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Abstract

The following fact is known for large classes of distributed control systems: when
the target is regular, there exists a regular steering control. This fact is impor-
tant to prove convergence estimates of numerical algorithms for the approximate
computation of the steering control.

In this paper we extend this property to a class of systems with persistent
memory (of Maxwell/Boltzmann type) and we show that it is possible to construct
such smooth control via the solution of an optimization problem.
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1 Introduction

We study the following system where x ∈ (0, π) and t > 0:

{

w′′(x, t) = wxx(x, t) +
∫ t

0 M(t− s)wxx(x, s) ds , w(0, t) = f(t) , w(π, t) = 0

w(x, 0) = 0 , w′(x, 0) = 0 .

(1)
We assume M(t) ∈ H2(0, T ) and f(t) ∈ L2(0, T ) for every T > 0. As proved
for example in [5], w(x, t) ∈ C([0, T ];L2(0, π)) ∩ C1([0, T ];H−1(0, π)) and,
for every (ξ, η) ∈ L2(0, π)×H−1(0, π) and T > 2π, there exists f ∈ L2(0, T )
such that w(T ) = ξ , w′(T ) = η. We prove:

Theorem 1. The following properties hold:

1. Let (ξ, η) ∈ H1
0 (0, π)×L2(0, π) and let T > 2π. There exists a steering

control f ∈ H1
0 (0, T ).
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2. One of the smooth steering controls is the integral of the function g
which realizes the minimum of a suitable quadratic functional intro-
duced in Sect. 3.

The statement 1 is proved in Section 2 while statement 2 is in Section 3.
We conclude this introduction with few comments. First we note that

system (1) is often encountered in the study of viscoelasticity and diffusion
equations with memory. When M(t) = 0 of course it reduces to the string
equation. In the case of the wave equation (even when x in regions of Rd,
d > 1) theorem 1 is known. The proof that we give, based on moment
methods, shows in particular controllability (in H1

0 (0, π) × L2(0, π)) of the
cascade connection of system (1) with an integrator. We refer to [7, Ch. 11]
and references therein for this idea and to [8] for a precise analysis of the
reachable set using smooth controls in the case of the wave equation.

For memoryless systems, a result analogous to Theorem 1 is the key for
a numerical analysis of the construction of steering controls via otimization
methods, see [1].

Finally, it is easy to guess that Theorem 1 can be extended to the case
dimx > 1 and to higher regularity degree of the target. This will be the
subject of a future analysis.

2 The moment problem and the proof of Theorem 1 item 1

The following computations are a bit simplified if we integrate the first
equation of (1) on [0, t] and we write it in the equivalent form (here N(t) =
1 +

∫ t

0 M(s) ds)

w′(x, t) =

∫ t

0
N(t−s)wxx(x, s) ds , w(x, 0) = 0 , w(0, t) = f(t) , w(π, t) = 0 .

(2)
We use the orthonormal basis of L2(0, π) whose elements are Φn =

√

(2/π) sinnx, n ∈ N, and we expand

w(x, t) =
∑

n∈N

Φn(x)wn(t) , wn(t) =

√

2

π

∫ π

0
Φn(x)w(x) dx .

Then wn(x, t) must satisfy

w′
n(t) = −n2

∫ t

0
N(t− s)wn(s) ds+ n

∫ t

0
N(t− s)

(

√

2/πf(s)
)

ds .
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The function
√

2/πf will be renamed f .
Let zn(t) solve

z′n(t) = −n2

∫ t

0
N(t− s)zn(s) ds , zn(0) = 1 . (3)

We have (see [3])

wn(t) = n

∫ t

0

(
∫ t−s

0
N(t− s− τ)zn(τ)dτ

)

f(s) ds =

=
1

n

∫ t

0

(

d

ds
zn(t− s)

)

f(s) ds , (4)

w′
n(t) = n

∫ t

0

(

−
d

ds

∫ t−s

0
N(t− s− τ)zn(τ)dτ

)

f(s) ds . (5)

We require that a target (ξ, η) ∈ H1
0 (0, π) × L2(0, π) is reached at time

T , i.e. we require (w(T ), w′(T )) = (ξ, η).
The Fourier expansion of the targets is

ξ =
+∞
∑

n=1

ξn
n
Φn , and η =

+∞
∑

n=1

ηnΦn , ({ξn}, {ηn}) ∈ l2(N)× l2(N) .

So, controllability to (ξ, η) at time T is equivalent to the existence of a
control f ∈ L2(0, T ) such that wn(T ) = ξn/n, w

′
n(T ) = ηn for every n. The

expression we found for wn(t) and w′
n(t) suggest that we investigate whether

is it possible to solve this problem with

f(t) =

∫ t

0
g(s) ds , g ∈ L2(0, T ) . (6)

If this is possible then we have the existence of an H1-steering control, and
we get a steering control in H1

0 (0, T ) if we can find g which satisfies the
additional condition

∫ T

0
g(s) ds = 0 . (7)

We replace the expression (6) in wn(T ) and w′
n(T ) and we integrate by parts.

We see that f is an H1 steering control to (ξ, η) if the following moment
problem is solvable:



2 The moment problem and the proof of Theorem 1 item 1 4

ξn =

∫ T

0
g(r) dr −

∫ T

0
zn(T − s)g(s) ds , (8)

ηn =

∫ T

0

[

n

∫ T−s

0
N(T − s− r)zn(r) dr

]

g(s) ds =

∫ T

0
g(T − s)

(

−z′n(s)

n

)

ds .

(9)

We multiply equation (9) by i and we sum to (8). Furthermore we impose
the additional condition (7). We find the moment problem:

∫ T

0
Zn(s)g(T − s) ds = c0 , cn =

{

−ξn − iηn if n > 0
0 if n = 0

(10)

and Zn(t) =
(

zn(s) +
i
n
z′n(s)

)

if n > 0, Z0(t) = 1 . In order to prove
statement 1 of Theorem 1, we prove solvability of the moment problem (10).

We note that {cn}n>0 is an arbitray complex valued l2(N) sequence while
g is real (when ξ and η are real). We reformulate the moment problem (10)
with n ∈ Z. We proceed as follows: for n < 0 we define:

zn(t) = z−n(t), Φn(x) = Φ−n(x) , Z−n(t) = Z̄n(t) .

As in [5, Lemma 5.1], we see that the moment problem (10) can be
equivalently studied with n ∈ Z and g complex valued.

Our goal is the proof that the moment problem (10), n ∈ Z, is solv-
able. Even more, we prove that {Zn(t)}n∈Z is a Riesz sequence in L2(0, T ),
provided that T > 2π.

Remark 2. The fact that {Zn(t)}n∈Z is a Riesz sequence in L2(0, T ) im-
plies the following additional information: 1) the transformation from g ∈
L2(0, T ) (and so also from f ∈ H1

0 (0, T )) to (w(T ), w′(T )) ∈ H1
0 (0, π) ×

L2(0, π) is linear and continuous; 2) the solution g ∈ L2(0, T ) of minimal
norm of the moment problem depends continuously on the target (ξ, η) ∈
H1

0 (0, π)×L2(0, π). Integrating this function g as in (6) we get the steering
control f of minimal norm in H1

0 (0, T ) and so the solution f ∈ H1
0 (0, T )

of minimal norm depends continuously on the target (ξ, η) ∈ H1
0 (0, π) ×

L2(0, π); 3) any solution g of the moment problem belongs to

L2
0,T =

{

h ∈ L2(0, T ) :
∫ T

0 h(s) ds = 0
}

.
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2.1 The proof that {Zn}n∈Z is a Riesz sequence in L2(0, T ),
T > 2π

The proof that {Zn}n∈Z is a Riesz sequence in L2(0, T ), T > 2π, is divided
in two steps: in the first one we show that the sequence {Zn}n∈Z\{0} is a
Riesz sequence in L2(0, T ). Then we will prove that {Zn}n∈Z is a Riesz
sequence in L2(0, T ) too. In the proof we use the following definitions and
results (see [5, Chp. 3]): a sequence {xn} in a Hilbert space H is:

• a Riesz sequence when it is the image of an orthonormal sequence
under a linear bounded and boundedly invertible transformation;

• ω-independent when the following holds: if {αn} ∈ l2 and if
∑+∞

n=1 αnxn =
0 (convergence in the norm of H) then {αn} = 0.

Let {xn} be a Riesz sequence in the Hilbert space H and let {yn} be quadrat-
ically close to {xn}, i.e.

∑

‖xn − yn‖
2
H < +∞. Then there exists N such

that {yn}|n|>N is a Riesz sequence. If furthermore {yn} is ω-independent
then it is a Riesz sequence too.

We introduce the notation and Z
′ = Z \ {0}.

Step 1: {Zn}n∈Z′ is a Riesz sequence in L2(0, T ), T > 2π This part of
the proof is contained in [5]. The proof in [5] is quite complex since there
x ∈ Ω ⊆ R

d, d ≥ 1. When d = 1 the proof is much simplified and goes as
we sketch here for completeness.

We put N ′(0) = γ. Using [4, Lemmas 5.2 and 5.5] we get that for every
T > 0 there exists C such that

∑

n∈Z′

∥

∥Zn(t)− eγteint
∥

∥

2

L2(0,T )
≤ C . (11)

Then there exists N > 0 such that {Zn}|n|≥N is a Riesz sequence in L2(0, T ).
We prove that {Zn}n∈Z′ is ω-independent i.e. we prove that {αn}n∈Z′ =

0 when {αn} ∈ l2(Z′) and

∑

n∈Z′

αnZn = 0 i.e.
∑

n∈Z′

αn

(

zn +
i

n
z′n

)

= 0 . (12)

Using T > 2π and [5, Lemma 3.4] applied twice it is possible to prove
that αn = γn

n2 with {γn} ∈ l2(Z′) (see also [3]). This fact justifies the
termwise differentiation of the series (12). Using

z′′n(t) = −n2N(t)− n2

∫ t

0
N(t− s)z′n(s) ds (13)
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we get

∫ t

0
N(t− s)

[

∑

n∈Z′

γn

(

zn(s) +
i

n
z′n(s)

)

]

ds− iN(t)

[

∑

n∈Z′

γn
n

]

= 0 . (14)

Computing with t = 0 we see that
∑

n∈Z′ nαn =
∑

n∈Z′

γn
n

= 0 and so, using
N(0) 6= 0, we get

∑

n∈Z′

[

n2αnzn(s) + inαnz
′
n(s)

]

= 0 hence
∑

n 6=±1, n∈Z′

αn(n
2−1)

[

zn +
iz′n
n

]

= 0 .

Note that {αn(n
2 − 1)} = {α

(1)
n } ∈ l2(Z′). Hence we can start a boostrap

argument and repeat this procedure. After at most 2N iteration of the
process we get

∑

|n|>N

α(N)
n Zn = 0

and so α
(N)
n = 0 when |n| > N since we noted that {Zn}|n|>N is a Riesz

sequence in L2(0, T ). We have α
(N)
n = 0 if and only if αn = 0 and this shows

that the series (12) is a finite sum,
∑

n∈Z′, |n|≤N αnZn = 0. The proof is now
finished since it is easy to prove, as in [5, 6], that the sequence {Zn(t)}n∈Z′

is linearly independent.

Step 2: {Zn}n∈Z is a Riesz sequence Of course, {Zn}n∈Z is quadratically
close to {eγteint}n∈Z. It remains to prove ω-independence, when T > 2π.
We prove {αn}n∈Z = 0 when {αn} ∈ l2(Z) and

α0 +
∑

n∈Z′

αnZn = 0 . (15)

Using that constant functions belong to H1 and [5, Lemma 3.4] applied
twice we see that αn = γn/n

2, {γn} ∈ l2. So, we can compute termwise the
derivatives of both the sides of (15) and we get

∑

n∈Z′

αn

(

z′n(t) +
i

n

[

−n2N(t)− n2

∫ t

0
N(t− s)z′n(s) ds

])

= 0 . (16)

Computing with t = 0 we get
∑

n∈Z′ αnn = 0. Then (using (3)) the equation
(16) becomes

∫ t

0
N(t− s)

[

∑

n∈Z′

(

αnn
2zn(s) + iαnnz

′
n(s)

)

]

ds = 0
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so that (using again N(0) 6= 0 and {αnn
2} ∈ l2)

∑

n∈Z′

αnn
2

[

zn(t) + i
1

n
z′n(t)

]

=
∑

n∈Z′

αnn
2Zn(t) = 0 . (17)

The fact that {Zn(t)}n∈Z′ is a Riesz sequence implies that {αn} = 0 and so
also α0 = 0, as we wanted to prove.

This ends the proof of Statement 1 in Theorem 1.

3 Variational characterization of the steering control and the

proof of item 2 of Theorem 1

The fact that {Zn}n∈Z is a Riesz sequence implies that the moment prob-
lem (10) admits solutions g ∈ L2(0, T ) when T > 2π. Each one of these
functions, once integrated, provides a steering control f ∈ H1

0 (0, T ). In this
section we give a variational characterization of a solution g of the moment
problem (10) as the minimizer of a quadratic functional, as in [2].

We recall the following definition from Remark 2:

L2
0,T =

{

h ∈ L2(0, T ) ,

∫ T

0
h(s) ds = 0

}

⊆ L2(0, T )

and we consider the problem























w′′(x, t) = wxx(x, t) +
∫ t

0 M(t− s)wxx(x, s) ds ,

y′(t) = g(t) ∈ L2
0,T ,

w(0, t) = y(t) , w(π, t) = 0 ,

w(x, 0) = 0 , w′(x, 0) = 0 , y(0) = 0 .

(18)

We proved that (w(T ), w′(T )) = (ξ, η) ∈ H1
0 (0, π)×L2(0, π) (and y(T ) = 0)

if and only if g solves the moment problem (10) with n ∈ Z (note that the
condition y(T ) = 0 comes for free, implied by g ∈ L2

0,T ). The first statement
in Remark 2 implies that

ΛT ∈ L
(

L2
0,T ,H

1
0 (0, π) × L2(0, π)

)

where ΛT g =
(

w(T ), w′(T )
)

. (19)
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Let (W0,W1) be any element of L2(0, π) ×H−1(0, π) and consider






















W ′′(x, t) = Wxx(x, t) +
∫ t

0 M(t− s)Wxx(x, s) ds ,

Y ′(t) =
∫ t

0 M(t− s)Wx(0, s) ds+Wx(0, t) ,

W (0, t) = W (π, t) = 0 ,

W (x, 0) = W0 =
∑+∞

n=1W
0
nΦn , W ′(x, 0) = W1 =

∑+∞
n=1

(

nW 1
n

)

Φn , Y (0) = 0

(20)
(note that {W 0

n}, {W
1
n} belong to l2).

We introduce the notations 〈·, ·〉 and (·, ·) to denote respectively the
duality pairing of H1

0 (0, π) and H−1(0, π) and the inner product in L2(0, π).
Assuming first g ∈ D(0, T ), W0, W1 in D(0, π) we multiply the first equation
of (18) with W (x, T − t) and the second one with Y (T − t). Then we
integrate respectively on (0, π)× (0, T ) and on (0, T ) and we sum. Standard
integrations by parts show that

(w′(T ),W0) + 〈w(T ),W1〉 =

∫ T

0
g(s)Y (T − s) ds (21)

Using statement 1) in Remark 2, i.e. the continuous dependence of
(w(T ), w′(T )) ∈ H1

0 (0, π) × L2(0, π) on g ∈ L2
0,T , we see that

∣

∣

∣

∣

∫ T

0
g(s)Y (T − s) ds

∣

∣

∣

∣

=
∣

∣(w′(T ),W0) + 〈w(T ),W1〉
∣

∣ ≤

≤|w′(T )|L2(0,π)|W0|L2(0,π) + |w(T )|H1

0
(0,π)|W1|H−1(0,π) ≤

≤ M
[

|W0|L2(0,π) + |W1|H−1(0,T )

]

|g|L2

0,T
.

So, the transformation (W0,W1) → Y (·) ∈ L2(0, T ) admits a continuous
extension to L2(0, π) ×H−1(0, π) and we see also that g ∈ L2

0,T steers the

solution of (18) to the target (w(T ), w′(T )) = (ξ, η) ∈ H1
0 (0, π) × L2(0, π)

if and only if the following equality holds for every W0 ∈ L2(0, π), W1 ∈
H−1(0, π):

(η,W0) + 〈ξ,W1〉 =

∫ T

0
g(s)Y (T − s) ds =

∫ T

0
g(s) (P0Y (T − ·)) ds (22)

where P0 is the orthogonal projection of L2(0, T ) onto L2
0,T (easily computed

from cosine Fourier expansion).
We introduce the duality pairing of H1

0 (0, π) × L2(0, π) and its dual
H−1(0, π)× L2(0, π):

〈〈(ξ, η), (W1,W0)〉〉 = (η,W0) + 〈ξ,W1〉
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so that Equality (21) takes the form

〈〈ΛT g, (W1,W0〉〉 =

∫ T

0
g(s) (P0Y (T − ·)) ds , hence Λ∗

T (W1,W0) = P0Y (T−·) .

Similar to [2], we consider the quadratic functional (W1,W0) 7→ J (W1,W0)
on H−1(0, π) × L2(0, π) defined by

J (W1,W0) =
1

2

∫ T

0
|P0Y (T − ·)|2 dt− (η,W0)− 〈ξ,W1〉 =

=
1

2

∫ T

0
|Λ∗

T (W0,W1)|
2 dt− 〈〈(ξ, η), (W1,W0)〉〉 .

Computing the Frèchet derivative of J we see that (Ŵ1, Ŵ0) ∈ H−1(0, π)×
L2(0, π) is a stationary point if and only if

∫ T

0
(P0Y (T − ·))

(

P0Ŷ (T − ·)
)

dt−(η,W0)−〈ξ,W1〉 = 0 ∀(W1,W0) ∈ H−1(0, π)×L2(0, π)

(here Y and Ŷ are the functions computed from (20) and initial conditions
respectively (W0,W1, 0) and (Ŵ0, Ŵ1, 0)). We see from here that if (Ŵ1, Ŵ0)
is a stationary point of J then ĝ(t) = P0Ŷ (T − ·) realizes the equality (22),
and so it is a steering control.

In order to complete the proof of item 2 of Theorem 1 we note the
following result, which implies that J has a unique stationary point in
H−1(0, π)× L2(0, π), which is a minimum point.

Theorem 3. The functional J is continuous, coercive and strictly convex
on H−1(0, π) × L2(0, π).

Proof: Convexity is obvious and continuity follows since (19) implies Λ∗
T ∈

L
(

H−1(0, π) × L2(0, π), L2
0,T

)

. The proof of strict convexity is the same as

in [2].
The operator ΛT g = (w(T ), w′(T )) from g ∈ L2

0,T to H1
0 (0, π)×L2(0, π)

is surjective so that its adjoint Λ∗
T is coercive. So, we have coercivity of the

quadratic part of J , hence of the functional J itself.
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