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Abstract

The following fact is known for large classes of distributed control systems: when
the target is regular, there exists a regular steering control. This fact is impor-
tant to prove convergence estimates of numerical algorithms for the approximate
computation of the steering control.

In this paper we extend this property to a class of systems with persistent
memory (of Maxwell/Boltzmann type) and we show that it is possible to construct
such smooth control via the solution of an optimization problem.
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1 Introduction

We study the following system where x € (0,7) and ¢ > 0:

’U)”(.%',t) :wmm(xvt)—i_f(f M(t—s)wm(x,s) d87 ’U)(O,t) :f(t)v w(ﬂvt) =0
w(z,0) =0, w'(x,0)=0.
1)
We assume M (t) € H2(0,T) and f(t) € L*(0,T) for every T > 0. As proved
for example in [5], w(z,t) € C([0,T]; L*(0,7)) N CY([0,T]; H1(0,7)) and,
for every (¢,m) € L?(0,7) x H=1(0,7) and T > 27, there exists f € L?(0,7)
such that w(T) =¢, ' (T)=n. We prove:

Theorem 1. The following properties hold:

1. Let (¢,n) € H}(0,7) x L*(0,7) and let T > 2. There exists a steering
control f € HE(0,T).
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2. One of the smooth steering controls is the integral of the function g
which realizes the minimum of a suitable quadratic functional intro-
duced in Sect. 3.

The statement 1 is proved in Section 2 while statement 2 is in Section 3.

We conclude this introduction with few comments. First we note that
system (1) is often encountered in the study of viscoelasticity and diffusion
equations with memory. When M (t) = 0 of course it reduces to the string
equation. In the case of the wave equation (even when z in regions of R,
d > 1) theorem 1 is known. The proof that we give, based on moment
methods, shows in particular controllability (in H3(0,7) x L?(0,)) of the
cascade connection of system (1) with an integrator. We refer to [7, Ch. 11]
and references therein for this idea and to [8] for a precise analysis of the
reachable set using smooth controls in the case of the wave equation.

For memoryless systems, a result analogous to Theorem 1 is the key for
a numerical analysis of the construction of steering controls via otimization
methods, see [1].

Finally, it is easy to guess that Theorem 1 can be extended to the case
dimx > 1 and to higher regularity degree of the target. This will be the
subject of a future analysis.

2 The moment problem and the proof of Theorem 1 item 1

The following computations are a bit simplified if we integrate the first
equation of (1) on [0, ] and we write it in the equivalent form (here N(t) =
1+ fot M(s) ds)
t
w'(z,t) = / N(t—s)wyy(z,s) ds, w(z,0) =0, w(0,t)=f(t), w(mt)=0.
0
(2)
We use the orthonormal basis of L?(0,7) whose elements are ®, =
V/(2/m) sinnz, n € N, and we expand

w(a,t) = 3 Bu@wn(t), walt) = \/g /O "o (2)w(x) de.

neN

Then wy,(z,t) must satisfy

w), (t) :—n2/OtN(t—s)wn(s) ds—f—n/OtN(t—s) (\/2/—7rf(3)> ds.
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The function /2/7 f will be renamed f.
Let z,(t) solve

' (t) = —n2/0 N(t = 8)2n(s) ds,  2n(0) = 1. 3)

We have (see [3])

We require that a target (£,1) € Hg(0,7) x L?(0,7) is reached at time
T, i.e. we require (w(T),w' (T)) = (&, 7).
The Fourier expansion of the targets is

+00 400
5221%%7 and 77=Zlnn<1>n, ({€.}, {mn}) € P(N) x I*(N).

So, controllability to (£,7) at time T is equivalent to the existence of a
control f € L*(0,T) such that w,(T) = &,/n, w,(T) = n, for every n. The
expression we found for w, (t) and w], (t) suggest that we investigate whether
is it possible to solve this problem with

£(t) = /0 o(s)ds, g€ I(0.T). (6)

If this is possible then we have the existence of an H!-steering control, and
we get a steering control in H}(0,T) if we can find g which satisfies the
additional condition

T
/ g(s)ds =0. (7)
0

We replace the expression (6) in w,(T") and w),(T") and we integrate by parts.
We see that f is an H' steering control to (&,7n) if the following moment
problem is solvable:
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£, = /OTg(T) dr — /OT (T — 8)g(s) ds, (8)
o = /OT [n OT_S N(T — s — 1) zn(r) dr] g(s) ds = /OTg(T — %) (_Z’Q(S)> ds .

We multiply equation (9) by ¢ and we sum to (8). Furthermore we impose
the additional condition (7). We find the moment problem:

T . .
B _ | =& =i, if n>0
| 2 -as=a, e={, L0 )

and Z,(t) = (2n(s) + L2,(s)) if n > 0, Zy(t) = 1. In order to prove
statement 1 of Theorem 1, we prove solvability of the moment problem (10).

We note that {c, }»>0 is an arbitray complez valued 1?(N) sequence while
g is real (when ¢ and 7 are real). We reformulate the moment problem (10)
with n € Z. We proceed as follows: for n < 0 we define:

2n(t) = 2_0(t), Pp(x) =@ _,(x), Z_,(t)=Z,(t).

As in [5, Lemma 5.1], we see that the moment problem (10) can be
equivalently studied with n € Z and g complex valued.

Our goal is the proof that the moment problem (10), n € Z, is solv-
able. Even more, we prove that {Z,(t)}necz is a Riesz sequence in L?(0,T),
provided that T > 2.

Remark 2. The fact that {Z,(t)}nez is a Riesz sequence in L*(0,T) im-
plies the following additional information: 1) the transformation from g €
L%*(0,T) (and so also from f € HE(0,T)) to (w(T),w'(T)) € H}(0,7) X
L?(0,7) is linear and continuous; 2) the solution g € L*(0,T) of minimal
norm of the moment problem depends continuously on the target ({,m) €
HE(0,7) x L?(0,7). Integrating this function g as in (6) we get the steering
control f of minimal norm in HL(0,T) and so the solution f € H}(0,T)
of minimal norm depends continuously on the target (£,n) € H(0,7) x
L?(0,7); 3) any solution g of the moment problem belongs to

L2, = {h € L2(0,7) : [T h(s) ds = o}.
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2.1 The proof that {Z,},c; is a Riesz sequence in L?(0,T),
T > 27

The proof that {Z, }nez is a Riesz sequence in L?(0,T), T > 2, is divided
in two steps: in the first one we show that the sequence {Z,} ez (0} is a
Riesz sequence in L2(0,T). Then we will prove that {Z,},cz is a Riesz
sequence in L2(0,T) too. In the proof we use the following definitions and
results (see [5, Chp. 3]): a sequence {z,,} in a Hilbert space H is:

e a Riesz sequence when it is the image of an orthonormal sequence
under a linear bounded and boundedly invertible transformation;

e w-independent when the following holds: if {a,} € 1? andif 32 a2y,
0 (convergence in the norm of H) then {a,} = 0.

Let {x,} be a Riesz sequence in the Hilbert space H and let {y,} be quadrat-
ically close to {x,}, i.e. S ||zn — ynll% < +00. Then there exists N such
that {yn}n>n s a Riesz sequence. If furthermore {y,} is w-independent
then it is a Riesz sequence too.

We introduce the notation and Z' = Z \ {0}.

Step 1: {Z,}.cz is a Riesz sequence in L?(0,7), T > 2w  This part of
the proof is contained in [5]. The proof in [5] is quite complex since there
z€QCR?Y d>1. When d = 1 the proof is much simplified and goes as
we sketch here for completeness.

We put N’(0) = . Using [4, Lemmas 5.2 and 5.5] we get that for every
T > 0 there exists C' such that

S 1 2a() = €™ [0y < C- (1)
nez’

Then there exists N > 0 such that {Z,,},> is a Riesz sequence in L*(0, T).
We prove that {Z,, } ez is w-independent i.e. we prove that {o, }nez =
0 when {a,} € I>(Z') and

Y anZ,=0 ie. > an <zn + %4) =0. (12)

nez! nez!

Using 7' > 27 and [5, Lemma 3.4] applied twice it is possible to prove
that o, = 25 with {y,} € I>(Z') (see also [3]). This fact justifies the
termwise differentiation of the series (12). Using

n

2(t) = —n®N(t) — nQ/O N(t — s)zl,(s) ds (13)
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we get

/OtN(t —5) [Z T <zn(8) + %zg(s))] ds — iN(t) [Z ’%ﬂ] —0. (14)

nez’ nez’

In
n

Computing with ¢ = 0 we see that >~ na, = >, o
N(0) # 0, we get

1
Z (%0, 2,(8) + inanz),(s)] =0 hence Z an(n?*-1) [zn T ﬁ} =0.
neZ’ n#+l, neZ’ n

= 0 and so, using

Note that {a,(n? — 1)} = {ag)} € 12(Z'). Hence we can start a boostrap
argument and repeat this procedure. After at most 2NN iteration of the

> aMz, =0

[n|>N

process we get

and so o) = 0 when In| > N since we noted that {Z,},~n is a Riesz

sequence in L?(0,T). We have o™ = 0if and only if v, = 0 and this shows
that the series (12) is a finite sum, 3>, 7 |, <y @nZyp = 0. The proof is now
finished since it is easy to prove, as in [5, 6], that the sequence {Z,(t)}nez
1s linearly independent.

Step 2: {Z,},cz is a Riesz sequence Of course, {Z, },ez is quadratically
close to {e"e"}, cz. It remains to prove w-independence, when T' > 2.
We prove {ay, }nez = 0 when {a,,} € 12(Z) and

op + Z onZy =0. (15)
nez’
Using that constant functions belong to H' and [5, Lemma 3.4] applied
twice we see that o, = v,,/n?, {v,} € 2. So, we can compute termwise the
derivatives of both the sides of (15) and we get

3 an (z;@) + % [—nQN@) —n’ /0 tN(t — 85)zp(s) dsD =0. (16)

nez’
Computing with ¢ = 0 we get >, a,;n = 0. Then (using (3)) the equation
(16) becomes

/0 N(t—s) [Z (ann®z,(s) + iannz;(s))] ds=0

nez’
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so that (using again N(0) # 0 and {a,n%} € 1?)

Z ann? [zn(t) + z%z;(t)} = Z ann?®Z,(t) = 0. (17)

nez’

The fact that {Z,,(t) },ez is a Riesz sequence implies that {a,,} = 0 and so
also ag = 0, as we wanted to prove.
This ends the proof of Statement 1 in Theorem 1.

3 Variational characterization of the steering control and the
proof of item 2 of Theorem 1

The fact that {Z,},ecz is a Riesz sequence implies that the moment prob-
lem (10) admits solutions g € L?*(0,T) when T > 27. Each one of these
functions, once integrated, provides a steering control f € HE(0,7). In this
section we give a variational characterization of a solution g of the moment
problem (10) as the minimizer of a quadratic functional, as in [2].

We recall the following definition from Remark 2:

T
Lir= {h e L*(0,T), / h(s) ds = 0} C L*0,7T)
0
and we consider the problem

w’(x,t) = Wy (x,t) + fg M(t — $)wgy(z, s) ds,
y'(t) =g(t) € Lg 1,

w(0,t) =y(t), w(mt)=0,

w(z,0) =0, w'(z,0) =0, y(0)=0.

(18)

We proved that (w(T),w'(T)) = (&,m) € HE(0,7) x L*(0,7) (and y(T) = 0)
if and only if g solves the moment problem (10) with n € Z (note that the
condition y(7T") = 0 comes for free, implied by g € Lg ;). The first statement
in Remark 2 implies that 7

Arel (LaT, H(0,7) x LZ(O,T(')) where Apg = (w(T),w'(T)) . (19)
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Let (Wy, W1) be any element of L?(0,7) x H~1(0,7) and consider

W (2,t) = Wag (2, t) + [y M(t — 8)Way(a, s) ds,
Y'(t) = [7 M(t — s)W,(0,s) ds + W, (0,1),
W(0,t) =W(m,t)=0,
W(z,0) =Wy =3 Wi, , W'(2,0)=W; =3 (nW})@,, Y(0)=0
(20)
(note that {W?}, {W!} belong to [?).

We introduce the notations (-,-) and (-,-) to denote respectively the
duality pairing of Hg(0,7) and H~1(0,7) and the inner product in L?(0, 7).
Assuming first g € D(0,7T), Wy, Wy in D(0, 7) we multiply the first equation
of (18) with W(z,T — t) and the second one with Y (T' — ¢). Then we
integrate respectively on (0,7) x (0,7") and on (0,7) and we sum. Standard
integrations by parts show that

T
(w'(T), Wo) + (w(T), W) = /0 9(s)Y (T — ) ds (21)

Using statement 1) in Remark 2, i.e. the continuous dependence of
(w(T),w'(T)) € Hy(0,7) x L*(0,7) on g € L§ 1, we see that

/ g(s)Y (T — s) ds
0

S‘w/(T)‘LQ(O,F)‘WO‘LQ(O,W) + \w(T)\Hg(o,w)’WﬂH*l(o,w) <
< M [[Wolr2(0,0) + IWilg-1001)] |9|L3’T .

= |(w'(T), Wo) + (w(T), W1)| <

So, the transformation (Wy, W;) — Y (-) € L%(0,T) admits a continuous
extension to L?(0,7) x H~1(0,7) and we see also that g € L%,T steers the
solution of (18) to the target (w(T),w'(T)) = (£,m) € HL(0,7) x L?(0,7)
if and only if the following equality holds for every Wy € L?(0,7), Wy €
H=Y0,):

T T
(0, Wo) + (€, W) = /O G($)Y (T — 5) ds = /O o(s) (RoY (T — ) ds (22)

where P, is the orthogonal projection of L?(0, T') onto L%,T (easily computed
from cosine Fourier expansion).

We introduce the duality pairing of H}(0,7) x L?(0,7) and its dual
H=10,7) x L0, 7):

({(&,m), (Wi, Wo))) = (n, Wo) + (&, W)
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so that Equality (21) takes the form
T

{(Arg, (W1, Wo)) = / 9(s) (PoY (T —-)) ds, hence A7(Wy, Wo) = RY (T—).
0

Similar to [2], we consider the quadratic functional (Wy, Wy) — J (W1, Wp)
on H=1(0,7) x L?(0,7) defined by

1 T
TV W) =5 [ IRYT =) dt = (1.W0) = (6. W3) =

1

T
=5 [ IOV W dt = (e, (W2, W)
0

Computing the Fréchet derivative of 7 we see that (Wy, W) € H~1(0,7)x
L?(0,7) is a stationary point if and only if

/OT (PY (T —)) (POY(T — -)> dt—(n, Wo)—(&,W1) =0 Y(Wy, Wy) € H 10, 7)xL*(0, )

(here Y and Y are the functions computed from (20) and initial conditions
respectively (W, W1,0) and (WO, W, 0)). We see from here that if (Wl, WO)
is a stationary point of J then g(t) = PyY (T — -) realizes the equality (22),
and so it is a steering control.

In order to complete the proof of item 2 of Theorem 1 we note the
following result, which implies that J has a unique stationary point in
H=10,7) x L%*(0,7), which is a minimum point.

Theorem 3. The functional J is continuous, coercive and strictly convex
on H1(0,7) x L?(0,7).

Proof: Convexity is obvious and continuity follows since (19) implies A%, €
L (H*1(07 7) x L?(0,7), L37T>. The proof of strict convexity is the same as
in [2].

The operator Apg = (w(T'),w'(T)) from g € L%,T to Hg(0,7) x L?(0,7)
is surjective so that its adjoint A% is coercive. So, we have coercivity of the
quadratic part of 7, hence of the functional 7 itself. 1
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