

POLITECNICO DI TORINO Repository ISTITUZIONALE

Regularity of the steering control for systems with persistent memory

Original

Regularity of the steering control for systems with persistent memory / Pandolfi, Luciano; Triulzi, Daniele. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - STAMPA. - 51(2016), pp. 34-40.

Availability: This version is available at: 11583/2659651 since: 2016-12-20T13:40:04Z

Publisher: Elsevier Ltd

Published DOI:10.1016/j.aml.2015.07.005

Terms of use: openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

Regularity of the steering control for systems with persistent memory

Luciano Pandolfi,

Dipartimento di Scienze Matematiche "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, luciano.pandolfi@polito.it http://calvino.polito.it/~lucipan/

Daniele Triulzi

Graduated from the Dipartimento di matematica "Federigo Enriquez", Via Saldini 50, 20133 Milano, Italy, daniele.triulzi1@studenti.unimi.it

Abstract

The following fact is known for large classes of distributed control systems: when the target is regular, there exists a regular steering control. This fact is important to prove convergence estimates of numerical algorithms for the approximate computation of the steering control.

In this paper we extend this property to a class of systems with persistent memory (of Maxwell/Boltzmann type) and we show that it is possible to construct such smooth control via the solution of an optimization problem.

Keyword: Equations with persistent memory, controllability, regularity MSC: 45K05, 93B03, 93B05, 93C22

1 Introduction

We study the following system where $x \in (0, \pi)$ and t > 0:

$$\begin{cases} w''(x,t) = w_{xx}(x,t) + \int_0^t M(t-s)w_{xx}(x,s) \, \mathrm{d}s \,, \quad w(0,t) = f(t) \,, \quad w(\pi,t) = 0\\ w(x,0) = 0 \,, \quad w'(x,0) = 0 \,. \end{cases}$$

We assume $M(t) \in H^2(0,T)$ and $f(t) \in L^2(0,T)$ for every T > 0. As proved for example in [5], $w(x,t) \in C([0,T]; L^2(0,\pi)) \cap C^1([0,T]; H^{-1}(0,\pi))$ and, for every $(\xi,\eta) \in L^2(0,\pi) \times H^{-1}(0,\pi)$ and $T > 2\pi$, there exists $f \in L^2(0,T)$ such that $w(T) = \xi$, $w'(T) = \eta$. We prove:

Theorem 1. The following properties hold:

1. Let $(\xi, \eta) \in H^1_0(0, \pi) \times L^2(0, \pi)$ and let $T > 2\pi$. There exists a steering control $f \in H^1_0(0, T)$.

(1)

2. One of the smooth steering controls is the integral of the function g which realizes the minimum of a suitable quadratic functional introduced in Sect. 3.

The statement 1 is proved in Section 2 while statement 2 is in Section 3. We conclude this introduction with few comments. First we note that system (1) is often encountered in the study of viscoelasticity and diffusion equations with memory. When M(t) = 0 of course it reduces to the string equation. In the case of the wave equation (even when x in regions of \mathbb{R}^d , d > 1) theorem 1 is known. The proof that we give, based on moment methods, shows in particular controllability (in $H_0^1(0,\pi) \times L^2(0,\pi)$) of the cascade connection of system (1) with an integrator. We refer to [7, Ch. 11] and references therein for this idea and to [8] for a precise analysis of the reachable set using smooth controls in the case of the wave equation.

For memoryless systems, a result analogous to Theorem 1 is the key for a numerical analysis of the construction of steering controls via otimization methods, see [1].

Finally, it is easy to guess that Theorem 1 can be extended to the case $\dim x > 1$ and to higher regularity degree of the target. This will be the subject of a future analysis.

2 The moment problem and the proof of Theorem 1 item 1

The following computations are a bit simplified if we integrate the first equation of (1) on [0, t] and we write it in the equivalent form (here $N(t) = 1 + \int_0^t M(s) \, \mathrm{d}s$)

$$w'(x,t) = \int_0^t N(t-s)w_{xx}(x,s) \,\mathrm{d}s\,, \qquad w(x,0) = 0\,, \quad w(0,t) = f(t)\,, \ w(\pi,t) = 0\,.$$

We use the orthonormal basis of $L^2(0,\pi)$ whose elements are $\Phi_n = \sqrt{(2/\pi)} \sin nx$, $n \in \mathbb{N}$, and we expand

$$w(x,t) = \sum_{n \in \mathbb{N}} \Phi_n(x) w_n(t), \quad w_n(t) = \sqrt{\frac{2}{\pi}} \int_0^{\pi} \Phi_n(x) w(x) \, \mathrm{d}x.$$

Then $w_n(x,t)$ must satisfy

$$w'_n(t) = -n^2 \int_0^t N(t-s)w_n(s) \, \mathrm{d}s + n \int_0^t N(t-s) \left(\sqrt{2/\pi}f(s)\right) \, \mathrm{d}s \, .$$

The function $\sqrt{2/\pi}f$ will be renamed f. Let $z_n(t)$ solve

$$z'_{n}(t) = -n^{2} \int_{0}^{t} N(t-s)z_{n}(s) \,\mathrm{d}s \,, \quad z_{n}(0) = 1 \,. \tag{3}$$

We have (see [3])

$$w_n(t) = n \int_0^t \left(\int_0^{t-s} N(t-s-\tau) z_n(\tau) d\tau \right) f(s) \, \mathrm{d}s =$$

= $\frac{1}{n} \int_0^t \left(\frac{\mathrm{d}}{\mathrm{d}s} z_n(t-s) \right) f(s) \, \mathrm{d}s \,, \qquad (4)$

$$w'_n(t) = n \int_0^t \left(-\frac{\mathrm{d}}{\mathrm{d}s} \int_0^{t-s} N(t-s-\tau) z_n(\tau) d\tau \right) f(s) \,\mathrm{d}s \,. \tag{5}$$

We require that a target $(\xi, \eta) \in H_0^1(0, \pi) \times L^2(0, \pi)$ is reached at time T, i.e. we require $(w(T), w'(T)) = (\xi, \eta)$.

The Fourier expansion of the targets is

$$\xi = \sum_{n=1}^{+\infty} \frac{\xi_n}{n} \Phi_n, \quad \text{and} \quad \eta = \sum_{n=1}^{+\infty} \eta_n \Phi_n, \qquad (\{\xi_n\}, \{\eta_n\}) \in l^2(\mathbb{N}) \times l^2(\mathbb{N}).$$

So, controllability to (ξ, η) at time T is equivalent to the existence of a control $f \in L^2(0,T)$ such that $w_n(T) = \xi_n/n$, $w'_n(T) = \eta_n$ for every n. The expression we found for $w_n(t)$ and $w'_n(t)$ suggest that we investigate whether is it possible to solve this problem with

$$f(t) = \int_0^t g(s) \, \mathrm{d}s \,, \quad g \in L^2(0,T) \,. \tag{6}$$

If this is possible then we have the existence of an H^1 -steering control, and we get a steering control in $H^1_0(0,T)$ if we can find g which satisfies the additional condition

$$\int_0^T g(s) \, \mathrm{d}s = 0 \,. \tag{7}$$

We replace the expression (6) in $w_n(T)$ and $w'_n(T)$ and we integrate by parts. We see that f is an H^1 steering control to (ξ, η) if the following *moment* problem is solvable:

$$\xi_n = \int_0^T g(r) \, \mathrm{d}r - \int_0^T z_n (T - s) g(s) \, \mathrm{d}s \,, \tag{8}$$
$$\eta_n = \int_0^T \left[n \int_0^{T-s} N(T - s - r) z_n(r) \, \mathrm{d}r \right] g(s) \, \mathrm{d}s = \int_0^T g(T - s) \left(\frac{-z'_n(s)}{n} \right) \, \mathrm{d}s \tag{9}$$

We multiply equation (9) by i and we sum to (8). Furthermore we impose the additional condition (7). We find the moment problem:

$$\int_{0}^{T} Z_{n}(s)g(T-s) \, \mathrm{d}s = c_{0} \,, \quad c_{n} = \begin{cases} -\xi_{n} - i\eta_{n} & \text{if } n > 0 \\ 0 & \text{if } n = 0 \end{cases}$$
(10)

and $Z_n(t) = (z_n(s) + \frac{i}{n}z'_n(s))$ if n > 0, $Z_0(t) = 1$. In order to prove statement 1 of Theorem 1, we prove solvability of the moment problem (10).

We note that $\{c_n\}_{n>0}$ is an arbitrary *complex valued* $l^2(\mathbb{N})$ sequence while g is real (when ξ and η are real). We reformulate the moment problem (10) with $n \in \mathbb{Z}$. We proceed as follows: for n < 0 we define:

$$z_n(t) = z_{-n}(t), \quad \Phi_n(x) = \Phi_{-n}(x), \quad Z_{-n}(t) = \overline{Z}_n(t).$$

As in [5, Lemma 5.1], we see that the moment problem (10) can be equivalently studied with $n \in \mathbb{Z}$ and g complex valued.

Our goal is the proof that the moment problem (10), $n \in \mathbb{Z}$, is solvable. Even more, we prove that $\{Z_n(t)\}_{n\in\mathbb{Z}}$ is a Riesz sequence in $L^2(0,T)$, provided that $T > 2\pi$.

Remark 2. The fact that $\{Z_n(t)\}_{n\in\mathbb{Z}}$ is a Riesz sequence in $L^2(0,T)$ implies the following additional information: **1**) the transformation from $g \in L^2(0,T)$ (and so also from $f \in H_0^1(0,T)$) to $(w(T), w'(T)) \in H_0^1(0,\pi) \times L^2(0,\pi)$ is linear and continuous; **2**) the solution $g \in L^2(0,T)$ of minimal norm of the moment problem depends continuously on the target $(\xi,\eta) \in H_0^1(0,\pi) \times L^2(0,\pi)$. Integrating this function g as in (6) we get the steering control f of minimal norm in $H_0^1(0,T)$ and so the solution $f \in H_0^1(0,T)$ of minimal norm depends continuously on the target $(\xi,\eta) \in H_0^1(0,\pi) \times L^2(0,\pi)$; **3**) any solution g of the moment problem belongs to $L_{0,T}^2 = \left\{h \in L^2(0,T) : \int_0^T h(s) \, \mathrm{d}s = 0\right\}.$

2.1 The proof that $\{Z_n\}_{n\in\mathbb{Z}}$ is a Riesz sequence in $L^2(0,T)$, $T>2\pi$

The proof that $\{Z_n\}_{n\in\mathbb{Z}}$ is a Riesz sequence in $L^2(0,T)$, $T > 2\pi$, is divided in two steps: in the first one we show that the sequence $\{Z_n\}_{n\in\mathbb{Z}\setminus\{0\}}$ is a Riesz sequence in $L^2(0,T)$. Then we will prove that $\{Z_n\}_{n\in\mathbb{Z}}$ is a Riesz sequence in $L^2(0,T)$ too. In the proof we use the following definitions and results (see [5, Chp. 3]): a sequence $\{x_n\}$ in a Hilbert space H is:

- a *Riesz sequence* when it is the image of an orthonormal sequence under a linear bounded and boundedly invertible transformation;
- ω -independent when the following holds: if $\{\alpha_n\} \in l^2$ and if $\sum_{n=1}^{+\infty} \alpha_n x_n = 0$ (convergence in the norm of H) then $\{\alpha_n\} = 0$.

Let $\{x_n\}$ be a Riesz sequence in the Hilbert space H and let $\{y_n\}$ be quadratically close to $\{x_n\}$, i.e. $\sum ||x_n - y_n||_H^2 < +\infty$. Then there exists N such that $\{y_n\}_{|n|>N}$ is a Riesz sequence. If furthermore $\{y_n\}$ is ω -independent then it is a Riesz sequence too.

We introduce the notation and $\mathbb{Z}' = \mathbb{Z} \setminus \{0\}.$

Step 1: $\{Z_n\}_{n\in\mathbb{Z}'}$ is a Riesz sequence in $L^2(0,T)$, $T > 2\pi$ This part of the proof is contained in [5]. The proof in [5] is quite complex since there $x \in \Omega \subseteq \mathbb{R}^d$, $d \ge 1$. When d = 1 the proof is much simplified and goes as we sketch here for completeness.

We put $N'(0) = \gamma$. Using [4, Lemmas 5.2 and 5.5] we get that for every T > 0 there exists C such that

$$\sum_{n \in \mathbb{Z}'} \left\| Z_n(t) - e^{\gamma t} e^{int} \right\|_{L^2(0,T)}^2 \le C.$$
(11)

Then there exists N > 0 such that $\{Z_n\}_{|n| \ge N}$ is a Riesz sequence in $L^2(0, T)$.

We prove that $\{Z_n\}_{n\in\mathbb{Z}'}$ is ω -independent i.e. we prove that $\{\alpha_n\}_{n\in\mathbb{Z}'} = 0$ when $\{\alpha_n\} \in l^2(\mathbb{Z}')$ and

$$\sum_{n \in \mathbb{Z}'} \alpha_n Z_n = 0 \quad \text{i.e.} \quad \sum_{n \in \mathbb{Z}'} \alpha_n \left(z_n + \frac{i}{n} z'_n \right) = 0.$$
 (12)

Using $T > 2\pi$ and [5, Lemma 3.4] applied twice it is possible to prove that $\alpha_n = \frac{\gamma_n}{n^2}$ with $\{\gamma_n\} \in l^2(\mathbb{Z}')$ (see also [3]). This fact justifies the termwise differentiation of the series (12). Using

$$z_n''(t) = -n^2 N(t) - n^2 \int_0^t N(t-s) z_n'(s) \, \mathrm{d}s \tag{13}$$

we get

$$\int_0^t N(t-s) \left[\sum_{n \in \mathbb{Z}'} \gamma_n \left(z_n(s) + \frac{i}{n} z'_n(s) \right) \right] \, \mathrm{d}s - iN(t) \left[\sum_{n \in \mathbb{Z}'} \frac{\gamma_n}{n} \right] = 0.$$
(14)

Computing with t = 0 we see that $\sum_{n \in \mathbb{Z}'} n\alpha_n = \sum_{n \in \mathbb{Z}'} \frac{\gamma_n}{n} = 0$ and so, using $N(0) \neq 0$, we get

$$\sum_{n \in \mathbb{Z}'} \left[n^2 \alpha_n z_n(s) + i n \alpha_n z_n'(s) \right] = 0 \quad \text{hence} \quad \sum_{n \neq \pm 1, \ n \in \mathbb{Z}'} \alpha_n (n^2 - 1) \left[z_n + \frac{i z_n'}{n} \right] = 0.$$

Note that $\{\alpha_n(n^2-1)\} = \{\alpha_n^{(1)}\} \in l^2(\mathbb{Z}')$. Hence we can start a boostrap argument and repeat this procedure. After at most 2N iteration of the process we get

$$\sum_{|n|>N} \alpha_n^{(N)} Z_n = 0$$

and so $\alpha_n^{(N)} = 0$ when |n| > N since we noted that $\{Z_n\}_{|n|>N}$ is a Riesz sequence in $L^2(0,T)$. We have $\alpha_n^{(N)} = 0$ if and only if $\alpha_n = 0$ and this shows that the series (12) is a finite sum, $\sum_{n \in \mathbb{Z}', |n| \leq N} \alpha_n Z_n = 0$. The proof is now finished since it is easy to prove, as in [5, 6], that the sequence $\{Z_n(t)\}_{n \in \mathbb{Z}'}$ is linearly independent.

Step 2: $\{Z_n\}_{n\in\mathbb{Z}}$ is a Riesz sequence Of course, $\{Z_n\}_{n\in\mathbb{Z}}$ is quadratically close to $\{e^{\gamma t}e^{int}\}_{n\in\mathbb{Z}}$. It remains to prove ω -independence, when $T > 2\pi$. We prove $\{\alpha_n\}_{n\in\mathbb{Z}} = 0$ when $\{\alpha_n\} \in l^2(\mathbb{Z})$ and

$$\alpha_0 + \sum_{n \in \mathbb{Z}'} \alpha_n Z_n = 0.$$
(15)

Using that constant functions belong to H^1 and [5, Lemma 3.4] applied twice we see that $\alpha_n = \gamma_n/n^2$, $\{\gamma_n\} \in l^2$. So, we can compute termwise the derivatives of both the sides of (15) and we get

$$\sum_{n \in \mathbb{Z}'} \alpha_n \left(z'_n(t) + \frac{i}{n} \left[-n^2 N(t) - n^2 \int_0^t N(t-s) z'_n(s) \, \mathrm{d}s \right] \right) = 0.$$
(16)

Computing with t = 0 we get $\sum_{n \in \mathbb{Z}'} \alpha_n n = 0$. Then (using (3)) the equation (16) becomes

$$\int_0^t N(t-s) \left[\sum_{n \in \mathbb{Z}'} \left(\alpha_n n^2 z_n(s) + i \alpha_n n z'_n(s) \right) \right] \, \mathrm{d}s = 0$$

so that (using again $N(0) \neq 0$ and $\{\alpha_n n^2\} \in l^2$)

$$\sum_{n\in\mathbb{Z}'}\alpha_n n^2 \left[z_n(t) + i\frac{1}{n}z'_n(t)\right] = \sum_{n\in\mathbb{Z}'}\alpha_n n^2 Z_n(t) = 0.$$
(17)

The fact that $\{Z_n(t)\}_{n \in \mathbb{Z}'}$ is a Riesz sequence implies that $\{\alpha_n\} = 0$ and so also $\alpha_0 = 0$, as we wanted to prove.

This ends the proof of Statement 1 in Theorem 1.

3 Variational characterization of the steering control and the proof of item 2 of Theorem 1

The fact that $\{Z_n\}_{n\in\mathbb{Z}}$ is a Riesz sequence implies that the moment problem (10) admits solutions $g \in L^2(0,T)$ when $T > 2\pi$. Each one of these functions, once integrated, provides a steering control $f \in H_0^1(0,T)$. In this section we give a variational characterization of a solution g of the moment problem (10) as the minimizer of a quadratic functional, as in [2].

We recall the following definition from Remark 2:

$$L^{2}_{0,T} = \left\{ h \in L^{2}(0,T) \,, \quad \int_{0}^{T} h(s) \, \mathrm{d}s = 0 \right\} \subseteq L^{2}(0,T)$$

and we consider the problem

$$\begin{cases} w''(x,t) = w_{xx}(x,t) + \int_0^t M(t-s)w_{xx}(x,s) \, \mathrm{d}s \,, \\ y'(t) = g(t) \in L^2_{0,T} \,, \\ w(0,t) = y(t) \,, \quad w(\pi,t) = 0 \,, \\ w(x,0) = 0 \,, \, w'(x,0) = 0 \,, \, y(0) = 0 \,. \end{cases}$$
(18)

We proved that $(w(T), w'(T)) = (\xi, \eta) \in H^1_0(0, \pi) \times L^2(0, \pi)$ (and y(T) = 0) if and only if g solves the moment problem (10) with $n \in \mathbb{Z}$ (note that the condition y(T) = 0 comes for free, implied by $g \in L^2_{0,T}$). The first statement in Remark 2 implies that

$$\Lambda_T \in \mathcal{L}\left(L^2_{0,T}, H^1_0(0,\pi) \times L^2(0,\pi)\right) \text{ where } \Lambda_T g = \left(w(T), w'(T)\right).$$
(19)

Let (W_0, W_1) be any element of $L^2(0, \pi) \times H^{-1}(0, \pi)$ and consider

$$\begin{cases} W''(x,t) = W_{xx}(x,t) + \int_0^t M(t-s) W_{xx}(x,s) \, \mathrm{d}s \,, \\ Y'(t) = \int_0^t M(t-s) W_x(0,s) \, \mathrm{d}s + W_x(0,t) \,, \\ W(0,t) = W(\pi,t) = 0 \,, \\ W(x,0) = W_0 = \sum_{n=1}^{+\infty} W_n^0 \Phi_n \,, \ W'(x,0) = W_1 = \sum_{n=1}^{+\infty} \left(n W_n^1 \right) \Phi_n \,, \ Y(0) = 0 \ (20) \end{cases}$$

(note that $\{W_n^0\}$, $\{W_n^1\}$ belong to l^2).

We introduce the notations $\langle \cdot, \cdot \rangle$ and (\cdot, \cdot) to denote respectively the duality pairing of $H_0^1(0,\pi)$ and $H^{-1}(0,\pi)$ and the inner product in $L^2(0,\pi)$. Assuming first $g \in \mathcal{D}(0,T)$, W_0 , W_1 in $\mathcal{D}(0,\pi)$ we multiply the first equation of (18) with W(x,T-t) and the second one with Y(T-t). Then we integrate respectively on $(0,\pi) \times (0,T)$ and on (0,T) and we sum. Standard integrations by parts show that

$$(w'(T), W_0) + \langle w(T), W_1 \rangle = \int_0^T g(s) Y(T-s) \,\mathrm{d}s$$
 (21)

Using statement 1) in Remark 2, i.e. the continuous dependence of $(w(T), w'(T)) \in H^1_0(0, \pi) \times L^2(0, \pi)$ on $g \in L^2_{0,T}$, we see that

$$\left| \int_{0}^{T} g(s)Y(T-s) \, \mathrm{d}s \right| = \left| (w'(T), W_{0}) + \langle w(T), W_{1} \rangle \right| \leq \\ \leq |w'(T)|_{L^{2}(0,\pi)} |W_{0}|_{L^{2}(0,\pi)} + |w(T)|_{H^{1}_{0}(0,\pi)} |W_{1}|_{H^{-1}(0,\pi)} \leq \\ \leq M \left[|W_{0}|_{L^{2}(0,\pi)} + |W_{1}|_{H^{-1}(0,T)} \right] |g|_{L^{2}_{0,T}}.$$

So, the transformation $(W_0, W_1) \to Y(\cdot) \in L^2(0, T)$ admits a continuous extension to $L^2(0, \pi) \times H^{-1}(0, \pi)$ and we see also that $g \in L^2_{0,T}$ steers the solution of (18) to the target $(w(T), w'(T)) = (\xi, \eta) \in H^1_0(0, \pi) \times L^2(0, \pi)$ if and only if the following equality holds for every $W_0 \in L^2(0, \pi), W_1 \in$ $H^{-1}(0, \pi)$:

$$(\eta, W_0) + \langle \xi, W_1 \rangle = \int_0^T g(s)Y(T-s) \, \mathrm{d}s = \int_0^T g(s) \left(P_0 Y(T-\cdot)\right) \, \mathrm{d}s \quad (22)$$

where P_0 is the orthogonal projection of $L^2(0,T)$ onto $L^2_{0,T}$ (easily computed from cosine Fourier expansion).

We introduce the duality pairing of $H_0^1(0,\pi) \times L^2(0,\pi)$ and its dual $H^{-1}(0,\pi) \times L^2(0,\pi)$:

$$\langle\!\langle (\xi,\eta), (W_1, W_0) \rangle\!\rangle = (\eta, W_0) + \langle \xi, W_1 \rangle$$

so that Equality (21) takes the form

$$\langle\!\langle \Lambda_T g, (W_1, W_0) \rangle\!\rangle = \int_0^T g(s) \left(P_0 Y(T - \cdot) \right) \, \mathrm{d}s \, , \, \mathrm{hence} \, \Lambda_T^*(W_1, W_0) = P_0 Y(T - \cdot) \, .$$

Similar to [2], we consider the quadratic functional $(W_1, W_0) \mapsto \mathcal{J}(W_1, W_0)$ on $H^{-1}(0, \pi) \times L^2(0, \pi)$ defined by

$$\mathcal{J}(W_1, W_0) = \frac{1}{2} \int_0^T |P_0 Y(T - \cdot)|^2 \, \mathrm{d}t - (\eta, W_0) - \langle \xi, W_1 \rangle = = \frac{1}{2} \int_0^T |\Lambda_T^*(W_0, W_1)|^2 \, \mathrm{d}t - \langle \langle (\xi, \eta), (W_1, W_0) \rangle \rangle.$$

Computing the Frèchet derivative of \mathcal{J} we see that $(\hat{W}_1, \hat{W}_0) \in H^{-1}(0, \pi) \times L^2(0, \pi)$ is a stationary point if and only if

$$\int_0^T \left(P_0 Y(T-\cdot) \right) \left(P_0 \hat{Y}(T-\cdot) \right) \, \mathrm{d}t - (\eta, W_0) - \langle \xi, W_1 \rangle = 0 \quad \forall (W_1, W_0) \in H^{-1}(0, \pi) \times L^2(0, \pi)$$

(here Y and \hat{Y} are the functions computed from (20) and initial conditions respectively $(W_0, W_1, 0)$ and $(\hat{W}_0, \hat{W}_1, 0)$). We see from here that if (\hat{W}_1, \hat{W}_0) is a stationary point of \mathcal{J} then $\hat{g}(t) = P_0 \hat{Y}(T - \cdot)$ realizes the equality (22), and so it is a steering control.

In order to complete the proof of item 2 of Theorem 1 we note the following result, which implies that \mathcal{J} has a unique stationary point in $H^{-1}(0,\pi) \times L^2(0,\pi)$, which is a minimum point.

Theorem 3. The functional \mathcal{J} is continuous, coercive and strictly convex on $H^{-1}(0,\pi) \times L^2(0,\pi)$.

Proof: Convexity is obvious and continuity follows since (19) implies $\Lambda_T^* \in \mathcal{L}\left(H^{-1}(0,\pi) \times L^2(0,\pi), L^2_{0,T}\right)$. The proof of strict convexity is the same as in [2].

The operator $\Lambda_T g = (w(T), w'(T))$ from $g \in L^2_{0,T}$ to $H^1_0(0, \pi) \times L^2(0, \pi)$ is surjective so that its adjoint Λ^*_T is coercive. So, we have coercivity of the quadratic part of \mathcal{J} , hence of the functional \mathcal{J} itself.

4 Acknowledgment

We thank a Referee who detected an error in the first version of Section 3.

This papers fits into the research program of the GNAMPA-INDAM and has been written in the framework of the "Groupement de Recherche en Contrôle des EDP entre la France et l'Italie (CONEDP-CNRS)".

References

- [1] S. Ervedoza, E. Zuazua: Numerical approximation of exact controls for waves. Springer, New York, 2013.
- [2] S. Micu, E. Zuazua: An Introduction to the Controllability of Partial Differential Equations. In *Quelques questions de théorie du contrôle* Sari, T. ed., Collection Travaux en Cours, Hermann, Paris 69-157 (2004).
- [3] L. Pandolfi.: Riesz systems and controllability of heat equations with memory. *Integral Equations Operator Theory* **64** (2009) 429-453.
- [4] L. Pandolfi: Riesz systems and moment method in the study of heat equations with memory in one space dimension. *Discrete Contin. Dyn. Syst. Ser. B.* 14 (2010) 1487-1510.
- [5] L. Pandolfi: Distributed System with Persistent Memory: Control and Moment Problems, Springer, Cham, 2014.
- [6] L. Pandolfi: Sharp control time for viscoelastic bodies, J. Integral Eq. Appl. 27 (2015) 103-136.
- [7] M. Tucsnak, G. Weiss: Observation and control for operator semigroups, Birkäuser, Basel, 2009.
- [8] M. Tucsnak, G. Weiss: From exact observability to identification of singular sources. Math. Control Signals Systems 27 (2015) 1-21.