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MODELING LEAST RECENTLY USED CACHES WITH SHOT
NOISE REQUEST PROCESSES∗

EMILIO LEONARDI† AND GIOVANNI LUCA TORRISI‡

Abstract. In this paper we analyze least recently used (LRU) caches operating under the shot
noise requests model (SNM). The SNM was recently proposed in [S. Traverso et al., ACM Comput.
Comm. Rev., 43 (2013), pp. 5–12] to better capture the main characteristics of today’s video on
demand traffic. We investigate the validity of Che’s approximation [H. Che, Y. Tung, and Z. Wang,
IEEE J. Selected Areas Commun., 20 (2002), pp. 1305–1314] through an asymptotic analysis of the
cache eviction time. In particular, we provide a law of large numbers, a large deviation principle,
and a central limit theorem for the cache eviction time, as the cache size grows large. Finally, we
derive upper and lower bounds for the “hit” probability in tandem networks of caches under Che’s
approximation.
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1. Introduction. The design and analysis of caching systems, a very traditional
and widely studied topic in computer science, has recently drawn the attention of the
networking research community. This interest revival is mainly due to the important
role that caches play today in the distribution of contents over the Internet. Massive
content delivery networks, indeed, represent the standard solution adopted by content
and network providers to reach large populations of geographically distributed users
in an effective way. Such delivery networks allow providers to cache contents close to
the users, achieving the twofold goal of reducing network traffic while minimizing the
latency suffered by users.

Unfortunately, performance evaluation of caching systems is very hard, as the
computational cost to analyze the behavior of a cache is exponential in both the
cache size and the number of contents [9]. For this reason, the effort of the research
community has mainly focused on the development of accurate and computationally
efficient approximate techniques for the analysis of caching systems, under various
traffic conditions. Che’s approximation [4], proposed for the analysis of least recently
used (LRU) caches under the independent reference model (IRM), has emerged as one
of the most powerful methods to obtain accurate estimates of the “hit” probability
at limited computational costs [1, 15, 24]. The main idea of this technique is to
summarize the response of a cache to the requests arriving for any possible content
by a single primitive quantity, which is assumed to be deterministic and the same for
any content. This approximation simplifies the analysis of caching systems because it
allows us to decouple the dynamics of different contents. In [15] Che’s approximation
for LRU caches under the IRM found a theoretical justification.
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Shot noise processes constitute a versatile and mathematical tractable class of
stochastic models which has found several applications in electrical engineering and
queueing theory [2, 3, 13, 16, 17, 18, 23, 25, 31, 32]. In this paper we extend the
mathematical analysis of Che’s approximation to LRU caches operating under the
shot noise model (SNM) [22, 33]. This model provides a simple, flexible, and accurate
description of the temporal locality found, e.g., in video on demand (VoD) traffic,
capturing today’s traffic characteristics in a more natural and precise way than tradi-
tional traffic models. Inspired by the seminal paper [15], we investigate the validity of
Che’s approximation by means of an asymptotic analysis of the cache eviction time.
Specifically, we provide a law of large numbers, large deviations, and a central limit
theorem for the cache eviction time, as the cache size grows large. Furthermore, to
the best of our knowledge, we give for the first time a nonasymptotic analytical upper
bound for the error estimate of the “hit” probability entailed by Che’s approxima-
tion. We provide also upper and lower bounds for the “hit” probability, under Che’s
approximation, for a tandem network of caches. Finally, we present some numerical
illustrations. Our results show that Che’s approximation is a provable, highly accu-
rate, and scalable tool to assess the performance of LRU caching systems under the
SNM.

2. System description and motivations. We consider a cache, whose size
(or capacity), expressed in number of objects (or contents), is denoted by C. The
cache is fed by an exogenous arrival process of objects’ requests generated by users.
Requests which find the object in the cache are said to produce a “hit,” whereas
requests that do not find the object in the cache are said to produce a “miss.” An
important performance index is the “hit” probability, which is the fraction of the
requests producing a “hit.” The miss stream of a cache, i.e., the process of requests
which are not locally satisfied by the cache, is forwarded to either other caches or a
common repository containing all the objects, i.e., the entire objects’ catalogue. In
the literature it is common to neglect all propagation delays.

In this paper we focus on caches implementing the LRU policy: upon the arrival
of a request, an object not already stored in the cache is inserted into it. If the cache
is full, to make room for a new object the LRU item is evicted, i.e., the object which
has not been requested for the longest time is expunged from the cache.

Several models have been proposed to describe the process of requests arriving
at a cache. The simplest and still the most widely adopted is certainly the IRM [5],
which makes the following two fundamental assumptions: (i) the catalogue consists of
a fixed number of objects, which does not change over time; (ii) the process of requests
of a given object is modeled by a homogeneous Poisson process. As a consequence,
the IRM completely ignores all temporal correlations in the sequence of requests and
does not take into account a key feature of real traffic referred to as temporal locality,
which means that if an object is requested at a given time, then it is more likely that
the same object will be requested again in the near future. It is well-known that the
temporal locality has a beneficial effect on the cache performance, as it increases the
“hit” probability [5].

Several extensions of the IRM have been proposed to incorporate the temporal
locality into the traffic model. Existing generalizations [1, 5, 21] typically assume
that the process of requests is time-stationary, usually either a renewal process or a
Markov modulated Poisson process. However, these models do not capture the kind
of temporal locality encountered in traces related to VoD traffic, which is instead well
described by the SNM as shown in [22, 33].
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3. Shot noise model and cache analysis. The basic idea of the SNM is to
represent the requests’ process as the superposition of many independent processes,
each one referring to a specific object. The requests’ process of a fixed content m
is specified by two physical (random) parameters: ξm and Zm. ξm represents the
time instant at which the content enters the system (i.e., it becomes available to the
users); mark Zm describes some attribute of the content m, which summarizes its
main characteristics (content type, volume, etc.).

We assume that the set of times N ≡ {ξm}m≥1 at which contents become available
to users (i.e., they are introduced in the common repository) is distributed accord-
ing to a homogeneous Poisson process on R with intensity λ > 0. Here, {ξm}m≥1

is supposed to be an unordered set of times. We suppose that, after the introduc-
tion into the catalogue of the content m, the requests for this content arrive at the

cache according to a Cox process N (m) ≡ {T (m)
n }n≥1 on R whose stochastic intensity

{λm(t)}t∈R is defined by
λm(t) := h(t− ξm, Zm);

see, e.g., [7]. We assume that {Zm}m≥1 is a sequence of independent and identically
distributed random variables, independent of {ξm}m≥1, with values on some measur-
able space (E,E). Furthermore, we suppose that h : R× E → [0,∞) is a measurable
nonnegative function such that h(t, z) = 0 for any t < 0 and z ∈ E. Finally, we

suppose that, for any m ≥ 1, T
(m)
1 < T

(m)
2 < . . . almost surely and we assume that

the Cox processes {N (m)}m≥1 are independent, given {(ξm, Zm)}m≥1.

3.1. Formal definition of the cache eviction time. We denote by m0 a
tagged content introduced into the catalogue at the deterministic time ξm0

= −x,
x > 0, and requested at time 0. Moreover, we denote by Xm0(t), t > 0, the number
of contents different from m0 that have been requested in the time interval [0, t], i.e.,

Xm0(t) =
∑
m6=m0

1 {m requested in [0, t], ξm ∈ (−∞, t]} .

Throughout this paper we shall consider the random variable

Xm0,x(t) := Xm0
(t) | ξm0

= −x, t, x > 0,

which plays an important role in the dynamics of an LRU cache because the cache
eviction time may be expressed in terms of Xm0,x(t). Indeed, under the LRU replace-
ment policy, we have that the content m0 is expunged from the cache (provided it is
not requested again after time 0) as soon as the Cth content, different from m0, is
requested. So, under the LRU replacement policy, the so-called cache eviction time
for the content m0 is given by the random variable

TC(m0, x) := inf{t > 0 : Xm0,x(t) = C},

where once again we remark that, by construction, TC(m0, x) is the time at which
the content m0 is expunged from the cache, provided that no requests for the content
m0 are observed in the time interval (0, TC(m0, x)].

3.2. The distribution of Xm0,x(t). Define the quantity

(1) g(t) :=

∫ ∞
0

E
[
1− e−

∫ u
u−t h(s,Z1) ds

]
du, t > 0.

The following proposition holds.
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364 EMILIO LEONARDI AND GIOVANNI LUCA TORRISI

Proposition 3.1. If g(t) < ∞, then the random variable Xm0,x(t) is Poisson
distributed with mean λg(t).

Note that the condition g(t) < ∞ is fairly general: for example, it is satisfied
whenever the popularity profile is of multiplicative form, i.e. (with a little abuse of
notation),

(2) h(t, z) := zh(t), t ∈ R, z ∈ E ⊆ (a,∞), a > 0,

and

(3) h ≡ 0 on (−∞, 0),

∫ ∞
0

h(t) dt = 1 and E[Z1] <∞.

Indeed, in such a case, for t > 0, we have

g(t) =

∫ ∞
0

[
1− φZ1

(
−
∫ u

u−t
h(s) ds

)]
du(4)

≤ E[Z1]

∫ ∞
0

(∫ u

u−t
h(s) ds

)
du ≤ E[Z1]t <∞,

where φZ1
(θ) := E[exp(θZ1)], θ ∈ R, and we used the elementary inequality ex ≥ 1+x,

x ∈ R.

Proof of Proposition 3.1. For any t0 > t > 0, we define the “restriction” of
Xm0

(t) to contents that have been introduced in the model in the time interval [t−t0, t]
by

X(t0)
m0

(t) :=
∑
m 6=m0

1 {m requested in [0, t], ξm ∈ [t− t0, t]} .

By the Slivnyak–Mecke theorem (see, e.g., Proposition 13.1.VII, p. 281, in [8]), the
law of {ξm}m6=m0

given the event {ξm0
= −x} coincides with the law of {ξm}m≥1 and

so, for any θ ∈ R,

(5) E
[
eθX

(t0)
m0

(t) | ξm0
= −x

]
= E

[
eθX̃t0

(t)
]
,

where

X̃t0(t) :=
∑
m≥1

1 {m requested in [0, t], ξm ∈ [t− t0, t]} .

Letting N([t−t0, t]) denote the number of points {ξm}m≥1 in the time interval [t−t0, t]
and N (m)([0, t]) denote the number of points {T (m)

n }n≥1 in the time interval [0, t], we

rewrite X̃t0(t) as

X̃t0(t) =

N([t−t0,t])∑
m=1

11
{
N (m)([0, t]) ≥ 1

}
.

Since, given ξm and Zm, N (m) is a Poisson process with intensity function h(· − ξm,
Zm), we have

pt(ξm, Zm) := P(N (m)([0, t]) ≥ 1 | ξm, Zm) = 1− e−
∫ t
0
h(s−ξm,Zm) ds.
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Recalling that, given {N([t−t0, t]) = k}, the k points of N on [t−t0, t] are independent
and uniformly distributed over [t− t0, t] (see, e.g., [7]), for any θ ∈ R, we have

E
[
eθX̃t0 (t) | N([t− t0, t]) = k

]
= E

[
k∏

m=1

eθ11{N
(m)([0,t])≥1} | N([t− t0, t]) = k

]

=

(
1 + (eθ − 1)

1

t0

∫ t

t−t0
E[pt(u, Z1)] du

)k
.

Therefore, since N([t− t0, t]) is Poisson distributed with mean λt0, we have

E
[
eθX̃t0

(t)
]

= exp

(
λ(eθ − 1)

∫ 0

−t0
E [pt(u+ t, Z1)] du

)
.(6)

The claim follows by (5) and (6), letting t0 tend to ∞.

In the context of an LRU cache under the SNM, Che’s approximation consists in
replacing the cache eviction time TC(m0, x) by the deterministic constant

tC(m0, x) := inf {t > 0 : E[Xm0,x(t)] = C} .

Note that if g(t) <∞ for any t > 0, then by Proposition 3.1 we have

tC(m0, x) = inf{t > 0 : λg(t) = C}.

So, if moreover g : (0,∞)→ (0,∞) is strictly increasing, we deduce

(7) tC(m0, x) = g−1(C/λ).

Since the law of Xm0,x(t) (and therefore of TC(m0, x)) does not depend on m0 and
x, hereafter we simply write X(t), TC , and tC in place of Xm0,x(t), TC(m0, x), and
tC(m0, x).

3.3. Asymptotic analysis of TC . In this subsection we investigate the valid-
ity of Che’s approximation for large values of C. We shall do this by analyzing the
behavior of TC as C ↑ ∞. Intuitively, Che’s approximation finds a theoretical justi-
fication if we may show that, as C ↑ ∞, TC/tC → 1 almost surely. This is indeed
achieved in Proposition 3.2. Proposition 3.3 provides asymptotic tail estimates for
TC and Corollary 3.4 gives asymptotic upper and lower bounds for the probability
that TC deviates from its most probable value tC , as C grows large. Finally, the
Gaussian approximation for TC in Proposition 3.10 allows us to construct asymptotic
confidence intervals for TC ; see the short discussion after the statement of Proposition
3.10. Hereafter, we shall consider the function g defined by (1).

3.3.1. Law of large numbers and tail estimates for the cache eviction
time. The following law of large numbers and tail estimates holds.

Proposition 3.2. If g : (0,∞)→ (0,∞) is strictly increasing, g, g−1 : (0,∞)→
(0,∞) are bijective and continuous (i.e., g is a homeomorphism of (0,∞)) and, for
any divergent sequences {an}n≥1, {bn}n≥1 of positive numbers,

(8) lim
n→∞

g(an)/g(bn) = 1⇒ lim
n→∞

an/bn = 1,

then

(9) lim
C→∞

TC
tC

= 1 almost surely.
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Proposition 3.3. If g : (0,∞) → (0,∞) is strictly increasing and g, g−1 :
(0,∞)→ (0,∞) are bijective and continuous, then

lim
C→∞

1

C
logP(TC > g−1(Cxr)) = −I(xr) ∀ xr > 1/λ(10)

and

lim
C→∞

1

C
logP(TC ≤ g−1(Cxl)) = −I(xl) ∀ xl ∈ (0, 1/λ),(11)

where

(12) I(x) := λx− 1− log(λx), x > 0 and I(0) := +∞.

Corollary 3.4. Under the assumptions of Proposition 3.3, we have that for any
δ ∈ (0, 1) and ε > 0 there exists Cδ,ε so that for any C > Cδ,ε

e−C(I(g(tC(1+δ))/C)+ε) ≤ P(TC > tC(1 + δ)) ≤ e−C(I(g(tC(1+δ))/C)−ε)(13)

and

e−C(I(g(tC(1−δ))/C)+ε) ≤ P(TC ≤ tC(1− δ)) ≤ e−C(I(g(tC(1−δ))/C)−ε),(14)

where the function I is defined by (12).

The proofs of Propositions 3.2 and 3.3 are based on a large deviation principle
for the process {g(TC)/C}C≥1 stated in Lemma 3.5. We recall (see, e.g., [10]) that a
nonnegative stochastic process {Y (t)}t≥0 obeys a large deviation principle on [0,∞)
with speed v and rate function J if v : [0,∞) → [0,∞) is a function which increases
to infinity and J : [0,∞) → [0,∞] is a lower semicontinuous function such that, for
all Borel sets B ⊂ [0,∞),

− inf
x∈B◦

J(x) ≤ lim inf
t→∞

1

v(t)
logP(Y (t) ∈ B)≤ lim sup

t→∞

1

v(t)
logP(Y (t) ∈ B)≤− inf

x∈B
J(x),

where B◦ denotes the interior of B and B denotes the closure of B.
For later purposes, we recall that a rate function J on [0,∞) has no peaks if

(i) there exists x̄ ∈ (0,∞) such that J(x̄) = 0; (ii) J is nonincreasing on (0, x̄) and
nondecreasing on (x̄,∞).

Lemma 3.5. Under the assumptions of Proposition 3.3, we have that the family
of random variables {g(TC)/C}C≥1 obeys a large deviation principle on [0,∞) with
speed v(C) := C and rate function J := I defined by (12).

Remark 3.6. For later purposes, we remark that the rate function I defined in
(12) is continuous on (0,∞), I(1/λ) = 0, and I decreases on (0, 1/λ) and increases on
(1/λ,∞). So, in particular, I has no peaks.

Remark 3.7. Here, we assume that g defined by (1) is a strictly increasing home-
omorphism of (0,∞), and we give sufficient conditions which guarantee (8).

(i) If g−1 is ultimately Lipschitz continuous, i.e.,

there exist K1,K2 > 0 such that |g−1(x)− g−1(y)| ≤ K1|x− y|, for any x, y > K2,

then (8) holds. Indeed, let ε > 0 be arbitrarily fixed and n
(1)
ε ≥ 1 so large that

g(bn) > K2 + ε for all n ≥ n(1)
ε . By the Lipschitz property of g−1 we have
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sup
n≥n(1)

ε

|g−1(g(bn)± ε)− bn| = sup
n≥n(1)

ε

|g−1(g(bn)± ε)− g−1(g(bn))| ≤ K1ε.

Therefore

(15) bn −K1ε < g−1(g(bn)− ε) and g−1(g(bn) + ε) < bn +K1ε ∀ n ≥ n(1)
ε .

By assumption g(an)/g(bn) → 1, as n → ∞. Therefore there exists n
(2)
ε ≥ 1 such

that for any n ≥ n(2)
ε

(16) g−1(g(bn)− ε) < an < g−1(g(bn) + ε).

The claim follows combining the inequalities (15) and (16).
(ii) If there exists t̄ > 0 such that g is differentiable on (t̄,∞) and inft>t̄ g

′(t) > 0,
then (8) holds. Indeed, for all x > g(t̄) we have

0 < (g−1)′(x) = 1/g′(g−1(x)) ≤ (inf
t>t̄

g′(t))−1;

therefore (g−1)′ is ultimately bounded and the claim follows by the previous
point (i).

Example 3.8. Consider the SNM defined by a multiplicative popularity profile
of the form (2) and assume (3). In such a case, g is given by (4) and it clearly
satisfies the assumptions of Proposition 3.3. We check that g satisfies (8). Setting

H(t) :=
∫ t

0
h(s) ds, t > 0, we have

g(t) =

∫ ∞
0

[1− φZ1 (−H(u) +H(u− t))] du

=

∫ t

0

[1− φZ1 (−H(u))] du+

∫ ∞
0

[1− φZ1 (−H(u+ t) +H(u))] du.(17)

Since φZ1
(·) is differentiable on (−∞, 0), we easily have that g(·) is differentiable on

(0,∞) and

g′(t) = 1− φZ1 (−H(t)) +

∫ ∞
0

φ′Z1
(−H(u+ t) +H(u))h(u+ t) du(18)

≥ 1− φZ1
(−H(t)) ,

where the latter inequality follows by the nonnegativity of the third addend in the
right-hand side of (18). The claim follows by Remark 3.7(ii) noticing that if t̄ is such
that H(t̄) > 0, then

inf
t>t̄

g′(t) ≥ 1− φZ1
(−H(t̄)) > 0.

In the particular case when

(19) h(t, z) :=
z

L
1[0,L](t) for some constant L > 0

we have

g(t) = 2(t ∧ L) + (t ∨ L− t ∧ L) (1− φZ1 (−(t ∧ L)/L))− 2E
[
L

Z1

(
1− e−

(t∧L)Z1
L

)]
,

(20)
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where for a, b ∈ R we set a∧ b := min{a, b} and a∨ b := max{a, b}. Indeed, for t > 0,
we have

g(t) =

∫ ∞
0

(
1− φZ1

(
− 1

L

∫ u

u−t
1[0,L](s) ds

))
du =

∫ ∞
0

(
1− φZ1

(−η(t, u))
)

du,

where

η(t, u) :=
1

L

∫ u

u−t
1[0,L](s) ds =

(u ∧ L− (u− t)+)+

L

and for a ∈ R we set a+ := a ∨ 0. We distinguish two cases: 0 < t ≤ L and t > L. If
0 < t ≤ L, then if u < t then u < L. So, for t ∈ (0, L],

g(t) =

∫ t

0

(
1− φZ1

(
− u

L

))
du+

∫ L+t

t

(
1− φZ1

(
− 1

L
(t1(0,L](u)

+ (t− u+ L)1(L,L+t](u)
))

du

= t− E
[
L

Z1

(
1− e−

Z1
L t
)]

+ (L− t)
(

1− φZ1

(
− t

L

))
+

∫ L+t

L

(
1− φZ1

(
− 1

L
(t− u+ L)

))
du

= 2t+ (L− t)
(

1− φZ1

(
− t

L

))
− 2E

[
L

Z1

(
1− e−

Z1
L t
)]
.

If t > L, then if u ≥ t then u ≥ t > L. So, for t > L,

g(t) =

∫ L

0

(
1− φZ1

(
− u

L

))
du+ (t− L)(1− φZ1

(−1))

+

∫ L+t

t

(
1− φZ1

(
− t− u+ L

L

))
du

= L− E
[
L

Z1

(
1− e−Z1

)]
+ (t− L)(1− φZ1(−1)) + L− E

[
L

Z1

(
1− e−Z1

)]
= 2L+ (t− L)(1− φZ1

(−1))− 2E
[
L

Z1

(
1− e−Z1

)]
.

Proof of Proposition 3.2. It is well-known that

(21) lim
C→∞

g(TC)

C
= 1/λ almost surely

if and only if

P

⋂
n≥1

⋃
C≥n

∣∣∣g(TC)

C
− 1

λ

∣∣∣ > ε

 = 0 for any ε > 0.

Therefore (21) follows by the Borel–Cantelli lemma if we check that∑
C≥1

P
(∣∣∣g(TC)

C
− 1

λ

∣∣∣ > ε

)
<∞ for any ε > 0.
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Let ε ∈ (0, λ−1) be arbitrarily fixed and take δ ∈ (0, I(λ−1 − ε) ∧ I(λ−1 + ε)). By
Lemma 3.5 we have that there exists a nonnegative integer Cδ such that for any
C ≥ Cδ

P
(
g(TC)

C
≥ λ−1 + ε

)
≤ e−(infx≥λ−1+ε I(x)−δ)C = e−(I(λ−1+ε)−δ)C

and

P
(
g(TC)

C
≤ λ−1 − ε

)
≤ e−(infx≤λ−1−ε I(x)−δ)C = e−(I(λ−1−ε)−δ)C ,

where we used Remark 3.6. Therefore∑
C≥Cδ

P
(∣∣∣g(TC)

C
− 1

λ

∣∣∣ > ε

)
≤
∑
C≥Cδ

P
(
g(TC)

C
≥ λ−1 + ε

)

+
∑
C≥Cδ

P
(
g(TC)

C
≤ λ−1 − ε

)
≤
∑
C≥Cδ

e−(I(λ−1+ε)−δ)C+
∑
C≥Cδ

e−(I(λ−1−ε)−δ)C <∞,

which proves (21). Then the claim follows by assumption (8) noticing that by (21) and
relation tC = g−1(C/λ) we easily get g(TC)/g(tC) → 1 almost surely,
as C →∞.

Proof of Proposition 3.3. By Remark 3.6 we have that, for any xr > 1/λ, infy>xr
I(y) = infy≥xr I(y) = I(xr), and, for any xl ∈ (0, 1/λ), infy<xl I(y) = infy≤xl I(y) =
I(xl). Relations (10) and (11) follow by applying the large deviation principle of
Lemma 3.5 considering, respectively, the Borel sets B = (xr,∞) and B = (0, xl)
(note that g−1 is strictly increasing since g is such).

Proof of Corollary 3.4. The claim easily follows by (7), (10), and (11).

The proof of Lemma 3.5 uses a result from [12], which we recall for the sake
of clarity. We first introduce some notation and terminology. Let {Y (t)}t≥0 be a
nonnegative stochastic process whose sample paths are right-continuous, nondecreas-
ing, and such that limt→∞ Y (t) =∞ almost surely. We define the inverse process of
{Y (t)}t≥0 as

W (z) := inf{t ≥ 0 : Y (t) ≥ z}, z ≥ 0.

The following theorem holds (see Theorem 1(i) in [12]).

Theorem 3.9. Let {Y (t)}t≥0 and {W (z)}z≥0 be as above and let v : (0,∞) →
(0,∞) be a strictly increasing homeomorphism of (0,∞). We have that if
{Y (t)/v(t)}t≥0 obeys a large deviation principle on [0,∞) with speed v and rate
function I which has no peaks, then {v(W (z))/z}z>0 obeys a large deviation prin-
ciple on [0,∞) with speed ṽ(z) := z and rate function Ĩ(z) := zI(1/z), z > 0,
Ĩ(0) := limz→0+ zI(1/z).

Proof of Lemma 3.5. Let θ ∈ R be arbitrarily fixed. By Proposition 3.1 X(t) is
Poisson distributed with mean λg(t). Therefore

lim
t→∞

1

g(t)
logE

[
eθX(t)

]
= lim
t→∞

1

g(t)
log eλg(t)(e

θ−1) = λ(eθ − 1) := Λ(θ).

So by the Gärtner–Ellis theorem (see, e.g., [10]) the stochastic process {X(t)/g(t)}t≥1

satisfies a large deviation principle on [0,∞) with speed g and rate function Λ∗(x) :=
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370 EMILIO LEONARDI AND GIOVANNI LUCA TORRISI

supθ∈R(θx−Λ(θ)) = λ−x+x log(x/λ), x > 0, Λ∗(0) := λ. Note that {TC}C≥1 is the
inverse process of {X(t)}t≥0. The claim then follows by Theorem 3.9. Indeed the rate
function Λ∗ has no peaks since Λ∗(λ) = 0 and Λ∗ decreases on (0, λ) and increases on
(λ,∞).

3.3.2. Normal approximation of the cache eviction time. Hereafter, we

denote by N(0, 1) a standard normal random variable and by
law−→ the convergence in

distribution. Following the ideas in [15] (see Propositions 1 and 3 therein), we derive
a central limit theorem for the cache eviction time of the SNM.

Proposition 3.10. Assume g : (0,∞)→ (0,∞) bijective, strictly increasing, and
such that there exists a positive function f such that

lim
y→∞

f(y) ∈ [0,∞] and lim
y→∞

g(y)− g(y + xf(y))√
g(y + xf(y))

= − x√
λ
.(22)

Then

(23)
TC − tC
f(tC)

law−→ N(0, 1) as C →∞.

Under the assumptions of Proposition 3.10 one can construct asymptotic confi-
dence intervals for TC . Indeed, if ν > 0 is such that P(|N(0, 1)| ≤ ν) = µ ∈ (0, 1),
then, as C → ∞, [tC − νf(tC), tC + νf(tC)] is an asymptotic confidence interval for
TC at the level µ, as the following simple computation shows:

P (tC − νf(tC) ≤ TC ≤ tC + νf(tC)) = P
(∣∣∣TC − tC

f(tC)

∣∣∣ ≤ ν)
' P(|N(0, 1)| ≤ ν) = µ as C →∞.

Clearly, for a fixed level µ, by using the tables of the Gaussian distribution one finds
the value ν which determines the asymptotic confidence interval.

Example 3.11. Consider the SNM defined by a multiplicative popularity profile
of the form (2) and assume (3) and∫ ∞

0

th(t) dt <∞.

In such a case, g is given by (4) and, as noticed in Example 3.8, g is an increasing
homeomorphism of (0,∞). We shall check later on that (22) holds with

(24) f(x) :=

√
x

λ(1− φZ1(−1))
.

Therefore we have the normal approximation (23) and asymptotic confidence intervals
for TC can be constructed as described above. To verify (22) we start noticing that

(25) lim
t→∞

g(t)

t(1− φZ1(−1))
= 1.

Indeed, by l’Hôpital’s rule we have

lim
t→∞

1

t

∫ t

0

(
1− φZ1(−H(u))

)
du = 1− lim

t→∞

1

t

∫ t

0

φZ1(−H(u)) du

= 1− φZ1(−1).
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So (25) follows if we check that the second term in (17) is bounded. By the elementary
inequality ex ≥ 1 + x, x ∈ R, we have

0 ≤
∫ ∞
t

(
1− φZ1(H(u− t)−H(u))

)
du

≤ E[Z1]

∫ ∞
t

(H(u)−H(u− t)) du

≤ E[Z1]

∫ ∞
0

(1−H(u)) du = E[Z1]

∫ ∞
0

uh(u) du <∞,

where the latter equality is a consequence of the fact that h is a probability density
on (0,∞). Finally, we check that (25) implies the second limit in (22) (the first limit
being obvious by the definition of f). Letting o(1) denote a function which tends to
zero as y →∞, by (24) we have

lim
y→∞

g(y)− g(y + xf(y))√
g(y + xf(y))

= lim
y→∞

y(1− φZ1
(−1))− (y + xf(y))(1− φZ1

(−1)) + o(1)√
(y + xf(y))(1− φZ1

(−1)) + o(1)

= − lim
y→∞

xf(y)(1− φZ1(−1)) + o(1)√
(y + xf(y))(1− φZ1(−1)) + o(1)

= − lim
y→∞

x(1−φZ1
(−1))

√
y+o(1)√

λ(1−φZ1
(−1))

√
(y+xf(y))(1−φZ1

(−1))+o(1)

= − lim
y→∞

x(1− φZ1(−1))
√
y√

λ(1− φZ1
(−1))

√
(1− φZ1

(−1))y
= − x√

λ
.

The proof of Proposition 3.10 uses Lemma 3.12 below, which is of its own interest.
We denote by Lip(1) the class of real-valued Lipschitz functions from R to R with
Lipschitz constant less than or equal to one. Given two real-valued random variables
U and U ′, the Wasserstein distance between the laws of U and U ′, written dW (U,U ′),
is defined as

dW (U,U ′) := sup
ϕ∈Lip(1)

|E[ϕ(U)]− E[ϕ(U ′)]|.

We recall that the topology induced by dW on the class of probability measures over
R is finer than the topology of weak convergence (see, e.g., [26]).

Lemma 3.12. If g(t) <∞, then

dW

(
X(t)− λg(t)√

λg(t)
,N(0, 1)

)
≤ 1√

λg(t)
.

Remark 3.13. Lemma 3.12 provides a Gaussian approximation for X(t) in the
Wasserstein distance. On the other hand, Proposition 1 in [15] provides a Gaussian
approximation, in the Kolmogorov distance dKol, for the corresponding quantity under
the IRM. We note that a Gaussian approximation ofX(t), in the Kolmogorov distance,
under the SNM may be easily obtained by Lemma 3.12 using the relation

dKol(X,N(0, 1)) := sup
x∈R
|P(X ≤ x)− P(N(0, 1) ≤ x)| ≤ 2

√
dW (X,N(0, 1)),

where X is a real-valued random variable; see, e.g., [26].
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Proof of Proposition 3.10. By the assumptions on g we have C = λg(tC), tC ↑ ∞,
and g(tC) ↑ ∞, as C ↑ ∞. For any x ∈ R,

P(TC − tC > xf(tC)) = P(X(tC + xf(tC)) < C)

= P

(
X(tC + xf(tC))− λg(tC + xf(tC))√

λg(tC + xf(tC))
<
√
λ
g(tC)− g(tC + xf(tC))√

g(tC + xf(tC))

)
.(26)

By Lemma 3.12 we have

X(t)− λg(t)√
λg(t)

law−→ N(0, 1) as t→∞.

So, letting C tend to infinity in (26) and using (22) we deduce

lim
C→∞

P
(
TC − tC
f(tC)

> x

)
= P(N(0, 1) ≤ −x) = P(N(0, 1) > x).

Proof of Lemma 3.12. Define the Borel measure µ(dx) := λdg(x) over [0, t] (note
that g increases on [0, t] and so dg is a Lebesgue–Stieltjes measure) and the function
h(x) := 1[0,t](x)/

√
λg(t), x ∈ [0, t]. By Corollary 3.4 in [27] and Proposition 3.1, we

have

dW

(
X(t)−λg(t)√

λg(t)
,N(0, 1)

)
≤
∣∣∣1−∫

[0,t]

|h(x)|2 µ(dx)
∣∣∣+∫

[0,t]

|h(x)|3 µ(dx)

=
1√
λg(t)

.

3.4. The “in” and the “hit” probabilities. The results of the previous sub-
section provide a justification to the Che approximation, as C → ∞. Indeed, the
law of large numbers (9) guarantees that, asymptotically in C, tC is a correct ap-
proximation of TC ; the bounds (13) and (14) guarantee that deviations of TC from
its most probable value tC are, asymptotically in C, exponentially small; the normal
approximation (23) allows us to identify the typical asymptotic values of TC via the
construction of asymptotic confidence intervals. In this subsection we provide com-
plementary nonasymptotic analytical upper bounds on the prediction error entailed
by Che’s approximation of the “hit” probability (see Proposition 3.14). This result
allows us to assess the accuracy of the Che approximation in many cases of practical
interest; cf. section 5.

3.4.1. The “in” probability. The “in” probability is defined as the probability
of finding at time t a tagged content m0 in the cache, given that ξm0

= x and Zm0
= z.

Thus:
(i) Under Che’s approximation, the “in” probability is given by

p
(t−x)
in,Che(z, tC) : = P(N (m0)((t− tC , t]) ≥ 1 | (ξm0

, Zm0
) = (x, z))

= 1− e
−

∫ t−x
t−x−tC

h(u,z) du
,(27)

where N (m0)(A) denotes the number of points {T (m0)
n }n≥1 in A ⊂ R.

(ii) Without relying on Che’s approximation, the conditional “in” probability is
given by

p
(t−x)
in (z, TC) : = P(N (m0)((t− TC , t]) ≥ 1 | (ξm0

, Zm0
) = (x, z), TC)

= p
(t−x)
in,Che(z, TC).
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3.4.2. The “hit” probability. The “hit” probability is defined as the ratio
between the average rate at which “hits” of a tagged content occur and the average
rate at which requests of the tagged content are observed. Thus,

(iii) under Che’s approximation, the “hit” probability is given by

phit,Che(tC) : =
E[h(t− ξm0

, Zm0
)p

(t−ξm0
)

hit,Che (Zm0
, tC)]

E[h(t− ξm0
, Zm0

)]

=
E[h(t− ξm0

, Zm0
)p

(t−ξm0
)

in,Che (Zm0
, tC)]

E[h(t− ξm0
, Zm0

)]
(28)

with the convention 0/0 = 0. The equality (28) is a consequence of the fact that, un-

der Che’s approximation, the probability (denoted by p
(t−x)
hit,Che(z, tC)) that the tagged

content m0, introduced into the catalogue at time ξm0
= x and with mark Zm0

= z,

is found in the cache by an arriving request at time t is equal to p
(t−x)
in,Che(z, tC). Indeed

p
(t−x)
hit,Che(z, tC) : = P

( ∑
T

(m0)
n ∈N(m0)\{t}

1(t−tC ,t](T
(m0)
n ) ≥ 1

∣∣∣ t ∈ N (m0), (ξm0
, Zm0

)

= (x, z)
)

= P
(
N (m0)((t− tC , t]) ≥ 1)

∣∣∣(ξm0 , Zm0) = (x, z)
)

(29)

= p
(t−x)
in,Che(z, tC),

where the equality (29) is a consequence of the Slivnyak–Mecke theorem (see, e.g.,
Proposition 13.1.VII, p. 281, in [8]).

Note that the probability phit,Che(tC) does not depend on m0 and t. Indeed, for
an arbitrary s < t we have

E
[
h(t− ξm0

, Zm0
)p

(t−ξm0 )

in,Che (Zm0
, tC)11{s < ξm0

< t}
]

E [h(t− ξm0
, Zm0

)11{s < ξm0
< t}]

=
(t− s)−1

∫ t
s
E
[
h(t− u, Z1)p

(t−u)
in,Che(Z1, tC)

]
du

(t− s)−1
∫ t
s
E [h(t− u, Z1)] du

=

∫ t
s
E
[
h(t− u, Z1)p

(t−u)
in,Che(Z1, tC)

]
du∫ t

s
E [h(t− u, Z1)] du

,

and so letting s tend to −∞ we deduce

phit,Che(tC) =

∫∞
0

E
[
h(u, Z1)p

(u)
in,Che(Z1, tC)

]
du∫∞

0
E [h(u, Z1)] du

.(30)

(iv) Without relying on Che’s approximation, the conditional “hit” probability is
given by

phit(TC) :=
E
[
h(t− ξm0 , Zm0)p

(t−ξm0
)

in,Che (Zm0 , TC) |TC
]

E [h(t− ξm0 , Zm0)]
.
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Arguing as above, one may easily check that

phit(TC) =

∫∞
0

E
[
h(u, Zm0

)p
(u)
in,Che(Zm0

, TC) | TC
]

du∫∞
0

E [h(u, Z1)] du
.

Being Zm0 and TC independent, the (unconditional) “hit” probability is given by

phit =

∫
[0,∞)

phit,Che(θ)PTC (dθ),

where PTC denotes the law of TC and phit,Che(θ) is defined as phit,Che(tC) with θ in
place of tC .

3.4.3. Error estimate. By using the above relations and classical estimates for
the tail of a Poisson distribution, we can evaluate the error committed by approxi-
mating phit with phit,Che(tC). The following proposition holds.

Proposition 3.14. If g : (0,∞) → (0,∞) is strictly increasing, then, for any
δ ∈ (0, 1) and C > 0, we have

|phit − phit,Che(tC)| ≤ exp(−λg(tC(1− δ))R(C/λg(tC(1− δ))))
+ exp(−λg(tC(1 + δ))R(C/λg(tC(1 + δ))))

+ max
θ∈{tC(1−δ),tC(1+δ)}

|phit,Che(θ)− phit,Che(tC)|,

where R(x) := 1− x+ x log x, x > 0.

This proposition allows an assessment of the accuracy of Che’s approximation in
different scenarios. As shown by the numerical simulations in [22] (see also section 5),
in most cases by exploiting Proposition 3.14 we can show that Che’s approximation
leads to surprisingly accurate predictions of caching performance.

Proof of Proposition 3.14. We preliminary note that, for any δ ∈ (0, 1) and C >
0, we have

(31) λg(tC(1− δ)) ≤ C ≤ λg(tC(1 + δ)).

Indeed, since g is strictly increasing (31) is equivalent to tC(1 − δ) ≤ g−1(C/λ) ≤
tC(1 + δ), which holds since tC = g−1(C/λ). Note that, due to (27), phit,Che(·) is a
nondecreasing function. So, for all δ ∈ (0, 1), we have

|phit − phit,Che(tC)| ≤
∫

[0,tC(1−δ)]
(phit,Che(tC)− phit,Che(θ))PTC (dθ)

+

∫
(tC(1+δ),∞)

(phit,Che(θ)− phit,Che(tC))PTC (dθ)

+

∫
(tC(1−δ),tC(1+δ)]

|phit,Che(θ)− phit,Che(tC)|PTC (dθ)

≤ P(TC ≤ tC(1− δ)) + P(TC > tC(1 + δ))

+ max
θ∈{tC(1−δ),tC(1+δ)}

|phit,Che(θ)− phit,Che(tC)|.

The claim follows noticing that by the definition of TC , the inequality (31) and the
properties of the Poisson distribution (see, e.g., Lemma 1.2 in [28], formulas (1.10)
and (1.11)) we have

P(TC ≤ tC(1− δ)) = P(X(tC(1− δ)) > C) ≤ exp(−λg(tC(1−δ))R(C/λg(tC(1−δ))))
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and

P(TC > tC(1 + δ)) = P(X(tC(1+δ))

≤ C) ≤ exp(−λg(tC(1+δ))R(C/λg(tC(1+δ)))).

3.5. Extension to the case of contents with variable sizes. At a first
glance, dealing with contents of variable sizes may appear significantly more challeng-
ing. Indeed, before inserting in the cache a new content, enough memory must be freed
by selecting a proper set of objects to expunge. The content to be stored, then, needs
to be partitioned into small portions (fragments) that fit into the nonadjacent areas
of memory, each one corresponding to a different fragment of the expunged contents.
Unfortunately an excessive fragmentation of the contents can significantly reduce the
bandwidth performance (speed) of the cache and therefore must be prevented by ex-
ecuting complex memory management operations such as periodic defragmentation.
A simple method to cache contents of variable sizes, referred to in the following as
chunkization, consists in breaking each content into an integer number of pieces with
a fixed size, called chunks, which are treated as independent objects by the caching
system. By properly dimensioning the size of the chunk it is possible to achieve an
optimal trade-off between memory efficiency and bandwidth performance. Indeed,
by enlarging the size of the chunk, memory efficiency decreases (for the effect of the
last chunk size rounding), while the cache speed increases since the size of fragments
(which are memorized in consecutive memory locations) increases. In this way the
degradation of the cache due to content fragmentation is kept under control, with-
out the necessity of executing complex memory management operations. This is the
main reason why chunkization has become an almost universally adopted technique in
caching systems supporting the distribution of contents over the Internet [19, 29, 11].

In this subsection we briefly discuss how our approach can be extended to evaluate
the effectiveness of Che’s approximation for an LRU cache which stores contents of
variable sizes through chunkization.

We still assume that the LRU cache operates under the SNM: requests of different
chunks corresponding to the same content m are perfectly synchronized, and the
process of requests for each chunk of content m is a Cox process with stochastic
intensity λm(t). We denote by Am the number of chunks in which the content m is
partitioned and assume that {Am}m≥1 is a sequence of independent and identically
distributed random variables with values on {1, 2, . . .}, independent of {ξm}m≥1 and
{Zm}m≥1. The number of chunks (corresponding to contents different from m0)
requested in the time interval [0, t] is given by

Xm0(t) :=
∑
m6=m0

Am11 {m requested in [0, t], ξm ∈ (−∞, t]} .

Setting Xm0,x(t) := (Xm0
(t) | ξm0

= −x) + Am0
− 1, with x > 0, we define the cache

eviction time as

TC(m0, x) : = inf {t ≥ 0 : Xm0,x(t) = C}
= inf {t ≥ 0 : (Xm0

(t) | ξm0
= −x) = C −Am0

+ 1} ,

where we express the caching storage capacity C in number of chunks. The defini-
tion of TC(m0, x) reflects the fact that we consider a content to be expunged (i.e.,
unavailable at the cache) when its first chunk is expunged by the cache.
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Let g be the function defined by (1). If g(t) <∞ and the A’s are light-tail, i.e.,
(32)
∃ a right neighborhood of zero, say N+, such that φA1

(θ) := E[eθA1 ] <∞ ∀ θ ∈ N+,

then, arguing as in the proof of Proposition 3.1, one has that Xm0
(t) | ξm0

= −x
follows the same law of

∑S
i=1Ai, where S is a Poisson distributed random variable

with mean λg(t) and S is independent of {Am}m≥1. Note that the laws of Xm0,x(t)
and TC(m0, x) do not depend on x, but they depend on m0. However, for ease of
notation, hereafter we do not explicitly indicate this dependence, writing X(t) and
TC in place of Xm0,x(t) and TC(m0, x). In this context, Che’s approximation of TC is

tC := inf {t ≥ 0 : E[Xm0,x(t)] = C} = inf {t ≥ 0 : λg(t) = (C + 1− E[A1])/E[A1]} .

Under the same assumptions as Proposition 3.3 and condition (32), we have that
the family of random variables {g(TC)/C}C≥1 obeys a large deviation principle on
[0,∞) with speed v(C) := C and rate function I(x) := xΛ∗(1/x), x > 0, I(0) :=
limx→0+ xΛ∗(1/x), where

Λ∗(x) := sup
θ∈R

(θx− λ(E[eθA1 ]− 1)).

Since the derivation of this large deviation principle is not immediate, we sketch the
proof. Arguing as in the proof of Lemma 3.5 one has that the process {X̃(t)/g(t)}t≥1,

where X̃(t) := Xm0
(t) | ξm0

= −x, obeys a large deviation principle on [0,∞) with
speed g and rate function I1(u) := Λ∗(u). On the other hand, by using the definition
of large deviation principle it is readily checked that the process {(Am0 − 1)/g(t)}t≥1

obeys a large deviation principle on [0,∞) with speed g and rate function I2(v) :=
+∞11{v > 0}, with the convention ∞ · 0 = 0. By the independence of the processes
{X̃(t)/g(t)}t≥1 and {(Am0

− 1)/g(t)}t≥1 and the contraction principle (i.e., by Exer-
cise 4.2.7 on p. 129 and Theorem 4.2.1 on p. 126 in [10]) one has that the process
{X(t)/g(t)}t≥1 obeys a large deviation principle on [0,∞) with speed g and rate
function

inf{I1(u) + I2(v) : u+ v = x} = I1(x) = Λ∗(x).

The claimed large deviation principle for the family of random variables {g(TC)/C}C≥1

follows by applying Theorem 3.9 as in the proof of Lemma 3.5 (note that {TC} is the
inverse process of {X(t)}).

By this large deviation principle one can obtain the law of large numbers (9),
the tail estimates (10), (11), and the deviation bounds (13), (14); cf. the proofs of
Propositions 3.2 and 3.3 and Corollary 3.4, respectively.

Finally, we note that the proofs of Propositions 3.10 and 3.14 may be easily
adapted in order to obtain a normal approximation of the cache eviction time and an
estimate of the error committed by approximating the corresponding “hit” probability
with its expression under Che’s approximation; we omit the details.

4. Networks of caches: The case of two caches is series. The analysis
of networks of caches is a difficult task; indeed an exact characterization of the miss
stream of an LRU cache is in general prohibitive. Under the IRM a standard and
rather crude approach proposed in the literature (see, e.g., [30]) consists in (i) ap-
proximating the miss stream of a content at a cache with a homogeneous Poisson
process whose rate matches the miss stream rate; (ii) assuming the state of caches
to be independent. However, significant errors may be experienced. An alternative
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approach, that has been recently proposed for feed-forward networks of LRU caches
(such as networks with linear topologies or trees) consists in approximating the real
miss stream with that of a cache operating under Che’s approximation (see [1] and
[14]). This approach has been experimentally shown to be potentially fairly accurate,
but, unfortunately, at the same time, it is computationally highly expensive [14].
Recently a more efficient procedure has been proposed in [1], where further approxi-
mations are considered to simplify the computation of the “hit” probability. However,
in this latter case, the accuracy of the estimate is in part sacrificed.

Here we show how the approach of [14] can be adapted to the SNM. Our study
reveals that the exact computation of the “hit” probability, under Che’s approxima-
tion, for a simple tandem network of caches (i.e., a network of two LRU caches in
series) is computationally hard (see Remark 4.2). This is mainly due to the effect of
the complex dependencies between the states of the two caches.

Since the analysis at the first cache can be carried on as in the previous section,
here we focus on the second cache. Note that an arriving request for content m0 can
produce a “hit” at the second cache only if it misses the content m0 at the first cache.
So, under Che’s approximation, the “hit” probability for content m0, introduced into
the catalogue at time ξm0

= x and with mark Zm0
= z, is given by

p
(t−x)
hit,Che,II(z, tC1 , tC2) := P

 ∑
T

(m0)
n ∈N(m0)\{t}

1(t−tC1
,t](T

(m0)
n ) = 0,

(33)

∑
n

1(t−tC2
,t)(T

(m0)
n )1{T (m0)

n − T (m0)
n−1 > tC1} ≥ 1

∣∣∣ t ∈ N (m0), (ξm0 , Zm0)=(x, z)

)
,

where tCi denotes the cache eviction time at the cache i ∈ {1, 2} under Che’s approx-
imation.

Hereafter, the symbol
∑0,k−1
i1<i2

denotes the sum over all the couples (i1, i2) ∈
{0, . . . , k − 1}2 such that i1 < i2. The following proposition holds.

Proposition 4.1. We have that

p
(t−x)
hit,Che,II(z, tC1 , tC2) = 0 if tC2 ≤ tC1(34)

and

L ≤ p(t−x)
hit,Che,II(z, tC1

, tC2
) ≤ U if, for some integer k ≥ 1, ktC1

< tC2
≤ (k + 1)tC1

.

(35)

Here

L := e
−

∫ t
t−x−tC1

h(s,z) ds

(∫ t−x−tC1

t−x−tC2

h(τ, z)e
−

∫ τ
τ−tC1

h(s,z) ds
dτ

−
0,k−1∑
i1<i2

∫ bi1+1−x

bi1−x
h(τ, z)e

−
∫ τ
τ−tC1

h(s,z) ds
dτ

∫ bi2+1−x

bi2−x
h(τ, z)e

−
∫ τ
τ−tC1

h(s,z) ds
dτ

)
,

U := e
−

∫ t
t−x−tC1

h(s,z) ds
∫ t−x−tC1

t−x−tC2

h(τ, z)e
−

∫ τ
τ−tC1

h(s,z) ds
dτ
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and

bi :=
(k − i)(t− tC2

) + i(t− tC1
)

k
, i = 0, . . . , k.

Proof. By (33) and the Slivnyak–Mecke theorem (see, e.g., Proposition 13.1.VII,
p. 281, in [8]), we have

p
(t−x)
hit,Che,II(z, tC1 , tC2)

= P
(
N (m0)((t− tC1

, t]) = 0,∑
n

1(t−tC2
,t−tC1

](T
(m0)
n )1{T (m0)

n − T (m0)
n−1 > tC1

} ≥ 1
∣∣∣ (ξm0

, Zm0
) = (x, z)

)
,

and this quantity is equal to zero if tC1 ≥ tC2 , which proves (34). Otherwise, there
exists an integer k ≥ 1 such that ktC1 < tC2 ≤ (k + 1)tC1 . We consider the partition
of the set (t− tC2

, t− tC1
] formed by the intervals Ii := (bi, bi+1], 0 ≤ i ≤ k−1, where

the bi’s are defined in the statement, and we set n∗i := min{n : T
(m0)
n > bi}. Since,

by construction bi+1 − bi ≤ tC1
, for any 0 ≤ i ≤ k − 1, provided that T

(m0)
n ∈ Iī, for

some ī = 0, . . . , k, and T
(m0)
n − T (m0)

n−1 > tC1
, then necessarily T

(m0)
n−1 ≤ bī. Therefore,

setting A := {N (m0)((t− tC1
, t]) = 0} and

(36) Bi := {T (m0)
n∗i

∈ Ii, N (m0)((T
(m0)
n∗i

− tC1
, bi)) = 0}, i = 0, . . . , k − 1,

we deduce

p
(t−x)
hit,Che,II(z, tC1

, tC2
) = P

(
A ∩

( k−1⋃
i=0

Bi

) ∣∣∣ (ξm0
, Zm0

) = (x, z)
)

= P
(
A
∣∣∣ (ξm0 , Zm0) = (x, z)

)
P
( k−1⋃
i=0

Bi

∣∣∣ (ξm0 , Zm0) = (x, z)
)

= e
−

∫ t
t−x−tC1

h(s,z) ds
P
( k−1⋃
i=0

Bi

∣∣∣ (ξm0
, Zm0

) = (x, z)
)
.(37)

The Bonferroni inequality and the union bound yield

k−1∑
i=0

P
(
Bi

∣∣∣ (ξm0 , Zm0) = (x, z)
)
−

0,k−1∑
i1<i2

P
(
Bi1 ∩Bi2 | (ξm0 , Zm0) = (x, z)

)

≤ P
( k−1⋃
i=0

Bi

∣∣∣ (ξm0
, Zm0

) = (x, z)
)

≤
k−1∑
i=0

P
(
Bi

∣∣∣ (ξm0 , Zm0) = (x, z)
)
.(38)

For any i1 < i2, i1, i2 ∈ {0, . . . , k − 1}, we have

P
(
Bi1 ∩Bi2

∣∣∣ (ξm0
, Zm0

) = (x, z)
)

=
(
P
(
Bi2 , Tn∗i2

− Tn∗i1 > tC1

∣∣∣Bi1 , (ξm0
, Zm0

) = (x, z)
)

+ P
(
Bi2 , Tn∗i2

− Tn∗i1 ≤ tC1

∣∣∣Bi1 , (ξm0
, Zm0

) = (x, z)
))

P
(
Bi1

∣∣∣(ξm0
, Zm0

)=(x, z)
)

= P
(
Bi2 , Tn∗i2

− Tn∗i1 > tC1

∣∣∣Bi1 , (ξm0
, Zm0

) = (x, z)
)
P
(
Bi1

∣∣∣ (ξm0
, Zm0

) = (x, z)
)
,
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where the latter equality follows noticing that, given Bi1 , {Bi2 , Tn∗i2−Tn∗i1 ≤ tC1
} = ∅.

By the independence of the increments of the Poisson process we deduce

P
(
Bi2 , Tn∗i2

− Tn∗i1 > tC1

∣∣∣Bi1 , (ξm0 , Zm0) = (x, z)
)

= P
(
Bi2 , Tn∗i2

− Tn∗i1 > tC1

∣∣∣ (ξm0 , Zm0) = (x, z)
)
,

and so

P
(
Bi1 ∩Bi2

∣∣∣ (ξm0
, Zm0

) = (x, z)
)
≤ P

(
Bi1

∣∣∣ (ξm0
, Zm0

) = (x, z)
)

P
(
Bi2

∣∣∣ (ξm0
, Zm0

) = (x, z)
)
.

Consequently, by (37) and (38) we have the following bounds on the “hit” probability:

e
−

∫ t
t−xm0

−tC1
h(s,z) ds

(
k−1∑
i=0

P
(
Bi

∣∣∣ (ξm0
, Zm0

) = (x, z)
)

−
0,k−1∑
i1<i2

P (Bi1 | (ξm0
, Zm0

) = (x, z))P (Bi2 | (ξm0
, Zm0

) = (x, z))

)
≤ p(t−x)

hit,Che,II(z, tC1 , tC2)

≤ e
−

∫ t
t−x−tC1

h(s,z) ds
k−1∑
i=0

P
(
Bi

∣∣∣ (ξm0 , Zm0) = (x, z)
)
.(39)

Relation (35) follows by (39) and the following computation:

P
(
Bi

∣∣∣ (ξm0
, Zm0

) = (x, z)
)

=

∫ bi+1

bi

P(N (m0)((τ − tC1 , bi)) = 0 | (ξm0 , Zm0) = (x, z))P
T

(m0)

ni
∗ | (ξm0 ,Zm0 )=(x,z)

(dτ)

=

∫ bi+1

bi

e
−

∫ bi
τ−tC1

h(s−x,z) ds P
T

(m0)

ni
∗ | (ξm0

,Zm0
)=(x,z)

(dτ)

=

∫ bi+1

bi

e
−

∫ bi
τ−tC1

h(s−x,z) ds
h(τ − x, z)e−

∫ τ
bi
h(s−x,z) ds

dτ

=

∫ bi+1−x

bi−x
h(τ, z)e

−
∫ τ
τ−tC1

h(s,z) ds
dτ.

Remark 4.2. Proposition 4.1 provides the exact value of the “hit” probability
when tC2 ≤ 2tC1 . As is clear from the proof, one might exactly compute the “hit”
probability even when tC2 > 2tC1 by applying the inclusion-exclusion formula. How-
ever, the resulting computational cost would be very high since one has to compute
the probability of any intersection of the events Bi defined by (36). In conclusion, we
can say that any computationally efficient approach to the performance analysis of a
tandem network of caches must resort to some extra approximations (in addition to
Che’s approximation), which affect inevitably the accuracy of the method.
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Remark 4.3. In principle, the approach proposed in this section can be general-
ized to networks of caches with a feed-forward structure, i.e., roughly speaking, to
networks of caches in which the caches are “ordered”(in some sense) and any content
request follows a path that traverses caches in “increasing order.” Typical examples
are networks of caches with a tree structure, where a request for a generic content
follows a path in the network which starts from a cache placed on a leaf (belonging
conventionally to level 1 of the tree), it is directed toward the cache placed at the root
(belonging conventionally to the level K of the tree) and stops as soon as a “hit”is
produced. Note that an arriving request for the content m0 can produce a “hit” at a
cache located at the kth level only if it has been missed at caches located at the ith
level for any i ≤ k − 1. So, applying similar arguments as in (33), one may obtain
a formal expression for the probability that there is a “hit” at a cache located at the
kth level of the tree. However, the numerical evaluation of this probability becomes
more and more prohibitive as the level grows, i.e., as k increases. As for the case
of tandem networks of caches, any computationally efficient approach must rely on
some additional approximations (in addition to Che’s approximation) which reduce
the accuracy of the method. Recently, several approximations have been proposed
[1, 14, 24, 30, 34]. The accuracy of such approximations varies significantly from
scenario to scenario and can be evaluated experimentally by comparing analytical
predictions against Monte Carlo simulations [1, 14, 24, 30, 34].

5. Numerical illustrations. As shown by several recent experimental works,
many video contents (such as YouTube contents) exhibits few typical normalized
temporal popularity profiles, each profile corresponding to a large class of contents
with similar characteristics (e.g., contents in the same YouTube category) [6]. Hence,
restricting the analysis to a single class m of contents, we may assume that (i) Zm
represents the demand volume, i.e., the total number of requests it typically attracts;
(ii) all contents of the class exhibit the same normalized popularity profile. This
justifies the choice of an SNM with an multiplicative popularity profile such as (2).

Recall that for this model the function g is given by (4). Assuming (3), by (27)
and (30) (with θ in place of tC) we easily have

phit,Che(θ) = 1− (E[Z1])−1

∫ ∞
0

h(u)φ′Z1

(
−
∫ u

u−θ
h(s) ds

)
du,(40)

where φ′Z1
is the first order derivative of φZ1

. Relations (4) and (40) provide a compu-
tationally efficient tool to estimate the “hit” probability, under Che’s approximation,
of LRU caches under the SNM. Indeed, we may estimate tC by numerically inverting
(4) and using the relation tC = g−1(C/λ). Replacing θ in (40) with such estimate of
tC , we finally have an estimate of the “hit” probability under Che’s approximation.

We now assess the accuracy of the Che approximation for the evaluation of the
“hit” probability by describing some numerical results. We suppose that the ar-
rival rate of new contents λ is equal to 100,000 units per day; we assume that the
demand volume Z1 follows a Pareto distribution with probability density fZ1

(z) =
αaα/z1+α, z ≥ a > 0, α > 1, and mean E[Z1] = αa

α−1 = 3 (we refer the reader to [15]
and [22] for a practical justification on the choice of a Pareto distribution); we con-
sider a multiplicative popularity profile of the form (2) with h(t) := 1

L1{0 ≤ t ≤ L},
where the parameter L has to be interpreted as the content life-span.

Figures 1 and 2 report the “hit” probability, as predicted by Che’s approximation,
vs the cache size for different values of the exponent α and the content life span L,
respectively. For each estimate, the figures show also the interval in which the exact
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Fig. 1. phit versus cache size for different values of the exponent α > 1 and content life span
L = 30.
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Fig. 2. phit versus cache size for different values of the content life span L and exponent α = 2.

value of the “hit” probability falls as given by Proposition 3.14. All computations
have been carried out while guaranteeing relative numerical errors smaller than 10−2.
Some selected results are additionally reported in Table 1. Note that in all cases
of practical relevance (i.e., for values of the “hit” probability exceeding 10−2) Che’s
approximation leads to negligible errors. The surprisingly good degree of accuracy
entailed by Che’s approximation, which has been already experimentally (i.e., against
simulations) observed by several authors [15, 24], is now confirmed even for the SNM.

Further numerical results providing useful insights on the cache performance can
be found in [22].

D
ow

nl
oa

de
d 

03
/0

6/
17

 to
 1

50
.1

46
.1

8.
20

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

382 EMILIO LEONARDI AND GIOVANNI LUCA TORRISI

Table 1
Numerical values for the Che approximation of the “hit” probability (phit,Che) and for the lower

(phit) and the upper (phit) bounds of the true “hit” probability.

α L C phit,Che phit phit C phit,Che phit phit

1.8 30 10240 0.019596 0.018880 0.020313 163840 0.144328 0.143126 0.145529
2.0 2 10240 0.109252 0.105353 0.113151 163840 0.671657 0.669498 0.673815
2.0 7 10240 0.039790 0.038232 0.041348 163840 0.343061 0.340319 0.345802
2.0 30 10240 0.011657 0.011158 0.012156 163840 0.114597 0.113516 0.115677
2.0 300 10240 0.001555 0.001480 0.001629 163840 0.017497 0.017305 0.017688
2.2 30 10240 0.008125 0.007747 0.008504 163840 0.096641 0.095651 0.097630
3.0 30 10240 0.004524 0.004293 0.004755 163840 0.068667 0.067871 0.069464
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[27] G. Peccati, J. L. Solé, M. S. Taqqu, and F. Utzet, Stein’s method and normal approxima-
tion of Poisson functionals, Ann. Probab., 38 (2010), pp. 443–478.

[28] M. Penrose, Random Geometric Graphs, Oxford University Press, New York, 2004.
[29] I. Psaras, W. K. Chai, and G. Pavlou, Probabilistic methods in network caching for

information-centric networks, presented at the ICN Workshop on Information-Centric Net-
working, 2012.

[30] E. J. Rosensweig et al., Approximate models for general cache networks, in Proceedings of
INFOCOM, San Diego, IEEE, 2010, pp. 1–9.

[31] G. Stabile and G. L. Torrisi, Large deviations of Poisson shot noise processes, under heavy
tail semi-exponential conditions, Statist. Probab. Lett., 80 (2010), pp. 1200–1209.

[32] G. L. Torrisi, Simulating the ruin probability of risk processes with delay in claim settlement,
Stoch. Proc. Appl., 112 (2004), pp. 225–244.

[33] S. Traverso et al., Temporal locality in today’s content caching: Why it matters and how to
model it, ACM Comput. Comm. Rev., 43 (2013), pp. 5–12.

[34] S. Traverso et al., Unravelling the impact of temporal and geographical locality in content
caching systems, IEEE Trans. Multimedia, 17 (2015), pp. 1839–1854.

D
ow

nl
oa

de
d 

03
/0

6/
17

 to
 1

50
.1

46
.1

8.
20

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


