

POLITECNICO DI TORINO Repository ISTITUZIONALE

Preliminary laboratory multi-scale investigation on performance of pervious concrete pavements and vegetated elements as storm water bio-filters and retention systems

Original

Preliminary laboratory multi-scale investigation on performance of pervious concrete pavements and vegetated elements as storm water bio-filters and retention systems / Comino, Elena; Bassani, Marco; Tefa, Luca; Rosso, Maurizio; Garcia, A.; Ricci, R.; Bertola, F.; Canonico, F.. - ELETTRONICO. - (2016). ((Intervento presentato al convegno Ecological Sustainability: Engineering Change tenutosi a Le Corum, Montpellier, France nel 29 August - 1 September 2016.

Availability:

This version is available at: 11583/2657750 since: 2017-06-07T16:21:21Z

Publisher: Elsevier

Published DOI:10.13140/RG.2.2.10894.77127

Terms of use: openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

5TH INTERNATIONAL ECOSUMMIT ECOLOGICAL SUSTAINABILITY ENGINEERING CHANGE

Preliminary laboratory multi-scale investigation on performance of pervious concrete pavements and vegetated elements as storm water bio-filters and retention systems

Elena Comino, Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Italy elena.comino@polito.it

Authors: Bassani M., Tefa L., Comino E., Rosso M., <u>DIATI, Politecnico di Torino</u>, Torino, Italy Garcia A., Ricci R., <u>BioSEARCH Ambiente S.r.l.</u>, Torino, Italy

Bertola F., Canonico F., <u>Buzzi Unicem S.p.A.</u>, Trino V.se, Italy

REGIONE PIEMONTE (2015) POR-FESR 07/13 - Measure 1.1.3 - Code: 285 - 47 **Research funded by:**

1. World population in urban areas is still growing causing severe impact on environment and decrement of the life quality of inhabitants. 2. To smoothen the heavy impact of traditional transportation infrastructures, current and future urban facilities must be more environmental

friendly and sustainable.

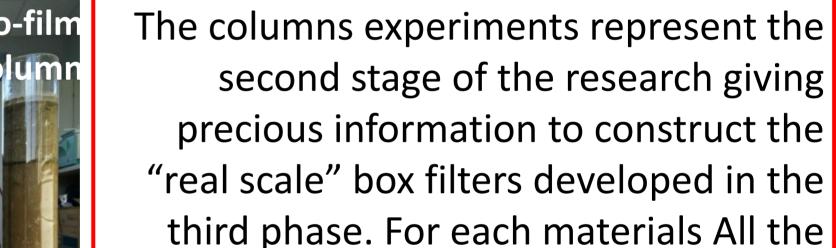
Presented:

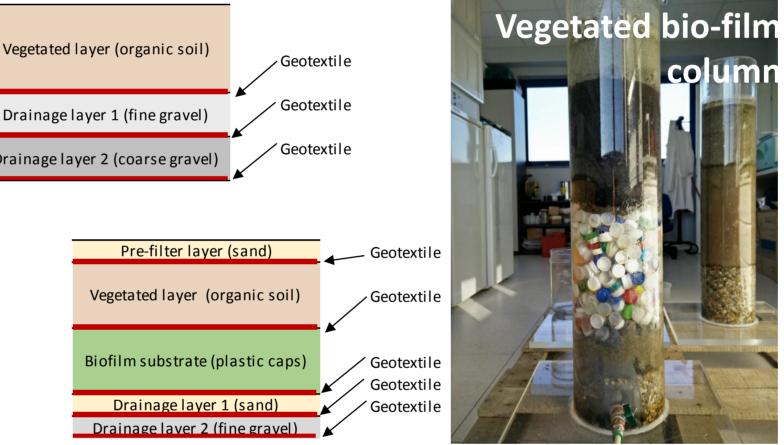
- 3. One way is to develop new "green transportation infrastructures" (GTI) as part of the urban storm water management system.
- 4. GTI have been well-investigated around the world, but specifically in Italy there is still a limited experience on their potential and benefits.
- 5. This work aimed promoting new urban storm water regulation systems through retention, filtration, and restoration of natural soil water content, and involving different expertise and knowledges.
- 6. A laboratory investigation on porous road pavements, and vegetated boxes, used to filter runoff pollutants from impervious pavements, was carried out to examine their ecological, hydraulic, and mechanical performances.

Three different experimental scales (samples, columns, and boxes) and investigation stages for the two GTI technologies were considered.

scale STAGE Sample FIRST

S

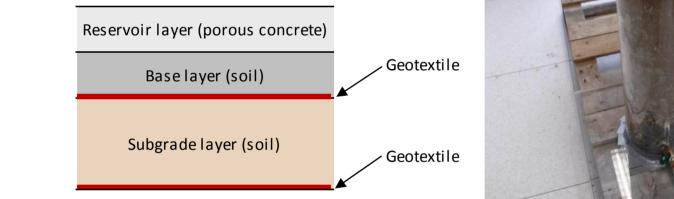

MOTIVATION



Pollutant [µg/l]/Materials	Input stormwater	Sand	Organic soil	Compost	Clay	Plastic caps	Geotextile	Subgrade soil
Susp. Solids	1127	518	73	128	145	113	37	3
Hydrocarbons	2700	33	110	27	930	380	0	29
Cadmium								
Chrome	0,1	0,0	0,2	0,2	0,1	0,1	0,1	2,1
Iron	11,9	1,7	22,0	27	11	16	3,7	0,08,0
Manganese	8,0	20,0	0,4	0,5	13	10	0,2	0
Nickel	1,2	1,2	1,0	2,3	5,8	1	0,5	0,6
Lead								
Copper	2,6	1,7	1,7	2,1	3,7	1,8	1,1	3,5
Zinc	5,1	1,3	3,5	3	8,5	8,6	2,2	0,3

This preliminary stage assessed the pollutant reduction capability operated by each of the different materials to choose the best ones to prepare the layers of bio-filtering columns first and then boxes.

Pervious concrete pavement column



STAGE

THIRD

Water collection from a urban pavement for the first and second investigation stages

relevant parameters has been measured: grading analysis, density, porosity, permeability, mechanical strength.

1:1 scale boxes were used to evaluate the real performances of the different proposed techniques. Pervious pavements were carefully reproduced in lab using the usual on site construction procedure. Vegetated modules represent, with different materials and stratigraphy, the new, or existing, rain garden or swales preparation in order to maximize the positive effects on depuration and runoff reduction.

Vegetated boxes.

Pavement and vegetated systems were saturated for 12 hours with stormwater prepared in laboratory. Water samples were then collected and analysed.

Pollutant [µg/l]	Input stormwater	Pervious pavement column	Vegetated column	COLUMNS SCALE			Input stormwater	Box 1 - Ve with	egetated lout biofilr			Organic soil / with biofilm			pavem	Pervious ent with ıfilm	paveme	- Pervious ent without ofilm
Susp. Solids	1127	4	82)		Omm
Hydrocarbons	12000	79	67			Depth [cm]	-	40	60	80	40	80	40	80	40	90	40	90
Cadmium	0,2	0,0	0,6			Pollutant [µg/l]	_	Organic soil	Gravel 5-15	Gravel 15-30	Organic soil	CDW aggregates	Organic soil &			Subgrade		Subgrade
Chrome	3,8	1,3	8,8						mm	mm			CDW	mm	& base		& base	
Iron	1100,0	20,0	2200,0			Susp. solids	1000	10500	10200	9400	10500	12200	10100	7600	14800	43300	16300	14000
Manganese	210,0	295,0	505,0			Hydrocarbons		860	670	550	860	560	550	570	10500	1500	740	670
Manyanese	210,0	295,0	505,0			Cadmium	17,5	0,0	2,0	0,0	0,0	0,1	0,0	0,1	0,1	0,2	0,0	0,0
Nickel	15,0	9,5	125,0			Chrome	7,0	2,0	Inf. 50	4,0	2,0	54,0	6,0	6,0	5,0	8,0	8,0	14,0
Lead	10,4	38,0	12,5			Iron	34,0	34,0	Inf. 50	34,0	34,0	32,0	45,0	32,0	12,0	192,0	15,0	39,0
Leau	10,4	30,0	12,5			Manganese	107,0	33,0	50,0	12,0	33,0	44,0	13,0	4,0	3,0	17,0	3,0	4,0
Copper	41,5	7,7	79,5			Nickel	2,0	26,0	57,0	57,0	26,0	23,0	11,0	30,0	2,0	2,0	3,0	2,0
Zino	120.0	2500.0	1050.0			Lead	51,0	0,0	10,0	0,8	0,0	1,3	1,1	2,9	0,0	5,8	0,0	1,9
Zinc	130,0	2500,0	1050,0		BOXES SCALE	Copper Zinc	67,0 272,0	14,2 52,0	27,0 52,0	36,9 54,0	14,2 52,0	17,6 31,0	10,9 49,0	19,5 73,0	2,9 21,0	6,8 39,0	4,5	10,0 28,0

	ollutant [µg/l]	Input stormwater	Pervious pavement column	Vegetated column	COLUMNS SCALE			Input stormwater					-	il Box 3 - CDW and m gravel with biofilm				Box 5 - Pervious pavement without biofilm	
Sus	sp. Solids	1127	4	82													ווווז		
Hyd	rocarbons	12000	79	67			Depth [cm]	-	40	60	80	40	80	40	80	40	90	40	90
Ca	admium	0,2	0,0	0,6			Pollutant [µg/l]	-	Organic soil	Gravel 5-15	Gravel 15-30	Organic soil	CDW aggregates	Organic soil &					Subgrade
C	Chrome	3,8	1,3	8,8					0011	mm	mm			CDW	mm	& base		& base	
	Iron	1100,0	20,0	2200,0			Susp. solids	1000	10500	10200	9400	10500	12200	10100	7600	14800	43300	16300	14000
Ma	nganasa	210,0	295,0	505,0			Hydrocarbons	117000	860	670	550	860	560	550	570	10500	1500	740	670
IVIA	nganese	210,0	295,0	505,0			Cadmium	17,5	0,0	2,0	0,0	0,0	0,1	0,0	0,1	0,1	0,2	0,0	0,0
	Nickel	15,0	9,5	125,0			Chrome	7,0	2,0	Inf. 50	4,0	2,0	54,0	6,0	6,0	5,0	8,0	8,0	14,0
		10.4	20.0	10 5			Iron	34,0	34,0	Inf. 50	34,0	34,0	32,0	45,0	32,0	12,0	192,0	15,0	39,0
	Lead	10,4	38,0	12,5			Manganese	107,0	33,0	50,0	12,0	33,0	44,0	13,0	4,0	3,0	17,0	3,0	4,0
0	Copper	41,5	7,7	79,5			Nickel	2,0	26,0	57,0	57,0	26,0	23,0	11,0	30,0	2,0	2,0	3,0	2,0
	Zina	120.0	2500.0	1050.0			Lead	51,0	0,0	10,0	0,8	0,0	1,3	1,1	2,9	0,0	5,8	0,0	1,9
	Zinc	130,0	2500,0	1050,0		BOXES SCALE	Copper	67,0 272.0	14,2 52.0	27,0	36,9	14,2	17,6	10,9	19,5	2,9	6,8 39.0	4,5	10,0

- Y The three scales provided consistent results that were used to develop step by step the three stages of this laboratory investigation
- Variations of heavy metal contents were found to be dependent on the type of material used in each column/box
- The two GTI technologies performed very well in case of hydrocarbons treatment, since they reduced it for more than 90%
- The CDW additions has the positive effect to increase the porosity of the medium using waste material and no negative polluting effects (it is recommended to test in advance the potential release of the different mixtures used)
- The added bacteria bio-film do not increase the pollutants abatement due to the strong environment influence
- ✓ GTI technologies are effective in the reduction of pollution in water runoff, and can improve the performances of urban storm water management systems.