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Compact Parameterized Black-Box Modeling via

Fourier-Rational Approximations
Stefano Grivet-Talocia, Senior Member, IEEE, Elisa Fevola

Abstract—We present a novel black-box modeling approach
for frequency responses that depend on additional parameters
with periodic behavior. The methodology is appropriate for
representing with compact, low-order equivalent models the
behavior of electromagnetic systems observed at well-defined
ports and/or locations, including dependence on geometrical
parameters with rotational symmetry. Examples can be polar-
ization or incidence angles of a plane wave, or stirrer rotation
in reverberation chambers. The proposed approach is based on
fitting a Fourier-rational model to sampled frequency responses,
where frequency dependence is represented through rational
functions and parameter dependence through a Fourier series.
Several examples from different applications are used to validate
and demonstrate the approach.

Index Terms—Macromodeling, parameterized modeling, trans-
mission lines, field coupling, rational approximation, reduced
order modeling, Vector Fitting.

I. INTRODUCTION AND MOTIVATION

Accurate and compact models of complex physical phenom-

ena or processes are often required in EMC applications [5],

[6], as well as in several other engineering disciplines [3], [4].

Full numerical modeling from first-principle descriptions, like

solving Maxwell’s equations at the system level, is sometimes

impractical due to the overwhelming complexity, both in

electrical size (leading to an excessive number of unknowns

to be solved for) and other factors like, e.g., the presence

of nonlinearities in the system (which prevent using a direct

frequency-domain modeling approach). In such situations, a

common approach is to break this complexity by performing

a system partitioning or domain decomposition, modeling each

individual subsystem using the most appropriate method, and

then combining the results for a system-level characteriza-

tion [25], [30], [31].

This paper addresses the problem of constructing behavioral

models starting from tabulated frequency responses, as may be

obtained by a frequency-domain full-wave simulation or by a

VNA measurement. Several algorithms are available for this

task and are widely used by the EMC community, including

the well-known Vector Fitting (VF) scheme [7]–[10] and, to

a lesser extent, the Loewner framework [3], [11]. A complete

overview on the state of the art of theory and applications can

be found in [1]. These approaches process the frequency sam-

ples (usually in form of Scattering parameters) and produce a

lumped model in state-space form. The latter can be readily

synthesized as a SPICE netlist for circuit simulation [12], [13].

Model construction automatically performs an order reduction,
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by selecting the minimal complexity that is strictly required

for the representation of the frequency response of interest.

This approach is mature and widespred in both academia and

industry.

The focus of this work is on the more general multivariate or

parameterized modeling. In addition to reproducing the system

response over a broad frequency band, we include in the model

also the dependence on one additional variable or parameter.

This approach is not new, since several algorithms for the

construction of parameterized black-box models exist [19]–

[23]. Practically all these prior works represent the variations

induced by external parameters through low-degree polynomi-

als, either full-domain or piecewise, thus limiting scope and

applications.

In this work, we introduce a novel Fourier-rational model

representation. Frequency dependence is represented through

low-order rational functions, so that models are compatible

with state-space descriptions and equivalent circuit synthesis.

Parameter dependence is instead represented by a truncated

Fourier series, which is appropriate for all those cases where

the parameter is an angle or is characterized by a periodic

behavior. Even when this periodicity assumption does not

hold, the Fourier basis functions still provide excellent building

blocks for all those cases that are characterized by a smooth

parameter dependence over a finite range. In addition, it is well

known that Fourier-based approximations are characterized by

optimal numerical conditioning, differently from polynomials,

whose application is instead limited to low orders.

Various different applications are discussed in this paper.

First, we show that the model representation and the corre-

sponding coefficient determination, based on a reformulation

of the Sanathanan-Koerner iteration [24], allow a perfect

identification in case the system under modeling has a finite

dynamical order (a fixed number of poles), with a frequency

response that, at any frequency, depends on the parameter

through a finite number of harmonics. We use a simple lumped

circuit as validation benchmark for this basic consistency

check.

A second and more realistic application involves the rep-

resentation of electromagnetic field coupling to transmission

lines [26]. We show that, starting from either a transmission-

line model or from frequency responses computed via a full-

wave numerical simulation (thus including re-radiation and

edge effects), the proposed approach results in compact models

for loaded or unloaded lines, excited by an impinging plane

wave and parameterized by the incidence or polarization angle.

The final outcome is a parameter-dependent SPICE netlist,

which can be used in a SPICE transient analysis by loading the

model with nonlinear terminations. The suggested procedure
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Fig. 1. A field-excited transmission line, with specification of polarization η
and incidence angles (θ, ψ).
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Fig. 2. A schematic illustration of a reverberation chamber, with specification
of stirrer rotation angle θ.

thus enables fast simulation of field-excited transmission lines

loaded by nonlinear elements. This example serves as a proof-

of-concept for EMI modeling via compact behavioral models,

whereas the passive interconnect macromodel is generalized

to a Norton or Thévenin model having an equivalent source

in Fourier-rational form and compatible with subsequent pa-

rameterized circuit simulation.

A third application that we demonstrate here is the blind

identification of resonant modes in reverberation chambers

starting from direct measurements, including a full represen-

tation of the mode dependence on the stirrer rotation angle.

Opposed to more standard repeated mode identification for

fixed angles [2], [28], [29], the proposed approach allows a

continuous mode-tracking with stirrer rotation, thus allowing

more realistic chamber characterization and subsequent statis-

tical analysis.

In this work, we focus on the model representation and

on the performance of the coefficient identification algorithm.

We do not discuss important related topics, such as uniform

model passivity characterization and enforcement [14]–[18],

which are left for a future investigation.

II. PROBLEM STATEMENT

Let us consider the two application scenarios depicted in

Figures 1 and 2. Figure 1 reports a simple transmission line

over a ground plane, loaded by two impedances ZR and ZL,

and excited by a plane wave with incidence and polarization

defined by the triplet of angles (θ, ψ, η). The quantity of

interest is here the current induced on one of the terminations,

i.e., ZL. This current will depend on frequency (time) and

on the three incidence angles as IL(s; θ, ψ, η), where s is the

Laplace variable.

Figure 2 depicts instead an idealized reverberation chamber,

excited by an antenna whose feed is denoted as “port 1”,

and whose field is measured by a second antenna (“port 2”).

The quantity of interest here is the scattering matrix S that

represents energy reflection and transmission between the two

ports, which is parameterized by the stirrer rotation angle

θ. The resulting parameterization can thus be written in the

frequency (Laplace) domain as S(s; θ).
The parameterized frequency responses in above two sce-

narios will be collectively denoted in the following as H̆(s;ϑ),
where the accent˘will be used to label the original or “true”

system responses, and where ϑ represents a generic parameter

with periodic behavior within the range [ϑmin, ϑmax]. When

ϑ is an angle, ϑmin = 0o and ϑmax = 360o (this will be

implicitly assumed in the following). In general, H̆ is a P ×Q
matrix-valued response.

The “true” response can be reasonably evaluated at a set of

fixed frequencies fk, k = 1, . . . ,K over a given frequency

band [fmin, fmax], with f1 = fmin and fK = fmax, and for

a set of fixed parameter values ϑm, m = 1, . . . ,M spanning

the range [ϑmin, ϑmax]. We will denote this characterization as

H̆k;m = H̆(j2πfk;ϑm), k = 1, . . . ,K, m = 1, . . . ,M.
(1)

The evaluation of this data can be performed by a direct

measurement (as in the reverberation chamber example), or

by a numerical simulation (as in the trasmission-line example).

The parameterized model to be constructed will be denoted as

H(s;ϑ). We will enforce the following fitting condition

H(j2πfk;ϑm) ≈ H̆k;m, k = 1, . . . ,K, m = 1, . . . ,M
(2)

so that the model responses approximate the raw data through-

out the modeling bandwidth and parameter range.

We remark that the proposed approach is not limited to the

above two examples, which were chosen for illustration pur-

poses. Any linear dynamic system with periodically-varying

parameters can be analyzed.

III. FOURIER-RATIONAL MODEL STRUCTURE

The structure of the model to be constructed is determined

based on the following considerations:

1) given the periodicity assumptions, for any complex

frequency s, the elements of matrix H(s;ϑ) should be

periodic functions of ϑ;

2) for any parameter value ϑ, the elements of matrix

H(s;ϑ) should be rational functions of the complex

frequency s;
3) in order to ensure generality, both poles and zeros

(or equivalently poles and residues) of H(s;ϑ) should

depend on the variable ϑ;

4) the parameterization of the poles p(ϑ) and zeros z(ϑ)
should not be explicit but implicit, since p(ϑ) and z(ϑ)
may undergo bifurcations induced by variations of ϑ,

resulting in a non-smooth behavior (such an example is

reported in the Appendix);
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5) following the above point, the model parameterization

should be based on smooth functions of ϑ.

We introduce the following Fourier-rational form

H(s;ϑ) =
N(s, ϑ)

D(s, ϑ)
=

2L
∑

ℓ=0

N
∑

n=0

Cℓ,nξℓ(ϑ)ϕn(s)

2L
∑

ℓ=0

N
∑

n=0

dℓ,nξℓ(ϑ)ϕn(s)

(3)

where the parameter-dependent basis functions are defined as

the Fourier basis in trigonometric form

ξℓ(ϑ) =











1 ℓ = 0

cos(⌈ℓ/2⌉ϑ) ℓ = 1, 3, 5, . . .

sin(⌈ℓ/2⌉ϑ) ℓ = 2, 4, 6, . . .

(4)

where operator ⌈·⌉ rounds its argument to the nearest larger

integer. The frequency-dependent basis functions are instead

defined as the partial fractions

ϕ(s) =

{

1 n = 0

(s− qn)
−1 n > 0

(5)

where the set Q = {qn, n = 1, . . . , N} includes N prescribed

and distinct numbers (real or complex conjugate pairs). In

order to guarantee uniqueness in the model representation, we

normalize the model by setting d0,0 = 1.

A few remarks are in order. The adopted model structure

in its general form (3) is the same as discussed in [1]

and originally postulated in [20]–[23], where polynomials or

piecewise polynomials were used as basis functions ξℓ. The

main novelty that is introduced in this work is the Fourier basis

to represent periodic variations. Surprisingly, and to the best of

Authors’ knowledge, this representation was never proposed

before. We also note that, once all coefficients in (3) are

known, a state-space form providing a model realization, and

an associated SPICE netlist providing a circuit realization are

readily constructed, as discussed in [1], [20]. We omit these

details here, pointing the Reader to the cited references.

The proposed Fourier basis is appropriate when the depen-

dence of the coefficients on the parameters is expected or

known to be smooth (point 5 above). Should this assumption

not be true, spurious oscillations and Gibbs phenomena may

appear in the neighborhood of some point ϑ∗ where either

numerator or denominator of (3) has a singularity in some of

its derivatives. In such cases, it would be more appropriate to

use piecewise-defined Finite-Element-like bases. This investi-

gation is however out of scope for this work.

IV. MODEL IDENTIFICATION

Following the standard procedure discussed in [1], [20],

[24], model identification is performed here using a linear

relaxation of the fitting condition (2), known as (Generalized)

Sanathanan-Koerner (GSK) iteration. In fact, a direct nonlinear

optimization applied to (2) would result in a very difficult

numerical problem, since the cost function expressing the

fitting error (based on the energy norm)

E =
K
∑

k=1

M
∑

m=1

∥

∥

∥
H(j2πfk;ϑm)− H̆k;m

∥

∥

∥

2

(6)

Fig. 3. Circuit schematic used for validation. Parameter values are: R0 =
R2 = 1Ω, R1 = R3 = 100 kΩ, L1 = L2 = 0.1mH, C1 = C2 = 0.1µF;
see text for M(α).

is strongly non-convex in the decision variables Cℓ,n, dℓ,n. For

this class of problems, the SK iteration has proven an excellent

identification method, although its theoretical convergence

properties are still partially unknown and under debate [38],

[39].

We setup an iterative scheme indexed by µ = 0, 1, 2, . . . ,
and we minimize at each iteration the cost function

Jµ =

K
∑

k=1

M
∑

m=1

∥

∥

∥
N

µ(j2πfk;ϑm)− D
µ(j2πfk;ϑm)H̆k;m

∥

∥

∥

2

|Dµ−1(j2πfk;ϑm)|2
(7)

for µ = 1, 2, . . . , with the initialization D
0 = 1. The

minimization of (7) does not pose particular problems, since

all decision variables appear as a linear combination in the

numerator expression (the denominator is known, since based

on the solution at previous iteration). This is recognized as a

weighted linear least squares problem, for which the optimal

solution is found using standard linear algebra tools. We also

remark that, when iterations stabilize, we have D
µ = D

µ−1,

and Jµ becomes identical to E in (6). The iterations are run

until the value of the cost function Jµ stabilizes. If this value

is below a prescribed threshold ε, the model is accepted and

the iterations stop. Otherwise, the model order is increased

and the identification restarted.

The above SK iteration is not able to enforce model stability

and passivity by construction. In fact, the proposed model pa-

rameterization is global and not of interpolatory nature, there-

fore passive (and stable) interpolation schemes such as [21]–

[23] cannot be used. To the best of Authors’ knowledge,

there is no general result for controlling or imposing uniform

stability and passivity, so that this remains a clear objective

for future investigations. However, both stability and passivity

can be easily verified a posteriori, by performing a parameter

sweep of the model response and checking stability and

passivity of the corresponding univariate (non-parameterized)

frequency-dependent models instantiated for fixed parameter

values. This is the approach that was adopted in this work

to certify the extracted macromodels as appropriate for stable

time-domain analysis.

V. VALIDATION

The proposed model formulation and identification algo-

rithm are validated using the template one-port circuit depicted

in Fig. 3. The circuit response (we consider the reflection coef-

ficient Γin = S11) is parameterized by α ∈ [0o, 360o] through

the mutual inductance M(α) =
√
L1L2 k(α), where k(α) is a

parameter-dependent coupling coefficient. This simple circuit
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is an idealized model of two rotating windings, parameterized

by the rotation angle. We consider the following two different

scenarios.

• finite harmonics: we define the coupling coefficient as

k(α) = [κ1 cos(α) + κ2 cos(3α)] (8)

with κ1,2 constants, corresponding to a finite number of

harmonics in its Fourier representation. A straightforward

analytic circuit solution shows that both numerator and

denominator of Γin(s;α) include a finite terms of Fourier

basis functions (4), up to 2L = 12. This implies that

fitting a parameteric model with 2L ≥ 12 should lead to

an exact identification, within machine precision.

• infinite harmonics: we define the coupling coefficient as

k̂(α) = T (k(α)), (9)

where the nonlinear function

T (x) =
1

2

[

tanh

(

x− 1/2

τ

)

+ tanh

(

x+ 1/2

τ

)]

(10)

is used to generate an infinite number of harmonics in its

Fourier representation and, consequently, in Γin(s;α).

The finite and infinite harmonics cases were analyzed by

generating the exact responses Γ̆in
k;m over a grid of K = 500

logarithmically spaced frequency samples from 10 kHz to

1 MHz, and M = 360 samples along α with spacing of

one degree. The SK identification was then run with different

orders, in order to investigate consistency and convergence.

Top and bottom panels of Fig. 4 depict the model identification

(relative) errors achieved for the finite and infinite harmonics

cases (top and bottom panels, respectively), for different values

of the constants κ1,2 and saturation coefficient τ . As expected,

we see that in the finite harmonics case machine precision
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Fig. 4. Relative model errors in the finite (top) and infinite (bottom) harmonics
cases (in the bottom panel, κ1 = 0.6 and κ2 = 0.2).

is reached with 2L = 12 Fourier basis functions, for all

different sub-cases (the order was increased in steps of 2, so

that both the cosine and the sine terms are included in the basis

for each harmonic). In the infinite harmonics case, instead, a

larger number of harmonics is required to obtain engineering

accuracy. For smaller τ , the error decay versus order is less

sharp, consistently with the stronger saturation effects.

A summary of the main results for a few selected param-

eter configurations is depicted in Fig. 5. Each row in the

figure corresponds to a given configuration (as labeled in the

left graph). For each case, we report in the first column a

comparison between (the real part of) the raw data Γ̆in(s;α)
(blue lines) and the parameterized model Γin(s;α) (red dots),

for a selected subset of parameter values αm (similar results

were obtained for all other angles). The two sets of curves

are undistinguishable, thus perfectly validating the model.

The second column reports the real part of Γ̆in(s;α) plotted

versus frequency and α, with a color scale ranging from

blue (ℜΓ = −1) to yellow (ℜΓ = +1). The superimposed

blue lines correspond to the (postive) imaginary parts of the

exact circuit poles, whereas the red dots correspond to the

poles of the identified model. The poles trajectories are seen

to closely follow the peaks of the frequency responses. A

complete validation of all model poles in terms of both real

and imaginary parts is shown in the right column, showing

a perfect match even when the two system poles appear to

be very close to each other (middle panels) in terms of their

imaginary part.

VI. FIELD-EXCITED INTERCONNECTS

We now refer to the template field-excited interconnect

depicted in Figure 1. Modeling field coupling to transmission

lines is well understood and well established [26], [33]–[37].

Here, we use this example as a proof of concept for the fea-

sibility of proposed parameterized modeling strategy, in view

of the more general problem of EMI modeling of complex

interconnect structures loaded by nonlinear terminations. A

reference frequency-domain solution for the field-excited line

is here obtained through a full-wave MoM formulation using

the well-known solver NEC [27], although other transmission-

line-based models can be adopted [26], [32]–[37].

The line geometry under analysis [32] includes a uniform

circular wire of length L = 1 m and radius rw = 0.1 mm,

placed at a height h = 0.1 m over an ideal ground plane,

corresponding to a characteristic impedance ZC ≃ 456 Ω. The

wire is loaded by two impedances ZR and ZL. The quantity

of interest is the current through impedance ZL, which will be

parameterized by frequency (up to 1 GHz in this study) and by

one of the incidence ψ or polarization η angles. Throughout

this section, we set ZR = ZC/10.

Our modeling approach is based on the derivation of a

Norton equivalent of the distributed one-port obtained after

removing the load impedance ZL (see Figure 6). The Norton

equivalent admittance Yeq is obtained by computing the current

through a unit voltage source applied to the output port, while

switching off the incident field. Since the incident field is not

present, this equivalent admittance is a univariate function
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Fig. 5. Validation summary for two circuit configurations. See text for details.

A

B

            

⇒ Ieq Yeq

A

B

Fig. 6. Casting a field-excited interconnect as a Norton equivalent circuit.

of frequency. Therefore, a rational macromodel is readily

obtained using the standard Vector Fitting algorithm [7] (18

poles were automatically determined so that the relative RMS

model error resulted less than 1%), followed by a passivity

check based on [15] (model was already passive and did not

require any a posteriori enforcement).

The equivalent current source Ieq is computed by turning on

the incident field and replacing ZL with a short circuit. This

current depends both on frequency s and on the incidence

angles of the impinging field, thus requiring a parameterized

macromodel representation. Figure 7 validates the computed

parameterized macromodel of Ieq(s, η) for fixed ψ = 0o and

θ = 45o, whereas Figure 8 provides the same validation for

Ieq(s, ψ) with η = 180o and θ = 45o. Only a selected

number of curves for few angles ηm, ψm and a subset of model

frequency samples ωk (red dots) are shown for readability, but

similar results were obtained for all angles within the range

[0o, 360o] and all other frequencies. In both cases, a very good

accuracy is observed, with the model responses being almost

undistinguishable from the original responses computed by

NEC. The (cumulative, relative) model approximation errors

350
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Fig. 7. Macromodel (N = 20, L = 7) validation of the NEC-based short-
circuit current Ieq(s, η), with ψ = 0o and θ = 45o. Cumulative relative
macromodel error: ǫ = 1.9× 10−3.

are defined as

ǫ = ‖E‖F /‖Ĭ‖F , (11)

with matrices E and Ĭ collecting all frequency and angular

samples of data and model according to

Ĭk;m = Ĭeq(j2πfk;ϑm), Ek,m = Ieq(j2πfk;ϑm)− Ĭk;m

where F denotes the Frobenius norm. We remark that all

model orders N,L were determined to achieve a relative error

ǫ . 1%.
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Fig. 10. Validation of the transmission line-based parameterized Norton model
for the determination of the load current IL flowing through a RLC load,
excited by a normalized incident field E = 1V/m (θ = 45o).

A complete validation of the modeling flow is provided

in Figure 9, where the load current IL is computed by

solving the parameterized Norton macromodel loaded by a

series RLC load (R = 5Ω, L = 10 nH, C = 10 pF). The

results are compared for few selected angles η and ψ to the

reference currents obtained by a direct application of NEC

to the loaded structure. Almost no difference is visible in all

reported cases (similar results were obtained for all other angle

configurations). The figure reports also the SPICE simulation

results applied to the parameterized Norton equivalent model,

synthesized as an equivalent circuit following [1], [20]. Also

this SPICE realization matches closely the reference solution.

As an further validation, we repeated the same macromodel

identification, but starting from reference frequency responses

based on the pure transmission-line coupling model [26] (thus

neglecting edge discontinuities, vertical riser and re-radiation

effects). The results are depicted in Figure 10. Also in this

case the macromodel accuracy is excellent, demonstrating

the agnostic nature of proposed macromodeling strategy with

respect to the first-principle model used to generated the

raw frequency responses. We conclude that the proposed

parameterized modeling strategy can be used to represent field-

excited interconnect structures through non-homogeneous cir-

cuit equivalents, where the equivalent source models are due

to incident fields.

A. Transient analysis of field-excited interconnects loaded by

nonlinear devices

The SPICE realization of the above-derived parameterized

Norton macromodel can be used for transient analysis of the

field-excited interconnect, loaded by arbitrary and possibly

nonlinear terminations, and for any prescribed time variation

of the incident field e(t). We demonstrate this approach by

replacing the load impedance ZL with a nonlinear termination

including a series resistor (RL = 100Ω) and a symmetric volt-

age clipping circuit with two parallel branches, each with two

series-connected diodes, and by performing a transient analysis

using an incident field waveform e(t) = E0 sin(2πf0t)u(t),
with f0 = 100 MHz, E0 = 10V/m, and where u(t) is the

Heaviside unit step function. Figure 11 compares the load

voltage induced by the incident field with or without the

clipping circuit, using two different models for the diodes.

B. An application: EMI on a high-speed link

As an additional application, we consider another transmis-

sion line structure (L = 10 cm, wire radius rw = 0.1 mm,

height h = 1 cm over an ideal ground plane), which is

modeled as a two-port structure. Both the admittance matrix

Yeq(jω) and the two short-circuit currents Ieq1,2(jω;α) param-

eterized by α = ψ and η (with θ = 45o) induced by an

incident plane wave were computed by NEC, as in previous

sections. Then, a parameterized two-port Norton macromodel

was computed using the proposed fitting procedure up to

10 GHz and synthesized as a SPICE equivalent.

A typical applicaton that is enabled by the macromodel is

demonstrated in Figure 12. The line is driven on one end by

a clock signal (voltage swing: 1 V, internal source resistance
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Fig. 11. Transient analysis of the field-excited transmission line terminated
by a nonlinear overvoltage protection circuit (top panel: ideal diode model;
bottom panel, diode model 1N4148).
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Fig. 12. Transient response of a clock-driven transmission line disturbed by
an incident field triggered at T∗ = 10 ns.

RS = 50Ω, bit time: 1 ns, rise and fall times: 100 ps) and

terminated into a parallel RC load (RL = 10 kΩ, CL = 1 pF)

protected by a diode-based circuit clipping the voltage within

the range [−0.2, 1.2] V. A continuous-wave (50 V/m, 1.3 GHz)

indicent field from a direction (θ, ψ, η) = (45o, 0o, 55o) is then

switched on at T∗ = 10 ns (red dashed line in the figure).

The received voltage at the far end of the line is significantly

distorted by the disturbing field, as Figure 12 confirms. The

SPICE runtime for this simulation took only 0.19 seconds on

a standard laptop.

VII. MODE TRACKING IN REVERBERATION CHAMBERS

We now discuss a different application scenario for the pro-

posed Fourier-rational parameterized macromodels. We refer

to a generic reverberation chamber depicted in Fig. 2, whose

scattering responses S(s; θ) measured by a pair of antennas

are parameterized by the stirrer rotation angle θ. The main

objective is here to identify from direct measurements all the

natural frequencies of the chamber within a given frequency

band. Such frequencies can be identified from the set of

poles pi(θ) of a rational approximation. Such poles inherit

the dependence on θ and are therefore easily computed from

our proposed Fourier-rational macromodel.

We illustrate the proposed pole identification and extraction

on the chaotic reverberation chamber discussed in [2], namely
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Fig. 13. Comparison between parameterized macromodel and measured
scattering responses of the reverberation chamber.

Fig. 14. Pole trajectories (imaginary parts, blue dots) superimposed to

|S̆11(2πf, θ)| rendered with a linear color scale (ranging from dark blue
to yellow).

a cubic metallic cavity (size w = 2.95 m, l = 2.75 m,

h = 2.35 m) equipped by a stirrer and with six defocusing

hemispheres (radius 0.4 m) attached to the chamber walls.

The frequency band of interest for this investigation ranges

from fmin = 220 MHz to fmax = 230 MHz, which is

slightly below the Lowest Useable Frequency (LUF) of the

chamber (around 300 MHz). The 2 × 2 scattering matrix

H̆k;m = S̆(j2πfk; θm) in (1) was measured in one-degree

steps over the stirrer rotation range [0o, 140o], obtaining a

total number of frequency samples K = 501 for each angle

(M = 141). The construction of the macromodel was per-

formed using all K frequency samples for a subset of M ′ = 29
angular samples (one point out of five), whereas the remaining

angular samples were used as validation points for checking

the intersample approximation. The rational model order and

the Fourier model order was increased until the accuracy of

the approximation was satisfactory and finally set to N = 24
and L = 3 (higher orders did not improve significantly the

fitting accuracy).

Figure 13 compares few selected scattering responses of

the parameterized macromodel to the corresponding raw mea-

sured data. We see that the accuracy of the approximation is
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Fig. 15. Pole trajectories (both real and imaginary parts) parameterized by
stirrer position. The colors represent the residue magnitude associated to each
pole, using a normalized colorscale ranging from blue to red.

excellent. Figure 14 reports the trajectory of the macromodel

poles (imaginary part) versus stirrer rotation angle. The pole

trajectories are superimposed to a colored map of the insertion

loss magnitude (same color scale as in Fig. 5), in order to

confirm that the pole trajectories closely match the peaks

of the frequency responses. Finally, a 3D plot of the poles

(both real and imaginary parts) plotted versus rotation angle

is reported in Figure 15, where different colors are used to

represent the magnitude of the residues associated to each

pole, for each stirrer position. Thus, the color can be used to

indirectly infer the field strength of the corresponding resonant

mode at the excitation and measurement locations, which is

of course dependent on the type, orientation, and location of

the measuring antennas, in addition to the field topography

of the mode. From this figure, we note that the highest-

frequency pole trajectory falls partly outside the bandwidth of

interest and should be disregarded (see also Figure 14), since

its precise identification would require the missing frequency

samples above 230 MHz.

Overall, these results confirm a very good confidence in the

correctness of the estimated natural frequencies of the cham-

ber. Therefore, it is expected that this pole extraction method-

ology will lead to significant improvements in building sta-

tistical distributions of resonances from direct measurements,

with respect to existing more consolidated methods [28], [29],

which perform pole extraction independently for each different

stirrer position. This investigation is in progress and will be

documented in a future report.

VIII. CONCLUSIONS

This paper proposed a Fourier-rational macromodel struc-

ture and a relatated parameter identification algorithm based

on a reformulation of the Sanathanan-Koerner iteration. This

model structure is a natural choice for compact dynamical

modeling of linear electromagnetic systems, whose responses

depend on periodic geometrical parameters. Both model struc-

ture and identification have been validated on a low-order

circuit example. In addition, two possible application scenarios
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Fig. 16. Trajectory of the two roots of k(s, ϑ) in (12).

have been discussed: a field-excited interconnect, for which a

parameterized SPICE equivalent was derived based on either

a transmission-line or a full-wave model, and a reverberation

chamber, whose natural frequencies dependence on stirrer

rotation angle have been identified from direct mesurements.

These two examples were selected due to their relevance for

the EMC community. However, the presented macromodeling

strategy is general and can be applied in principle to any linear

(or linearized) system with periodic parameters.
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APPENDIX

Consider the second-order polynomial

k(s, ϑ) = s2 + (2 + 1/2 cos(ϑ))s + 1 (12)

Figure 16 shows the trajectory of the two roots p1,2(ϑ) of

k(s, ϑ) as functions of the parameter ϑ. The figure clearly

shows that both real and imaginary parts of p1,2(ϑ) are non-

smooth functions of ϑ, due to the presence of two bifurcation

points where switching between a real-only to a complex

conjugate pair occurs. This simple example shows that a

direct parameterization of the poles or zeros of a parameter-

dependent frequency response in terms of smooth basis func-

tions is not appropriate.

Let us define the two auxiliary poles q1,2 = p1,2(0), i.e.,

q1 = −2 and q2 = −1/2. A straightforward derivation leads to

the identity

k(s, ϑ)

(s+ q1)(s+ q2)
= 1 +

2(1 + cos(ϑ))/3

s+ q1
− (1 + cos(ϑ)/6

s+ q2

where the right-hand side matches the format of the denom-

inator D(s, ϑ) in the proposed model formulation (3). The

three terms correspond to three frequency-dependent basis

functions ϕn(s) of (5) for n = 0, 1, 2. Only two Fourier basis
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functions ξℓ(ϑ) with ℓ = 0, 1 are required in this case, with

the corresponding coefficients reading

d0,0 = 1 d0,1 = 2/3 d0,2 = −1/6

d1,0 = 0 d1,1 = 2/3 d1,2 = −1/6

This example confirms that the adopted model representa-

tion (3) is able to represent non-smooth poles behavior through

a smooth implicit parameterization, here based on the Fourier

basis (4).
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