge-node 1

Tstat

Tstat

YouLighter

Fig. 2.1 The traffic monitoring setup I employ for this work.

v) the IP Time-To-Live (TTL) of packets received by the client in the PoP, vi) the
amount of bytes the clients send and receive, vii) the average download throughput,
and viii) the time at which the TCP connection starts.

Since Tstat can compute all these metrics even in presence of encryption, it
allows me to take in to account also HTTPS, which nowadays represents more than
50% of overall YouTube traffic [48].

Trace Period Volume Flows Caches
ISP1-A 01/04/2013 - 28/02/2014 138.7 TB 33,216,794 8,664
ISP1-B 01/04/2013 - 28/02/2014 152.9 TB 31,643,603 8,899
ISP1-C 01/04/2013 - 28/02/2014 134.8 TB 27,377,089 9,028

ISP2 01/03/2014 - 17/07/2014 48.3 TB 9,100,163 3,755
Table 2.1 Traces considered in this study.

I have been collecting traffic logs since April 2013 by monitoring the traffic
users generate when accessing the Internet. I instrument four different PoPs. Three
of them are located in networks of the same ISP, and in two different cities of the
same country. I install the fourth one in a PoP of a different ISP in a second country.
Tab. 2.1 describes, for each trace (or dataset), the time period, the total downloaded
volume, the number of unique videos and the number of YouTube servers I observe.
Notice that in total I monitor the activity of more than 32,000 customers, and the
maximum number of YouTube caches that ISP1 customers used at least once is
∼9,000. The dataset overall covers more than 500 TB of equivalent data.
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2.3.1 YouTube Cache Naming Structure

I find that the YouTube infrastructure described in [29] is no longer in use. During
2012, YouTube server hostnames were in the form rx–-ABCxxtxx.c.youtube.com,
where x are numbers, while ABC is a three-letter code reporting the International
Air Transport Association (IATA) code of the closest airport. For instance the
hostname r7–-fra07t16.c.youtube.com identified a single cache, in Frankfurt.
The hostname still resolves to a single IP address, 74.125.218.182 in the example.
Thus, I can uniquely identify a cache by its hostname.4 All caches co-located in the
same edge-node share the same (obfuscated) IATA code. This allows us to get coarse
ground truth about the location of servers.

I run some active experiments to cross-check if YouTube specializes caches to
serve some particular content, and I verify that every cache can serve any video,
at any resolution, in any format, e.g., MPG4 or Flash, to any device, e.g., PC,
smartphones or tablets.

2.3.2 Characterization of the Load Balancing Policies

Every time a user starts a video playback, the player starts a progressive download of
the video content from the specific cache the system provides in the HTML page.5 I
am interested in seeing which are the policies governing the server allocation, such
as (i) is there any “preferred” group of caches? or (ii) are those stable over time?

Fig. 2.2 reports the rank of YouTube caches sorted by the number of flows they
serve. I consider February 2014 from the ISP1 datasets. First, notice that I observe
up to 3,800 in ISP1-C, with ISP1-A reaching more than 2,500. Second, the load
each cache handles is very heterogeneous in all datasets; few servers handle lots
of requests, but there is a not negligible number of caches that serves a significant
portion of flows. In all three datasets, top 400 caches serve more than 1,000 videos,

4Starting from January 2013, YouTube obfuscates the IATA code using a simple substitution
cipher. The script to de-obfuscate YouTube encrypted cache names is available at http://tstat.
polito.it/svn/software/tstat/trunk/scripts/decode_yt_sitename.pl. From October 2013, the
youtube.com domain has been replaced by the googlevideo.com domain. This information can
be used to identify YouTube flows even in presence of HTTPS [49].

5Load balancing policies are implemented at application layer. Indeed, the web server chooses
and encodes the cache hostname directly in the HTML page served to the client.

http://tstat.polito.it/svn/software/tstat/trunk/scripts/decode_yt_sitename.pl
http://tstat.polito.it/svn/software/tstat/trunk/scripts/decode_yt_sitename.pl
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Fig. 2.3 Evolution of the volume of traffic for the four most active caches I observe
on February 1st 2014. First week of February 2014, dataset ISP1-A.

and, to observe 95% of requests, one must consider about 313, 330, 342 caches in
ISP1-B, ISP1-A, ISP1-C respectively.

I also notice that the rank is extremely dynamic over time. For instance, I pick
randomly four caches among the most active caches in ISP1-A during the 1st week
of February 2014. I report in Fig. 2.3 the amount of traffic they generate over time
for the following seven days. As shown, the amount of traffic a single cache handles
changes widely over time, and none of the monitored caches keeps a constant leading
position for a long period of time.

As one may expect this dynamicity to disappear when reducing the focus, I
monitor a larger pool of caches as those in the rank in Fig. 2.2, and I recompute the
same rank on a daily basis. Then, I represent it using different colors in Fig. 2.4.
Each row represents the rank of the same cache for different days in February. In case
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Fig. 2.4 Evolution over time of the rank of the top 10 mostly used caches during
February 2014, ISP1-A. The white dot corresponds to the top cache of each day.

the rank is stable, one would expect a row (a cache) to always assume the same color
(rank). Fig. 2.4 shows exactly the opposite. Indeed the top daily cache (red square,
highlighted by the white dot) randomly changes every day (white line). Sometimes,
the most used cache in a day is not among the top-10 cache of the month (line jumps
outside). The top-10 caches in the monthly rank drops below the 50th place during
some days (gray color). Similarly, in the first 19 days of February, the top-10 caches
are concentrated in the first 20 rankings; However, starting from February 20th they
fall around the 30th position (notice the concentration of yellow and orange boxes).

This shows that the server allocation policies adopted by YouTube spread the
load over several hundreds of caches, and the choices are extremely dynamic over
time if I observe with the fine grained granularity of a single cache.

Since caches inside the same edge-node are all equivalent, the intuition is to
observe the system using the coarse granularity offered by edge-nodes. However,
edge-nodes are unknown, they can change over time due to system upgrade, mainte-
nance operations, or redesign. Information that could be available (e.g., the IATA
code) may be not reliable, or may be outdated by YouTube. This calls for cognitive
systems that can automatically identify presence of edge-nodes and to build a model
of the current status of the CDN. I thus design an unsupervised machine learning
algorithm to automatically identify edge-nodes from just the observation of traffic
flows.
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Fig. 2.5 Example of per-cache RTT percentiles and TTL percentiles. Caches sorted
by IP address, and grouped by (anonymized) IATA code. December 12-18 2013,
dataset ISP1-A.

2.4 Methodology

Among cognitive approaches that try to extract models out of data, cluster analysis
(or clustering) represents a well known set of unsupervised algorithms that have been
successfully used in the literature. Clustering algorithms group objects with similar
characteristics [50]. Objects are described by means of features which map each
object to a specific position in a hyperspace. The similarity between two objects
is based on their distance. The closer the two objects are, the more likely they are
similar and thus should to be grouped in the same cluster. Typically, the Euclidean
distance is used.

The selection of the features plays a key role in the design of clustering algorithms.
In this scenario I would like to group together caches based on the network position
as seen from a vantage point. Intuitively, the path between two caches in the same
edge-node and clients in the same PoP exhibits the same properties, that from a
network perspective translates in same RTT and TTL. Conversely, the paths between
two caches in two different edge-nodes should present different RTT or TTL. To
confirm this intuition I perform the following experiment. I consider three edge-
nodes observed in ISP1-A during December 12-18 2013. For each cache, I consider
all the flow directed to it and I compute the Cumulative Distribution Function (CDF)
of the RTT and the TTL extracted from the flows. Then I summarize each CDF
with the 5th, 20th, 50th, 80th, and 95th percentiles, and report the result in Fig. 2.5.
The x axis reports caches grouped together by (anonymized) IATA code. On the
y axis, for each cache, I report the percentile values, shaded with different colors,
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obtained from the per-cache CDFs. Fig. 2.5(a) and Fig. 2.5(b) reports the results
for RTT and TTL, respectively. Since I sort caches based on their IP address and
IATA code, caches belonging to the same edge-node appear one close the other.
Three edge-nodes are present, E-2, E-6, and E-3. Each hosts a variable number
of caches, with E-3 being the largest. As shown in Fig. 2.5(a), the caches in the
same edge-node exhibits very similar RTT percentiles, suggesting that I can identify
clusters of caches by considering the RTT as a feature. However, E-2 and E-6 exhibit
very similar RTT percentile values. This fact clearly complicates the capability of a
clustering algorithm to label them as different edge-nodes. Similarly, when focusing
on the TTL (Fig. 2.5(b)) I observe that E-6 and E-3 show practically identical values.
However, if I put Fig. 2.5(a) on top of Fig. 2.5(b), I can easily distinguish the three
edge-nodes as they all exhibit different RTT and TTL combinations, and E-2, E-3
and E-6 emerge clearly as different edge-nodes. This simple example justifies my
choice to consider the multidimensional space obtained by combining percentiles for
both RTT and TTL features.

I acknowledge that The RTT and TTL samples might be biased by issues due to
the presence of congestion in the network path to the caches. However, YouLighter’s
aim is to capture these kind of events as well, and notify them to the ISP, which then
will investigate further to troubleshoot the problem. Anyhow, the correct working
point of an ISP network should be far from a regime affected by congestion, so I
expect congestion events to be due to actual changes in the CDN infrastructure or in
the network paths to the caches, rather than in the ISP network.

2.4.1 Multi-dimensional Clustering

I leverage above intuition to design a clustering algorithm to automatically find
homogeneous groups of caches. I use some ingenuity to characterize the path from
client to each cache, and then to cluster caches that exhibits similar paths. I can split
the process of my methodology into the following steps:

Step 1 - Passive monitoring of YouTube video flows: As described in Sec. 2.3,
a passive probe provides the continuous collection of YouTube traffic logs. I log
the metadata of each TCP connection, and I store logs in a database for further
processing.
Step 2 - Measurement consolidation and filtering: To ease the monitoring proce-
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dure, I use a batch processing approach that considers time windows of size ∆T .
Thus, every ∆T I generate a “snapshot”, and I aggregate and process measurements
in it. In the following, I indicate the n-th snapshot as a superscript when needed, e.g.,
a(n) indicates the metric a at snapshot n. The choice of the time granularity at which
a new snapshot is built is driven by the necessity of finding a trade off between the
amount of data to consider, and the frequency at which the network administrator is
expected to be capable of reacting to anomalies.

I identify each cache x by its IP address. I then group all flows in the same
snapshot with the same server IP address to obtain a table where columns correspond
to the metric (e.g., RTT, TTL, transmitted packets, etc.), and each row corresponds
to a sample, i.e., the tuple of measured values observed within a TCP flow.

Since I am interested in the active caches, I discard those with less than MinFlow=

50 samples. I define the whole measurement snapshot n as X (n).
Step 3 - Feature selection and data normalization: Next, I apply a feature se-
lection driven by domain knowledge to select the set M of metrics. In particular,
as I am interested in grouping caches according to the path properties, I choose
M = {RT T,T T L}. Then, for each cache x in the snapshot X , and for each metric
m ∈M , I generate a Cumulative Distribution Function (CDF). From the distribution,
I extract the vector Pm(x) =

(
pm,1(x), pm,2(x), . . . , pm,k(x)

)
containing k percentiles

of m for cache x. Then, I translate the percentile values obtained from the real space
to an hypercube space of unitary size. This is a standard approach which allows
the data analytics algorithm to work with a fixed parameter configuration. I thus
standardize percentiles following a simple normalization:

minm = min(pm,i(x) ∀x ∈ X ,∀i = 1, . . . ,k) (2.1)

maxm = max(pm,i(x) ∀x ∈ X ,∀i = 1, . . . ,k) (2.2)

p̄m,i(x) =
pm,i(x)−minm

maxm −minm
(2.3)

Intuitively, Eq.(2.3) normalizes the percentiles of metric m so that p̄m,i ∈ [0,1].

At last, P̄m(x) =
(

p̄m,1(x), p̄m,2(x), . . . , p̄m,k(x)
)

represents the standardized vec-
tor of features for the metric m for server x. Recalling that M = {RT T,T T L}, I
identify each cache x ∈ X with a 2k-dimensional which is then normalized in a space
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of edge 1 and features:
x̄ = (P̄RT T (x), P̄T T L(x)) (2.4)

and I transform the original set of caches X into a set of points X̄ = {x̄}.
Step 4 - Clustering: Among different clustering algorithms I employ the DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) algorithm [33] to
group together caches based on their multi-dimensional features. I choose DBSCAN
because (i) it is able to handle clusters of arbitrary shapes and sizes; (ii) it is relatively
resistant to noise and outliers; (iii) it does not require the specification of the number
of desired clusters (iv) it is a density based clustering algorithm which perfectly fits
the proposed scenario. DBSCAN is a clustering algorithm presented in 1996 [33]
which exploits the notion of dense area to clusterize elements. This characteristic
is particularly useful in my scenario since caches belonging to the same edge-node
should own similar metrics value lying in a small region of the possible space. Even
in presence of small difference within the same edge-node, DBSCAN has good
performance as it can handle clusters of different shape. Another important point
is that DBSCAN requires only two parameters: ε and MinPts. ε determines the
maximum allowed distance between any given point in a cluster and its closest
neighbour belonging to the same cluster, and MinPts the minimum number of points
required to form a cluster. Based on that, it classifies all points as being (i) core
points, i.e., in the interior of a dense region; (ii) border points, i.e., on the edge of a
dense region; or (iii) noise points, i.e., in a sparsely occupied region. Noise points do
not form any cluster, while the algorithm puts in the same cluster any two core points
that are within ε of each other. Similarly, any border point that is close enough to a
core point is put in the same cluster as the core point. The result of this process is a
collection C of clusters C j ∈ C , also named as clustering:

C = {C j}= DBSCAN(X̄) (2.5)

2.4.2 Highlighting Changes with the Pattern Dissimilarity

I am now interested in tracking the evolution of clusters over time, for which, I adapt
the methodology presented in [41], as I discuss in Sec. 2.1. As authors presented
in [41] compare two clusterings C 1 and C 2 obtained considering two different
datasets, i.e., snapshots in my case opens many different scenarios. For instance,
i) points that were present in C 1 may not be present in C 2, and vice versa; ii)
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points clustered into the same cluster in C 1 can now belong to two or more clusters
in C 2; and iii) the same points that form a cluster in C 1 can still form the same
cluster, but can be placed in another region in the clustering space in C 2. In my
case, this corresponds to i) popular caches at snapshot n that are not anymore used
at snapshot n+ 1, or ii) some caches at snapshot n that were part of the noise are
instead clustered at snapshot n+ 1, or iii) the path to caches suddenly changes at
snapshot n+1, altering RTT and TTL. Since I do not have any mean to label the
clusters in two different clustering results for instance by using a ground truth label.
I can not evaluate major changes, i.e., the presence of a totally new cluster by simply
evaluating the difference of clustering results by comparing which clusters are shared
between the snapshots. Therefore, to evaluate the difference between the clustering,
I adapt the historic cost function presented in [41], and I introduce the notion of
Pattern Dissimilarity.

Clustering Patterns

I first map each cluster into a single Centroid that summarizes it. For each cluster, a
centroid is computed following the standard approach, i.e., it is the mean position of
all the points in all of the coordinate directions. Therefore, given a cluster C ∈ C ,
I consider the centroid, or geometric center, x̂ whose components p̂m,i in the i
percentile of feature m are:

p̂m,i =
1
|C| ∑

x∈C
renorm(pm,i(x)) (2.6)

All centroids then form a pattern P̂ = {x̂}. The renorm() function considers the
re-normalization of features that is needed if points in C 1 and C 2 went through
different normalization processes according to Eq.(2.3). In other words, renorm()

transforms the space defined by the centroids obtained by two different snapshots in
a common hypercube space of unitary side. This normalization step is required since
normalizing over all snapshots is not possible because in an online analysis system
future snapshot are not known a priori. In my case, assuming C 1 = C (n), C 2 =

C (n+1), from Eq.(2.3) for each m ∈ M I have:

Minm = min
(

min(n)m ,min(n+1)
m

)
(2.7)
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Maxm = max
(

max(n)m ,max(n+1)
m

)
(2.8)

renormm(a) =
a−Minm

Maxm −Minm
(2.9)

To better explain the need of this two-step normalization process I describe a
simple one-dimensional example. Consider the case in which the first snapshot
has values varying in [0,15], and the second snapshot in [2,22]. I first perform a
per-snapshot normalization to run DBSCAN, so that I obtain [0,15]→ [0,1] as by
Eq.( 2.3). Similarly [2,22]→ [0,1] for the second snapshot. Next, to compare these
two snapshots, the renorm() function will re-normalize the space in a common space
with [0,22]→ [0,1].

Centroid Distance

Given a centroid x̂ and a centroid pattern P̂ , I define the Centroid Distance (CD)
as the distance between x̂ and its closest centroid in P̂ . Specifically, I compute
the closest centroid ŷ∗ ∈ P̂ such that d(x̂, ŷ∗)≤ d(x̂, ŷ) ∀ŷ ∈ P̂ . d(x,y) can be any
distance metric that is valid in the feature space. In this work, I use the classic
Euclidean distance. Thus, the Centroid Distance CD of the centroid x̂ from centroids
in P̂ is

CD(x̂,P̂) = min
ŷ∈P̂

d(x̂, ŷ) (2.10)

Hence, the Centroid Distance couples centroids according to a nearest neighbor
principle.

Pattern Dissimilarity

At last, I define the Pattern Dissimilarity - PD - as the sum of the Centroid Distance
among every centroid in the clusterings. Since the number of clusters in P̂1 and
P̂2 may be different, I need to symmetrize the definition:

PD(P̂1,P̂2) = ∑
x̂∈P̂1

CD(x̂,P̂2) + ∑
x̂∈P̂2

CD(x̂,P̂1) (2.11)

Fig. 2.6 depicts the Pattern Dissimilarity computation considering a 2-dimensional
space. From left to right, DBSCAN first clusters the points (grey dots for the first
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Fig. 2.6 Example of Clusterings, Patterns and Centroid Distance computations.

snapshot, white for the second). Then, centroids emerge to form the patterns, and I
compute the Centroid Distance for each centroid. Finally, the Pattern Dissimilarity
is the sum of all Centroid Distances.

In the following, I consider two subsequent snapshots n, and n+1, compute the
clustering C (n) and C (n+1), then extract the patterns P̂(n) and P̂(n+1), and finally
compute their dissimilarity PD

(
P̂(n),P̂(n+1)

)
.

I note that I can base the Pattern Dissimilarity on other similarity metrics different
from the Euclidean distance, e.g., the well known Cosine Similarity. However, as
I show in Sec. 2.4.3 using the Euclidean distance lets the Pattern Dissimilarity to
inherit linear properties, and therefore to vary proportionally with size of the changes.
Observe also that the design of the Pattern Dissimilarity offers a nice property that
is particularly desirable for troubleshooting purposes. In particular, the Pattern
Dissimilarity, which is a simple sum of Euclidean distances, lets us immediately
pinpoint the centroids responsible for changes in the pattern. As I show in Sec. 2.6,
this aspect is crucial, as it allows us to design an automatic procedure that i) captures
changes in YouTube CDN infrastructure, and ii) highlights the edge-nodes involved
in these changes.

2.4.3 Observations about the Pattern Dissimilarity

I run some numerical evaluation to gauge how the Pattern Dissimilarity changes
with respect to changes in the input data. I consider two main sources of changes:
i) centroids that simply move from their position, and ii) the birth of new centroids
reflecting the generation of a new cluster in the data.
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Fig. 2.7 Pattern Dissimilarity for increasing noise e, for constant and increasing
number of centroids.
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Fig. 2.8 Pattern Dissimilarity for increasing distance among clusters d, for constant
and increasing number of centroids.

Changes within the same metric space

Consider first that case where changes to samples leave samples within the same
metric space, i.e., min(n)m = min(n+1)

m and max(n)m = max(n+1)
m .
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For the first scenario, I generate a random pattern Ĉ 1 of N = |Ĉ 1| centroids. I
randomly place centroids in the unitary hypercube of edge 1 in RN according to a
uniform distribution. Then, I generate pattern Ĉ 2 by taking the centroids in Ĉ 1, and
repositioning them in a random sphere of radius e centered in the centroid original
position. Finally, I compute PD(Ĉ 1, Ĉ 2). I repeat the experiment for 100 times,
and compute the average and standard deviation of the obtained values. Fig. 2.7(a)
reports the average Pattern Dissimilarity and its standard deviation for increasing
values of e, and for different values of N. As expected, curves pass through the
origin, and linearly grow with e. The larger is N, the higher is the average Pattern
Dissimilarity and its standard deviation.

For the second case, I run the same experiment while also increasing the number
of centroids. Thus |Ĉ 1| < |Ĉ 2|. Fig. 2.7(b) shows the results. Notice the nice
property of the Pattern Dissimilarity for which the birth of new centroids causes the
Pattern Dissimilarity to grow by a factor that is proportional to the number of new
centroids. This is due to definition in Eq.(2.11) in which no normalization is present.
This property is important, as it lets the Pattern Dissimilarity nicely highlight the
sudden birth (or death) of centroids i.e., edge-nodes in my scenario.

Changes to a larger metric space

Consider now the that case where changes move part of the samples outside the
metric space at time n. In particular, let samples move/appear with max(n+1)

m =

dmax(n)m , d > 1.

Fig. 2.8 shows results. Starting with left plot, I consider the case where 5 clusters
are present at both time. At time n+ 1, points of k clusters move in a different
portion of the space, being allowed to move is a space of diameter d bigger than
the original one. Results show that this change has a much greater impact, see
Fig. 2.8(a). In the figure, |P̂2|= x,y states that x cluster still lie in the original space,
and y lie in the upscaled space. Intuitively, since points now move to a larger space,
the Pattern Dissimilarity of the cluster which lies outside the original space let the
Pattern Dissimilarity grow higher.

Fig. 2.8(b) consider the birth of new clusters, which lie in the upscaled space of
factor d. Also in this case, the Pattern Dissimilarity grows much higher than when
considering the birth of clusters within the same space – cfr. Fig 2.7(b).
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These simple experiment allows us also to select thresholds to highlight important
changes, rather than minor changes. For instance, when samples move outside the
original space, the Pattern Dissimilarity is typically larger than 10. Conversely, when
changes move samples within the same space, Pattern Dissimilarity is smaller than
10. This will be useful when highlighting significant changes in real data.

2.4.4 Complexity

After evaluating different aspects of the methodology, the last important part to
analyze is its complexity. This step is required to understand the feasibility of
running YouLighter in a real environment. To evaluate YouLighter complexity I study
the computational cost of the different steps. I assume that the network has been
instrumented to extract flow level logs from passive observations of packets using
Tstat.

Assume to have N caches and a total number of YouTube flows F . From my
dataset, I always obtain N in the order of 1,000 and F amounting to half billion flows
in each week of data from ISP1. Therefore, a one week long dataset can be easily
stored in memory of MB magnitude. Given the flow level log, the first step consists
in measurement consolidation. It consists in grouping flows by cache and filter less
used ones. Using an hash-based data structure where the key is the cache IP address,
counting flows per cache has a complexity of O(F).

The second step consists in feature extraction and data normalization for each
flow. For each cache, empirical percentiles must be computed which entails sorting
of flows. Worst case complexity is O(F ln(F)) when N = 1 and all flows belong to
the same cache. Assuming instead that F flows are equally split among N caches,
the complexity becomes O

(
N F

N ln(F
N )

)
= O

(
F ln(F

N )
)
.

The third step is running DBSCAN. According to authors in [33], the algorithm
complexity is O(N ln(N)). The output consists in M clusters. The final step consists
in computing the Pattern Dissimilarity. Firstly, it requires to compute the boundary
values for the renorm function. This operation is linear O(N) since it requires to find
the minimum and maximum values of features. Secondly, it computes the centroid of
each pattern. For each the M patterns, each containing L caches, I have a complexity
of order O(ML). Assuming L to be O( N

M ), the complexity reduces to O(N). The next
part has to deal with the centroid distance. This part has a computational complexity
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of O(M2). Finally the Pattern Dissimilarity is computed with a cost of O(M) since I
have to sum all pattern distances. Overall, YouLighter complexity is thus dominated
by the second step, i.e., O

(
F ln(F

N )
)
. For my YouLighter implementation, I used

Python program language which took on average less than two minutes to perform
all computation for one week of data.

2.5 DBSCAN performance

In this section I first assess and tune the performance of DBSCAN in order to identify
edge-nodes. I next run YouLighter over a longitudinal dataset to show its ability to
highlight sudden changes in the YouTube CDN.

2.5.1 Clustering Performance Metrics

I first evaluate the impact of the parameter settings on the DBSCAN results. In
particular, I aim to understand how good is the matching between the clustering
DBSCAN returns and the edge-nodes I observe in the measurements. To perform
this analysis, I consider the snapshot X from November 4th to November 10th, 2013,
in trace ISP1-A. I manually inspect the dataset, and, guided by the IATA codes, I
assign each cache a label corresponding to the edge-node in the YouTube CDN. I
manually cross-check labels by inspecting server IP addresses and subnets, RTT and
TTL distributions to verify the accuracy of the labels. The result is a ground truth
label, GT-label, that I assign to each cache. In total I find |X |= 620 caches serving
more than MinFlow = 50 flows, and belonging to 6 edge-nodes, each identified by a
different GT-label. Hence, the number of GT-labels is NGT = 6.

I then run DBSCAN as described in Sec. 2.4.1, obtaining the clustering C . Let
NC = |C | be the number of clusters. I next use the GT-labels to assign a label to
caches by using a majority-voting scheme: For each cluster C j ∈ C , I assign all
caches x ∈C j the most frequent GT-label observed in C j. Caches whose assigned
label matches the GT-label are the so called True Positives (TP), whose number is
NT P. Conversely, caches whose assigned label is different from their GT-label are
False Positives (FP), whose number is NFP. |X |= NT P +NFP. I compute the set of
distinct labels assigned to clusters in C , whose number is NL ≤ NGT . I do not assign
any label to the caches which DBSCAN classifies as noise points.
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Fig. 2.9 Examples of patterns for which the True Positive Rate , the Fragmentation
Index, and the Pureness Index are not equal to 1, and the optimal case in which they
are all equal to 1. Color represent the GT-label.

To validate the clustering I obtain with DBSCAN I consider three different
indices, as follows:

TPR =
NT P

|X | , µ =
NC

NL
, φ =

NL

NGT
(2.12)

1. The True Positive Rate (T PR ≤ 1), also known in the literature as “Purity” [50]
measures the ratio between TP and the number of samples in the experiment.
T PR = 1 means that all labels are identical to the GT-label. T PR < 1 indicates
the presence of i) mislabeled caches (or FP), or ii) noise points (unlabeled
points). Leftmost sub-figure in Fig. 2.9 reports a simple example where the
clustering algorithm mislabels a cache for both the GT-labels E-1 and E-4,
thus leading to T PR < 1. Colors represent the GT-label.

2. The Fragmentation Index (µ ≥ 1) is a custom metric that captures the case
when more clusters share the same GT-label. When µ = 1, the number of
clusters is identical to the number of GT-labels and DBSCAN assigns each
cluster a different GT-label. When µ > 1 instead, I have more clusters which
share the same GT-label, i.e., DBSCAN splits an edge-node into two or more
clusters. Second sub-figure in Fig. 2.9 reports an example where the clustering
algorithm splits edge-node E-1 in two different clusters, C-1 and C-2, thus
leading to µ > 1.

3. Pureness Index (φ ≤ 1) is also a custom metric that measures the ability to
identify all edge-nodes. When φ = 1, DBSCAN assigns each GT-label to at
least one cluster, i.e., it correctly identifies all edge-nodes. φ < 1 indicates that
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Fig. 2.10 DBSCAN with different feature settings. Performance versus ε . 1st week
of November, ISP1-A.

some edge-nodes disappear into other clusters (i.e., their GT-label is not the
majority label for any cluster). Third sub-figure of Fig. 2.9 reports an example
where the clustering algorithm groups together edge-nodes with GT-labels E-3
and E-4 in cluster C-2, thus leading to φ < 1.

Rightmost sub-figure in Fig. 2.9 also depicts the ideal clustering result in which
DBSCAN groups correctly the caches for all the edge-nodes, i.e., one cluster for each
GT-label (edge-node), leading to the case in which all the clustering performance
indices, T PR, µ and φ , are equal to 1.

Finally, I use also the number of noise points as an index of bad clustering results,
i.e., the inability of DBSCAN to group caches into edge-nodes.

2.5.2 DBSCAN Performance and Parameter Sensitivity

I run experiments to evaluate the impact of DBSCAN parameters, i.e., the choice of
the features, MinPts and ε . For now, I set features as the 20th, 35th, 50th, 65th, 80th
percentiles for both the RTT and TTL distributions. MinPts is typically not critical
since it defines the minimum number of caches in an edge-node DBSCAN needs to
form a cluster. I set it to 5. Instead, I must choose ε carefully: If too small, a lot of
fragmented clusters will emerge, or a large number of points will not be able to form
dense areas, increasing the number of noise points; conversely, large values tend to
create few, very large clusters, that aggregates caches from different edge-nodes.
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Fig. 2.10(a) reports the clustering indices when varying ε ∈ [0.0 : 0.2]. As shown,
I achieve the best performance with values between 0.018 and 0.052 (in between
the vertical solid lines). For such values, all the three indices are equal or very
close to 1. Smaller values of ε increase the number of noise points and artificially
fragment edge-nodes into multiple clusters. TPR decreases, while µ first increases,
then decreases due to caches DBSCAN labels as noise (more than 300 caches fall in
the noise for ε < 0.005). For ε larger than 0.052 DBSCAN merges edge-nodes into
too few clusters, and both φ and the T PR considerably decrease.

I repeat this analysis for other traces and for different snapshots. I find ε ∈ [0.02 :
0.045] to give consistent results. In the following I choose ε = 0.04.

I also run a set of experiments to choose which features to use to capture the
RTT and TTL distributions. I replace the vector of percentiles Pm(x) in Eq.(2.3)
with simple statistics, e.g., the mean and the standard deviation. The goal of this
experiment is to verify whether I can replace the percentiles with some measure
which does not require us to build an empirical distribution, a task which requires to
collect a fairly large number of flows per cache.

Fig. 2.10(b) depicts results for varying ε . Unfortunately, DBSCAN shows a
good clustering for a tiny interval of values of ε , e.g., ε = 0.035. For ε > 0.035,
DBSCAN merges edge-nodes together, so that µ > 1 and φ < 1. By investigating
further, I observe that the mean and standard deviation vary widely among caches
in the same edge-node. This variability is due to the tails of the distributions which
include outliers, e.g., very large RTT samples which bias the mean and standard
deviation, but have little or no impact on the percentiles. Indeed, the percentiles of
caches in the same edge-node are very similar, except those that gauge the tail (see
the 95th percentiles in Fig.2.5). This suggests that the choice of the percentiles to
populate the vector Pm(x) is more robust with respect to other simpler statistics. I
run other experiments with different percentile choices that I do not report for the
sake of brevity. I observe no significant differences if I avoid considering percentiles
in the tail. Similarly, I observe that using both RTT and TTL gives better results than
considering RTT or TTL alone.
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(b) ISP1-A
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(c) ISP1-C

Fig. 2.11 Pattern Dissimilarity values and number of noise points for different traces
from ISP1.

2.6 YouLighter’s highlighting capability

In this section I run YouLighter over the four traces in Tab. 2.1 to validate its capability
of highlighting changes in the YouTube CDN. The rationale is to let the ISP observe
macroscopic changes that may affect a large number of users, and which may last
for moderate time periods. I consider ∆T = 7 days, and I start a new snapshot at
midnight of every day. The choice of the time granularity is driven by the nature of
the anomalies that the ISP would like to highlight. Indeed, with too small time scales,
e.g., order of hours, more alarms would be possibly raised due to the natural control
system of CDNs. At the same time, an anomaly that lasts order of hours would
possibly be not relevant for end-users, since the system would return to normality
in short time. Snapshots form a sliding window that moves forward every day, and
aggregates statistics for the past seven days. ∆T = 7 days guarantees us to obtain a
statistically significant amount of feature measurements for each of the caches in the
set responsible of carrying the 90% of traffic.
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Fig. 2.11 shows the evolution of the Pattern Dissimilarity (red solid curve, left
y-axes) over time. It also depicts the evolution over time of the number of caches
that remain in the noise after clustering (black dashed curve, right y-axes). From left
to right, plots refer to ISP1-B, ISP1-A and ISP1-C. X-axes reports daily snapshots,
starting from April 1st, 2013.6

As shown, the Pattern Dissimilarity is very good at highlighting events. Indeed,
according to Sec. 2.4.3, a PD > 10 suggests that the clustering at time (n) is very
different to the one at time (n+ 1). Thanks to the data aggregation I obtain with
the clustering, I can easily analyze the highlighted events, and quickly identify the
edge-nodes involved in the changes. I investigate these events, and verify that they
all correspond to sudden changes in the edge-nodes used by YouTube in serving ISP
customers. In the following, I illustrate the most relevant ones, i.e., those with a
PD > 50.

2.6.1 Large event, involving all ISP customers

I first investigate an event YouLighter highlights in three different datasets. It starts
on May 2nd (snapshot 27), May 7th (snapshot 32), and May 13th (snapshot 38)
for ISP1-B, ISP1-A and ISP1-C, respectively. Pattern Dissimilarity peaks above 60.
Starting from then, both PD and the number of noise points are very large. This
indicates an unstable behavior, with many caches that DBSCAN cannot successfully
group together, and the clustering pattern that keeps changing day by day, for more
than 40 days.

To give the intuition of what happened, left plot of Fig. 2.12 shows the per-
cache percentiles of the RTT that I measure in ISP1-A before, during, and after the
anomalous event. First, I notice that most of the edge-nodes suddenly change: E-1, E-
4, E-5 and E-6 actually “disappear” from the clustering pattern, and during the event,
many previously unseen caches in edge-node E-2 start serving lots of customers
(observe the center plot). Second, and more surprisingly, the path properties to these
new caches is by far different from paths to other caches in E-2: the RTT percentiles
are much larger (95ms versus 15ms for the 50th percentile) and much more variable.
Despite these caches share the same IATA code (E-2), YouLighter identifies two
clusters since the path to reach caches differs. This is clearly shown by the RTT

6PoP referring to ISP1-C suffered an outage from mid July 2013 to the end of September.
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Fig. 2.12 Per-cache RTT and TTL percentiles during the ISP-wide anomaly in May
2013. Dataset ISP1-A.

percentiles, which makes them like to be in two different locations, with the former
possibly being severely congested. I call these new cluster Bad-E-2, in opposition to
caches showing small RTT, i.e., Good-E-2. While RTT distribution clearly allows
us to identify a sudden CDN change, the TTL measurements in the bottom plot
of Fig. 2.12 does not reveal any additional information with respect to what RTT
already does.

I now analyze the impact of such change on the Quality of Experience the ISP
customers perceive. I report in Fig. 2.13 the distributions of the download throughput
obtained by video retrieved by caches in E-3, the best edge-node to ISP customers,
Good-E-2 and Bad-E-2. The difference is striking: while videos served by E-3 and
Good-E-2 have throughput that allows to enjoy YouTube with no major impact on
the QoE (>1,000 kb/s in 63% of the cases), the throughput for Bad-E-2 caches
is below 500 kb/s (250 kb/s) in 75% (40%) of the cases, clearly not enough to
enjoy a video with a satisfiable QoE [51]. Tab. 2.2 corroborates above observation
reporting the fractions of video (and audio) formats seen in flows handled by both
Good-E-2 and Bad-E-2.7. For this analysis I consider only DASH formats, as for
these formats the cache delivering the video automatically adapts the quality of the
video stream depending on the congestion it measures on the path to the client. As

7Observe that in my dataset only a tiny portion (∼1%) of requests are HTTPS, and, thus, encrypted.
For the wide majority of the cases, the information about video and audio formats are exposed in
plain text in HTTP requests.
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Fig. 2.13 Throughput distribution for flows
served by E-3, Good-E-2 and Bad-E-2 dur-
ing the large anomaly I observe in May
2013. Dataset ISP1-B.

Format Good-E2 Bad-E2
144p 17.4% 31.7%
240p 18.3% 26.1%
360p 45.4% 35.7%
480p 14.5% 5.3%
720p 3.8% 1.0%

1080p 0.6% 0.2%
AAC128 80.3% 92.0%
AAC256 19.7% 8.0%

Table 2.2 Fractions of video and audio
DASH formats served by Good-E-2

and Bad-E-2. Dataset ISP1-B.

shown, Good-E-2 serves larger fractions of high-definition videos. Conversely, the
share of videos encoded with low-definition (144p and 240p) increases for Bad-E-2.
This confirms that Bad-E-2 experienced possible congestion during the monitored
period, severely impairing the QoE of the users.

By double checking this event with the ISP network support team, I confirm the
incident involved most of their customers, increasing dramatically the complaining
at their customer support. This confirms the pervasiveness of this event upon ISP
customers.

The accident reported above is an example which testifies that changes in the
CDN may raise issues in the video delivery, finally harming users’ experience. This
highlights how important for the ISP is to monitor and pinpoint changes in the
YouTube CDN. The task of measuring how the variability of the CDN structure may
impact on the QoE perceived by the users is beyond the focus of this chapter.

2.6.2 Other events for ISP1

I manually cross check other events, and find that some of those affected only part
of the ISP customers. This shows that YouTube CDN allocates customers to edge-
nodes using a fine grained granularity, i.e., the load-balancing allows to identify
small groups of clients by using the client IP address (or network). For instance, on
October 2nd (snapshot 180) and October 9th (snapshot 187) YouLighter highlights
two sudden changes in the ISP1-A and ISP1-C, as the Pattern Dissimilarity peaks
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number of noise points for dataset ISP2.
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during the second ISP-wide anomaly in

March 2014. Dataset ISP2.

over 60. Inspecting the astral distances one by one, I observe that the changes are
due to 3 edge-nodes (E-4, E-5 and E-6) out of 7 that suddenly “appear” in snapshot
180 and “disappear” in snapshot 187. The remaining four edge-nodes then serve the
videos for customers in ISP1-A and ISP1-C. I analyze the impact of the presence of
such caches on the QoE by measuring the aggregate download throughput before,
during and after their permanence, but I do not appreciate any significant change.
Also in this case I double check the event with the ISP support team and I confirm
that the change had no influence on the QoE as the customer support did not receive
any meaningful complaining in the considered period.

Finally, observe that for ISP1-B, I do not detect any change (PD = 0.12) in the
same period, as YouTube’s CDN keeps serving customers with the same group of
edge-nodes, and I do not notice any impact on the QoE for this event too.

2.6.3 Events in ISP2

As a last set of experiments, I run YouLighter on the ISP2 dataset, which I recall I
collect in ISP2, a different ISP in a different country. I run YouLighter with the same
parameters I tune for ISP1, i.e., without going through ε optimization. Indeed I aim
to check whether if the edge-node model that DBSCAN creates is general and robust
enough to work in a completely different scenario.

I repeat the experiment of Fig. 2.11 for ISP2 dataset, and I analyze the evolution
of the Pattern Dissimilarity and number of noise points. I report the results in
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Fig. 2.14. To check if the clustering correctly identifies the edge-nodes, I select
five different snapshots at random among the ones where YouLighter highlights no
events. Again, I use the IATA codes as ground truth, and I manually check IP address
subnets, RTTs and TTLs to see if some suspicious cache is present in a cluster. The
clustering results in perfect match with the (possible) edge-nodes in the ground truth.
This despite edge-nodes, path, and ISP in this dataset are completely different.

I then check two suspicious events. The first one occurs from March 7th to March
10th, 2014 (snapshots 1-4, PD > 60), and the second one happens on March 18th,
2014 (snapshot 12, PD > 50). I observe that the first anomaly is due to a change
in the network path to reach a small group of caches in E-2. I observe that this
deviation does not influence the QoE perceived by the users. For the second event, by
comparing the clustering at snapshot 12 with the following snapshot, i.e., snapshot
13 (March 19th), I observe a notable change in the infrastructure of the YouTube
CDN: as depicted in Fig. 2.15 which compares the per-cache RTT percentiles, all
caches belonging to edge-node E-7 disappear. Also in this case, the change has no
evident impact on users’ QoE, as the average download throughput does not vary.
However, I notice that the edge-node E-7 represents a much more expensive route
for the ISP2, since it is located in an remote ISP for which no peering agreements
are in place.

2.7 Countermeasures

In this section, I present some possible techniques that ISPs may consider to this end,
leaving a thorough design and analysis for future work.

Firstly, ISPs position allows them to partially control the network routing of
traffic. Thus, ISPs may employ traffic engineering techniques to control YouTube
traffic using both intra- and inter-routing algorithm. By using BGP, ISPs may
reduce congestion by redistributing traffic among different peering links [52]. By
announcing via BGP reachability of their network trough other Autonomous System
(AS) the ISP can influence YouTube cache allocation policy as well. For instance,
ISP1 used this technique to mitigate problems highlighted in Fig. 2.13. In that
specific case, ISP1 forced its AS number to be seen as reachable through another
ISP (ISP2), located in a different country. This caused YouTube CDN to change
the cache allocation policy so that customers from the ISP1 were directed to a edge-
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node located in the ISP2 country. YouTube traffic was then coming from ISP2 to
ISP1, through a high-capacity and uncongested peering link, de facto solving the
congestion problem.

A second and more controversial solution would be using DNS directly. By
enforcing policies on its DNS servers, the ISP may force a video request to be
served by a specific edge-node or even by a specific cache, overruling the decision
of the YouTube CDN. As explained in Sec. 2.3.2, as soon as a client requests
a video, YouTube selects a cache and returns the cache hostname to the client
e.g. r7–-fra07t16.c.youtube.com. After receiving this hostname the client
sends a DNS query to the DNS server (typically managed by the ISP) to retrieve
the IP address of the hostname. As a consequence, in case the ISP knows that
r7–-fra07t16.c.youtube.com performance are poor, the ISP DNS can return the
IP address of a different cache. This is possible since according to [30, 31], any
cache can serve any video. This solution, allows the ISP to select which cache
has to manage each request. Therefore the ISP may potentially override YouTube
load balancing policies. Some drawbacks have to be faced. First, even if previous
studies discovered that any cache can serve any video, the ISP can not be sure that its
choice will not introduce a bigger latency due to cache miss, that can cause a further
redirection to other caches. Second, the ISP can not control whether a cache will be
switched off for maintenance. Observe that an ISP attempt to react to changes in the
CDN infrastructure could cause further reactions on YouTube’s side too. As such,
careful investigations must be done to design and study this kind of policies.

2.8 Conclusions

In this chapter I proposed a novel system, named YouLighter, that leverages passive
observation of network traffic and unsupervised machine learning techniques to
automatically monitor and identify changes in the YouTube CDN. Based on the well
known DBSCAN clustering algorithm, YouLighter is able to automatically group
thousands of caches into few edge-nodes. To then compare the results of clustering
obtained considering different snapshots collected in consecutive time intervals, I
propose the Pattern Dissimilarity which allows to easily pinpoint changes in clusters.

YouLighter is validated using a large dataset of traces reporting the activity of
users regularly accessing YouTube. The results are excellent: I show that after a
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short and simple tuning procedure to find the best setup for DBSCAN, YouLighter
can detect anomalous events that happened in YouTube CDN. For instance, I could
notice a large transformation in a crucial edge-node of YouTube CDN which notably
impaired the QoE perceived by the monitored ISP customers for more than 40 days.

I believe that YouLighter may represent a promising opportunity for ISPs, net-
work administrators, developers and researchers to monitor the traffic generated
by YouTube CDN. ISPs, for instance, may employ YouLighter to design automatic
traffic engineering policies or to promptly react when changes in YouTube CDN
impair the QoE of their customers.



Chapter 3

Exploring Browsing Habits of
Internauts: a Measurement
Perspective

3.1 Introduction

This chapter presents a paper titled Exploring Browsing Habits of Internauts: a
Measurement Perspective. This paper has been published in the Asian Internet
Engineering Conference (AINTEC) 2015 conference.1

The characterization of users’ browsing habits has always attracted the interest
of researchers. Since the seminal work of Catledge [53], many studies have been
focusing on Web usage, for specific applications [54], or devices [55–57], or at usage
of social networks [58]. Understanding how the content is consumed by users is
fundamental to improve service design, to offer novel solutions, and, in general, to
augment my understanding of the Internet.

In this work, I focus on the exploration of users’ habits when browsing the Web.
In particular, I take the point of view of the network, from where DNS requests of
users are observable, and from which I can extract the names of the services they are
accessing. To simplify the picture, the service is defined by the “second-level domain”

1Danilo Giordano, Stefano Traverso, and Marco Mellia "Exploring browsing habits of internauts:
A measurement perspective" Proceedings of the Asian Internet Engineering Conference (AINTEC).
ACM, Bangkok, Thailand — November 18 - 20, 2015, doi: 10.1145/2837030.2837038
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found in DNS traffic, e.g., google and nyt from www.google.com and www.nyt.com. I
leverage actual anonymized traffic traces collected from operational networks, where
25,000 people access the Web from home. I consider a time window, e.g., one hour,
or one day, and I observe how many different websites an Internaut visits, if she
keeps discovering new services, or, conversely, if she exhibits repetitive patterns that
potentially allows one to build a profile to identify her in a crowd.

I first provide a characterization of the distinct services accessed by the entire
population. In total, I count more than 400,000 services, with only very few of
them being well-known and very popular. Interestingly, the discovery process does
not saturate even after two weeks of observation. I next check how the number of
common services grows over time, i.e., those services that are accessed in multiple
periods of time. Intuitively, one would expect that the number of times people access
a given service increases for increasing observation period. I instead find out that
there is a large number of services that are accessed only once, and by single users.
Surprisingly, the growth rates of the two discovery processes (the total number of
distinct services, and the total number of common services) is proportional, hinting
for a random discovery process.

I then turn my attention on how single users browse the Web, and check if
the contacted services can be used to form a fingerprint of each person. I use the
Jaccard index to quantify how similar is the browsing performed by i) the same user,
and ii) two different users. Intuitively, one would expect that the browsing activity
performed by the same user is repetitive over time. Instead, I find limited similarity
suggesting a more random exploration of the Web. The affinity among two random
users is even more limited, with most of the “common” services being only the most
popular ones.

Given this, I run a simple experiment: I test if it could be possible to identify a
target user by observing her browsing habits. I extract a user model by monitoring the
services she visits during a period of time. Next, I compare the model against 1000
users in a different period of time. The experiment shows that it is possible to identify
the target user in less than 50% of cases. This suggests that each individual user has
unique interests, but these change over time complicating the task of building a good
fingerprint.
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3.2 Related Work

In my work I consider how people browse the Web by characterizing the services
they access to, as exposed by the DNS names of servers, or hostnames. I rely on DNS
information to simplify my analysis, and to extract information from passive measure-
ments also in case encryption is in place. Indeed, while HTTPS is becoming more an
more popular thus preventing passive extraction of data from traces, no deployment
for encryption of DNS traffic is in place yet. Indeed, DNSSEC [59] provides data
integrity and authentication, but no confidentiality, i.e., traffic encryption.2

Several works tried to profile users based on their browsing behavior. Authors
of [62] tackle the user tracking problem. They exploit HTTP, HTTPS and SSH
information to profile and re-identify users over time, using the cosine similarity
and clustering techniques based on monthly profiles. Their results show that even
by using a month-long profile, the false positive rate is very high 68% for HTTP
and 21% for SSH. This confirms the difficulty of tracking user based on their traffic.
Similarly, authors of [63] study users’ web history collected from browsers to build
fingerprints. However, my work differs substantially, as I focus on DNS traffic which,
first, can be easily observed from a network layer perspective, and, second, offers a
broad view on all the services contacted by the users.

In the field of identification of DNS patterns, authors in [64] study the feasibility
of tracking users looking on their DNS traffic. Using a trace collected in a campus
network, they evaluate different classification techniques and their effectiveness.
Results show that the tracking precision can reach up to 86% by using the Jaccard
index as distance metric in a controlled scenario. However, in real case scenarios,
accuracy drops to ≈ 50%. My work differs as I present a much more detailed
characterization of browsing behavior. Moreover, data used in [64] is of 2010, while
the Web as evolved significantly. Finally, authors in [65] propose a high level co-
clustering algorithm called Phantom to clusterize hostnames of servers based on the
clients that access them. Differently to my work, they consider classes of services
(e.g., e-commerce, news) instead of single services (e.g., ebay, nyt).

2 There are proposals that address the problem of DNS traffic encryption, the most notable one
being DNSCrypt [60]. Their deployment is hampered by the significant infrastructure changes they
require[61].
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Trace Period Users HTTP(S) flows
VP1 5-18 May 2014 12,262 532M
VP2 7-20 April 2014 13,473 614M

Table 3.1 Details of the datasets considered in this study.

3.3 Dataset

To build the dataset upon which I base my analysis, I rely on a passive probe running
Tstat (see Sec. 1.1 for more details), which is installed in the PoP (Points-of-Presence)
of the operational network of a national ISP.

For this work, I consider two anomymized 14-day long datasets, VP1 and VP2
respectively, collected from two different Vantage Points, located in PoPs in two large
cities in the same country. In total, the datasets offer a snapshot of Web browsing
activity of more than 25,000 residential customers. Table 3.1 provides details of the
datasets. As it can be seen, more than a billion entries are at my disposal.

In the rest of the paper, unless differently specified, I show results for VP1 as
VP2 shows similar results.

3.3.1 Data extraction

For my study, I am interested in a specific subset of the TCP information collected
by Tstat. In particular, I am interested in the data extracted by DN-Hunter, which is
particularly useful for unveiling services accessed from simple TCP logs.

Hence, for each TCP flow carrying Web traffic, I extract: (i) the timestamp at
which the flow started, (ii) the anonymized IP address of the client, which I employ as
user ID hereinafter3, and (iii) the hostname of the server as recovered by DN-Hunter.

3.3.2 Service definition

The aim of this study is characterizing the Internet users’ online activity, and the
information they expose. I am thus interested in which “services” users access to, as

3The ISP assign static IP addresses to customers’ access router, so that the client IP address is a
stable and consistent ID.
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exposed by the server hostnames. Observe that the hostname offered by DNS is often
redundant or not particularly interesting. For instance, consider www.google.com or
www.nyt.com. Clearly, the so called “second-level domain” is the most significant
part, e.g., google and nyt, which is the one that identifies the service being accessed.
Similarly, www.google.de or www1.nyt.com offer little or no additional information.
Hence, I consider only the second level domain to identify the services in the
following.

Some considerations hold. First, when a user accesses a website, the browser
generates a lot of different requests, one for each object composing the webpage.
Most of these objects are being served by servers which are not related with the
service the user is interested into, but they are used to support the page delivery.
For instance, Content Delivery Networks (CDNs), or advertisement platforms, or
video streaming caches are regularly contacted when browsing a webpage. These
are support services and do not identify actual services, i.e., the name of the service
the user is interested into. Unfortunately there is no easy way to identify them, so
that I cannot actually filter them. Second, the frequency with which these support
services are contacted is very high [66]. As I will show in Sec. 3.5, the most popular
services are indeed support services, which however do not characterize the actual
browsing habits of a user. In section 3.5, I provide a characterization of their impact.

If not otherwise stated, the results presented in the remainder of the paper are
obtained from the analysis of dataset VP1. However, all presented experiments have
been conducted on VP2 too, and I could not observe any significant difference.

3.4 Methodology and Metrics

In the following, I provide a formal description of the methodology upon which I
base my analysis. I follow a simple approach based on set theory. Given a flow
i, generated by user ui at time ti and accessing service si, and considering a time
interval of duration ∆T , I define the set of services S a user u accessed in the time
interval starting from t0 as

S(u, t0,∆T ) = {si | t0 ≤ ti < t0 +∆T, ui = u} (3.1)
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Similarly, I can define the set of services accessed by all users during a period of
time as

S(∗, t0,∆T ) = {si | t0 ≤ ti < t0 +∆T} (3.2)

Let |S| be the number of elements in the set. I can define the similarity between
the two sets by computing the Jaccard index [67] as

Sim(S1,S2) =
|S1∩S2|
|S1∪S2| (3.3)

It returns the ratio between the number of common elements over the total number
of distinct elements in S1 and S2. Sim equals 0 if there is no common element. If S1
and S2 contain the same elements, Sim equals 1.

Note that I do not consider the frequency with which a service is accessed, but
only its presence in the set. Indeed the frequency is highly skewed because of the
presence of support services. As I show in the following section, these are contacted
by users’ browsers much more frequently than actual services.

3.5 Aggregate Characterization

In this section I present measurement results that are useful to understand how an
aggregate of ≈12,000 Internet users from VP1 accesses the Web. This helps in
characterizing the dataset size and growth in time.
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Fig. 3.3 The 20 most contacted services in VP1. Actual and support services in red
and black, respectively.

3.5.1 Service characterization

Starting from t0 = May 5th, Figure 3.1 plots the cumulative amount of distinct
services I observe over the 14 days of time, i.e., |S(∗, t0,∆T )| for increasing ∆T . In
total I count about 400,000 distinct services. Interestingly, I observe that, despite
I focus on second level domain name only, the number of newly accessed services
keeps increasing over time, and does not saturate over the considered period. This
reflects the humongous “catalog” of services that people can access on the Internet.
The curve exhibits a daily pattern that reflects the typical day/night activity users
follow when browsing the Web.

I next analyze the popularity of the services and how it changes when increasing
the observation window. Figure 3.2 reports, for several observation intervals ∆T ,
the service rank according to their normalized popularity, which I compute as the
fraction of users accessing a given service among the population of active users
at the considered time interval. Each curve corresponds to a different time scale.
In particular, the two bottom curves report the ranks computed on one-hour and
four-hour long activity periods at peak time for the first day of my dataset, i.e., for
t0 = May 5th at 8pm, ∆T = 1h and ∆T = 4h respectively. For the remaining periods,
t0 = May 5th at 0am, and I consider ∆T = 1,3,7,14 days. Notice the log-log scale.
Independently on the time scale, all curves present a Zipf-like distribution, with a
few services being very popular, and the vast majority of them being contacted by
a small number of users. Zipf’s distribution is known for governing many aspects
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of the Internet [68]. It entails that the popularity of services quickly decreases, so
that the majority of them are actually contacted by a handful of people, and only few
services can reach large popularity. Indeed, considering the ∆T = 24h, only the top
0.26% services are contacted by more than the 10% of active users, and only ≈36%
of services are contacted by more than one user. The shift of the curves toward the
right part of the plot reflects the growth in the number of distinct services seen in
Figure 3.1. Conversely, the shift toward the top of the plot reflects the growth in the
number of active users. Finally, the shift of the knee toward the upper right part of
the plot reflects the increase of common services.

Most of the common services are actually support services. To show their impact,
I focus on the service popularity rank computed considered ∆T = 1 week, and
detail the top 20 most popular services. I report them in Figure 3.3. Names in red
correspond to actual services, while names in black are support services which
the browser contacted, but which the user did not explicitly access. Interestingly,
among the 20 top popular services, only four, i.e., google, facebook, twitter and
yahoo, are those expected to be actually requested by the users. Others are CDNs
(akamai, googleusercontent, fbcdn - the Facebook CDN, ytimg - the YouTube CDN
serving images, cloudfront - the Amazon CDN), or advertisement and user-tracking
platforms (google-analytics, doubleclick, googleadsservice, googlesyndication,
scorecardresearch, adnxs, imrworldwide), or cloud service (googleapis, gstatic,
amazonaws, verisign). Investigating further, the vast majority of the services a
user encounters during her online activity are support services, and this is nicely
reflected in DNS traffic. Those are among the most popular services, as clearly shown
by Figure 3.3. However, those are only a fraction of the services users access in the
Internet. For instance, by randomly picking 100 services, and manually checking
them, I count approximately 15% were support services, with 85% being actual
services.

Next, I conduct a simple experiment to calibrate the parameter ∆T described
in section 3.4. I divide the dataset in smaller portions of duration ∆T . Hence, I obtain
time bins aggregating the services contacted by all users, and that I represent as
S(∗, ti,∆T ) for which i ∈ 1, ..., L

∆T , where L is the total duration of the dataset. Then,
I consider each bin pair
(S(∗, ti,∆T ),S(∗, t j,∆T )),∀i, j ̸= i. I define the set of services which are present in
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Fig. 3.5 Heatmaps reporting the matrices of similarity
calculated across 24-hour long bins for two example users.

both bins, i.e., the common services, as

C(ti, t j,∆T ) = S(∗, ti,∆T ) ∩ S(∗, t j,∆T ) ∀ i, j ̸= i, (3.4)

and I compute the average number of common services over all possible pairs for a
given ∆T as

E[|C(∆T )|] = ∑i, j ̸=i |C(ti, t j,∆T )|( L
∆T

)( L
∆T −1

) (3.5)
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For each bin pair I also compute the union, thus obtaining the set of distinct services
appearing in the two bins as

D(ti, t j,∆T ) = S(∗, ti,∆T ) ∪ S(∗, t j,∆T ) ∀ i, j ̸= i (3.6)

and I compute the average number of distinct services over the number of pairs for
∆T as

E[|D(∆T )|] = ∑i, j ̸=i |D(ti, t j,∆T )|( L
∆T

)( L
∆T −1

) (3.7)

I now compare the growth of the number of common services to the growth of
the number of distinct services for increasing ∆T . One would expect that the number
of common services would grow faster, since, for increasing time, the chance that a
service appears in two different snapshots of time is higher. Figure 3.4 shows the
results. It reports |C(∆T )| versus |D(∆T )| for different values of ∆T . Blue bars report
the 20th- and 80th-percentile of the distribution among all pairs. Surprisingly, observe
how the growth of number of common and distinct services is linearly proportional,
i.e., the number of common services grows with a rate that is proportional to the
growth of the number of distinct services. The ratio among them is 1.44. This entails
that the common services are approximately 35% of distinct services, independently
with respect to the size of the observation window.

In summary, the catalog of services in the Internet is very large. People keep
accessing previously unseen services, so that the total number of distinct services
keeps growing over time. Surprisingly, the chance that one visits a service that has
been already visited or a new service does not depend on the observation interval.
Given this, for the experiments presented in the remainder of the paper I choose
∆T =24 hours.

3.5.2 Population characterization

I now focus on observing the users’ activity. In particular, I am interested in charac-
terizing users based on the amount of services they contact, to check for instance
for the presence of heavy-hitter users, and occasional users. For each user, I count
the number of visited services, considering one day. Results, not shown here for
lack of space, show that in a single day 50% of users contacts less than 100 services,
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with only 15% of the most (least) active users that contact more (less) than 250 (30)
services.

I leverage this distribution to arbitrarily define three classes of users upon which
I will base the experiments presented in the following. First, I define as “inactive”
the users who contact less than 50 services per day. For instance, for the first day,
these represent 36% of users. I next pick 1000 “moderately active” users, set MA ,
as those users who contact from 650 to 750 services over the whole trace period.4

Finally, I consider the top 1000 most active users, i.e., those with at least 1200
contacted services, which I call “very active”, set VA .

3.6 Characterization of Users’ Habits

In this section I employ the Jaccard index to first observe how repetitive is users’
browsing by comparing services contacted during different time periods. Then, in
the second part of the section, I compare browsing habits among different users.

3.6.1 Are user’s habits similar over time?

I aim at gauging whether users tend to be repetitive in their browsing activity. To
this end, I consider all users in the very active and moderately active classes. For
each user u, I build the subsets containing the services corresponding to their activity
in different time period ti of duration ∆T =24 hours. For each user, I obtain 14
independent sets, S(u, ti,∆T ), one for each day in the trace. Next I compute the
similarity index across all set pairs

Sim(u, ti, t j) = Sim(S(u, ti,∆T ),S(u, t j,∆T )) ∀i, j ̸= i. (3.8)

To provide an intuitive representation of the outcome of the experiment, Figure 3.5
reports two examples of users I randomly picked in the very active (top) and mod-
erately active (bottom) classes. For each pair of days (ti, t j), it reports Sim(u, ti, t j)

using a color map; The darker the color, the higher is the similarity. Days start from
Monday the 5th of May, from the bottom left of the plot.

4I chose these thresholds to be just above the median, so that I am relatively confident to focus on
a set of consistently active users.
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In general, I observe that the similarity is fairly low, with most of values that are
smaller than 0.5. For the active user, 3.5(a) the similarity index decreases during
the weekends (notice the yellow columns on Sundays). This corresponds to the user
not heavily browsing during the weekend, but leaving some device connected to the
network, and periodically polling web services, e.g., looking for software updates,
or syncing with cloud services. As such, there is a common substrate of support
services that are contacted, and that generate a minimum amount of similarity.

Consider the case of the moderately active user, 3.5(b). Some days present a
very high similarity, while others seem lightly similar. The white bar on Monday
is due to the fact that the user contacted less than 50 services during that day, thus
falling in the “inactive” group for which I do not compute the similarity at all. In
general, it is hard to identify a regular pattern. For instance, the activity the user
performs on Wednesday, first week, is very dissimilar to any other day in the dataset.
Or conversely, Tuesday of the first week, and Wednesday of the second week exhibit
a very high similarity. Yet, the same Tuesday results rather different when compared
to the following Wednesday.

3.6.2 Impact of the number of contacted services

Next, I explain how the properties of the considered time periods impact the similarity
index Sim(u, ti, t j). In particular, I investigate the effect of the number of services
found in the two time intervals. To this end, for each user u in the moderately
active class MA , and for all pairs (ti, t j), I compute the similarity Sim(u, ti, t j). Let
m = min

(
|S(u, ti,∆T )|, |S(u, t j,∆T )|

)
be the minimum number of services in the

subsets of services contacted during the considered time intervals. I plot Sim(u, ti, t j)

versus m for all possible users u and all possible pairs (ti, t j).

The result is depicted as a scatterplot in Figure 3.6. Curves reports the average
(solid red curve) and median (dashed red curve) similarity for samples that fall in
bins of size 10, i.e., where of 10k < m < 10(k+ 1),k = 1,2, . . . ,30. Observe that
when the minimum number of services is small (m < 50) the similarity is on average
very small, and varies widely, reaching 1 for very small values of m. This is due to
time period pairs in which the number of contacted services is very low, and their
intersection contains very popular services such as, e.g., google or google-analytics,
the majority of which are support services. This further justifies the choice of not
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Fig. 3.6 Per-bin-pair similarity index vs the minimum number of services, VP1.

computing the Sim index when the minimum number of services contacted in one
of the two bins is below 50. Conversely, as the number of services grows, the
similarity score becomes higher, and at the same time the maximum observed score
decreases. Looking at the mean and median values, both stabilizes to a value of
≈ 0.4. Conversely, both are below 0.25 when the minimum number of services is
smaller than 50. This is explained by the fact that, in general, sets with a small
number of services are compared against sets with large number of services. By
definition of the Jaccard index, the denominator (the number of element in the union)
has a size which is much larger than the numerator (the number of elements in the
intersection).

I complement above observations with another experiment. Again, for each
moderately active user u ∈ MA I collect the number of contacted services in
each time period ti, and I compute the number of elements it contains, i.e., ni =

|S(u, ti,∆T )|. I then consider all pairs (ti, t j) i ̸= j, and consider a discretised grid
counting the number of services in buckets of size 10. In other words, I count
the number of pairs falling in each bucket. Intuitively, this shows the number of
pairs having a given number of services in each. The result is a symmetric matrix,
depicted in Figure 3.7. Darker colors are assigned to buckets containing larger values
elements. The plot shows that a considerable fraction of pairs falls in the area where
the number of services is smaller than 50, with a very large number of pairs that falls
in the (< 10, < 10) bucket (observe the dark block in the origin). These are time
periods during which the user is actually inactive, and during which mostly support
services are contacted. As explained above, when the number of services is so small,
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the similarity index computation leads to very variable results, and thus I prefer to
not compute it.

Observing Figure 3.7, I notice that the largest portion of pairs falls in the area
between 70 and 220, i.e., where the number of pairs is large, and thus allows us to
obtain a significant similarity measure.

3.6.3 Self similarity

In this section I analyze how habits of the same users look similar to each other. I take
each moderately and very active user separately, and for each of them I compute the
Sim(u, ti, t j) index across different time periods (ti, t j) for which they results active,
i.e., ni ≥ 50, n j ≥ 50. Then, for each class of user, I build the distribution of the
similarity values. Results are depicted in 3.8(a). First, observe that similarity is higher
than 0.1, and it saturates at Sim = 0.7. This means that, independently of the volume
of their activity, the sets of services contained in time bins are significantly different.
In other words, users tend to contact same services over time, but the number of new
services is however fairly large, meaning that the degree of repetitiveness is low. No
significant difference is observed comparing very active and moderately active users.
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Fig. 3.8 Distribution of the similarity index computed across time bins belonging to
the users in very active and moderately active classes.

3.6.4 Similarity across users

In this section I analyze how habits of different users look similar to each other.
Again, I consider the services contacted by users in different time periods. I calculate
the Sim index across different users, and I build the distributions for the values
obtained separately for the very and moderately active users. I report the results
in 3.8(b). As shown, the similarity among different users is very small, and smaller
than the one among the same user, cfr. 3.8(a). Indeed, CDFs now saturate at Sim =

0.3, meaning that the activity of different users is in 70% of cases very different.
As above, no significant difference is observed when considering very active or
moderately active users.

This may induce one to conclude that a user is easily identifiable by the set of
services she contacts. I next run a simple test to check weather this intuition is
correct or not.
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Fig. 3.9 Distributions of the number of times a user is found to be the X th most
similar to herself across different observation windows for three different filters.

3.7 Building a simple user classifier

I run now a simple test to check the capability of correctly identifying a user based
on the set of services she contacts. To this end, I focus on the moderately active user
class. I use the datasets I obtain from the fist day of VP1 to build a user signature, and
then check if it is possible to recognize her in the subsequent days. In more details,
for each user u ∈ MA , I extract the set of services it contacts on the first day t0,
S(u, t0,∆T ). Next, I compute the similarity index against, S(ui, t j,∆T ),∀ ui ∈ MA

and j ∈ {1, ...,13}, i.e.,

Sim(u,ui) = Sim(S(u, t0,∆T ),S(ui, t j,∆T )). (3.9)

I then rank users for decreasing similarity. Intuitively, I want to check how many
times the most similar user turns out to be u in a group of a 1000 users {ui}.

In my experiments I observe that the choice of the services upon which I compute
the similarity is crucial. For instance, I have seen in section 3.5 that the top popular
services tend to be support services that users connect to, but do not explicitly browse.
Since those are extremely popular, the chance they are in the common set is high,
but they do not characterize the user behavior. Similar, those services that do not
belong to the common service group are by definition accessed once by one user.
Those again would not contribute to identify the user behavior in a different time
period. Hence, I create three simple policies to filter the services to build the sets
used to characterize the user:
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Fig. 3.10 Fraction of times users are successfully identified by their profile at day t0
over the subsequent days.

•No Filter: no filter is applied and all services are considered when building
S(u, ti,∆T ).

•Top Filter: I filter out the most contacted services, i.e., those contacted by more
than 50% of users considering the whole dataset.

•Top+Bottom Filter: I filter the most contacted services considering the whole
dataset, plus those accessed only once in each S(u, t j,∆T ).

Figure 3.9 depicts the probability that the user u is found to be among the X th

most similar users to herself in the following days, being X the position in the
similarity rank. For instance, the leftmost point reports the probability that the user
is found to be the first in the rank, i.e., argmaxui(Sim(u,ui)) = u.

As shown, when no filtering is applied, in 36% of the cases I can successfully
identify a user. Conversely, in 50% of the cases a user has at least other 9 users
who exhibit a higher similarity index than herself. The Top and Top+Bottom filters
achieve better results, but the chances for a user to be uniquely identified increase
only to 44%. All these observations demonstrate that users’ browsing habits are
only partially repetitive enough to allow one to easily build a model of the user so
that later would it be possible to identify it in a population of Internauts. My results
confirms previous finding [64].

3.7.1 Time stability of the model

I repeat the above experiment considering how similar the results are when comparing
sets obtained from far apart days. For a user u, I build a model considering the



56 Exploring Browsing Habits of Internauts: a Measurement Perspective

services she visits during the first day, i.e., S(u, t0,∆T ), to = May 5th. I then compute
the similarity for all days in the following two weeks among all ui ∈ MA . For this
experiment I employ the Top-Bottom filter. Figure 3.10 shows the probability to
correctly identify a user u in the next days, i.e., when Sim(u,u, t j) > Sim(u,ui, t j).
I report results for VP1 and VP2 to show how similar are results. Interestingly, I
observe that the probability to correctly identify the same user decreases over time.
This hints that users tend to visit different services depending on the day of the week,
and their online activity slightly differentiate over time. However, observe how after
one week the similarity index increases again. This suggests that users tend to exhibit
a weekly periodicity when browsing the Web.

3.8 Conclusions

In this chapter I leveraged an actual dataset I obtained from an ISP to analyze how
Internauts browse the Web by using simple DNS traffic.

Similarly to other studies in the literature, I observed that few hundreds of
services are contacted by a significant fraction of users, but only a few intentionally
accessed. Indeed, a large fraction of services like CDNs or online trackers are
automatically contacted by users’ client, and this is nicely reflected at DNS level. I
have also shown that users keep visiting and discovering novel services, so that the
total number of distinct services keeps growing. Interestingly, I observed that the
number of new distinct services grows with a rate that is proportional to the growth
of the number of services contacted by multiple users.

When trying to evaluate if the behavior of users follow a periodic and unique
profile, I have seen that in practice the similarity of the browsing activity during
two different periods of time is rather limited. This surprisingly entails that users
are not repetitive in their browsing. However, the practice of building user profiles
based on fingerprints made by services contacted is very unreliable. Indeed, in my
experiment I could uniquely identify users based on their activity in only 44% of the
cases. Moreover, I observed that the profiling effectiveness reduces over time.



Chapter 4

A First Characterization of Anycast
Traffic from Passive Traces

4.1 Introduction

This chapter presents a paper titled A First Characterization of Anycast Traffic from
Passive Traces. This paper has been published in the The Traffic Monitoring and
Analysis (TMA) 2016 workshop.1

IP anycast allows a group of geographically distributed servers to share a common
IP address. When a client contacts an IP anycast server, the packets are thus routed
at the network layer to the closest address according to the BGP routing distance.

Deploying an IP anycast service is relatively easy and introduces several advan-
tages such as load balancing between the servers, DDoS mitigation, and increases
the reliability. This is the primary reason of its adoption in multiple stateless services
running on the top of UDP, e.g., DNS root and top level domain servers, 6-to-4 relay
routers, multicast rendezvous points, and sinkholes.

When considering stateful services, the usage of IP anycast has been discouraged
primarily due to its lack of control and awareness for the server and network load.
Indeed, IP anycast relies on BGP routing, meaning that any routing change could

1Danilo Giordano, Danilo Cicalese, Alessandro Finamore, Marco Mellia, Maurizio Munafò,
Diana Zeaiter Joumblatt, and Dario Rossi. "A First Characterization of Anycast Traffic from Passive
Traces" Proceedings of the The Traffic Monitoring and Analysis (TMA). Louvain La Neuve, Belgium
— April 7 - 8, 2016, http://tma.ifip.org/2016/papers/tma2016-final30.pdf

http://tma.ifip.org/2016/papers/tma2016-final30.pdf


58 A First Characterization of Anycast Traffic from Passive Traces

re-route the traffic to another server. This could break any stateful service, e.g.,
causing the abortion of TCP connections, and could cause the dropping of any
application layer state. Moreover, the relatively slow convergence of routes and the
purely destination based routing in IP make difficult design reactive systems where
traffic can be arbitrarily split among multiple surrogate nodes. This initially led the
Content Delivery Network (CDN) companies to use other load-balancing techniques,
i.e., leveraging DNS or HTTP to direct the customer requests to the best surrogate
server [69]. Over the years however, several studies proposed techniques to overcome
these issues, showing that it is possible to leverage anycast for connection oriented
services [70–72]. This let companies to deploy Anycast-enabled CDNs (A-CDN),
in which multiple surrogate servers use the same IP address whose reachability is
managed by IP anycast. CacheFly 2 was among the A-CDN pioneers, followed then
by other companies including Edgecast and CloudFlare to name the most popular
ones. My own recent work [73] shows that A-CDN technology is mature and readily
available, with Internet service providers (e.g. AT&T Services), social networks (e.g.
Twitter) and cloud providers (e.g Microsoft) having adopted IP anycast to provide
stateful services.

However, to the best of my knowledge, previous works that focused on A-CDNs
limitedly leveraged active measurements to discover geolocation of anycast replicas,
or to benchmark the performance of some specific deployment (see Sec.4.2 for more
details). These works show considerable interest in the topic, but they fall short in
providing an actual characterization of A-CDNs from the end-user point of view:
in other words, how much traffic do they serve? which services do they offer? etc.
In order to answer these questions, I leverage passive measurements, and offer a
characterization of traffic served by A-CDNs in real networks. I use the IP anycast
prefixes discovered by the largest census in [73], where about 1600 /24 subnets have
been discovered hosting IP anycast servers. This list is compiled using active probing.
Given this list, with the aim at providing a first characterization of modern usage
of A-CDNs, I use traffic traces from approximately 20,000 households collected
from a large European ISP for the entire month of March 2015 (when the census
was performed). This large dataset allows us to obtain a snapshot of (i) how popular
A-CDNs are, (ii) which services they support, (iii) which are the characteristics of
traffic they serve and (iv) their proximity and affinity performance.

2 http://www.cachefly.com/about.html

http://www.cachefly.com/about.html
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I summarize my main findings as follows:

• I confirm IP anycast to be not anymore relegated to the support of connec-
tionless services: in a month I observe over 16,000 active anycast servers
contacted via TCP, mapping to more than 92,000 hostnames.

• While hard to gauge via passive measurement, and despite the limited scope
that my single vantage point offers, in general I observe stable paths, with only
a handful changes during one month.

• Both large players like Edgecast or Cloudflare, and smaller but specialized
A-CDNs are present: content served include heterogeneous services such
as Twitter Vine, Wordpress blogs, TLS certificate validation and BitTorrent
trackers. Footprint of A-CDN is also very different, with some being pervasive
enough to have servers at few ms from customers, while others have fewer
replica nodes that turn out to be more than 100ms far away.

• In my datasets, A-CDNs are fairly popular: 50% of users encounter at least
an A-CDN server during normal web activity. Thus, penetration of A-CDN is
already very relevant.

• Most of TCP connections last few tens of seconds and carry a relatively
small amount of bytes; surprisingly however, I see video and audio streaming
services being supported by A-CDNs, whose TCP flow last for several hours.
The latter could be affected by sudden routing changes that could break TCP
connections. However, given the infrequent occurrence of such events, it is
hard to measure (and suffer from) it in practice.

4.2 Related work

I can categorize the large body of work that investigates IP anycast in three coarse
categories: (i) anycast improvement proposals, (ii) studies of anycast performance of
specific deployments, (iii) broad assessment of anycast adoption. As for (i), several
studies, starting from seminal work such as [74] and culminated recently in [72],
propose architectural improvements to address the performance shortcomings of IP
anycast in terms of scalability and server selection. They differ from my work since
I instead aim at studying the broad variety of existing deployments in the wild.
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Concerning (ii), several works focus on deeply studying specific aspects of
anycast performance. With few exceptions [75], and in spite of evidence [76]
that anycast is successfully used beyond the DNS realm, most of the work targets
DNS as the anycast service of interest. The typical key performance indicators
include server proximity [77–80, 75], client-server affinity [81, 77–79, 82, 75],
server availability [78, 79, 83], and load-balancing [79, 82]. All the methodologies
involve active measurements, and thus they are orthogonal to this work. Closest work
to ours under this perspective are [82, 77], which base their investigations on passive
measurement methodologies. In both cases, authors’ collection point is located at
the anycast servers, so that they obtain a complete view of all user requests served by
specific single server. Conversely, my vantage point is located close to the customers
in an ISP network, and it allows us to gather a complementary view of all anycast
services, albeit from a possibly limited set of users and a single country.

Finally, concerning (iii) there has been a renewed interest in a broad assessment
of anycast services, with techniques capable of detecting anycast usage [84], or even
enumerate [85] and geolocate [86, 73] anycast replicas. All these techniques perform
active measurement to infer some properties of anycast services: in particular,
[84, 73] perform censuses of the IPv4 address space to find evidence of anycast
deployments via active measurement on the data plane. Despite these studies provide
a broad characterization of anycast deployment, they however fail in capturing how
popular such services are, how much traffic they attract, and which applications
they serve. These are precisely the questions I address in this chapter, taking the
census of IP anycast subnet discovered in [73] as a starting point, and using a passive
methodology to complement and refine the general picture that can be gathered with
active measurements.

4.3 Methodology

4.3.1 Anycast subnet lists

In a nutshell, my workflow first extract the subset of flows that are directed to anycast
servers, and then characterize the traffic they exchange with actual internet users
by leveraging passive measurements. To identify anycast servers, I rely on the
exhaustive list of /24 subnet prefixes that result to host at least one anycast server
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Fig. 4.1 Percentage of clients that contact at least one A-CDN server in each 1h time
slot, both curves overlap.

according to the IP censuses I performed in March 2015 [73].3 As described in [73],
I compile an exhaustive list of 1696 anycast subnets, by simultaneously pinging
an IP/32 from all valid IP/24 networks from PlanetLab probes. The scan runs on
all IP address range. Next, I ran the anycast detection technique developed in [86]
to identify IP/32 anycast addresses (i.e., located in more than one geographical
location). Intuitively, I look for RTT measurements that violates the propagation
time constraint from different vantage points. For instance, when pinging an host
from two probes, the sum of the RTT measurements to the same server IP must be
higher than the propagation time from the two probes. I flag as anycast network
any network having at least two locations in my censuses. From this list, I extract a
more conservative set of 897 subnets, having at least five distinct locations. Since
the conservative set is biased toward larger and likely more popular deployments,
I expect the conservative set to yield an incomplete but comprehensive picture of
IP anycast. In the following, I use this list to inform the passive monitor about the
subnets of interest.

4.3.2 Passive monitor

To collect my dataset, I instrumented a passive probe at one PoP4 of an operational
network in an European country-wide ISP with Tstat as explained in Sec. 1.1.

3Recall that BGP announced prefixes have a minimum granularity of a /24 subnet. Thus, an
anycast address range cannot be smaller than a /24 range.

4Results from other vantage points in other PoPs are practically identical. For easy of presentation,
I focus on one PoP in this work.
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Fig. 4.2 Cumulative number of distinct servers encountered over the month.

In particularity, for this study I leverage a dataset of TCP flows collected during
the whole month of March 2015. It consists of 2 billions of TCP flows being
monitored, for a total of 270 TB of network traffic. 1.4 billion connections are due
to web (HTTP or HTTPS) generating 209 TB of data. More important, I observe
more than 20,000 ISP customers active over the month, which I identify via the static
anonymized client IP address5. All traffic generated by any device that accesses the
internet via the home gateway is thus labeled by the same client IP address. This
includes PCs, smartphone, Tablets, connected TV, etc. that are connected via WiFi
or Ethernet LAN to the home gateway.

Among the many measurements provided by Tstat for each TCP flow, I focus
only on: (i) the server IP address; and (ii) the anonymized client IP address; (iii)
The minimum Round-Trip-Time (RTT) between the Tstat probe and the server; (iv)
The amount of downloaded bytes; (v) The application layer protocol (e.g., HTTP,
HTTPS, etc.); (vi) The FQDN of the server the client is contacting as returned by
DN-Hunter.

4.4 Anycast at a glance

4.4.1 Temporal properties

I first provide an overall characterization of the anycast traffic. Not surprisingly,
I observe that all anycast UDP traffic is labeled as DNS protocol – which I avoid

5The ISP adopts a static addresses allocation policy, so that each customer home gateway is
uniquely assigned the same static IP address.
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Fig. 4.3 Anycast at a glance6

investigating given the literature on anycast DNS. More interestingly, I observe a
sizeable amount of anycast traffic carried over TCP: overall, almost 59 million TCP
connections are managed by anycast servers. Those correspond to approximately
3% of all web connections and 4% of the aggregate HTTP and HTTPS volume, for
a total of 6 TB of data in the entire month. Definitively a not-negligible amount
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of traffic, especially when considering the relatively small number of /24 anycast
subnets.

The large majority of traffic is directed to TCP port 80 or 443, that the DPI
classifier labels as HTTP and SSL/TLS, respectively. This suggests that hosted
services are indeed offered by A-CDNs and served over HTTP/HTTPS. A minority
of the traffic (less than 1% of all anycast traffic) is instead related to some protocols
for multimedia streaming, email protocols, Peer-to-Peer traffic, or DNS over TCP. I
will provide further details when digging into some selected examples.

Results confirm the footprint of anycast traffic, and A-CDN in particular. To
corroborate this, Fig. 4.1 shows evolution during one-week of the percentage of
active customers that have encountered at least one anycast server during their normal
web browsing activities (the ratio is computed at hourly intervals, normalizing over
the number of client active in that hour). Besides exhibiting the day/night pattern
due to the different nature of services running on the network with fewer services
served over anycast at night, the figure shows that at peak time the probability to
contact at least one anycast server is higher than 50%. Notice that Fig. 4.1 reports
the probabilities according to both the exhaustive and the conservative lists: these
curves cannot be distinguished as they perfectly overlap, which hints to the fact that
the conservative list is, as expected, comprehensive enough for my purposes. This
clearly may change on vantage points located in different countries. However, for
the purpose of this work, I prefer to take a conservative approach.

Fig. 4.2 reports the cumulative number of unique IP anycast addresses observed
over time, again for both the conservative and exhaustive lists. In total, over 16,000
distinct IP addresses are observed during the whole month for the conservative list.
The picture is additionally annotated with the traffic volume exchanged with such
servers: notice that despite the exhaustive list is twice as big as the conservative one,
the number of servers contacted and bytes exchanged are fairly similar. This happens
since the major A-CDN players are present in the conservative list, to which I thus
limitedly focus on the following. Notice also that the number of distinct servers
encountered over the month quickly grows during the first days, during which most
popular services and servers are contacted.
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/24 subnet Owner IP/32 Vol. [GB] Flows [k] Users FQDN Protocols Content/Service
93.184.220.0 EdgeCast-1 105 357 8,018 10,626 3,611 HTTP/s generic

199.96.57.0 Twitter-generic 7 219 7,318 10,508 40 HTTP/s twitter, vine
68.232.34.0 EdgeCast-2 59 1,071 3,484 10,490 736 HTTP/s microsoft, spotify
68.232.35.0 EdgeCast-3 104 480 5,059 10,354 904 HTTP/s twitter, gravatar, tumblr
94.31.29.0 NetDNA 73 80 1,292 10,218 609 HTTP/s generic

93.184.221.0 EdgeCast-4 49 708 2,031 10,155 1,467 HTTP/s generic
204.79.197.0 Microsoft 8 93 4,508 10,044 5,088 HTTP/s bing, live, microsoft

205.185.216.0 Highwinds-1 2 180 1,411 9,705 267 HTTP/s generic
108.162.232.0 CloudFlare-1 13 53 550 9,274 14 HTTP ocsp certificates
178.255.83.0 Comodo 5 3 601 8,837 65 HTTP ocsp certificates

192.0.72.0 Automattic 2 57 199 7,477 32,037 HTTP/s wordpress
108.162.206.0 CloudFlare-2 122 14 246 4,695 465 HTTP/s, Torrent P2P trackers, generic
213.180.193.0 Yandex-2 49 0.7 105 4,031 114 HTTP/s SMTP yandex
213.180.204.0 Yandex-1 90 0.7 76 1,771 191 HTTP/s, SMTP yandex
93.184.222.0 EdgeCast-RTMP 5 53 8 1,289 55 RTMP, HTTP soundcloud, video

199.96.60.0 Twitter-vine 1 6 14 983 3 HTTP/s vine
Total Exhaustive 17,298 6,006 58,885 10,830 120,151 - -
Total Conservative 16,329 5,515 54,045 10,828 117,768 - -

Table 4.1 Dataset summary

4.4.2 Service diversity

I now provide an overall picture of A-CDN diversity with a dual violin plots (top)
and parallel coordinate (bottom) representation in Fig.4.3. Violin plots compactly
represent the marginals for some metrics of interest, whereas parallel coordinate
plots allow us to grasp the correlation between these metrics for some specific
deployments. On both plots, I select the following axes: (i) the number of active
servers in the /24 subnet, (ii) the average minimum RTT for any server in that /24,
(iii) the number of distinct protocols, (iv) the number of distinct FQDNs/services, (v)
the total amount of bytes served during the whole period, (vi) the average flow size
in bytes, and (vii) the number of households that contacted one server in the /24.

In more details, violin plots of Fig.4.3 are an intuitive representation of the Prob-
ability Density Function (PDF): the larger their waist is, the higher is the probability
of observing that value; red bars are a further visual reference, corresponding to
the median of the distribution. Overall, the plot shows that most of /24 host few
servers, which are in general quite close to the PoP (RTT<10 ms), use 2 or at most
3 protocols (HTTP or HTTPS mostly). Diversity starts to appear in the number of
served FQDNs – with some /24 being used for a handful services, while others serve
several thousands. Served volume varies widely. Similarly, while only half of flows
exceed 50 kB, and most are below 1 MB, flow size peaks up to several hundreds MB
(see Sec.4.3 for more details). Considering popularity, some /24 are used by several
thousands end-users, others by less than 10.
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Parallel coordinates instead allow the observation of a specific deployment: each
line represent a /24 subnet, and the “path” among the vertical axes highlights the
characteristic of that A-CDN over different dimensions. I report most7 /24 with light
gray color, and additionally I highlight some of them using different colors. First,
observe that the wide dispersion of the light gray paths testifies great diversity across
A-CDN deployments.

Next, observe per-deployment dispersion of the few selected /24. For the sake of
illustration, consider the Automattic curve, which is the A-CDN that serves websites
hosted by Wordpress: it can be seen that the two active servers found in the /24
are located at about 20 ms from the PoP. They use both HTTP and HTTPS, for a
total of more than 32,000 FQDNs. Total volume accounts for 20 GB during the
month, transferred over flows that are 200 kB long on average. At last 7400 users
(37%) accesses some content hosted by Automattic. Without going into details for
lack of space, I have highlighted telling examples such as: Twitter A-CDN (which
serve few domains); Microsoft A-CDN (bing.com and live.com services, for a total
of more than 5000 FQDNs); one /24 of EdgeCast as an example of a generic A-
CDN; a specialized EdgeCast platform serving audio and video streams over Real
Time Media Protocol (RTMP), see the red dashed line. Finally, I selected two /24
belonging to Yandex, the most popular search engine and social platform in Russia,
that are however not among the most popular in the geographic region of my vantage
point. It clearly appears that these examples, which I more deeply investigate in the
rest of the chapter, are representative of quite diverse anycast deployments. This
makes it difficult to highlight common trends, e.g., I observe popular A-CDN whose
RTT is quite large, and unpopular A-CDN whose RTT is instead much smaller.

4.5 Selected anycast deployments

4.5.1 Candidate selection

Tab. 4.1 offers details for some selected deployments. Rows highlighted in bold font
refers to the same subnets previously highlighted in Fig. 4.3.

7To reduce visual cluttering, I report in light gray color the subset of /24 that served at least 1000
flows and 10 distinct households during a month.
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For each /24 subnet, Tab. 4.1 lists the Owner (i.e., the organization managing it as
returned by Whois), the number of distinct server addresses that have been contacted
at least once, the total volume of bytes served, the number of flows, of users, and
of distinct FQDNs. The last two columns report the most prominent protocols and
services the A-CDN offers.

The table, which also serves as a summary of my anycast dataset, comprises the
top-10 most popular /24 A-CDN prefixes and subnets (top part). To avoid an exces-
sive bias toward only popular services (where HTTP and HTTPS are predominant),
I additionally report some manually selected A-CDNs (bottom part).

As it can be observed, the portfolio of services supported by A-CDNs includes
email via SMTP, video/audio streaming via RTMP, certificate validation via Online
Certificate Status Protocol (OCSP), and even BitTorrent Trackers.

The table precisely quantifies the very heterogeneous scenario early depicted by
the Fig. 4.3. EdgeCast is the major player in my dataset, managing 4 of the top-10
subnets: each of these serves between 350 GB/month and 1 TB/month to more than
10,000 (50%) households in my PoP. This is not surprising, given EdgeCast claims
to serve over 4% of the global Internet traffic8.

Popular A-CDNs includes Microsoft, which directly manages its own A-CDN. It
serves Bing, Live, MSN, and other Microsoft.com services. Since it handles quite a
small amount of data and flows, I checked if there are other servers not belonging to
the Microsoft A-CDN that handle those popular Microsoft service. I found that all
of bing.com pages and web searches are actually served by the Microsoft A-CDN,
while static content such as pictures or map tiles are instead by the Akamai CDN.
Thus, Microsoft is using an hybrid solution based on a traditional CDN and its own
A-CDN at the same time.

Finally, popular A-CDN services include Highwinds and Comodo. Highwinds
offers video streaming for advertisement companies, and images for popular adult
content websites (notice the relative longer lived content). Instead, Comodo focuses
its business on serving certificate validations using OCSP, Online Certificate Status
Protocol, services (with lot of customers who fetch little information).

Overall, major A-CDN players serve thousands of FQDNs including very popular
web services like Wordpress, Twitter, Gravatar, Tumblr, Tripadvisor, Spotify, etc.

8http://www.edgecast.com

http://www.edgecast.com
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This explains why about 1 out of 2 end-users likely contacts at least one A-CDN
server during her navigation. Most FQDNs are uniquely resolved to one IP address
– but the same IP address serves multiple FQDNs. Interestingly, this behaviour is
shared among most of the studied A-CDNs, meaning that they purely rely on anycast
routing for load-balancing. An exception is CloudFlare’s A-CDN which uses also
DNS load-balancing. Cloudflare uses up to 8 IP addresses in the same /24 to serve
the same FQDN. For lack of space, I am not able to report here the results of a
complementary active measurement study that I report at [87].

4.5.2 Per-deployment view

For the selected deployments, I details the cumulative distribution function (CDF)
of some interesting metrics. The CDF is computed considering all the flows being
served by the same /24 subnet.
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As for the metrics of interest, I report the CDF of flow size (Fig. 4.4(a)), duration
(Fig. 4.4(b)), and Round Trip Time (Fig. 4.4(c)). Fig. 4.4(a) shows how the size of
the content hosted by A-CDNs varies across deployments (the different supports
only partly overlap), and also between flows of the same deployment (the support
is large and, with few exceptions, there is no typical object size). In general served
objects are shorter than 1 MB, with the notable exception of audio and video streams
served by EdgeCast specialized deployment that support RTMP streaming. In this
case, flows are larger than 100 MB.

The small amount of data is reflected on the TCP flow duration CDF. Indeed,
Fig.4.4(b) shows that flow lifetime is in general shorter than 180 s, with specific
values that reflects typical HTTP server timeouts (multiple of 60 s). Once again, the
only exception is the EdgeCast-RTMP deployment, for which over 10% of the TCP
flows exceed 5 minutes (visible in the picture), and ranges up to hours (not visible in
the picture). Finally, minimum Round Trip Time CDF in Fig.4.4(c) reveals that the
popular A-CDNs have a good footprint (at least in Europe). The only exception is
Yandex that have anycast replicas in the eastern Europe and in Russia (which is not
surprising due to the language specific content it serves).

Notice how sharp the CDF are for EdgeCast or Microsoft deployment. This
suggests that the path to their servers is very short, but also very stable. RTT of
other A-CDNs is instead very similar, e.g., EdgeCast-RTMP, Twitter-generic, and
Automattic. This suggests that their servers are located in the same place, and
reached by the same path. Interestingly, the minimum RTT shows a deviation which
suggests the presence of some extra delay for 60% of samples, possibly accounting
for some queuing delay due a possibly congested link on that path (which belongs to
the Twitter-vine path as well).

4.5.3 RTT variation over time

In this section I look for evidences may suggest possible path properties changes. I
based my analysis studying the TCP minimum RTT. Intuitively, a sudden change in
the minimum RTT could highlight a possible sudden change in the routing or network
infrastructure. I argue that a dramatic change in the TCP minimum RTT, is likely
due to a routing change. Conversely, a smooth shift could suggest the presence of
queuing delay due to possible congestion on some path links. Passive measurements



70 A First Characterization of Anycast Traffic from Passive Traces

 0

 5

 10

 15

 20

 25

 30

26/02 05/03 12/03 19/03 26/03

R
T

T
[m

s
]

Date

EdgeCast Microsoft Twitter-generic

Fig. 4.5 Stable Situation. Single curve plots can be found at [87]

 0

 10

 20

 30

 40

 50

 60

26/02 05/03 12/03 19/03 26/03

R
T

T
[m

s
]

Time

(a) Event 1: sudden change

 0

 10

 20

 30

 40

 50

 60

26/02 05/03 12/03 19/03 26/03

A B C

R
T

T
[m

s
]

Time

(b) Event 2: multiple changes

Fig. 4.6 RTT changes

could only suggest to investigate more deeply of eventual changes, e.g., triggering
active measurements to provide a more reliable ground truth to distinguish between
hardware improvement and routing changes. For instance, checking HTTP headers
could be used to reliably reveal the anycast replicas [73].

Fig. 4.5 shows the minimum RTT values for each TCP flows over time. Three
most used A-CDNs during the entire month of March 2015 are considered. The
figure suggests that no sudden changes in the path are visible. Yet, observe the
periodic and smooth increase of RTT during the peak time. This could be explained
as a congestion events, that are reflected in the smooth changes in the minimum
RTT CDF as shown in Fig. 4.4(c). For these three A-CDN, data suggest stable but
possibly congested paths to the anycast addresses.
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I investigated the RTT evolution over time of other /24 subnets. I found few cases
that I believe could highlights possible sudden changes in the routing plane, possibly
affecting server affinity. Fig. 4.6(a) and Fig. 4.6(b) report two examples. Plot on
the top shows an example of sudden changes affecting another /24 subnet. In this
case, the minimum RTT suddenly increases by almost 15ms. Notice also that the
path to the longer location is not affected by periodical increases during peak time,
suggesting no congestion is present in this second path. Look now at the plot on the
bottom. It suggests changes on March 9th, and 19th (with possibly a short change
on the 11th). Indeed, minimum RTT properties differ quite significantly and with
a sharp change. To study the implication of this from a client perspective, I report
the CDF of the throughput for the three distinct periods in Fig. 4.7. I normalize the
throughput between 0 and 1 for ISP privacy motivation. The three distribution show
that when the RTT decreases, i.e., the server serving the flow is closed to the users,
the throughput improves. Thus, A-CDN changes have an impact on performance as
well. I have observed other changes in different /24 networks, not reported here due
to lack of space.

I also tried to investigate if changes have implications on TCP connections.
In particular, one would expect that an on-going TCP connections to be abruptly
terminated if the routing change implies a server change as well. I tried to investigate
this by correlating number of TCP flows abruptly terminated by a server RST
message with possible routing change events. I am not able to observe any clear
evidence. Indeed, on the one hand, TCP flows are very short – cfr. Fig. 4.4(b) – and,
on the other hand, changes are sudden and very few. Thus only an handful TCP



72 A First Characterization of Anycast Traffic from Passive Traces

connections could possibly be involved during a change event. This support the
intuition that anycast is indeed well suited for connection oriented services.

In summary, while I observe sharp changes in the anycast path to reach the
A-CDN caches, those events are few and occasional, with each different routing
configuration that lasts for days. Clearly, deeper investigation is needed to better
understand eventual routing changes over the time. In this direction I am trying
to exploit other metrics as the Time To Live (TTL) and the Time To First Byte
(TTFB) to highlight routing changes. Combining this methodology with active
measurements, it could provide a better understanding of routing stability that may
affect A-CDN deployments.

4.6 Conclusions and Discussion

I presented in this chapter a first characterisation of Anycast-enabled CDN. Starting
from a census of anycast subnets, I analysed passive measurements collected from
an actual network to observe the usage and the stability of the service offered by
A-CDNs. My finding unveil that A-CDNs are a reality, with several players adopting
anycast for load balancing, and with users that access service they offer on a daily
basis. Interestingly, passive measurements reveal anycast to be very stable, with
stable paths and cache affinity properties. In summary, anycast is increasingly used,
A-CDNs are prosperous and technically viable.

This work is far from yielding a complete picture, and it rather raises a number
of interesting questions such as:

Horizontal comparison with IP unicast. Albeit very challenging, more efforts should
be dedicated to compare Unicast vs Anycast CDNs for modern web services. To the
very least, a statistical characterization and comparison of the pervasiveness of the
deployments (e.g., in term of RTT) and its impact on objective measures (e.g., time
to the first byte, average throughput, etc.) could be attempted.

Vertical investigation of CDN strategies. From my initial investigation, I noticed
radically different strategies, with e.g., hybrid DNS resolution of few anycast IP
addresses, use of many DNS names mapping to few anycast IPs, use of few names
mapping to more than one anycast IPs, etc. Gathering a more thorough understanding
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of load balancing in these new settings is a stimulant intellectual exercise which is
not uncommon in my community.

Further active/passive measurement integration. As anycast replicas are subject to
BGP convergence, a long-standing myth is that it would forbid use of anycast for
connection-oriented services relying on TCP. Given my results, this myth seems no
longer holding. Yet, while I did not notice in my time frame significant changes
in terms of IP-level path length, more valuable information would be needed from
heterogeneous sources, and by combining active and passive measurements.



Chapter 5

SeLINA: a Self-Learning Insightful
Network Analyzer

5.1 Introduction

This chapter presents SeLINA: a Self-Learning Insightful Network Analyzer a paper
published in the journal IEEE Transactions on Network and Service Management.1

The work I present in this chapter has been developed with the DataBase an
Data Mining Group (DBDMG) at the Politecnico di Torino. I joined this group as a
network expert to helped them on the validation of the SeLINA tool. In particular, I
offered my skill to verify if SeLINA is able to highlight network traffic anomalies.
My contributions will be presented in Sec. 5.7 related to the study of the YouTube
anomaly previously highlighted in Sec. 2.6.1, and in the analysis of peer-to-peer
traffic in Sec. 5.8.

Internet monitoring has always played a fundamental role in understanding how
the network is performing, how users are accessing resources, and how to properly
control and manage the infrastructure. The growth of traffic, users, services and
applications running in the Internet challenges everyday the network managers
and analysts to cope with system complexity and in the understanding of how it

1Daniele Apiletti, Elena Baralis, Tania Cercquitelli, Paolo Garza, Danilo Giordano, Marco
Mellia, and Luca Venturini, "SeLINA: a Self-Learning Insightful Network Analyzer" in IEEE
Transactions on Network and Service Management, vol. 13, no. 3, pp. 696-710, August 2016. doi:
10.1109/TNSM.2016.2597443
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Fig. 5.1 SeLINA building blocks.

works. big data and machine learning approaches have emerged to build systems that
aim at automatically extracting information from the raw data that the monitoring
infrastructures offer, and a significant effort has been devoted to apply them to
network traffic analysis. Most of the proposed systems target a specific problem,
e.g., monitoring of a CDN [3, 4, 88], detecting anomalies [5, 6], or simply offering
scalable platforms [89].

However, few works have targeted the general-purpose extraction of useful in-
formation from the raw data exposed by the system, i.e., the application of the data
mining approach to information discovery, a classic application of unsupervised ma-
chine learning approaches. While methodologies exist, to the best of our knowledge,
they require non-trivial skills and the domain expert needs to be able to fine tune
the underlying algorithms. In this work, we target the design of an unsupervised
machine learning tool that allows the network administrator to discover properties of
the traffic, without requiring her to be a machine learning expert. we identified the
following requirements.

• Scalability, as the ability to (i) process very large datasets, but (ii) provide
compact representations of the traffic, independently of the data size.

• Auto-configuration, as the capability to (i) self-adapt to different data distribu-
tions (e.g., data densities, cluster shapes), and to (ii) self-tune the algorithm
parameters to avoid human intervention.

• Human-readability of both results and underlying models, to make the knowl-
edge better exploitable and more actionable.
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• Self-assessment and self-evolution, to autonomously evaluate the model quality
and trigger a rebuilding when the model fitting to new data degrades.

The above-mentioned design guidelines led to the design of SeLINA (Self-
Learning Insightful Network Analyzer), which exploits both supervised and unsu-
pervised data-mining techniques by combining their strengths. Specifically, effective
unsupervised approaches are used to autonomously identify clusters of homogeneous
traffic flows, thus reducing the granularity of objects to observe from millions of sin-
gle flows to few tens of clusters, and generating a model of traffic. Human-readable
and fast supervised approaches are used then to classify flows on the fly and assign
them to clusters, and to offer valuable information about the main characteristics of
each class. The system computes internal quality indices to check whether the new
data does not fit anymore the historical model, suggesting to the analyst changes
in the new network traffic, and, possibly automatically, triggering a new clustering
phase to update the model.

SeLINA has been implemented in a state-of-the-art big data framework, Apache
Spark, and has been applied to two real-world large use cases: a YouTube video
streaming dataset and a peer-to-peer traffic dataset. Experimental results showed that
SeLINA is able to provide insightful network traffic models, e.g., pinpoint different
groups of YouTube servers with different properties, and suggest the presence of
changes in the infrastructure that have caused well-known issues to end-users [88].

This chapter is organized as follows. Section 5.3 provides an overview of the
proposed methodology, while Sections 5.4 and 5.5 describe its main building blocks.
Section 5.6 provides and overview of the experimental evaluation campaign, while
Sections 5.7 and 5.8 thoroughly discuss the experiments performed on two real use
cases based on real traffic datasets. Finally, Section 5.2 compares our approach with
previous work, while Section 5.9 draws conclusions and presents future developments
of this work.

5.2 Related work

A significant effort has been devoted to the application of data mining techniques and
statistical methods to network traffic analysis. The application domains include study-
ing correlations among network data (e.g., association rule extraction for network
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traffic characterization [90, 91]; for router misconfiguration detection [92]; interest-
ing correlations from web-based e-business system [93]), extracting information for
prediction (e.g., multilevel traffic classification [94], Naive Bayes classification [95],
throughput prediction [96], analytics and statistical models for LTE Network Perfor-
mance [11], one-class SVM [97] for intrusion detection), grouping network data with
similar properties (e.g., clustering algorithms for intrusion detection [98–100, 5, 6],
for deriving node topological information [101], for automatically identifying classes
of traffic [102–105], for unveiling YouTube CDN changes [88]), and context specific
applications (e.g., multi-level association rules in spatial databases [106]).

However, in most cases no approach offloads the user from arbitrary parameter
choices, and can be easily adapted to domain-specific requirements and semantics
as the methodology proposed in this chapter. Differently from analytics approaches
tailored to a specific network application [88, 98, 99, 101, 100, 5, 6], SeLINA is a
general purpose methodology that can be easily exploited to analyze different and
transversal network data (e.g., network traffic headers, network flow characteristics,
statistical measurements of traffic flows). In the experimental section we considered
Youlighter [88]. Youlighter is a system that detects very specific macro-changes
in the YouTube traffic pattern involving the CDN spatial distribution. It is not
distributed nor scalable. SeLINA, instead, introduces a general-purpose, distributed,
and fully autonomous engine exploiting a completely different methodology and
addressing a more general research issue in the network traffic analysis than the
Youlighter system.

The performance of most state-of-the-art general purpose approaches [90, 91,
102–105] depends on the choice of different parameters, and the optimal trade-off
between execution time and accuracy must be handpicked for a given application.
On the contrary, focusing itself on self-learning capabilities of state-of-the-art scal-
able approaches, SeLINA is able to build a model of the data with minimal user
intervention by offloading the user from the non trivial task of configuring the miner
system and highlighting possibly meaningful interpretations to domain experts.

Some research effort has been devoted to automatic setting of data mining
algorithm parameters (e.g., clustering algorithms [107, 108], itemset mining [109]).
Authors in [107, 108] proposed a hierarchical strategy to aggregate lower density
regions discovered through DBSCAN. Different from [107, 108], SMDBSCAN
automatically sets DBSCAN parameters at each iteration level when DBSCAN is
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exploited in a multiple-level fashion. Furthermore, the SeLINA clustering results
include clusters with a diverse degree of density, because each subset of clusters with
a similar density is discovered at a given iteration level. The method in [107, 108]
instead gets a flat partition composed of clusters extracted from local cuts through
the cluster tree.

An intensive research activity has been devoted to designing innovative algo-
rithms and methodologies to support large scale analytics based on MapReduce, such
as [110–112]. A step further has been proposed in [113]. Apache Spark with its
Resilient Distributed Datasets and its smart APIs, outperforms Hadoop MapReduce
in terms of performance and overcomes its limitations, with particular focus on
iterative in-memory computation, which is a common characteristic of many data
mining algorithms. Its machine learning library MLlib [114] provides a broad range
of analytics algorithms. SeLINA exploits the computational advantages of distributed
computing frameworks, as the current implementation runs on Spark. Applications
of this techniques to network traffic analysis becomes natural, given the volume of
traffic [89, 115–117]. These works adopt Hadoop or Spark, and apply either standard
machine learning algorithms, or design specific solutions to their problem.

The idea of defining a generic framework and of tightly integrating self-learning
capability in a scalable data mining engine tailored to traffic data was first introduced
by ourselves in [118]. However, SeLINA significantly enhances the methodology pro-
posed in [118]. The SeLINA data mining engine (named SaFe-Nec in [118]) provides
an innovative and more accurate explorative approach coupled with self-configuring
strategies (i.e., the SMDBScan algorithm). Thus, SeLINA allows exploiting cluster
analysis on real datasets in a fully autonomous fashion. The SMDBScan algorithm is
characterized by configuration parameters whose setting is rather difficult. In [118]
the less effective, but easier to configure, K-means algorithm was used. SeLINA
also includes ad-hoc strategies to automatically tune the clustering parameter values,
which is a typically difficult task also for domain experts. The exploitation of a
multilevel DBSCAN-like algorithm jointly with self-configuring strategies allowed
for better clustering results than the ones produced by the K-means based approach
proposed in [118]. Moreover, SeLINA integrates innovative self-assessment features
and a new set of network domain statistics that are often vital to let the domain expert
interpret the results. Finally, with respect to [118], in this work we added a new
interesting case study on YouTube traffic analysis and a thorough analysis of the
results from a networking point of view.
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5.3 Methodology Overview

Figure 5.1 depicts the main components of the proposed methodology.

5.3.1 Offline self-learning model building.

This component, which analyzes historical network traffic flows, aims at building
a self-learning data characterization model, and consists of three phases: (1) a self-
tuning clustering phase, (2) a cluster and data characterization phase, and (3) a
classification model training phase.

5.3.2 Online characterization and model update.

This component analyzes new network data in real-time by applying the model
built in the previous block to detect changes in the network traffic characterization.
It consists of two phases: (4) a real-time data labeling phase, and (5) an online
characterization phase.

In details, step (1) of the proposed methodology consists of a self-tuning clus-
tering algorithm, which is run over historical data to discover homogeneous groups
of traffic flows without prior knowledge, in a fully autonomous and unsupervised
fashion. Effectively applying cluster analysis on real datasets requires the non-trivial
choice of algorithm-specific parameters, a typically difficult task for domain experts
exploiting data mining techniques. To this aim, SeLINA includes ad-hoc strategies to
automatically tune the clustering parameter values. In step (2), the resulting cluster
set is then enriched by both general-purpose and domain-specific statistics, whose
aim is to support network analysts in understanding the semantics of the identified
clusters.

The cluster set is also the input to the model training phase of step (3), where a
classification model is built by exploiting clusters as classification labels. The model
is able to self-learn how to assign each network flow to the proper cluster. Different
classification techniques could be exploited, depending on the preference towards
pure performance (e.g., accuracy) or human-readability of the model. SeLINA
choice is a decision tree algorithm, which is among the most popular classification
techniques and provides an easily readable model in the form of classification rules.
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The latter feature supports network analysts in getting more meaningful insights on
the reasons for the classifier underlying choices.

The classification model is exploited in the real-time data labeling phase at
step (4), where each new network flow is assigned a label. Then, at step (5) the
quality index computation is executed, by exploiting different quality indicators to
self-assess the model fitting and its results over time. When the quality index falls
below a given threshold, the offline model building can be automatically triggered to
rebuild a model better fitting the new data, thus providing self-evolutionary features.

SeLINA is a general-purpose methodology which can be easily exploited to
analyze large collections of network data (e.g., network traffic headers, network flow
characteristics, statistical measurements of traffic flows). As a case study, in this
work we apply SeLINA to analyze network measurements collected through Tstat.

5.4 Offline self-learning model building

The core of the SeLINA approach is the offline self-learning model building com-
ponent, which consists of (1) a self-tuning clustering phase, (2) a cluster and data
characterization phase, and (3) a classification model training phase. Details on each
phase are provided in the following.

5.4.1 Self-Tuning Clustering Phase

SeLINA exploits clustering to autonomously identify homogeneous groups of net-
work traffic flows without prior knowledge. This phase performs a preliminary data
normalization step, by means of the standard z-score technique [119], and then a
clustering algorithm is applied to the normalized data. Among the many clustering al-
gorithms available to this aim, SeLINA provides an advanced DBSCAN-based [120]
algorithm [121] providing high-quality clusters on very-large real data collections.
Since the clustering phase is at the core of the SeLINA self-learning feature, in the
following subsections its building blocks are presented.
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Basic DBSCAN

DBSCAN is the density-based clustering algorithm already presented in Sec. 2.4.1.
we applied DBSCAN due to: the ability of identifying arbitrary-shaped clusters,
isolate noise and outliers, and because the results provided by DBSCAN are usually
better than those provided by other popular clustering algorithms.

However, since DBSCAN requires a long execution times, due to its quadratic
complexity, to scale to very large datasets, we exploit the Spark-based distributed
implementation of DBSCAN2 proposed by Aliaksei Litouka. Its main difference
with respect to the original centralized version is an additional partitioning step,
performed at the beginning.

Self-tuning Multi-level DBSCAN

SeLINA improves the basic DBSCAN approach by addressing two main issues: (i)
parameter setting, and (ii) diverse data densities within the same dataset. To offload
domain experts from the critical task of configuring DBSCAN-specific parameters,
SeLINA includes a self-tuning strategy to automatically set proper values. Further-
more, very-large real datasets are often characterized by diverse data distributions
in different regions, and this is an issue hardly handled by the standard DBSCAN
version. To address both issues, the SMDBSCAN algorithm in SeLINA builds upon
an advanced version of DBSCAN successfully proposed in [121]. SMDBSCAN
features a multi-level iterative approach and a smart automatic parameter-setting
procedure.

a) Multi-level iterative approach:

At each iteration, SMDBSCAN considers the data points which have not been
assigned to a cluster yet (at the first iteration, the whole dataset is considered),
then (i) partitions them to allow parallel computation, (ii) automatically selects the
most appropriate values of epsilon and MinPoints, and (iii) executes the standard
DBSCAN with such parameter settings. At the end of each iteration, the newly found
clusters are included in the global set of clustering results, while the noise points
become the dataset for the next iteration.

2Downloaded from https://github.com/alitouka/spark_dbscan

https://github.com/alitouka/spark_dbscan
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Algorithm 1 Epsilon setting
Input :Dataset partitions - dataPartitions
Input :Epsilon step - epsStep
Output :Estimate of best epsilon - bestE psilon

List<Double> potentialEpsilons = {} for partition in dataPartitions do
for p in partition do

/* Compute the density of the areas centred in p of a
radius eps multiple of epsStep */

Map<Double,Int> densities = {} eps=epsStep;
density_be f ore = 0;
f ound = False;
while (not f ound and eps <=distanceFromFarthestPoint(p,partition)) do

numNeighbours = numNeighboursRadiusEps(p, eps, partition) density
= numNeighbours/epsd ; /* d is the number of attributes */
if (density < density_be f ore) then

f ound = True;
end
density_be f ore = density

end
/* The potential value of epsilon for p is the one before

the first density decrease */
epsilonP = eps;
potentialEpsilons.add(epsilonP)

end
end
/* Among the potential values of epsilon, select the one

corresponding to the first quartile */
bestE psilon=FirstQuartile(potentialE psilons) return bestE psilon

Fig. 5.2 Automatic setting of the epsilon parameter value.
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b) Automatic parameter setting: epsilon:

To automatically compute the values of epsilon and MinPoints at each iteration,
SMDBSCAN introduces a self-tuning procedure, consisting of two heuristics. The
two heuristics are very intertwined, the second depending on the epsilon set by the
first, and they are designed to fit the scope of a multi-level strategy.

To determine epsilon, SMDBSCAN exploits the density-based concept of cluster:
“a dense area surrounded by a lower density zone”. To this aim, a greedy approach
is exploited, selecting the best potential epsilon for each point separately. A final
decision is then taken globally given all the local best epsilons.

In particular, given an arbitrary point p, the algorithm tries to identify the bound-
ary of the dense area around p. To this aim, it computes the density distribution in the
hypersphere having radius r and center in p, with increasing values of r. The larger
r, the higher the number of points inside the hypersphere will be. we define dense
areas when the number-of-point increasing rate is higher than the growth in volume.
At the border of a dense area, this growth rate will show an inversion of the trend, as
soon as the volume starts growing faster than the number of points. The proposed
heuristics chooses the first inversion point as the border. If many inversion points
occur, greedily choosing the first one reduces the computational time and leaves
margin for further exploration in the next levels of SMDBSCAN. The final value
of epsilon, actually used for each run of DBSCAN, is selected by considering the
first quartile of the set of border values generated by applying the border-detection
procedure for all points p. The first quartile value produces a set of dense clusters
covering a representative subset of our data: taking the first quartile leads to having
at least a quarter of all the points set as core points with high probability, which will
help covering a good portion of the dataset in few levels.

The border-detection procedure increases the r value at epsStep increments. This
is the only parameter, whose main impact is on the execution time: very small steps
lead to many iterations to converge. In our experiments, we found that a value of
10−3 was reasonable for the hardware at our disposal.

The pseudo-code for the epsilon self-tuning is reported in Figure 5.2. Since the
data partitions are independent, the main loop (Figure 5.2, lines (1)-(1)) is executed
in a distributed fashion by exploiting Spark (each data partition is associated with an
independent task).
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Algorithm 2 MinPoints setting
Input :Dataset partitions - dataPartitions
Input :Epsilon - epsilon
Output :Estimate of best MinPoints - bestMinPoints

Map<Int,Int> histogramNeighbours = {}
for partition in dataPartitions do

for p in partition do
/* p is a core point if MinPoints is lower than or equal to

the number of its neighbours */
numNeighbours = numNeighboursRadiusEps(p, epsilon, partition)
/* Update the statistics about the number of points with

numNeighbours neighbours */
histogramNeighbours[numNeighbours] =
histogramNeighbours[numNeighbours] + 1

end
end
Map<Int,Int> numO fCorePoints = {}
neighboursA f terMinPoints = 0 /* Given MinPoints, the number of

core points is the number of points with more than MinPoints
neighbours */

for MinPoints in histogramNeighbours.keys().sort().reverse() do
numO fCorePoints[MinPoints] = histogramNeighbours[MinPoints]
+ neighboursA f terMinPoints; neighboursA f terMinPoints =
numO fCorePoints[MinPoints]

end
max=0 /* Select the MinPoints value that maximizes MinPoints ×

number o f core points */
for MinPoints in histogramNeighbours.keys() do

numCorePoints = numO fCorePoints[MinPoints] /* d is the number of
attributes */

if (MinPoints > d and numCorePoints×MinPoints > max) then
max=numCorePoints×MinPoints bestMinPoints=MinPoints

end
end
return bestMinPoints

Fig. 5.3 Automatic setting of the MinPoints parameter value.
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c) Automatic parameter setting: MinPoints:

Once epsilon has been set, the value of MinPoints is automatically set by selecting
the value of MinPoints for which Eq.(5.1) is maximum. The approach stems from
the following observations.

MinPoints×numberOfCorePoints(dataset,MinPoints,epsilon) (5.1)

MinPoints represents the minimum size of the generated clusters. Since small
clusters are not interesting, because they represent a negligible part of our data,
while we are interested in the main groups and their characterization, we aim at
setting high values of MinPoints: The higher the value of MinPoints, the higher
the minimum cardinality of the generated clusters. However, the higher the value
of MinPoints, the lower the number of core points will be. With lower values of
numberO fCorePoints, the amount of clustered data potentially decreases, while the
amount of noise points increases. Since we are interested in clustering as many data
points as possible, discarding only the minimum amount of objects in lower-density
areas, we should consider high values of numberO fCorePoints. To balance the
two discussed trends, we set the MinPoints trade-off to the value that maximizes
MinPoints×numberOfCorePoints(dataset,MinPoints,epsilon). Figure 5.3 reports
the pseudo-code of the algorithm that automatically sets MinPoints given the value
of epsilon. Also in this case, the procedure can be parallelized by assigning each
data partition to a different Spark task.

5.4.2 Cluster and Data Characterization

Since clusters are anonymous groups of network traffic flows, but human-readable
results are much more valuable to domain experts, the SeLINA methodology, as
reported in block (2) of Figure 5.1, is designed to enrich clusters with (i) general
attribute-based statistics, and (ii) domain-specific knowledge, for each cluster in
the resulting set, as detailed in the following. The former does not require user
intervention, whereas the latter can be guided by domain experts, by a-priori selecting
specific attributes of interest.
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• Number of flows. It provides insights into the data distribution, by identifying
clusters covering most of the dataset and others identifying small “remote”
groups of traffic flows. For instance, some network datasets present a pre-
dominant cluster with regular traffic and many smaller clusters identifying
deviations. Other datasets may present similarly-sized clusters, (i.e., with the
same number of flows) for different subnets or services.

• Top characterizing attributes. SeLINA provides the attributes with the highest
Variance Reduction Ratio (VRR) for each cluster with respect to their variance
over the whole normalized dataset. Given an estimator for the variance σ̂2,
the Variance Reduction Ratio (VRR) for the j-th cluster and i-th feature xi is
defined as follows.

VRR j(xi) =
σ̂2

D(x
i)− σ̂2

j (x
i)

σ̂2
D(xi)

(5.2)

where σ̂2
D is the variance over the whole dataset and σ̂2

j is the variance over
the j-th cluster. The rationale behind the variance reduction is to quantify the
information gain, for a given attribute, obtained by isolating some of the flows
in a cluster; it is inherited from decision trees [122], where the order of the
attributes in the tree influences performance and results. Together with the
variance itself, VRR is a strong indicator of the features that characterize a
cluster the most and their relative importance.

• Network domain statistics. Network-oriented features of interest provided by
SeLINA are the number of different source IP addresses, ports, and service
types per cluster. Furthermore, the current implementation of SeLINA com-
putes and plots the Cumulative Density Function (CDF) of selected dataset
attributes (see Table 5.2 and Sec. 5.6 for details). For instance, per-cluster
statistics of server IP addresses, server L4-ports, L7-application protocols, etc.,
are provided. Such attributes, despite being discarded during the clustering,
are often crucial to allow domain experts to correctly extract meaning from
the results.

5.4.3 Classification Model Training

All flows processed by the clustering algorithm (excluding the final iteration noise
points) are labelled according to their cluster (e.g., cluster 1, 2, 3), and form a labeled
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dataset (i.e., a training set), which can be exploited for supervised learning. Thus,
the goal of this phase, depicted in block (3) of Figure 5.1, is to build a classifier to
efficiently label new unseen flows as they are captured.

Even if the cluster set could be directly exploited for labeling unseen data, a
new ad-hoc classifier is trained separately to reach two design goals: (i) to provide a
real-time high-performance classifier, and (ii) to build a human-readable model that
can harness the knowledge inside the data.

To this aim, SeLINA exploits decision trees [123] to build the classification
model. They are a well-known popular and mature technique able to reach both
good accuracy and easy model interpretability, with the latter being a highly-valued
feature for domain experts. To provide the intuition of how a decision tree works,
we describe a toy example in the following.

Tree Example

Table 5.1 shows a simple training set with 5 records, each characterized by two
attributes. Two clusters/classes are present (Cl. 1 and Cl. 2). A possible decision
tree is reported in Figure 5.4. The node labels represent a feature (e.g., the size of
the flow in bytes), while each branch is labelled with a possible value, or a range of
values, for the feature within the node. In our example, the split from the root node
is done on a range of values of the minimum round trip time. Each path from the
root node to a leaf node represents a rule characterizing a class (a cluster in our case).
The path within the dotted box models the simple rule

RT T < 5ms → cluster1, thus this leaf can be interpreted by the analyst as a set
of flows served by a cache in the nearby, with cluster 1 partly served by this cache,
which serves uniquely this cluster. This kind of information is human-readable and
provides a good characterization of how the traffic labeling is performed.

Knowledge Model

The output tree provides an easy-to-read overview of the features that best split the
dataset according to the labels: for each node of the tree the split criterion can be
written as an if/else condition over a single feature and a splitting value, and few
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Table 5.1 A toy dataset

Id RT T [ms] DataByte Class
1 3 2M Cl. 1
2 20 900k Cl. 2
3 12 1.5M Cl. 1
4 15 500k Cl. 2
5 12 3M Cl. 1

Fig. 5.4 A toy example of a decision tree.

levels of the tree are usually sufficient to show the most significant splits for the
purpose of the classification.

Split Criterion

In the current work, the Gini index impurity-based criterion has been used to grow
the tree. The Gini index is among the most popular choices and typically yields
high-quality results. we exploited the Spark decision-tree implementation, which
provides both the Gini and the entropy criteria. we performed some experiments,
not reported here for the sake of space, to compare the accuracy of the classification
models based on the Gini and the entropy indices and their results are very similar.
we defer the reader to [124] for details about the Gini and the entropy indices.
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5.5 Online characterization and model update

This component analyzes new network data in real-time by applying the model built
in the previous block. As depicted in Figure 5.1, it consists of two phases: a real-time
data labeling phase (4), and an online characterization phase (5).

The classification model is exploited in the real-time data labeling phase of step
(4), where each new network flow is assigned a label.

Then, at step (5) the quality index computation is executed, to self-assess the
model fitting and its results over time. When the quality index falls below a given
threshold, the offline model building can be automatically triggered to rebuild a model
better fitting the new data, thus providing self-evolutionary features. While the online
data labeling phase (4) is straightforward, as it consists of a classification model
application, in the following we provide details on the quality index computation in
step (5) and the self-evolution policy stemming from such quality evaluation.

5.5.1 Quality Index

When no external information is provided (e.g., ground-truth class labels), the
clustering results are evaluated on the shape of the clusters themselves. To this
purpose, SeLINA exploits a well-known quality index, named Silhouette [125]. This
index measures both intra-cluster cohesion and inter-cluster separation to evaluate
the appropriateness of the assignment of a data object to a cluster rather than to
another one.

Let C= {C1, . . . ,Cn} be a set of clusters. The Silhouette value for a given data
object ri in a cluster Ck ∈ C, given a distance measure d, is computed as

s(ri) =
b(ri)−a(ri)

max{a(ri),b(ri)}
, (5.3)

where a(ri) is the average distance of object ri from all other objects in cluster Ck,
i.e.

a(ri) =
1

|Ck|
Σr j∈Ckd(r j,ri) (5.4)
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and b(ri) is the lowest average distance from all other clusters, i.e.

b(ri) = min
Cl∈C

(
1
|Cl|

Σr j∈Cl d(r j,ri)),∀Cl ̸=Ck. (5.5)

The Silhouette value for an arbitrary cluster Ck ∈ C is the average Silhouette
value on all objects in Ck. It is computed as

s(Ck) =
1

|Ck|
Σri∈Cks(ri) (5.6)

Lastly, the average s(ri) over all data of the entire dataset is a measure of how
appropriately the data has been clustered. The distance measure d must be the same
used for clustering, thus the Euclidean distance in our case.

The Silhouette coefficients take values in [−1,1]. Negative and positive Silhou-
ette values represent wrong and good object placements, respectively. Hence, the
ideal clustering algorithm splits the data in a set of clusters C such that all clusters
in C have a Silhouette value equal to 1. However, Silhouette values around 0.5 are
already considered very high values representing a strong clustering result [125].

5.5.2 Characterization and Self-Evolution Policy

As the quality of the network traffic model is subject to ageing, SeLINA continuously
evaluates the quality degradation of the model itself, with a two-fold objective: (i)
highlighting substantial changes in the network and (ii) triggering the regeneration
of the model as soon as the quality index falls below a threshold.

Since SeLINA computes the Silhouette for each new flow against the ones seen
during the training phase, this quality index indicates how well the new flow fits
the old clusters. A Silhouette close to 1 would indeed mean that the intra-cluster
distances are negligible compared to the inter-cluster ones. The Silhouette values
for the clusters (s(C j)) are recomputed every N new records, where N is set by the
user. The Silhouette index for the clusters significantly changes as soon as new
kinds of data (not seen during the training) are added to the input (see Section 5.8.2
for an example). Unseen values should indeed get a Silhouette close to 0, while
mispredictions, i.e., assignments to the wrong cluster, would have a negative value.
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Besides the Silhouette indicator, SeLINA also tracks the number (percentage) of
new flows assigned to each cluster over time. This helps in detecting changes in the
traffic characterization due to (i) degradation in the clustering quality and (ii) shift
in the distribution of the traffic flows among different clusters, as discussed in the
experiments.

The final goals of the real time evaluation are to keep track of the state of the
network, to identify changes and react. The reaction strongly depends on the use
case and on the type of change. When SeLINA is trained on a standard behaviour,
e.g. a usual working day without interruptions of service or congestion, a change is
a strong hint of an anomaly, a strong congestion or an attack. The identification can
be performed by looking at the current clusters and their cardinality in recent time
frames. If the Silhouette value is unchanged, the current clusters do still model well
the traffic, and the anomaly occurs only in the distribution of the flows among the
clusters. If the Silhouette value of one or more clusters decreases, instead, the change
is way more significant: the current model cannot describe the traffic anymore. The
inspection in this case needs a new clustering, which can also be automatically
triggered by the system. The new clustering can be executed on the whole historical
dataset or on the most recent flows only. The latter option generates a more specific
up-to-date model, that could be less general due to fewer training data.

5.6 Experiments and datasets

we experimentally evaluated SeLINA on two real network traffic datasets, associated
with two different use cases. My goal is to show how SeLINA (i) effectively
characterizes network traffic, and (ii) supports the analyst in understanding changes
of the traffic mix. we focused on two real-world use cases. The first one consists
of a dataset of YouTube flows in which we know the CDN had changed over time,
causing possible issues to both end-users and ISPs [88]. The second case deals with
the understanding of P2P traffic, for which, instead, little knowledge is available. In
both cases, SeLINA autonomously extracts information from the automatic analysis
of the traffic summaries, and presents results to domain experts in an interpretable
format.
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Metric Description Intuition
L7−Data Amount of application payload transferred Identifies possible different type of flows
Duration Time since the first SYN to the last segment Related to performance issues, and type of flow
RT T Min Per-flow minimum RTT Estimate of the “distance” between client and server

Preord Per-flow reordering probability Identifies possible packet losses occurred before the probe
Pdup Per-flow duplicate probability Identifies possible packet losses occurred after the probe

Table 5.2 Features used by SeLINA as input.

We collected network traffic data through a passive probe running Tstat as
explained in Sec. 1.1. The passive probe sniffs all packets flowing on the link and
exploit Tstat to passive monitoring all TCP (and UDP) flows.

In this work, we focus on two datasets, collected during two different time
periods. The first one consists of flows carrying YouTube videos. The second one
collects all TCP flows excluding web traffic, i.e., it consists of mostly P2P traffic. I
refer to each dataset as “YouTube” and “P2P” in the following.

The YouTube dataset consists of TCP flows collected during May 2013 by a
probe placed on a PoP of a nation-wide ISP in Italy where the traffic aggregate
from more than 10,000 customers is monitored. we use data from May 1st, 2013 to
let SeLINA build the offline model. Datasets from May 2nd to May 31st are used
instead to run the online model update phase and highlight traffic changes possibly
suggesting the automatic model rebuilding. For this dataset, we know that during the
second part of May 2013 the YouTube CDN had relevant changes affecting end-user
quality of experience [88, 3]. Hence, we consider this as ground-truth information
that allows us to verify if SeLINA correctly identifies interesting events.

The P2P dataset refers to April 17, 2012. From it we extract all TCP flows whose
application protocol is neither HTTP nor HTTPS, i.e., where the majority of the
traffic is due to P2P applications [126]. Traffic comes again from a backbone link of
a nation-wide ISP in Italy.

Among the measurements exposed by Tstat, we consider the metrics reported in
Table 5.2. we selected them since they are correlated to both system configuration
and possible performance issues. For instance, the measure of the Round Trip Time
(RTT) is related to both the distance from the server, and possible congestion on the
path. Similarly, both reordering and duplicate probabilities increase during periods
of congestion. Finally, duration and amount of carried data are possibly linked
to the type of service the flow carries, e.g., short-lived signaling flows carrying
little data rather than long lived data flows carrying a large amount of data. Since
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SeLINA model building is based on unsupervised clustering, we expect the system
to automatically leverage information offered by these features to identify proper
classes of flows.

The metrics are computed by observing the TCP headers, and correlating them
with information in the corresponding TCP ACKs. For instance, Preord and Pdup are
computed by keeping track of TCP sequence number evolution over time, while
RT T Min is the minimum delay observed between a data segment and the corre-
sponding acknowledgement. Since TCP offers a bidirectional service, we consider
measurements for each half-flow, i.e., segments from the client to the server, and
vice versa. I denote them in the following by adding a subscript C or S for client or
server side, respectively. For instance RT T MinS is the minimum delay observed at
the probe between segments sent by the server and ACKs sent by the client, i.e., it
is the delay between the probe and the customer client – the access network delay.
Conversely, RT T MinC measures the time since the probe observes the client segment
and the server ACK, i.e., it is the minimum RTT between the probe and the server –
the backbone network delay.

Additional attributes and measures are included in the final results flows aggre-
gated in the same cluster. Clusters are annotated by SeLINA before being presented
to the domain experts. The additional features are not considered during the model
building phase. For instance, once the cluster is built, the system computes Cumula-
tive Density Functions (CDF), average, percentiles, etc. of the per-metric distribution
of information extracted directly from features.

The datasets have been stored in a cluster at our University running Cloudera
Distribution of Apache Hadoop (CDH5.3.1). All experiments have been performed
on our cluster, which has 30 worker nodes, and runs Spark 1.2.0, HDFS 2.5.0, and
Yarn 2.5.0. The cluster has a total of 2.5TB of RAM, 324 cores, and 773TB of
secondary memory. The current implementation of SeLINA is a project developed
in Scala exploiting the Apache Spark framework.

5.7 YouTube use case

In this section we discuss the network traffic characterization of the YouTube dataset
first, as a result of the offline SeLINA component, and then we present an evaluation
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of the online part. The default values of E psStep=0.001 and 3 clustering levels led
to meaningful results for this experiment. Increasing the number of levels brings no
improvement. After the third iteration, new clusters become very small and have
very low Silhouette values, a clear sign that the system is artificially aggregating data
that are actually very fragmented.

5.7.1 Offline Cluster and Model Characterization

Clustering results provide meaningful insights into network traffic when enriched
by means of relevant statistics and features. As such, we present traffic analyses
provided by both the cluster statistics and the classification model.

Cluster Statistics

Table 5.3 reports the clusters obtained by running SMDBSCAN on the YouTube
dataset of May 1st, 2013. For each cluster, SeLINA returns the top-3 attributes
according to VRR, i.e., it presents to the network analyst those features that best
represent the data inside the cluster itself. For instance, consider the cluster number
1. It is the biggest one, collecting approximately 60,000 (36%) flows. It is primarily
characterized by a rather low Pdup value (0.65%±0.71%), and clients requesting
4kB of data on average (L7−DataC=3992±2422.4 bytes), a rather sizable HTTP
request size. RT T MinS is 33.7±16.1 ms, which suggests quite standard and not
congested DSL lines. The cluster thus collects the most common flows. This is the
only cluster identified during the first iteration of the multi-level clustering. During
iteration 2 and 3, more clusters emerge (one in step 2, and two in step 3), each with
several thousands of flows. This confirms the ability of SMDBSCAN to identify
large clusters, despite different densities, thanks to the multi-level approach. At
the end of the whole clustering process, the noise cluster aggregates all remaining
points. There are 40,000 of them (23%), which are very sparse, as proven by the
high variance in their characterizing attributes.

Clusters 2 and 3 represent a sizable part of the traffic, with 16% and 22% of
the flows, respectively. Interestingly, those are characterized by two very different
RT T MinC values. Recall that RT T MinC represents the distance of the YouTube
CDN server to the probe. Servers in Cluster 2 are 25.3±1.4 ms far, while servers
in Cluster 3 are much closer (5.4±4 ms). Pdup is significantly different too, with
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Table 5.3 YouTube dataset. Cluster characterization.

Lev. Cl. Num. Top-3 representative attributes
id flows ranked by highest

variance reduction ratio
Attribute Avg. value Std. dev

1 1 59846
Pdup 0.65% 7.12E-03

L7−DataC 3992.1 2422.4
RT T MinS 33.7 16.1

2 2 27158
RT T MinC 25.3 1.4

Pdup 0.55% 6.42E-03
L7−DataC 5357.8 2916.9

3

3 37964
Pdup 2.97% 2.31E-02

RT T MinC 5.4 4.0
RT T MinS 52.6 42.2

4 5569
RT T MinC 25.5 1.2

Pdup 4.11% 1.28E-02
Duration 51464.0 31969.4

40318
Preord 0.000002% 3.12E-06

noise L7−DataS 14465449.3 30919388.4
RT T MinS 78.7 160.6

Cluster 2 Pdup being one order of magnitude smaller than cluster 3. This probably
reflects higher congestion in the path from the probe to the client in cluster 2.

Cluster 4 collects fewer points (5,500, 4%). Pdup and RT T MinC are similar to
Cluster 2, but here duration (51±32 s) is very large. This possibly hints for TCP
flows of long lived video sessions. we will get back to this when observing the video
resolution distribution in the following.

Besides the top-3 attributes selected for each cluster, SeLINA offers to the analyst
a further characterization of the network traffic by presenting CDFs of features and
additional measurements collected by the probe. In this use case, we consider the
distribution of the RTT, of the throughput, and of the type of video format and
resolution.3

Fig. 5.5 and Fig. 5.6 report the CDF of the RT T MinC and the average download
throughput for each cluster. Cluster 2 and 4 show similar distributions of the
RT T MinC, as previously discussed, which are significantly different from the clusters

3Tstat has a DPI engine specialized in extracting metadata from YouTube flows.
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Fig. 5.5 YouTube dataset. RT T MinC distribution for each cluster.
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Fig. 5.6 YouTube dataset. Throughput distribution for each cluster.

1 and 3, whose flows, instead, are characterized by generally low values of RT T MinC

(i.e., they represent requests served by nearby CDN servers). On the contrary, the
flows of clusters 2 and 4 are associated with video requests that are served by
relatively far CDN servers. Figure 5.6 shows that cluster 4 is also characterized by
worse performance in terms of throughput, and it probably represents flows with
possible performance issues.

This reflects the typical scenario of the YouTube CDN [88], and proves the ability
of SeLINA to provide insights on the traffic mix. The analyst is offered few and
consistent clusters, instead of thousands of single measurements.

To investigate further the characteristics of each cluster, Table 5.4 details the
percentage of flows per cluster for each video resolution format. For each cluster, the
3 most frequent formats are reported. Each format is characterized by the quality of
the video, mainly in terms of resolution (e.g., 240p, 720p), and it is identified by an
integer value.4 Some formats are shared by all clusters (i.e., format id 34 and 134),
whereas others are peculiar for specific clusters, such as format 25 for cluster 1, and

4Video Resolution information at
https://en.wikipedia.org/wiki/YouTube.
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Table 5.4 YouTube dataset. Clusters’ characterization based on video format

Lev. Cl. Top-3 format
id ranked by number of flows

Format id (resolution) Num. of flows (%)

1 1
25 63.71%

34 (360p) 10.29%
134 (360p [DASH]) 7.36%

2 2
34 (360p) 60.67%

134 (360p [DASH]) 9.02%
35 (480p) 8.35%

3

3
34 (360p) 55.12%
35 (480p) 9.34%

134 (360p [DASH]) 9.22%

4
34 (360p) 50.26%

140 (AAC 128) 10.56%
134 (360p [DASH]) 9.43%

format 140 for cluster 4. It is interesting to notice that neither the format id, nor any
other video information was exploited during the clustering phase, nevertheless the
clusters are correlated to a set of video formats. For cluster 4, for instance, the longer
Duration is due to higher presence of high quality audio stream server in format 140
(AAC 128kbps) that is not found in other clusters.

Classification Rules

The decision-tree described in Section 5.4.3 and trained with a maximal depth of 4
levels has been evaluated with a 3-fold cross-validation scheme on the training data.
The average accuracy over the three cross-validation runs is 93%, and results for
precision and recall for each class are shown in Table 5.5. All clusters are extremely
well represented by the model for both precision and recall (93% to 99%), apart from
a lower value in Cluster 1 recall (80%).

Being the model so accurate, rules that form the decision tree can be used to
understand how the different clusters split the network traffic. Each path from the
root to one leaf of the decision tree is translated into a rule for the class of that leaf.
Each rule characterizes the data of its class (i.e., a cluster in our case). Rule-based
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Table 5.5 Quality of the classification algorithm. 3-fold cross-validation

Cluster id Precision Recall
1 96.28% 80.17%
2 97.73% 93.02%
3 97.91% 99.25%
4 88.93% 98.22%

modeling provides further insights into correlations among attributes. Analying the
rules of such classifier, we observe the following:

• {(RT T MinC > 15.7ms) and (Pdup > 2.5%)}→Cluster4. This is the only rule
associated with cluster 4. It states that all flows of cluster 4 are simultaneously
characterized by a high RT T MinC and a high Pdup.

• {(RT T MinC > 21.5ms) AND (Pdup ≤ 2.5%)}→Cluster2. This rule provides
a characterization of cluster 2, where flows have an even higher RT T MinC but
a lower Pdup with respect to cluster 4.

Insights provided by such rules are relevant since we would not have been able to
distinguish the differences between clusters 2 and 4 by considering only the CDF of
RT T MinC reported in Figure 5.5. The rules, which simultaneously consider more
than one measure, allow supporting domain experts to more easily characterize the
content of the clusters and also perform comparisons among them by considering at
the same time many facets.

5.7.2 Online Data Characterization and Model Update

The decision tree model is exploited to assign new flows, in real time, to the most
appropriate class (which is one of the clusters). Every N assignments, SeLINA
evaluates the quality of the current cluster set, by means of the Silhouette quality
index and the distribution in number of flows assigned to each cluster. These two
indicators provide the self-evolution feature to SeLINA, which is able to trigger a
model rebuilding phase. The analysis of the Silhouette index indicates whether the
classifier model does not fit the current data anymore, and the distribution of the
flows among the clusters indicates whether the traffic patterns are changing. This
information is also valuable for the analyst since it reflects changes in the traffic mix.
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Fig. 5.7 YouTube dataset. Real-time data labeling: Silhouette and percentage of new
flows assigned to each cluster.

The upper part of Figure 5.7 reports the value of the Silhouette index for three
different days (May 2nd, May 3rd, and May 29th from left to right). The lower part
reports the percentage of flows assigned to each cluster over time. The values are
computed every N = 10,000 flows, which corresponds to 2-3 hours at night, and
approximately 1 hour during peak traffic hours. Recall that the model had been
trained on the May 1st dataset. Traffic from following days is assigned to clusters
based on the classifier, but without re-running the clustering itself.

As discussed by domain experts in [88], network traffic in the first part of May
is very similar to May 1st. On the contrary, in the second part of May, a change
in the YouTube CDN occurred. As such, we would expect the Silhouette to reflect
this situation, especially during peak time when the traffic is more significant. This
is indeed the case. The Silhouette value is rather stable for all clusters during the
first days of May, of whom we reported here May 2nd and May 3rd, meaning that
there are no important changes in the traffic with respect to the May 1st model. It
still fits the new data. Only cluster 2 and 4 show temporary and limited drops in
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Silhouette values from 10am to 12am, but at that time, they only account for very
low percentages of the traffic (less than 10% each).

The Silhouette values of clusters 2 and 4 during May 29th, when the significant
change in the YouTube CDN already occurred, drop suddenly from 12pm to 8pm of
May 29th. At that time, a sizable amount of traffic is assigned to these two clusters
(≈ 20% each), but the clusters 2 and 4 do not fit the data anymore, so that new flows
present un-modeled characteristics, and they fall into the low-Silhouette clusters.
Interestingly, cluster 1 still has a high Silhouette value (and counts for 30-40% of the
traffic), reflecting that not all traffic is affected by the change.

A detailed analysis of May 29th highlights a significant increase of the RT T MinC

values for cluster 2 and cluster 4 flows. While in May 1st and May 2nd, almost all
flows have an RT T MinC lower than 25ms, in May 29th there are many flows with
RT T MinC from 80ms to 100ms. The increase of the RT T MinC values is associated
with changes in the YouTube’s CDN previously identified in [88]. In the model built
by SeLINA on May 1st data, there are no clusters representing this traffic pattern.
Thus, the sudden drop of the Silhouette values automatically highlights the changes
and can be used to raise an alarm.

To better highlight the difference in SeLINA results, we ran a set of experiments
considering the first and last five days of May. we aim at identifying groups of similar
traffic days, by means of the Silhouette pattern. Fig. 5.8 shows the correlation matrix
of the per-day Silhouette indexes, i.e., for each pair of days, we measure how similar
the Silhouette trends are. we use the Pearson correlation coefficient [124] among the
Silhouette values during two days: when close to 1, the Pearson correlation depicts a
strong positive linear correlation; when the coefficient is close to -1, it highlights a
negative correlation, and when it is close to 0, negligible correlation is found. Left
plot of Fig. 5.8 clearly highlights that Cluster 1 Silhouette is always very similar
among those days, and stable over time. Cluster 1 consistently represents the part
of traffic not affected by the CDN change, and the model always fits the new data.
Right plot of Fig. 5.8, instead, clearly shows that Cluster 4 exhibits two patterns over
time: during the beginning of May, it is consistent with the model. But during the
last part of May (after the CDN change), its Silhouette daily pattern becomes very
different from before. These results prove the strong link between the change in the
Silhouette trends and the change in the traffic patterns, and the validity of using the
drop of the Silhouette as a trigger for the generation of a new model of the network.
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Focusing on the percentage of new flows assigned to each cluster (bottom plots
in Fig. 5.7), we can detect changes related to the CDN allocation policy. For all days,
the distribution of the flows changes from the late morning till evening. In particular,
Cluster 1 traffic, which is characterized by low RT T Minc values, decreases from
60-70% (at night) to 30-40% in the 10am-9pm period. On the contrary, the number
of flows assigned to Clusters 2 and 4 increases from less than 5% to 20-30% each.
Clusters 2 and 4 are characterized by higher RT T Minc values, i.e., traffic is now
being served by far-away servers. The difference between the two days is that in
May 2nd and May 3rd the Silhouette values are high and stable, hence the changes
in the distribution of the flows among the clusters are meaningful. On the contrary,
on May 29th the drop in Silhouette values means that clusters cannot be trusted, and
thus a model rebuilding is required.

we let then SeLINA rebuild the whole model (clustering and classifier) on the
flows of May 29th from 10am to 9pm. This leads to a new characterization of the
network traffic, not shown here due to lack of space. 10 clusters (instead of 4) are
identified, with very different characterizing features, both in terms of number of
flows and statistical distribution of values. The new model includes some clusters
with very high RT T MinC values, which means that the presence of new CDN servers
that were not properly represented by the previous clusters are now covered. For
example, one of the new clusters, which contains about 12,000 flows, is characterized
by an average RT T MinC value of 99ms±11ms, a significantly higher value than
those of the former clusters (see Fig. 5.5). These results are consistent with those
in [88], and confirm the ability of SeLINA to automatically identify changes in traffic
pattern. Moreover, SeLINA extracts clusters which fit the new data and provide
insightful analyses of the network traffic evolution.

5.8 P2P use case

In this section we show how SeLINA can help characterize the flows of the P2P
dataset. we recall that this dataset contains all the TCP flows captured by Tstat,
except the HTTP and HTTPS ones. Also in this case, we executed the offline self-
learning phase by using the default values of E psStep=0.001 and the first 3 levels of
clustering. Differently from the YouTube use case, here we have no ground truth at
our disposal, and thus SeLINA is used as a data exploration tool.
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Fig. 5.8 YouTube dataset. Per-day correlation matrices of silhouettes for cluster 1
and 4.

5.8.1 Offline Cluster and Model Characterization

Table 5.6 reports the main characteristics of the extracted clusters and their top-3
characterizing attributes. we immediately notice a cluster with approximately 64%
of the flows (Cluster 1, 98186 flows) that is significantly larger than any other cluster.
Cluster 1 represents “standard” flows which are characterized by a similar average
value of RT T MINC and RT T MINS (i.e. the communication time is similar in both
directions of the flow). This balancing between RT T MINC and RT T MINS values is
normal when no congestions are present. Indeed, P2P traffic is exchanged between
residential clients, therefore, we can expect the distance between the probe and the
peers to be somewhat equal, and so the RTT.

Other clusters provide interesting knowledge to domain experts as well. For
instance, Cluster 2 has an average RT T MinS (235.5ms) that is two orders of magni-
tude higher than RT T MinC (9.4ms). These values highlight a significant asymmetry
between the server side and the client side. The RT T MinS is very high (the average
RT T MinS value of the ‘standard” flows in Cluster 1 is 33.5ms). This situation
describes a possible congestion in one direction of the communication flow. we
recall that we are analyzing P2P flows among ISP customers where many users are
connected through an ADSL connection, with uplink capacity limited to 1Mbps.
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Table 5.6 P2P dataset. Cluster characterization. Clusters obtained by using SMDB-
SCAN and setting E psStep=0.001

Lev. Cl. Num. Top-3 representative attributes
id flows Ranking by highest

variance reduction ratio
Attribute Avg. value Std. dev

1 1 98186
RT T MinS 33.5 38.6
RT T MinC 35.0 45.7
Duration 33154.1 43104.8

2

2 15090
Pdup 3.30E-06 2.04E-04

RT T MinS 235.5 74.8
RT T MinC 9.4 22.2

3 12152
Pdup 2.37E-05 5.44E-04

RT T MinS 14.6 22.9
RT T MinC 295.3 72.9

4 4530
Pdup 4.44E-01 1.34E-03

RT T MinS 11.2 16.2
RT T MinC 18.5 12.9

3

5 3302
Pdup 1.31E-05 5.07E-04

RT T MinS 542.0 103.6
RT T MinC 5.2 13.6

6 2524
Pdup 2.80E-01 2.49E-02

RT T MinS 6.9 15.0
RT T MinC 32.5 37.9

7 1993
Pdup 1.05E-05 3.65E-04

RT T MinS 16.9 28.9
RT T MinC 608.1 101.5

8 1892
Pdup 1.60E-01 1.88E-02

RT T MinS 14.7 29.6
RT T MinC 35.6 42.1

13647
Duration 560334.5 4671692.5

noise L7−DataS 3585728.2 27938244.0
Preord 5.05E-03 2.90E-02

When a remote peer downloads a large amount of data from a local peer, the uplink
of the latter may saturate, causing congestion (i.e., the average RT T MinS increases).
On the contrary, the small RT T MinC suggests that the remote peer is connected
via high speed FTTH technology (where access delay is much smaller being the
upling capacity >10Mbps). A similar situation is valid also for the flows of Cluster
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7. However, in Cluster 7 the RT T MinC is very high (608ms) and the RT T MinS is
low (16.9ms). This second case reflects a simmetric scenario: high-speed local client
downloading a lot of data from ADSL remote peers, whose uplink results congested.

5.8.2 Online Data Characterization and Model Update

For the P2P dataset we applied the evolving part of the framework to analyze how
new flows are assigned to the clusters and identify possible changes in the type of
traffic. Results present no significant changes in the Silhouette. This trend, that is
confirmed by further statistics computed on the flows, highlights that there are no
anomalies or changes in the traffic for the P2P dataset. The clusters identified by
the clustering phase are still representative of the network flows, also of the future
traffic. Since the day we analyzed is a “normal” one, SeLINA correctly identifies no
changes and hence the re-execution of the clustering phase is not triggered.

5.9 Conclusion

This chapter presents a self-learning data analytics system that effectively mines
network traffic data. The proposed methodology is based on a two-phase approach
that

1. builds a self-evolving human-readable traffic model by autonomously splitting
traffic data into homogeneous groups;

2. classifies new data in real-time and identifies the presence of changes in the
traffic mix.

The SeLINA methodology features a distributed implementation in Apache
Spark. It is a general purpose approach, which can be easily exploited to analyze
network traffic data in different conditions. The approach has been tested in two real-
world use cases. The performed experiments highlighted its ability to autonomously
identify evolutions in the network and support the analyst by selecting characterizing
features.

Possible extensions of the current work are (i) the inclusion of further cluster
characterization measures, (ii) the evaluation of pre-processing feature selection



5.9 Conclusion 105

techniques, and (iii) the design and integration of different analysis techniques, more
appropriate for outlier detection.



Chapter 6

BGPStream: a software framework
for live and historical BGP data
analysis

6.1 Introduction

This chapter presents a paper titled BGPStream: a software framework for live and
historical BGP data analysis. This paper has been published in the ACM Internet
Measurement Conference (IMC) 2016 conference.1

The work I present in this chapter has been developed with the team I joined
during my period at CAIDA, a research center in the UCSD university. In particular
I cooperate with them: (i) to perform big data analysis over BGP data (see Sec. 6.5),
and (ii) to extend BGPStream features in order to store BGPStream data in a Kafka
cluster (see Sec. 6.6.2).

We present BGPStream, an open-source software framework2 for the analysis
of historical and live Border Gateway Protocol (BGP) measurement data. Although
BGP is a crucial operational component of the Internet infrastructure, and is the

1Chiara Orsini, Alistair King, Danilo Giordano, Vasileios Giotsas, and Alberto Dainotti, "BGP-
Stream: a software framework for live and historical BGP data analysis" Proceedings of the Internet
Measurement Conference (IMC). ACM, Santa Monica, California, USA — November 14 - 16, 2016,
doi: 10.1145/2987443.2987482

2BGPStream is distributed with the GPL v2 license and is available at bgpstream.caida.org.

bgpstream.caida.org
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subject of fundamental research (in the areas of performance, security, topology,
protocols, economy, etc.), there is no efficient and easy way of processing large
amounts of BGP measurement data. BGPStream fills this gap by making available a
set of APIs and tools for processing large amounts of live and historical data, thus
supporting investigation of specific events, rapid prototyping, and building complex
tools and efficient large-scale monitoring applications (e.g., detection of connectivity
disruptions or BGP hijacking attacks). We discuss the goals and architecture of
BGPStream and we show how the components of the framework can be used in
different applicative scenarios.

6.2 Background

BGP Data at Router Level

The Border Gateway Protocol (BGP) is the de-facto standard inter-domain routing
protocol for the Internet: its primary function is to exchange reachability information
among Autonomous Systems (ASes) [127]. Each AS announces to the others, by
means of BGP update messages, the routes to its local prefixes and the preferred
routes learned from its neighbors. Such messages provide information about how a
destination can be reached through an ordered list of AS hops, called an AS path.

A BGP router maintains this reachability information in the Routing Information
Base (RIB) [127], which is structured in three sets:

• Adj-RIBs-In: routes learned from inbound update messages from its neighbors.

• Loc-RIB: routes selected from Adj-RIBs-In by applying local policies (e.g.,
shortest path, peering relationships with neighbors); the router will install
these routes in its routing table to establish where to forward packets.

• Adj-RIBs-Out: routes selected from Loc-RIB, which the router will announce
to its neighbors; for each neighbor the router creates a specific Adj-RIB-Out
based on local policies (e.g., peering relationship).
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Fig. 6.1 BGP collection process.

BGP Data Collection

Some operators make BGP routing information from their routers available for
monitoring, troubleshooting and research purposes. BGP looking glasses give users
limited (e.g., read-only) access to a command line interface of a router, or allow them
to download the ASCII output of the current state of the router RIB. Looking glasses
are more useful for interactive exploration rather than systematic and continuous
data acquisition. The latter can instead be implemented either (i) by establishing a
BGP peering session with the monitored router from a dedicated system (a route
collector), or (ii) through a protocol specifically designed for monitoring purposes,
such as OpenBMP [128, 129]. OpenBMP is an open-source implementation of the
BGP Monitoring Protocol defined in an IETF draft [129] and supported by latest
versions of JunOS and Cisco IOS. The protocol allows a user to periodically access
the Adj-RIBs-In of a router or to monitor its BGP peering sessions. While OpenBMP
can be easily deployed within an AS to monitor its BGP routers, there are currently
no projects which make such data publicly available. Route collectors instead, are
often used for this purpose [130–132]. A route collector is a host running a collector
process (e.g., Quagga [133]), which emulates a router and establishes BGP peering
sessions with one or more real routers (vantage points, VPs, in the following).

Each VP sends to the collector update messages (updates) each time the Adj-
RIB-out changes, reflecting changes to its Loc-RIB (Figure 6.1).

Once a BGP collector establishes a BGP session with a VP, it maintains a state
and an image of the VP’s Adj-RIB-out table derived from the updates received
through the session. With different periodicity, it dumps (i) a snapshot of all the VP
Adj-RIB-out tables (RIB dump) and (ii) the update messages received within that
period from all the VPs (Updates dump).
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Normally, a BGP session with a collector is configured as a customer-provider
relationship, i.e., as if the VP was offering transit service to the collector. In this case,
the VP is called full-feed, since it will advertise to the collector an Adj-RIB-Out which
contains the entire set of routes in its Loc-RIB. This way, the collector potentially
knows, at each instant, all the preferred-routes that the VP will use to reach the rest
of the Internet – a partial view of the Internet topology graph visible to that router.
A partial-feed VP instead, will provide through its Adj-RIB-Out only a subset of
the routes in its Loc-RIB, e.g., routes to its own networks, or learned through its
customers. Unfortunately, projects publicly providing information acquired by their
collectors do not label VPs as full- or partial-feed, since peering with a collector is
usually established on a voluntary basis and VP behavior can be subject to change
without notice. Therefore, the policy that determines the Adj-RIB-Out to be shared
with the collector must be dynamically inferred from the data (e.g., size of the
Adj-RIB-Out).

For each VP, the collector maintains a session state and an image of the Adj-RIB-
out table derived from updates. The collector periodically dumps, with a frequency of
respectively few hours and few minutes, (i) a snapshot of the union of the maintained
Adj-RIB-out tables (RIB dump) and (ii) the update messages received from all its VPs
since the last dump, along with state changes (Updates dump). RIB dumps provide
an efficient summary of changes to BGP routing tables with a coarse time granularity
that is sufficient for several classes of studies [134–137]. In contrast, Updates dumps
carry a lot of information to be processed, but offer a complete view of the observable
routing dynamics, enabling other types of analysis and near-realtime monitoring
applications [138–141].

Popular Data Sources

The most popular projects operating route collectors and making their dumps avail-
able in public archives are RouteViews [130] and RIPE RIS [131]. They currently
operate 18 and 13 collectors respectively, which in total peer with approximately 380
and 600 VPs distributed worldwide (this number increases every year). Analyzing
data from multiple VPs is of fundamental importance for most Internet studies, since
each router has a limited view of the Internet topology and, even when full-feed, a VP
shares only part of this information (the preferred routes). Moreover, macroscopic
Internet phenomena visible through the routing infrastructure (e.g., outages, cyber
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attacks, peering relationships, performance issues, route leaks, router bugs) affect
Internet routers differently, as a function of geography, topology, router operating
system and hardware characteristics, operator, etc..

Such a distributed and detailed – even if partial – view of the inter-domain
routing plane, generates large amounts of data (>2TB of compressed data collected
in 2015 alone). RouteViews and RIPE RIS collectors save a RIB dump every 2
and 8 hours and an Updates dump every 15 and 5 minutes, respectively. Both
projects save RIB and Updates dumps in a binary format, standardized by the IETF,
called the Multi-Threaded Routing Toolkit (MRT) routing information export format
[142]. RouteViews and RIPE RIS archives date back to 2001 and 1999 respectively,
enabling longitudinal studies relevant to understand the evolution of the Internet
infrastructure and its impact in other fields.

Software Frameworks and APIs

The most widely adopted software for BGP data analysis in the research community
[143–149] is libBGPdump [150], an open source C library that provides a simple API
to parse BGP dumps in MRT format and deserializes MRT records into custom data
structures. It is distributed along with a command-line tool, bgpdump, that outputs
MRT information read from a file in an ASCII format. Often researchers directly use
the command-line tool to translate entire BGP dumps into text, and then parse the
ASCII output to further process or archive the data. Although bgpdump has been an
invaluable tool to support the analysis of BGP data over the last decade, it lacks the
advanced features that we discuss in the next section (e.g., merging and sorting data
from multiple files and data sources, supporting live processing, scalability, etc.).

There have been several projects that process BGP measurement data in real-
time, developed both by industry (e.g., Dyn Research [151]) and academia (e.g.,
PHAS [152]), however their approaches are either undisclosed, or are specific to
a certain application (i.e. they are not generalized frameworks). An exception is
BGPmon [153, 154], a distributed monitoring system that retrieves BGP information
by establishing BGP sessions with multiple ASes and that offers a live BGP data
stream in the XML format (which also encapsulates the raw MRT data). Despite the
fact that BGPmon enables rapid prototyping of live monitoring tools, it currently
provides access to a limited number of VPs (compared to the vast number of VPs
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connected to RIS and RouteViews infrastructures), and it cannot be used for historical
processing.

Towards Realtime Streaming of BGP Data

On the other hand, in the context of live monitoring, the major issue with popular
public data sources such as RouteViews and RIPE RIS, is their file-based distribution
system and thus the latency with which collected data is made available. Our
measurements [155] show that, in addition to the 5 and 15 minutes delay due to
file rotation duration, there is a small amount of variable delay due to publication
infrastructure. However, 99% of Updates dumps in the last year were available in
less than 20 minutes after the dump was begun. Since these latency values are low
enough to enable several near-realtime monitoring applications, we began developing
BGPStream with support for these data sources.

The research community recognizes the need for better support of live BGP
measurement data collection and analysis. Since early 2015, we have been cooperat-
ing with other research groups and institutions (e.g., RouteViews, BGPMon, RIPE
RIS) to coordinate efforts in this space [156]. Both RIPE RIS and BGPMon are
developing a new BGP data streaming service (including investigating support for
streamed MRT records), and BGPMon partners with RouteViews to include in the
forthcoming next-generation BGPMon service all of their collectors. Experience
with the development of BGPStream informed development efforts of the other
research teams and vice-versa. While BGPStream is fully usable today, we envision
that the forthcoming developments of these projects, likely deployed in 2016, will
enhance BGPStream capabilities.

6.3 BGPStream Core

The BGPStream framework is organized in multiple layers (Figure 6.2). Blue boxes
represent components of the framework; those marked with a star are distributed
as open source in the current BGPStream release [157]. Orange boxes represent
external projects or placeholders.

We discuss the core layers (meta-data providers and libBGPStream) in this
section, whereas we illustrate the upper layers, through case studies, in the remainder
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Fig. 6.2 BGPStream framework overview

of the chapter. Meta-data providers serve information about the availability and
location of data from data providers, (either local or remote) which are data sources
external to the BGPStream project.

libBGPStream, the main library of the framework (Section 6.3.3), provides the
following functionalities: (i) transparent access to concurrent dumps from multiple
collectors, of different collector projects, and of both RIB and Updates; (ii) live data
processing; (iii) data extraction, annotation and error checking; (iv) generation of a
time-ordered stream of BGP measurement data; (iv) an API through which the user
can specify and receive a stream.

We distribute BGPStream with the following independent modules: BGPReader,
a command-line tool that outputs the requested BGP data in ASCII format; PyBGP-
Stream, Python bindings to the libBGPStream API; BGPCorsaro, a tool that uses a
modular plugin architecture to extract statistics or aggregate data that are output at
regular time bins.

6.3.1 Goals and Challenges

We designed the BGPStream framework with the following goals:
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– Efficiently deal with large amounts of distributed BGP data. In Section 6.2, we
emphasized the importance of performing analyses by taking advantage of a large
number of globally distributed VPs. However, dealing with such large amounts of
data as well as the distributed and diverse nature (different timing, formats, etc.) of
the VPs pose a series of technical challenges.

– Offer a time-ordered stream of data from heterogeneous sources. BGPStream
aims to provide a unified sorted stream of data from multiple collectors. Record-level
sorting (rather than interleaving dump files) is important in at least two cases: (i)
when analyzing long time intervals where time alignment cannot be achieved by
buffering the entire input, and (ii) when an input data source provides a continuous
stream of data (rather than a discrete dump file), since such a stream cannot be
interleaved at the dump file level.

– Support historical and near-realtime data processing. We consider two modes
of operation: (i) historical - all the BGP data requested is available before the pro-
gram starts; (ii) live - the BGP data requested becomes available while the program is
running. In live mode, the BGPStream stack plus the user application, must process
data faster than it is generated by VPs/collectors. We minimize BGPStream process-
ing latency, thus maximizing the time available for near-realtime user applications to
perform live Internet monitoring and measurements (Sections 6.4.3 and 6.6).

Live mode also introduces the problem of sorting records from collectors that may
publish data at variable times. This problem involves a trade-off between: (i) size of
buffers, (ii) completeness of data available to the application, (iii) latency. Since such
a trade-off should be evaluated depending on the specific goals and resources of the
user application, we design BGPStream to perform best-effort record interleaving in
live mode and we defer to the application the choice of a specific solution (in Section
6.6.2, we provide a concrete example of such a solution).

– Target a broad range of applications and users. Potential applications of
BGPStream are both in the field of network monitoring and troubleshooting as well as
scientific data analysis. The target user base should not be limited to the availability
of high-performance computing and/or cluster infrastructure. The BGPStream
framework makes available a set of tools and APIs that suit different applications and
development paradigms (e.g., historical data analysis, rapid prototyping, scripting,
live monitoring).
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– Scalability. Since the pervasiveness of BGP VPs is key to monitoring and
understanding the Internet infrastructure, the number of VPs supported by collector
projects continually grows. In parallel, the technological challenges (e.g., near-
realtime detection of sophisticated man-in-the-middle attacks [158, 159]) require
solutions of increasing complexity and computational demand. We designed BGP-
Stream to enable deployment in distributed and “big data analytics” environments:
e.g., Spark’s [22] native Python support makes BGPStream usable in such an envi-
ronment out-of-the-box (Section 6.6.2).

– Easily extensible. Though our solution is designed to work with current
standards and the most popular available data sources, we designed a stacked and
modular framework, facilitating support for new technologies and data sources.
BGPStream is indeed a project under evolution and is part of a coordinated effort
with data providers, developers of complementary technologies, and users, to advance
the state of the art in BGP monitoring and measurement data analysis [156, 160].

6.3.2 BGPStream Meta-Data Providers

One of the challenges in analyzing BGP measurement data is identifying and obtain-
ing relevant data. Both RouteViews and RIPE RIS make data available over HTTP,
with basic directory-listing style indexes into the data. Identifying the appropriate
files for large-scale analysis (across multiple collectors and long time durations)
involves either manual browsing and download, or scripting of a crawler tailored
to the structure of each project’s repository. Downloading the data, may itself take
a significant amount of time (e.g., all data collected in 2014 is ≈2TB). Moreover,
since both projects continually add new data to their archives as it is collected (Sec-
tion 6.2), near-realtime monitoring requires custom scripts to periodically scrape
the websites and download new data. BGPStream hides all of these complexities
through meta-data providers: components that provide access to information about
the files hosted by local or remote data repositories (the Data Providers, e.g., the
RouteViews and RIPE RIS archives).

We implemented such a meta-data provider as a web service called BGPStream
Broker, responsible for (i) providing meta-data to libBGPStream, (ii) load balancing,
(iii) response windowing for overload protection, (iv) support for live data processing.
The Broker continuously scrapes data provider repositories, stores meta-data about
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new files into an SQL database, and answers HTTP queries to identify the location
of files matching a set of parameters. An instance of the Broker is hosted at the
San Diego Supercomputer Center at UC San Diego and is queried by default by a
libBGPStream installation, allowing BGPStream to be used “out-of-the-box” on any
Internet-connected machine.

The Broker stores only meta-data about files available on the official repository,
not the files themselves. This approach minimizes the potential for a bottleneck since
queries to, and responses from, the Broker are lightweight, with the actual data being
served by external data provider archives. This configuration also makes it simple
to add support for additional data providers, as well as provide load-balancing and
redundancy as the Broker can transparently round-robin amongst multiple mirror
servers or adopt more sophisticated policies (e.g., requests sent from UC San Diego
machines are normally pointed to campus mirrors).

While the Broker Data Interface is the primary data access interface, we also
provide three other interfaces for analysis of local files: Single file, CSV file, and
SQLite. The following sections assume that the Broker is used as the Data Interface.

6.3.3 libBGPStream

Application Programming Interface

The libBGPStream user API provides the essential functions to configure and con-
sume a stream of BGP measurement data and a systematic organization of the BGP
information into data structures. The API defines a BGP data stream by the following
parameters: collector projects (e.g., RouteViews, RIPE RIS), list of collectors, dump
types (RIB/Updates), time interval start and either time interval end or live mode. A
stream can include dumps of different type and from different collector projects.

On the BGPStream website [161] we provide tutorials with sample code to
use the BGPStream API. In general, any program using the libBGPStream C API
consists of a stream configuration phase and a stream reading phase: first, the user
defines the meta-data filters, then the iteratively requests new records to process from
the stream. Code can be converted into a live monitoring process simply by setting
the end of the time interval to -1.
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Interface to Meta-Data and Data Providers

To access data and meta-data from the providers, the library implements a “client
pull” model, which enables efficient data retrieval without potential input buffer
overflow (i.e., data is only retrieved when the user is ready to process it).

To implement this model, the system iteratively alternates between making meta-
data queries to the Broker and accessing and processing the dump files whose URLs
are returned by the Broker. When the Broker returns an empty set of dump file URLs,
the system signals to the user that the stream has ended. In live mode however, the
query mechanism is blocking: if the Broker has no data available, libBGPStream
will poll until a response from the Broker points to new data for processing.

Data structures and error checking

libBGPStream processes dump files [142] composed of MRT records. While an
update message is stored in a single MRT record, RIB dumps require multiple
records. The BGPStream record structure contains a de-serialized MRT record, as
well as an error flag, and additional annotations related to the originating dump (e.g.,
project and collector names).

To open MRT dumps, we use a version of libBGPdump [150] that we extended
to: (i) read remote paths (HTTP and HTTPS), (ii) support reading from multiple files
in parallel from a single process, and (iii) signal a corrupted read. libBGPStream
uses this signal to mark a record as not-valid (status field) when the BGP dump file
cannot be opened or if the dump is corrupted. libBGPStream also marks records that
begin or end a dump file, allowing users to collate records contained in a single RIB
dump.

An MRT record (and therefore a BGPStream record) may group elements of the
same type but related to different VPs or prefixes, such as routes to the same prefix
from different VPs (in a RIB dump record), or announcements from the same VP,
to multiple prefixes, but sharing a common path (in a Updates dump record). To
provide access to individual elements, libBGPStream decomposes a record into a set
of BGPStream elem structures. Table 6.1 shows the fields that comprise a BGPStream
elem. The AS path field contains all information present in the underlying BGP
message, as specified in RFC 4271 [127], including AS_SET and
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Fig. 6.3 Intra- and inter-collector sorting in libBGPStream.

AS_SEQUENCE segments. libBGPStream also provides convenience functions for
easily iterating over segments in an AS path, accessing fields within a segment, and
converting paths and segments to strings (using the same format as bgpdump). We
do not currently expose all the BGP attributes contained in a MRT record in the
BGPStream elem; we will implement the remaining attributes in a future release.
The old state and new state fields refer to elems from RIPE RIS VPs. Each RIPE
RIS collector maintains, for each VP, a Finite State Machine (FSM) for the status of
the BGP session with the VP, I store the previous and current state of the FSM.

Field Type Function

type enum
route from a RIB dump, an-
nouncement, withdrawal, or
state message

time long timestamp of MRT record
peer address struct IP address of the VP
peer ASN long AS number of the VP
prefix* struct IP prefix
next hop* struct IP address of the next hop
AS path* struct AS path
community* struct community attribute
old state* enum FSM state (before the change)
new state* enum FSM state (after the change)
* denotes a field conditionally populated based
on type

Table 6.1 BGPStream elem fields.
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Generating a sorted stream

libBGPStream generates a stream of records sorted by the timestamps of the MRT
records they encapsulate. Collectors write records in dump files with monotonically
increasing timestamps. However, additional sorting is necessary when the stream is
configured to include MRT records stored in files with overlapping time intervals3,
which occurs in two cases: (i) when reading dumps from more than one collector
(inter-collector sorting); (ii) when a stream is configured to include both RIB and
Updates dumps (intra-collector sorting). Since each file can be seen as an ordered
queue of records, in practice libBGPStream performs a multi-way merge [162] on
such queues.

Given the current number of collectors in RouteViews and RIS (about 30), and
that the broker returns in each response a set of dump file URLs (dump file set)
spanning up to 2 hours of data, the number of files to read can be up to ≈500. The
computational cost of the multi-way merging is proportional to the number of queues
(files) considered. We therefore break the dump file set in disjoint subsets, ensuring
that we place files with overlapping time intervals in the same subset, and apply
multi-way merge to each. This problem is exacerbated by the fact that the duration of
Updates dumps vary between projects (e.g., RouteViews 15 min, RIPE RIS 5 min).
We minimize the number of files per subset by iteratively applying the following
steps until we process all files: (1) initialize a new subset with the oldest file in the
set; (2) recursively add files with time intervals overlapping with at least one file
already in the subset; (3) remove from the set the files in the subset. The subsets we
obtain this way typically contain up to ≈150 files. For each of them, we perform the
multi-way merge: libBGPStream simultaneously opens all the files in the set and
iteratively (i) extracts the oldest MRT record from such files, and (ii) uses the MRT
record to populate a BGPStream record.

Figure 6.3 shows an example of how RIB and Updates dumps generated by a
RIPE RIS collector (RRC01) and a RouteViews collector (RV2) are interleaved
into a sorted stream. The 30 minutes (10 files) of BGP data are first separated into
two disjoint sets (of 6 and 4 files) based on overlapping file time intervals. Then a
multi-way merge is applied separately to the two sets, yielding the stream depicted
at the bottom.

3We define the time interval associated with a dump file as the time range covered by the
timestamps of its records.
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we empirically tested the cost of our sorting algorithm by using libBGPStream
to process one day of Update and RIB dumps from all collectors of RouteViews and
RIPE RIS, and confirmed that the cost of sorting is negligible compared to the cost
of actually reading records from the dump files.

6.4 Analysis of specific events and phenomena

While users can write code that directly uses the BGPStream C API, we provide
solutions that allow complex measurement experiments to be expressed with little to
no code. We show how BGPReader and PyBGStream can rapidly address a variety
of research tasks.

6.4.1 ASCII command-line tool

BGPReader is a tool to output in ASCII format the BGPStream records and elems
matching a set of filters given via command-line options. This tool is meant to
support exploratory or ad-hoc analysis using command line and scripting tools for
parsing ASCII data. BGPReader can be thought of as a drop-in replacement of
the analogous bgpdump tool (a command line option sets bgpdump output format),
which is widely used by researchers and practitioners. However, BGPReader adds
features such as the support to read data from multiple files, collectors, and projects
in a single process, the ability to work in live mode and various filters.

For example, the following command line will dump on stdout a (sorted) stream
of lines, each representing BGP updates from all the RouteViews and RIS collec-
tors which are related to subprefixes of 192/8 and observed since May 12th 2016:
bgpreader -w 1463011200 -t updates -k 192.0.0.0/8. The command will
run indefinitely, outputting new data as it is made available by the data sources.

6.4.2 Python bindings

PyBGPStream is a Python package that exports all the functions and data structures
provided by the libBGPStream C API. We bind directly to the C API instead of
implementing the BGPStream functions in Python, in order to leverage both the flex-
ibility of the Python language (and the large set of libraries and packages available)
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as well as the performance of the underlying C library. Even if an application imple-
mented in Python using PyBGPStream would not achieve the same performance as
an equivalent C implementation, PyBGPStream is an effective solution for: rapid
prototyping, implementing programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there are no time constraints associated
with a live stream of data).

1 from _pybgpstream import BGPStream , BGPRecord , BGPElem
2 from collections import defaultdict
3 from itertools import groupby
4 import networkx as nx
5
6 # create and configure new BGPStream instance
7 stream = BGPStream ()
8 rec = BGPRecord ()
9 # request RIB data from Aug 1 2015 7:50am -> 8:10am (UTC)

10 stream.add_filter(’record -type’, ’ribs’)
11 stream.add_interval_filter (1438415400 , 1438416600)
12 stream.start()
13
14 # create datastructures for the undirected graph and path

lengths
15 as_graph = nx.Graph ()
16 bgp_lens = defaultdict(lambda: defaultdict(lambda: None))
17
18 # consume records from the stream
19 while(stream.get_next_record(rec)):
20 # process all elements of each record
21 elem = rec.get_next_elem ()
22 while(elem):
23 monitor = str(elem.peer_asn)
24 # split the AS path into segments
25 hops = [k for k,g in groupby(elem.fields[’as -path’].

split(" "))]
26 # sanitization: ignore local routes
27 if len(hops) > 1 and hops [0] == monitor:
28 origin = hops[-1]
29 # add all edges to the NetworkX graph
30 for i in range(0,len(hops) -1):
31 as_graph.add_edge(hops[i],hops[i+1])
32 # how long this path is (for comparison to

shortest path)
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33 bgp_lens[monitor ][ origin] = \
34 min(filter(bool ,[ bgp_lens[monitor ][ origin],

len(hops)]))
35 elem = rec.get_next_elem ()
36 # compare actual BGP path lengths to computed shortest path
37 for monitor in bgp_lens:
38 for origin in bgp_lens[monitor ]:
39 nxlen = len(nx.shortest_path(as_graph , monitor ,

origin))
40 print monitor , origin , bgp_lens[monitor ][ origin],

nxlen

Listing 6.1 Calculate AS path inflation in ≈30 lines of code.

In Listing 6.1, we show a practical example related to a research topic commonly
studied in literature: the AS path inflation [163]. The problem consists in quantifying
the extent to which routing policies inflate the AS paths (i.e., how many AS paths
are longer than the shortest path between two ASes due to the adoption of routing
policies), and it has practical implications, as the phenomenon directly correlates
to the increase in BGP convergence time [164]. In less than 30 lines of code, the
program compares the AS-path length observed in a set of BGP RIB dumps and the
corresponding shortest path computed on a simple undirected graph built using the
AS adjacencies observed in the AS paths. The program reads the 8am RIB dumps
provided by all RIS and RouteViews collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a VP and each origin AS. While
reading the RIB dumps, the program also maintains the AS adjacencies observed in
the AS path. We then use the NetworkX package [165] to build a simple undirected
graph (i.e., a graph with no loops, where links are not directed) and we compute
the shortest path between the same <VP, origin> AS pairs observed in the RIB
dumps. In this example, we compare path lengths of 10M unique <VP, origin>
AS pairs and find that, in more than 30% of cases, inflation of the path between
the VP’s AS and the origin AS accounts for 1 to 11 hops. Compared to the study
of Gao and Wang, who analyzed RouteViews data from year 2000 and 2001 [163],
these numbers show more inflated paths (>30% instead of >20%) and a consistent
number of max additional hops (11 instead of 10).

In conclusion, this case study shows that BGPStream simplifies the task of analyz-
ing heterogeneous BGP data, especially if we want such analysis to be systematically
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applied to different datasets and repeatable. To perform exactly the same experiment
described here without using BGPStream, a researcher would have to manually
identify and download all the data and write a parser for bgpdump ASCII output
(besides writing the same core analysis logic). In addition, if a researcher wants to
perform the same type of analysis on different sets of data (e.g., time window, subset
of collectors, data collection projects) they would need to repeat the manual work
of identifying and downloading all the files needed or, more realistically, develop
a configurable crawler supporting the file hierarchies and naming conventions of
different collection projects. Moreover, if another research task requires code to be
aware of data collection time, type (RIB and Updates dumps) and provenance (col-
lector, project), a researcher would need to build a data indexing system accessible to
analysis code. While such efforts are doable, first they represent an added cost that
greatly outweighs the cost of writing the core analysis code and deviates focus from
the specific research task. Second, in a research context, similar efforts typically
result in a mix of ad-hoc code and scripts that make sharing for reproducibility
purposes improbable. Finally, since a script using PyBGPStream embeds the full
definition of the input data used for an experiment, it further fosters reproducibility
of experimental results.

6.4.3 Timely Additional Measurements

In this section, we show how BGPStream can be combined with RIPE Atlas [166],
a large-scale distributed infrastructure for active measurements, to enable timely
analysis of customer-triggered BGP policies.

To mitigate the collateral damage of a DoS attack, a customer may use the
Remotely Triggered Black-Holing (RTBH) technique to request its transit providers
or peers to divert all the traffic towards its targeted IP addresses to a null interface,
which drops all the incoming traffic [167]. Providers who support RTBH define a
BGP community [168][169] that can be used by their customers to signal IP ranges
to be black-holed. Since BGP communities lack standardization, the black-holing
communities can differ among different providers [170], therefore multi-homed
customers may need to set multiple black-holing communities to request black-holing
from more than one of their providers. RTBH is effective on minimizing the collateral
damage of DoS attacks, at the expense of taking the target completely offline. To limit
the number of hosts adversely affected by black-holing, providers often restrict black-
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(a) Fraction of traceroute queries that reach
each black-holed destination.

(b) Fraction of traceroute queries per black-
holed destination that reach each origin AS.

Fig. 6.4 Difference in the data-plane reachability of black-holed destinations during
and after RTBH.

holing only to /32 prefixes, although shorter prefixes may also be allowed depending
on each provider’s policy. The lack of standardization regarding RTBH policies
means that the impact of RTBH can be difficult to predict. Dietzel et. al. have studied
the use of RTBH from the perspective of a large European IXP [171]. In this case
study, we combine data-plane and control-plane measurements to demonstrate how
we can gain a better understanding of how black-holing is implemented and its effects.
Our purpose is to illustrate how BGPStream filters and live-mode streams facilitate
complicated measurements that otherwise would require enormous instrumentation
efforts, rather than providing a complete study of RTBH.

We identify as an RTBH request any triple of (collector, VP, prefix) that is tagged
with at least one black-holing community from a list I compiled by parsing the
IRR records and technical support websites for 30 ASes (13 Tier-1 providers, 12
multinational ISPs, and 5 academic networks). We respectively mark the start of an
RTBH request when we first observe a BGP update with a black-holing community
attached on a prefix that was previously announced without such a community, and
the end when such prefix is re-advertised without it or explicitly withdrawn.

We executed our RTBH measurements between 20-29 April 2016 by continuously
listening to BGP updates from the route-views2 and RRC12 collectors, for IPv4 prefix
announcements tagged with black-holing communities. Almost 80% of the RTBH
requests we detected have a duration of less than a day, while 20% have a duration of
less than 40 minutes. These observations are consistent with previous studies on DoS
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attack duration [172, 171]. Therefore, it is important to minimize the delay between
the application of black-holing communities and the detection time, in order to avoid
missing the time window during which we can execute traceroute measurements
toward the black-holed prefixes. To minimize latency between BGP and traceroute
measurements, we utilize two BGPStream streams (within the same Python script)
running in live mode to collect BGP updates. We apply community-based filters to
the first stream so that it only yields prefix announcements tagged with at least one
black-holing community. Whenever we observe a RTBH request from this stream,
we add a filter for the black-holed prefix to the second stream to capture explicit or
implicit withdrawals. Using two streams in this manner provides a clear separation
of concerns, simplifying the logic in our Python script. That is, one stream triggers
investigation of a prefix, whereas the other (possibly) triggers the completion of
investigation.

Upon detecting the start of an RTBH request we orchestrate a set of paris ICMP
traceroutes towards a random IP address in the corresponding prefix. Depending
on the connectivity of the origin AS, we select between 50 to 100 currently-active
RIPE Atlas probes from: (i) the visible AS neighbors of the origin AS, (ii) ASes
that are co-located in the same IXPs as the origin AS, (iii) the same country of the
target IP (to account for potentially invisible peripheral peering inter-connections).
Our measurements are timely in most of the cases: we are able to probe over
95% and 90% of the black-holed prefixes, respectively for updates collected from
RIPE RIS and RouteViews, before the RTBH is switched off. We also repeat the
same traceroutes as we detect the end of the RTBH request after the blackholing
community is withdrawn.

In total, we discovered 482 black-holed prefixes, originated by 67 different ASes.
398 of the black-holed prefixes had a length longer than /24, 397 of which had
a length of /32 (single hosts). Contrary to the best practices that recommend the
suppression of black-holed prefix advertisements [167, 173] or prefixes that are too
specific [174], during the short period of our experiment we observed a non-trivial
number of black-holed prefixes that propagated beyond the AS that defined the
balck-holing communities. Namely, the corresponding ASes applied neither the
egress filter for black-holed prefixes, nor the egress filter for too specific prefixes.
Past works found that prefixes longer than /24 are visible to 20% – 30% of the
monitors at the BGP collectors [175, 176]. In Section 6.5 we briefly analyze the
propagation of BGP communities as it is visible from BGP collectors. However, the
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control-plane propagation of the black-holed prefixes beyond the network that applies
the black-holing has not been analyzed before. From our measurement results, we
remove prefixes for which I could not obtain traceroutes from the same set of Atlas
probes between the two measurements (due to fluctuations in the availability of the
probes), obtaining 253 prefixes that we briefly investigate. Figure 6.4 reports the
difference in the data-plane reachability of black-holed destinations during (red) and
after RTBH (green). For this representation, results are ordered based on tghe value
of each metric during the RTBH.

Figure 6.4(a) shows the fraction of traceroutes that reach each destination. In this
graph we do not include destinations that traceroutes do not reach after the RTBH,
resulting in 100 destinations examined: after the RTBH 83% destinations are reached
by at least 95% of the traceroutes, whereas during the RTBH 77% of the destinations
are reached by less than 5% of the traceroutes and 73% are never reached by any
probe. These numbers clearly show a change in data-plane reachability. Interestingly,
during RTBH, 13% of the destinations are only partially reachable (between 20%
and 80% reachability). For these destinations, we manually verified that traceroutes
from customers or peers of the origin AS could still reach the black-holed destination,
while ASes in the upstream path failed.

Although these results indicate a change in data-plane reachability during the
RTBH events, the DoS attack itself may be the cause of traceroutes not reaching a
host normally responding. However, if RTBH is in place the traffic is supposed to be
dropped at the border routers [167, 177]. To dig deeper, in Figure 6.4(b) (where we
consider all the 253 prefixes) we look at reachability at the level of the origin AS
instead of the end host. On one hand, we find that the majority of the destinations
(190) experience traceroutes that frequently fail (i.e., 40% reachability or less) to
reach the origin AS. On the other hand, the vast majority of destinations show full
reachability of the originAS after the RTBH. This preliminary finding is consistent
with the expected behavior when RTBH is employed, and we plan to investigate it
further in future work.

In conclusion, this case study shows that I are able to easily instrument combined
passive control-plane and active data-plane measurements to capture and investigate
transient routing policies. Without the capability to stream and filter BGP updates in
near-realtime, we would be unable to capture the data-plane paths of the short-lived
black-holing events. The alternative to BGPStream (or a system that implements
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the same features) would have been to continuously run traceroute scans against the
entire address space which is impractical given the immense resource requirements
of such an exhaustive probing.

6.5 Analysis of Massive Datasets

In this section, we showcase simple case studies to demonstrate that BGPStream’s
Python bindings are readily usable in a big data workflow. we deploy PyBGPStream
scripts in an Apache Spark [22] environment running on a 15-node cluster (240
CPUs and 960GB of RAM) to extract statistics of BGP across the last 15 years.
we make these scripts available at [178] as a starting point for other researchers to
use PyBGPStream with Spark for their own analyses. In addition, our examination
highlights how certain features of the BGP eco-system (e.g., average size of the
routing table) appear different depending on the data sources and data types picked
from the heterogeneous BGP measurement infrastructure currently available to
researchers, thus providing a reference for future research.

In all our analyses, I processed the midnight RIB dumps of the 15th day of each
month from January 2001 to January 2016: more than 3000 RIB dumps, totalling
approximately 44 billion BGP elems. The running times of the various analyses
range between ≈1 and 24 hours. All our Python scripts share a common structure:
(i) we build a list of data partitions splitting the data by time range and BGP collector
and instruct Spark to create a Resilient Distributed Dataset (a data structure split
across many nodes)4; (ii) we map a Python function to execute for every element
in the list; this function represents the core of the BGPStream routines for data
extraction; e.g., it creates the stream (defining filters etc.) and it executes nested
while loops – per BGP record and per BGP elem – such as the one in Listing 6.1;
this operation results in the creation of as many streams as list elements; (iii) we
specify three independent reduction operations: per VP, per collector, overall. We
also provide a hello-world template script that follows this pattern [178].

In our first analysis, we study the growth of the IPv4 routing table in BGP
speakers over time (calculated as the number of unique prefixes in the Adj-RIB-out
of each VP). There are three observations in this analysis useful as future reference
for similar studies: (i) partial-feed VPs, i.e., those showing significantly smaller

4We also specify the number of slices, typically 2-3 times the number of cores in the cluster.
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(a) heatmap depicting the growth of the IPv4
routing table in VPs over time.
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Fig. 6.5 Results of historical analysis using PyBGPStream and Apache Spark.

Adj-RIB-outs, are numerous and significantly skew the distribution; Figure 6.5(a)
shows a heatmap of data from 2,296 VPs, the y axis shows the number of prefixes in
the Adj-RIB-out of VPs; while warmer colors represent a higher concentration of
points from different VPs. From this result we can see that only 710 out of 2,296
VPs are within 20 percentage points of the maximum at each time bin (we adopt this
definition of full-feed VP in the following); (ii) two collectors (RouteViews kixp and
soxrs) do not have a single full-feed peer, thus may not provide enough information
for most analyses; (iii) we find that both the RouteViews and RIPE RIS repositories
occasionally miss RIB dumps (34 per year on average) on midnight of the 1st day of
the month (thus we perform our analyses with data from the 15th day of the month).
In this analysis, we also compute, at each level of aggregation (VP, collector, overall),
the number of unique prefixes and ASes observed, which we use to normalize data
in the other analyses.

Figure 6.5(b) shows the results of analysis in which identified MOAS (Multi
Origin AS) prefixes [179].
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Study and detection of MOAS prefixes is relevant to many problems [140],
including the detection of BGP hijacking activity [159]. Figure 6.5(b) plots on
the y axis the number of unique sets of ASes (MOAS sets in the following) over
time, contributing to MOAS prefixes aggregated into overall (top blue line) and per-
collector (other lines). Besides the slow growth in observable MOAS sets over time,
this graph highlights that to obtain a better view of MOAS prefixes, it is important to
analyze data from as many collectors as are available: the number of MOAS sets
identified in the overall aggregation is always significantly larger than the maximum
number identified by a single collector.

We then calculated the number of transit ASes (ASes appearing in the middle of
an AS path) observed for both IPv4 (red lines) and IPv6 (blue lines). Figure 6.5(c)
shows that for IPv4, despite the nearly-linear growth in the number of ASes, the
fraction of transit ASes over time has been constant! For IPv6 in contrast, overall
there has been a constant decay in the fraction of transit ASes (edge growing faster
than transit). However, around 2012, this decay slowed considerably, while the total
number of IPv6 ASes kept a fast rate: the IPv6 graph is growing fast while its edge
and transit portions recently started growing at similar paces! (Approaching the
property we observed in the IPv4 graph over the last 15 years.) As of January 2016,
however, the fraction of transit ASes is much larger in IPv6 (21% vs 16%), reflecting
a smaller adoption of IPv6 at the edge.

In the final analysis we conducted with Spark, we investigated how BGP com-
munities propagate and are visible via the RouteViews and RIPE RIS measurement
infrastructures. BGP communities can be used to study several relevant Internet
phenomena, such as complex AS relationships [135], traffic engineering policies
[180], DDos mitication (Section 6.4.3). We collected unique communities appearing
in IPv4 paths and we found that the number of observable communities over time
increased from ≈800 (January 2001) to ≈40,000 (January 2016). In the rest of
this section I focus on the most recent data (January 2016). By counting only the
AS identifier portion of each community (which typically refers to the AS targeted
by or generating the community), we observed approximately 4,000 ASes using
communities. We observe communities only through ≈83% of the VPs, showing
that many BGP speakers strip out communities from AS paths before propagating
them. By observing the full paths, we find that at least 1,000 ASes propagate BGP
communities (out of the more than 8,000 transit ASes found in the previous analysis).
In practice, since the number of communities a VP observes depends on the filtering
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by the ASes in its vicinity, analysis requiring either diversity of BGP communities or
communities from a specific AS requires a careful choice of VPs/collectors. Figure
6.5(d)5, shows the VPs as circles (inner colored circles) with diameter and color
proportional to the number of distinct AS identifiers (inferred from the two most-
significant bytes of the community value) in the BGP communities they observe.
The aggregated data (by collector and by data collection project) are depicted as grey
circles, and highlight which collectors observe a more heterogeneous set of BGP
communities: RouteViews collectors route-views2 (3,624), linx (3,262), route-views4
(3,236), and RIPE RIS collectors rrc04 (2,979), rrc01 (2,947), and rrc12 (2,886).
We selected the two collectors used for the analysis in Section 6.4.3 based on these
data.

Performing analyses such as those discussed in this section without using BGP-
Stream requires considering scalability issues (besides the efforts described in Section
6.4.2: crawling, data indexing, ASCII output parsing). For example, the amount of
data needed for large longitudinal analyses may preclude a-priori download. In this
case, a researcher would need to develop a system to dynamically download a moving
window of data for consumption by analysis code. However, such a solution will turn
storage into a potential bottleneck, since the size of the window limits the number
of processing units that can run in parallel. A better solution would instead enable
processing scripts to download data on demand, which is close (but still suboptimal)
to the functionality provided by libBGPStream (which does not download the file to
disk but streams it to the script directly from the HTTP connection). Another benefit
of such functionality in a cluster-computing context is that it reduces the overhead
of data locality optimization, since it implicitly co-locates each data block with the
appropriate processor.

5An interactive, high-resolution version of this graph, as well as the equivalent for IPv6, are
available at [178].
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6.6 Continuous Monitoring

6.6.1 Lightweight monitoring: BGPCorsaro

BGPCorsaro is a tool to continuously extract derived data from a BGP stream
in regular time bins. Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can be either:

• Stateless: e.g., performing classification and tagging of BGP records; plugins
following in the pipeline can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating data that are output at the end
of each time bin. Since libBGPStream provides a sorted stream of records,
BGPCorsaro can easily recognize the end of a time bin even when processing
data from multiple collectors.

Both the core and the plugins of BGPCorsaro are written in C in order to support
high-speed analysis of historical or live data streams. In Section 6.6.2, we describe a
deployment of BGPCorsaro that runs 24/7 as a part of our global Internet monitoring
infrastructure.

As a sample plugin, we describe a stateful plugin that monitors prefixes overlap-
ping with a given set of IP address ranges. For each BGPStream record, the plugin:
(1) selects only the RIB and Updates dump records related to prefixes that overlap
with the given IP address ranges. (2) tracks, for each <prefix, VP> pair, the ASN
that originated the route to the prefix. At the end of each time bin, the plugin outputs
the timestamp of the current bin, the number of unique prefixes identified and, the
number of unique origin ASNs observed by all the VPs.

we use a BGP hijacking event reported by Dyn Research, the hijacking of Italian
Academic and Research Network (GARR) prefixes on January 7th 2015 [181], to
demonstrate this plugin. we configured the plugin to process data from all available
RouteViews and RIPE RIS collectors for January 2015, setting the time bin size to 5
minutes, and providing as input to the plugin the IP ranges covered by the 78 prefixes
originated by AS137 (GARR) as observed on January 1st, 2015. Figure 6.6 shows a
graphical representation of the two time-series generated by the plugin: the number
of unique announced prefixes (in green) and number of unique origin ASNs (in blue).
While a small oscillation of the number of prefixes announced is expected (as prefixes
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Fig. 6.6 Monitoring of GARR (AS137) IP space using the pfxmonitor plugin.

can be announced as aggregated or de-aggregated), in 4 cases the number of unique
announcing ASes shifts from 1 to 2, for about 1 hour. Through manual analysis,
we found that during these spikes a portion of GARR’s IP space (specifically, 7 /24
prefixes) was also announced by TehnoGrup (AS 198596), a Romanian AS that
appears to have no relationship with GARR. The report by Dyn Research describes
a single attack on January 7th. However, given the similar nature of the other three
events visible in the graph (1st, 5th and 8th of January), the plugin output suggests
that three additional attacks occurred. Although this approach cannot detect all types
of hijacking attacks, it is still a valid method to identify suspicious events and serves
to demonstrate how users can leverage the capabilities of BGPCorsaro by writing
plugins specific to their application.

6.6.2 Monitoring the Global Internet

In this section, we present a distributed architecture built on top of BGPStream and
leveraging Apache Kafka [182] (a distributed messaging system) to perform continu-
ous global BGP monitoring. My goal is two-fold: we demonstrate how BGPStream
enables and simplifies developing complex global monitoring infrastructure and we
present our architectural solutions to challenges that arise in this context.

To frame context and motivation for developing such complex architectures, let
us consider two sample applications, our “Internet Outages: Detection and Analysis”
(IODA) [183] and “Hijacks” [159] research projects. In IODA we monitor the
Internet 24/7 to detect and characterize phenomena of macroscopic connectivity
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Fig. 6.7 Distributed framework for live monitoring.

disruption [184] [185]. In the case of BGP, our objective is to understand whether
a set of prefixes (e.g., that share the same geographical region, or the same origin
AS) are globally reachable or not. Information from a single VP is not sufficient to
verify the occurrence of an outage, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if several VPs, topologically and
geographically dispersed, simultaneously lose visibility of a prefix, then the prefix
itself is likely undergoing an outage. In Hijacks, we are interested in detecting and
analyzing BGP-based traffic hijacking. Since most common hijacks manifest as two
or more ASes announcing exactly the same prefix, or a portion of the same address
space at the same time, detecting them requires comparing the prefix reachability
information as observed from multiple VPs.

In order to detect these events in a timely fashion, we need to maintain a global
(i.e., for each and every VP) view of BGP reachability information updated with
fine time granularity (e.g., few minutes). Such a continuously updated global view
can be useful in many other applications, such as tracking AS paths containing a
particular AS, verifying the occurrence of a route leak, spotting new (suspicious) AS
links appearing in the AS-graph, etc.

we sketch our proposed architecture in Figure 6.7: multiple BGPCorsaro process
data by using the RT plugin which reconstructs the observable LocRIB of all the
collector’s VPs (one instance per collector, in order to distribute the computation
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across multiple CPUs/hosts), their output is stored into an Apache Kafka cluster
and further processed by applications (consumers) based on meta-data generated by
synchronization servers. In the following sections, we describe the main components
of this architecture and which challenges they address: Section 6.6.2 explains how
we efficiently and accurately reconstruct the observable LocRIB of each VP; Section
6.6.2 illustrates our solution to reduce the amount of data we store and later process
with the consumers; Section 6.6.2 shows how we solve the problem of supporting
different synchronization mechanisms based on the application requirements; finally,
in Section 6.6.2 we provide an example of applications implemented as a consumer.

Reconstructing VPs routing tables

RIB dumps are typically available every 2 or 8 hmys. My goal is to reconstruct
snapshots of the observable LocRIB (herein referred to as the routing table) of
each VP with a granularity of 1 or few minutes. For this purpose, we developed a
BGPCorsaro plugin, called routing-tables (RT). The RT plugin uses a RIB dump
as a starting reference and then relies on the Updates dumps to reconstruct the
evolution of the routing table, using subsequent RIB dumps for sanity checking
and correction. However, since this is an inference process based on distributed
collection of heterogeneous measurement data, multiple things can go wrong: BGP
sessions going down, corrupted data, dump files published out of order, etc. We
address this problem by maintaining a finite state machine and data structures that
model the state of the VP, its routing table, and our confidence that the modeled
data is accurate. In particular, we deal with the following fmy special events: E1.
we ignore all records of a RIB dump if libBGPStream marks at least one of its
records as corrupted. E2. Since records from a single RIB dump have timestamps
often spanning several minutes and RIB and Update dumps may be published out
of order, it is possible for the plugin to receive a RIB dump with some records that
are older than the latest Update records applied by the plugin. To cope with this
issue, We check each individual record of a RIB dump and only apply information
from the record if the timestamp of the record is more recent than the timestamp of
information already applied by the plugin. E3. Upon receiving a corrupted Updates
dump record we stop applying Updates and wait for the next RIB dump. E4. We
force state transitions upon receiving certain VP state messages (e.g., receipt of a
state message with the Established code [127] triggers a transition to the UP state).



134 BGPStream: a software framework for live and historical BGP data analysis

UP UP
RIB Application

DOWN
RIB Application DOWN

update RIB/update

RIB/update

RIB end

RIB start

RIB end

RIB start

State Established State DownCorrupted Record

consistent routing table

unavailable routing table

12

3 4

RIB/update

Fig. 6.8 Finite State Machine (FSM) for reconstructing VP routing table.

We save state and routing table information in a multi-dimensional hash table,
which can be seen as a matrix with prefixes as rows and VPs as columns. Each cell
contains the reachability-attributes for the prefix (e.g., the AS path), the timestamp
of when the cell was last modified by an Updates dump record, and a A/W flag
that indicates whether such operation was an announcement or a withdrawal. In
addition, for each cell, the RT plugin uses a shadow cell to temporarily store records
from a new RIB dump until it receives its last record: if none of the RIB dump
records are corrupted (E1), we replace the content of the main cell with the content
of the shadow cell unless the timestamp of the RIB record is older than the cell’s last
modification time (E2).

Figure 6.8 depicts the process of maintaining a VP routing table as a finite state
machine that models the state of the VP. When the plugin starts, the VP’s routing
table is unavailable and the VP is in state down (1). When a new RIB dump starts, the
VP’s state moves to down-RIB-application state (2). During this phase, the plugin
populates the shadow cells with the information received from the RIB dump records
and the main cells with Updates dump records. The VP’s state becomes up (3) once
the entire RIB dump is received; when in this state the routing table is determined to
be an accurate representation of the VP’s routing table. Each new announcement or
withdrawal record triggers modification of the main cell, whereas if a new RIB dump
starts, the VP’s state transitions to up-RIB-application (4), a state similar to (3) but
whereby the RIB dump records modify the shadow information of the cells. Once
the RIB ends, the shadow and main cells are merged (as described previously) and
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the VP transitions to state (3) again. In addition, a corrupted Updates dump record
forces the state to be down (E3). Reception of an Updates dump record carrying
a state message6 with the Established code [127] moves the VP’s state to up (E4),
whereas reception of any other state message indicates that the connection between
the VP and the collector is not established, and therefore, the VP is considered down
(E4).

To evaluate the accuracy of our approach, we periodically compare the infor-
mation in the current and shadow cell. RIS and RouteViews error probabilities –
defined as the number of mismatching prefixes over the sum of all VPs’ prefixes –
calculated over 12 months across 31 collectors, are 10−8 and 10−5 respectively. We
find that mismatches are usually caused by unresponsive VPs for which we do not
have state messages (e.g., RouteViews), or by a collector not applying all incoming
update messages before starting its RIB dump (but applying them afterwards, even if
they have been already assigned a timestamp).

IO routines: diffs, (de)serialization, Kafka

At the end of each time bin, the RT plugin transmits the reconstructed routing table
of each VP to a Kafka cluster. However, in order to reduce the volume of data to
be stored and later processed by the consumers, we developed routines that allow
the RT plugin to compute the difference between the routing table generated at the
previous time bin and the current one and transmit only the changed portions (which
we call diff cells). Consumers use complementary routines to retrieve the data from
Kafka and reconstruct a full routing table by applying diffs to the previously stored
version. The resulting data structure marks the updated portions of the routing table,
allowing a consumer to limit its analysis to only these data. We periodically (e.g., 1
hmy) also store entire (non-diff) routing tables in the Kafka cluster that applications
can use for synchronizing in order to receive future diffs.

Figure 6.9 highlights the advantage (in terms of number of processed BGP
elems) of processing only diffs between routing tables instead of processing every
update message. we run the RT plugin on data from route-views2 for the month of

6Each RIPE collector maintains, for each VP, a finite state machine for the status of the BGP
session with the VP and dump specific messages when state transitions occur. RouteViews collectors
do not dump such state messages, hence the plugin may maintain a stale routing table for a VP that is
actually down. To mitigate this problem, we also declare a VP down if none of its routes are present
in the latest RIB dump.
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Fig. 6.9 RT diffs vs. BGP elems.

March 2016: in the graph, the red circles show the average (bottom) and maximum
(top) number of BGP elems extracted from BGP update messages in each time
bin, whereas the blue squares show the number of diff cells between consecutive
routing tables. When the time bin is 1 minute, there are on average more than 3
times fewer diff cells than BGP elems, indicating that there is redundancy in update
messages even at such short time scales. As the size of the time bin increases, the
reduction factor also increases, at the expense of time granularity; a time bin of 1
hmy yields ≈13 times fewer diff cells than BGP elems. Also, the maxima show
that by processing diffs, consumers are more resilient to bursts of updates (e.g., as a
result of prefixes flapping).

Data synchronization

Different collectors, and in general different data smyces, provide data with variable
delay. Performing data synchronization requires a trade-off between latency, amount
of data available at processing time, and memory footprint. The optimal point in such
a trade-off depends on the specific application goals and requirements. A monitoring
application may require data from all (or a given fraction of) available smyces for
the current time bin regardless of latency. Other applications may have stringent real-
time requirements and prefer to explicitly set a time-out. For example: in realtime
detection of hijacking, we set a time-out of few minutes to execute traceroutes as
soon as a suspicious BGP event is detected; in the IODA application instead, we
relax latency constraints in favor of data completeness and we use a time-out of 30
minutes, since it results in RT routing tables from all the VPs to be available for
consumption for 99% of the time bins (we verified it on data from 2014 and 2015).
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We designed a system based on meta-data stored in Kafka and multiple sync
servers, each implementing a different synchronization mechanism: each BGP
Corsaro RT plugin writes in the Kafka queue, along with the routing tables, indexing
meta-data; such meta-data is monitored by the sync servers, which based on the
synchronization criterion they implement, inject meta-data into their own topic in the
Kafka queue to mark data as ready for consumption. By using Kafka, the resulting
system is horizontally scalable (since Kafka supports distributing data across many
nodes) and robust (e.g., due to data replication). In addition, since sync servers only
handle lightweight meta-data which have a small memory footprint, they do not
affect scalability.

Consumers

Consumers implement routines that analyze the routing tables retrieved from Kafka
to perform event detection, extraction of statistics to output as time series etc. We
developed two consumers for near-realtime detection of per-country and per-AS
outages. Both consumers select the prefixes observed by full-feed VPs and monitor
the visibility of these prefixes by computing the number of prefixes geo-located
to each country and announced by each AS. The consumers store this data into a
time series monitoring system supporting automated change-point detection and data
visualization.

Figure 6.10 shows data from the per-country and per-AS outages consumers over
a period of 1 month, (June 20 to July 20, 2015), selecting prefix visibility associated
with Iraq and five of the biggest Iraqi ISPs. The noticeable drops reflect a sequence
of country-wide Internet outages that the government ordered in conjunction with
the ministerial preparatory exams [186–188].

6.7 Conclusions

BGPStream targets a broad range of applications and users. We hope that it will
enable novel analyses, development of new tools, educational opportunities, as
well as feedback and contributions to our platform. In addition, since code and
scripts using BGPStream embed the definition of the public data sources used for
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an experiment, BGPStream significantly eases the reproducibility of experimental
results.

BGPStream development is part of a collaborative effort with other researchers
and data providers, such as Cisco, RouteViews and BGPMon, to coordinate progress
in this space [156]. We plan to release new features in the near future, including
support for more data formats (e.g., JSON exports from ExaBGP [189], OpenBMP
[128]). In particular, adding native support for OpenBMP will enable processing of
streams sourced directly from BGP routers.



Chapter 7

Conclusions and Discussion

In this thesis I presented different studies to show how network monitoring is a
fundamental task to gain knowledge about the network. I showed that all the the
studies I proposed follow a common workflow starting with the data acquisition
phase through, active or passive monitoring. In Cap. 2, Cap. 3, and Cap. 5 I showed
how to take advantage of passive monitoring by analyzing data acquired with a
passive probe. In Cap. 4 and Cap. 6, I showed the benefits of using active and passive
monitoring in synergy. After that all the proposed studies continue with a feature
selection phase driven by my domain knowledge. Then, each chapter, presented
a specific study which falls in one or more of four categories: server monitoring
(Cap. 2 and Cap. 4), client monitoring (Cap. 3), network monitoring (Cap. 6), or the
application of novel methodologies (Cap. 2, Cap. 4, and Cap. 6).

This thesis offered a walk through methodologies from the mathematical, statisti-
cal and set theory worlds (Cap. 3 and Cap. 4), to the machine learning community
(Cap. 2, and Cap. 5), finishing with big data approaches (Cap. 5, and Cap. 6). All
these studies have the aim to demonstrate how machine learning and big data method-
ologies are nowadays fundamental to automatically extract meaningful information
from a dataset.

In particular, in Cap. 2 with YouLighter I showed how to monitor the YouTube
CDN by using passive monitoring. YouLighter uses DBSCAN, an unsupervised
machine learning methodology, to automatically group thousands of YouTube caches
into few edge-nodes. Then, by exploiting the notion of Pattern Dissimilarity I
showed how to compare two clustering results to evaluate their evolution of over
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time. In particular, YouLighter has been able to sport a large transformation in a
crucial edge-node of YouTube CDN, that also impaired the QoE perceived by the
monitored ISP customers for more than 40 days.

Instead in Cap. 3, by using a dataset from passive monitoring and by investigating
the browsing habits of Internauts, I showed that use the DNS traffic to build a users’
profiler is not effective. The reason is that the similarity of the browsing activity
during two different periods of time is rather limited. In the one head, this is due
to the presence of a lot of websites that are contacted by the users without their
knowledge. In the other hand, because we repetitively visit only a small subset of
all the websites that we contact every day. Indeed, in my experiment only 44%
of the time I was able to uniquely identify users based on their activity. With this
percentage reducing over time.

In Cap. 4, by exploiting a census of anycast addresses made by active monitoring,
I analyzed the pervasiveness of Anycast-enabled CDNs (A-CDNs) in a dataset
obtained through passive monitoring. I demonstrated that: A-CDNs are a reality as
they are visited my more then 50% of web users every day, and they are used by
several important players for load balancing. I showed that they are used to offer
either stateless services such as web pages e.g., WordPress, either stateful services,
such as audio/video streaming e.g., Soundcloud, or Vine. The possibility to apply
anycast addressing also to stateful services is guarantee by the stability of A-CDNs
paths. The prof, is that by analyzing all A-CDNs RTT over the whole dataset, I
discovered only a few anomalies in the RTT to reach A-CDNs.

To demonstrate the possibility to use a machine learning solutions to automati-
cally spot changes, in cap. 5, I presented SeLINA a self-tuning tool implemented
in the big data Apache Spark big data framework. I evaluated SeLINA analyzing
with two datasets obtained from passive monitoring. In the first dataset, SeLINA
demonstrated to be effective in the automatic detection of changes as it as been
able to automatically pinpoint the YouTube anomaly previously highlighted with
YouLighter. In the second dataset, by analyzing P2P traffic, SeLINA highlighted
some interesting clusters, but no anomalies over time.

To conclude, Cap. 6 presented BGPStream, an open-source software framework
for the analysis of both historical and real-time Border Gateway Protocol (BGP)
measurement data. BGPStream features demonstrated to be very useful in different
scenario. First, in real-time and using only passive data, BGPStream highlighted
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a well known MOAS attack at the GARR prefix space. Then, in cooperation with
active monitoring, BGPStream allowed me to evaluate the propagation of the black-
holing communities in the network. Finally, by using the historical analysis features,
BGPStream allowed me to analyze over 16 years of measurement data exploiting
the Apache Spark big data framework. With this framework I measured different
aspects such as the growth of the Internet in term of IPv4 prefixes, or the number of
MOAS events.

Despite this thesis presented different monitoring solutions in various scenarios,
they represent only a small subset of possible application of machine learning
methodologies in the network monitoring field. Each methodology demonstrated to
be effective in a particular scenario, and I hope that my solutions can be a starting
point to design new methodologies by other researchers. The application of big
data tools has been briefly touched in this thesis. However, I strongly believe that
these tools will be the future for the network monitoring problem given the rise
of networking data. One last but not least important aspect to keep in mind while
monitoring is the users’ privacy. In my thesis I always used anonymized or aggregate
data for this reason. Often, while we monitor the network, we acquire and study
data containing sensitive users’ information. For this reason, before performing any
analysis, and before evaluating the technical aspects, it is important to the evaluate
ethics implications of each study, in order to protect the users’ privacy and the
inappropriate usage of their data.
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Measurement Conference 2016 (IMC 2016), Santa Monica, USA, 14-16
November 2016. This paper is presented in Cap. 6.
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• D. Giordano, S. Traverso, L. Grimaudo, M. Mellia, E. Baralis, A. Ton-
gaonkar,S. Sabyasachi, "YouLighter: A Cognitive Approach to Unveil YouTube
CDN and Changes", In: IEEE Transactions on Cognitive Communications and
Networking doi: 10.1109/TCCN.2016.2517004. This paper is presented in
Cap. 2.

• D. Apiletti, E. Baralis, T. Cerquitelli, P. Garza, D. Giordano, M. Mellia ; L. Ven-
turini, "SeLINA: a Self-Learning Insightful Network Analyzer", In: IEEE Trans-
actions on Network and Service Management doi: 10.1109/TNSM.2016.2597443.
This paper is presented in Cap. 5.

Awards

• Best student paper award: D. Giordano, S. Traverso, L. Grimaudo, M. Mel-
lia, E. Baralis, A. Tongaonkar, S. Sabyasachi, "YouLighter: An Unsupervised
Methodology to Unveil YouTube CDN Changes" In: 27th International Tele-
traffic Congress (ITC 27), Ghent, Netherlands, 8-10 September 2015

• Travel grant award: At: 27th International Teletraffic Congress (ITC 27),
Ghent, Netherlands, 8-10 September 2015

• Travel grant award: At: Traffic Monitoring and Analysis Workshop 2015
(TMA 2015), Barcellona, Spain, 23-24 April 2015

• BGP Hackaton winning team: R. Anwar, D. Cicalese, D. Giordano, B. Machado
,K. Nishizuka, N. Vivet, "HIJACKS-2, CAIDA BGP Hackathon 2016, San
Diego, USA, 6-7 February 2016

• Travel grant award: At: Internet Measurement Conference 2016 (IMC 2016),
Santa Monica, USA, 14-16 November 2016


