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We study the network dismantling problem, which consists of de-
termining a minimal set of vertices in which removal leaves the
network broken into connected components of subextensive size. For
a large class of random graphs, this problem is tightly connected
to the decycling problem (the removal of vertices, leaving the graph
acyclic). Exploiting this connection and recent works on epidemic
spreading, we present precise predictions for the minimal size of a
dismantling set in a large random graph with a prescribed (light-
tailed) degree distribution. Building on the statistical mechanics
perspective, we propose a three-stage Min-Sum algorithm for
efficiently dismantling networks, including heavy-tailed ones for
which the dismantling and decycling problems are not equivalent.
We also provide additional insights into the dismantling problem,
concluding that it is an intrinsically collective problem and that
optimal dismantling sets cannot be viewed as a collection of individ-
ually well-performing nodes.

graph fragmentation | message passing | percolation | random graphs |
influence maximization

Anetwork (a graph G in the discrete mathematics language) is a
set V of N entities called nodes (or vertices), along with a set E

of edges connecting some pairs of nodes. In a simplified way,
networks are used to describe numerous systems in very diverse
fields, ranging from social sciences to information technology or
biological systems (reviews are in refs. 1 and 2). Several crucial
questions in the context of network studies concern the modifi-
cations of the properties of a graph when a subset S of its nodes
is selected and treated in a specific way. For instance, how much
does the size of the largest connected component of the graph
decrease if the vertices in S (along with their adjacent edges) are
removed? Do the cycles survive this removal? What is the out-
come of the epidemic spreading if the vertices in S are initially
contaminated, constituting the seed of the epidemic? On the
contrary, what is the influence of a vaccination of nodes in S pre-
venting them from transmitting the epidemic? It is relatively easy
to answer these questions when the set S is chosen randomly, with
each vertex being selected with some probability independently.
Classical percolation theory is nothing but the study of the con-
nected components of a graph in which some vertices have been
removed in this way.
A much more interesting case is when the set S can be chosen in

some optimal way. Indeed, in all applications sketched above, it is
reasonable to assign some cost to the inclusion of a vertex in S:
vaccination has a socioeconomic price, incentives must be paid to
customers to convince them to adopt a new product in a viral
marketing campaign, and incapacitating a computer during a cyber
attack requires resources. Thus, one faces a combinatorial optimi-
zation problem: the minimization of the cost of S under a constraint
on its effect on the graph. These problems thus exhibit both static
and dynamic features, the former referring to the combinatorial
optimization aspect and the latter referring to the definition of the
cost function itself through a dynamical process.
In this paper, we focus on the existence of a giant component

in a network: that is, the largest component containing a positive
fraction of the vertices (in the N→∞ limit). On the one hand,
the existence of a giant component is often necessary for the
network to fulfill its function (e.g., to deliver electricity or

information bits or ensure possibility of transportation). An
adversary might be able to destroy a set of nodes with the goal of
destroying this functionality. It is thus important to understand
what an optimal attack strategy is, possibly as a first step in the
design of optimal defense strategies. On the other hand, a giant
component can propagate an epidemic to a large fraction of a
population of nodes. Interpreting the removal of nodes as the
vaccination of individuals who cannot transmit the epidemic
anymore, destroying the giant component can be seen as an
extreme way of organizing a vaccination campaign (3, 4) by
confining the contagion to small connected components [less
drastic strategies can be devised using specific information about
the epidemic propagation model (5, 6)]. Another related appli-
cation is influence maximization as studied in many previous
works (7–9). In particular, optimal destruction of the giant
component is equivalent to selection of the smallest set of ini-
tially informed nodes needed to spread the information into the
whole network under a special case of the commonly considered
model for information spreading (7–9).
To define the main subject of this paper more formally, fol-

lowing ref. 10, we call S a C-dismantling set if its removal yields a
graph with the largest component that has size (in terms of its
number of nodes) at most C. The C-dismantling number of a graph
is the minimal size of such a set. When the value of C is either clear
from the context or not important for the given claim, we will
simply talk about dismantling. Typically, the size of the largest
component is a finite fraction of the total number of nodes N. To
formalize the notion of destroying the giant component, we will
consider the bound C on the size of the connected components of
the dismantled network to be such that 1 � C � N. It should be
noted that we defined dismantling in terms of node removal; it
could be rephrased in terms of edge removal (11), which turns out
to be a much easier problem. The dismantling problem is also
referred to as fragmentability of graphs in graph theory literature
(12–14) and optimal percolation in ref. 15.
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Determining whether the C-dismantling number of a graph is
smaller than some constant is nondeterministic polynomial (NP)-
complete decision problem (a proof is in SI Appendix). The
concept of NP completeness concerns the worst case difficulty of
the problem. The questions that we address in this paper are
instead the following. What is the dismantling number on some
representative class of graphs (in our case, random graphs)?
What are the best heuristic algorithms, how does their perfor-
mance compare with the optimum, and how do they perform on
benchmarks of real world graphs? Simple heuristic algorithms
for the dismantling problem were considered in previous works
(16–18), where the choice of the nodes to be included in the
dismantling set was based on their degrees (favoring the in-
clusion of the most connected vertices) or some measure of their
centrality. More recently, a heuristic for the dismantling problem
has been presented in ref. 15 under the name “collective” in-
fluence (CI), in which the inclusion of a node is decided
according to a combination of its degree and the degrees of the
nodes in a local neighborhood around it. Ref. 15 also attempts to
estimate the dismantling number on random graphs.

Our Main Contribution
In this paper, we provide a detailed study of the dismantling
problem, with both analytical and algorithmic outcomes. We
present very accurate estimates of the dismantling number for
large random networks, building on a connection with the
decycling problem [in which one seeks a subset of nodes with
removal that leaves the graph acyclic; also an NP-complete
problem (19)] and recent studies of optimal spreading (20–23).
Our results are the one-step replica symmetry broken estimate of
the ground state of the corresponding optimization problem.
On the computational side, we introduce a very efficient al-

gorithm that outperforms considerably state of the art algorithms
for solving the dismantling problem. We show its efficiency and
closeness to optimality on both random graphs and real world
networks. The goal of our paper is closely related to the one of
ref. 15; we present an assessment of the results reported therein
on random as well as real world networks.
Our dismantling algorithm, which has been inspired by the theo-

retical insight gained on random graphs, is composed of three stages.

i) Min-Sum message passing for decycling. This part is the core
of the algorithm, using a variant of a message-passing algo-
rithm developed in refs. 20 and 21. A related but different
message-passing algorithm was developed for decycling in
ref. 22 and later applied to dismantling in ref. 24; it performs
comparably with ours.

ii) Tree breaking. After all cycles are broken, some of the tree
components may still be larger than the desired threshold C.
We break them into small components, removing a fraction of
nodes that vanishes in the large size limit. This operation can
be done in time OðN logNÞ by an efficient greedy procedure
(detailed in SI Appendix).

iii) Greedy reintroduction of cycles. As explained below, the strat-
egy of first decycling a graph before dismantling it is the opti-
mal one for graphs that contain few short cycles (a typical
property of light-tailed random graphs). For graphs with many
short cycles, we improve considerably the efficiency of our
algorithm by reinserting greedily some nodes that close cycles
without increasing too much the size of the largest component.

The dismantling problem, as is often the case in combinatorial
optimization, exhibits a very large number of (quasi)optimal solu-
tions. We characterize the diversity of these degenerate minimal
dismantling sets by a detailed statistical analysis, computing in
particular the frequency of appearance of each node in the qua-
sioptimal solutions, and conclude that dismantling is an intrinsically
collective phenomenon that results from a correlated choice of a
finite fraction of nodes. It thus makes much more sense to think in
terms of good dismantling sets as a whole and not about individual
nodes as the optimal influencers/spreaders (15). We further study

the correlation between the degree of a node and its importance
for dismantling, exploiting a natural variant of our algorithm, in
which the dismantling set is required to avoid some marked
nodes. This study allows us to show that each of the low-degree
nodes can be replaced by other nodes without increasing sig-
nificantly the size of the dismantling set. Contrary to claims in
ref. 15, we do not confirm any particular importance of weak
nodes, apart from the obvious fact that the set of highest-degree
nodes is not a good dismantling set.
To give a quantitative idea of our algorithmic contribution, we state

two representative examples of the kind of improvement that we ob-
tain with the above algorithm with respect to the state of the art (15).

i) In an Erd}os–Rényi (ER) random graph of average degree 3.5
and size N = 57, we found C= 1,000 dismantling sets removing
17.8% of the nodes, whereas the best known method (adaptive
eigenvalue centrality for this case) removes 20.2% of the nodes,
and the adaptive CI method of ref. 15 removes 20.6% of the
nodes. Hence, we provide a 13% improvement over the state of
the art. Our theoretical analysis estimates the optimum disman-
tling number to be around 17.5% of the nodes; thus, the algo-
rithm is extremely close to optimal in this case.

ii) Our algorithm managed to dismantle the Twitter network
studied in ref. 15 (with 532,000 nodes) into components
smaller than C= 1,000 using only 3.4% of the nodes, whereas
the CI heuristics of ref. 15 needs 5.6% of the nodes. Here, we
thus provide a 60% improvement over the state of the art.

Not only does our algorithm show beyond state of the art
performance, but it is also computationally efficient. Its core part
runs in linear time over the number of edges, allowing us to
easily dismantle networks with tens of millions of nodes.

Relation Between Dismantling and Decycling
We begin our discussion by clarifying the relation between the
dismantling and decycling problems. Although the argument below
can be found in ref. 10, we reproduce it here in a simplified fashion.
The decycling number (or more precisely, fraction) θdecðGÞ of G is
the minimal fraction of vertices that have to be removed to make
the graph acyclic. We define similarly the dismantling number
θdisðG,CÞ of a graphG as the minimal fraction of vertices that have
to be removed to make the size of the largest component of the
remaining graph smaller than a constant C.
For random graphs with degree distribution q= fqkgk≥0, in

the large size limit, the parameters θdec and θdis will enjoy con-
centration (self-averaging) properties; we shall thus write their
typical values as

θdecðqÞ= lim
N→∞

E½θdecðGÞ�, [1]

θdisðqÞ= lim
C→∞

lim
N→∞

E½θdisðG,CÞ�, [2]

where E½•� denotes an average over the random graph ensemble.
For the dismantling number, we allow the connected compo-
nents after the removal of a dismantling set to be large but sub-
extensive because of the order of limits. It was proven in ref. 10
that, for some families of random graphs, an equivalent definition
is lime→0limN→∞E½θdisðG, eNÞ� (i.e., connected components are
allowed to be extensive but with a vanishing intensive size).
The crucial point for the relation between dismantling and decy-

cling is that trees (or more generically, forests) can be efficiently
dismantled. It was proven in ref. 10 that θdisðG,CÞ≤ 1=ðC+ 1Þ
whenever G is a forest. This inequality means that the fraction of
vertices to be removed from a forest to dismantle it into components
of size C goes to zero when C grows.
This observation brings us to the following two claims

concerning the dismantling and decycling numbers for random
graphs with degree distribution q: (i) for any degree distribution,
θdisðqÞ≤ θdecðqÞ; and (ii) if q also admits a second moment (we
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shall call q light tailed when this is the case), then there is ac-
tually an equality between these two parameters, θdisðqÞ= θdecðqÞ.
The first claim follows directly from the above observation on

the decycling number of forests. After a decycling set S of G has
been found, one can add to S additional vertices to turn it into
a C-dismantling set, the additional cost being bounded as
θdisðG,CÞ≤ θdecðGÞ+ 1=ðC+ 1Þ. Taking averages of this bound
and the limit C→∞ after N→∞ yields directly i.
To justify our second claim, we consider a C-dismantling set S

of a graph G. To turn S into a decycling set, we need to add
additional vertices to break the cycles that might exist in G∖S.
The lengths of these cycles are certainly smaller than C, and
removing at most one vertex per cycle is enough to break them.
We can thus write θdecðGÞ≤ θdisðG,CÞ+ nCðGÞ=N, with nCðGÞ
denoting the number of cycles of G of length at most C. We
recall that the existence of a second moment of q implies that
nCðGÞ remains bounded when N→∞ with C fixed. Considering
the limit N→∞ and property i, property ii follows.

Network Decycling
In this section, we shall explain the results on the decycling
number of random graphs that we obtained via statistical me-
chanics methods and how they can be exploited to build an ef-
ficient heuristic algorithm for decycling arbitrary graphs.

Testing the Presence of Cycles in a Graph. The 2-core of a graph G is
its largest subgraph of minimal degree 2; it can be constructed by
iteratively removing isolated nodes and leaves (vertices of degree
1) until either all vertices have been removed or all remaining
vertices have degree at least 2. It is easy to see that a graph
contains cycles if and only if its 2-core is nonempty. To decide if a
subset S is decycling, we remove the nodes in S and perform this
leaf removal on the reduced graph. To formalize this procedure,
we introduce binary variables xtiðSÞ∈ f0,1g on each vertex i∈V of
the graph, t being a discrete time index. At the starting time t= 0,
one marks the initially removed vertices by setting x0i ðSÞ= 1 if i∈ S
and 0 otherwise, and let the x variables evolve in time according to

xt+1i ðSÞ=

8<
:

1 if   xtiðSÞ= 1,

I   

"X
j∈∂i

�
1− xtjðSÞ

�
≤ 1

#
if   xtiðSÞ= 0, [3]

where ∂i= fj : ðijÞ∈Eg denotes the local neighborhood of vertex I,
and I denotes the indicator function (that is, one if its argument is
true and zero otherwise). One can check that the xi s are monoto-
nous in time (they can only switch from zero to one); hence, they
admit a limit xpi ðSÞ when t→∞. At this fixed point, xpi ðSÞ= 0 if and
only if i is in the 2-core of G∖S; hence, the sufficient and necessary
condition for S to be a decycling set ofG is xpi ðSÞ= 1 for all vertices i.
Note that the leaf removal procedure can be equivalently

viewed as a particular case of the linear threshold model of epi-
demic propagation or information spreading. By calling a re-
moved vertex infected (or informed), one sees that the infection
(or information) of node i occurs whenever the number of its
infected (or informed) neighbors reaches its degree minus one.
This equivalence, which was already exploited in refs. 15 and 23,

allows us to build on previous works on minimal contagious sets
(20, 21, 23) and influence maximization (7–9).

Optimizing the Size of Decycling Sets. From the point of view of
statistical mechanics, it is natural to introduce the following
probability distribution over the subsets S to find the optimal
decycling sets of a given graph

η̂ðSÞ= 1
ZðμÞ e

μjSj Y
i∈V

I
�
xpi ðSÞ= 1

�
, [4]

where jSj denotes the number of vertices in S, μ is a real param-
eter to be interpreted as a chemical potential (or an inverse
temperature), and the partition function ZðμÞ normalizes this
probability distribution. From the preceding discussion, this mea-
sure gives a positive probability only to decycling sets, and their
minimal size can be obtained as the ground-state energy in the
zero-temperature limit:

θdecðGÞ= 1
N

lim
μ→−∞

1
μ
ln  ZðμÞ. [5]

The computation of this partition function remains at this point a
difficult problem; in particular, the variables xpi depend on the
choice of S in a nonlocal way. One can get around this difficulty
in the following way: because the evolution of xti is monotonous
in time, it can be completely described by a single integer,
tiðSÞ=minft : xtiðSÞ= 1g, the time at which i is removed in the
parallel evolution described above. Note that tiðSÞ= 0 if and only
if i∈ S and tiðSÞ> 0 otherwise. We use the natural convention
min 0==∞; hence, the nodes i in the 2-core of G∖S are precisely
those with an infinite removal time tiðSÞ=∞. The crucial advan-
tage of this equivalent representation in terms of the activation
times is its locality along the graph. Indeed, the dynamical evo-
lution rule (Eq. 3) can be rephrased as static equations linking
the times ti on neighboring vertices:

tiðSÞ=
(
0 if     i∈ S,
ϕi

��
tj
�
j∈∂i

�
if     i∈V ∖S, [6]

with    ϕi

��
tj
�
j∈∂i

�
= 1+max2

��
tjðSÞ

�
j∈∂i

�
, [7]

where we denote max2 the second largest of the arguments [reor-
dering them as t1 ≥ t2 ≥ . . . ≥ tn, one defines max2ðt1, . . . , tnÞ= t2].
In the leaf removal procedure, one vertex is removed in the first
step after the time at which all but one of its neighbors has been

Table 1. The (1RSB) cavity predictions for the decycling number
of ER random graphs of average degree d and the decycling
number reached by the Min-Sum algorithm on graphs of size
N= 107 nodes

d θdecðdÞ θMS
decðdÞ

1.5 0.0125 0.0135
2.5 0.0912 0.0936
3.5 0.1753 0.1782
5 0.2789 0.2823
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Fig. 1. Fraction of nodes in the largest component as a function of the fraction
of removed nodes for an ER random graph of average degree d= 3.5 and size
N= 78,125. We compare the result of our Min-Sum algorithm (MS) with random
(RND), adaptive largest degree (DEG), adaptive EC, adaptive CI centrality, and SA.
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removed, making it a leaf. Eq. 6 admits a unique solution for
each S; hence, the partition function can be rewritten as

ZðμÞ=
X
ftig

e
μ
P
i

ψ iðtiÞ Y
i∈V

I½ti <∞�
Y
i∈V

Φ
�
ti,
�
tj
�
j∈∂i

�
, [8]

with ψ iðtiÞ= I½ti = 0�, and Φðti,ftjgj∈∂iÞ= I ½ti = 0�+ I ½ti =ϕiðftjgj∈∂iÞ�.
We have thus obtained an exact representation of the generat-
ing function counting the number of decycling sets according to
their size as a statistical mechanics model of variables (the ti s)
interacting locally along the graph G. We transformed the non-
equilibrium problem of leaf removal into an equilibrium prob-
lem, where the times of removal play the role of the static
variables. Note that ref. 22, which also estimates the decycling
number, uses a simpler but approximate representation, where
one cycle may remain in every connected component, and the
correspondence between microscopic configurations and sets of re-
moved vertices is many to one. The domain of the variables ti
should include all integers between zero and the diameter of G
and the additional∞ value. For practical reasons, in the rest of this
paper, we restrict this set to f0,1, . . . ,T,∞g, where T is a fixed
parameter, and project all ti s greater than T to ∞. This restriction
means not only that we require G∖S to be acyclic but that its con-
nected components are trees of diameter at most T. For large-
enough values of T, this additional restriction is inconsequential.
The exact computation of the partition function (Eq. 8) for an

arbitrary graph remains an NP-hard problem. However, if G is a
sparse random graph, the large size limit of its free energy
density lnZðμÞ=ðNμÞ can be computed by the cavity method (25,
26). The latter has been developed for statistical mechanics
models on locally tree-like graphs, such as light-tailed random
graphs, for which the exactness of the cavity method has been
proven mathematically on several problems. The starting point
of the method is based on the fact that light-tailed random
graphs converge locally to trees in their large size limit; hence,
models defined on them can be treated with belief propagation
(BP; also called Bethe Peierls approximation in statistical me-
chanics). In BP, a partition function akin to Eq. 8 is computed via
the exchange of messages between neighboring nodes. In this
case, where an interaction in Eq. 8 includes node i and all of its
neighbors j∈∂i, we obtain a tree-like representation if we let pairs
of variables ti, tj live on the edges and add consistency constraints
on the nodes. The BP message ηijðti, tjÞ from i to j∈∂i is then a
function of both the activation times ti and tj. This message is

interpreted as the marginal probability law of the local variables ti
and tj in an amputated (cavity) graph, in which the interaction
between i and j has been removed. Thanks to the locally tree-like
character of the graph, some correlation decay properties are
verified and allow a node’s incoming messages to be treated as
independent. Under this assumption, the iterative BP equations
(20, 21, 23) for decycling are written as

ηij
�
ti, tj

	
∝

X
ftkgk∈∂i j

eμψ iðtiÞΦðti, ftkgk∈∂iÞ
Y
k∈∂i∖ j

ηkiðtk, tiÞ, [9]

where the ∝ symbol includes a multiplicative normalization constant.
The free energy can then be computed as a sum of local contributions
depending on the messages solution of the BP equations.
Better parametrizations with a number of real values per

message that scale linearly with T (rather than quadratically) can
be devised (21, 23). A parametrization with 2T real values per
message was introduced in ref. 23 and used to obtain improved
results for the minimum decycling set on regular random graphs
by extending the cavity method to the so-called first level of the
replica symmetry breaking (1RSB) scheme. The extension of this
calculation to random graphs with arbitrary light-tailed degree
distributions is reported in SI Appendix (along with expansions
close to the percolation threshold and at large degrees and a
lower bound on θdec valid for all graphs). The 1RSB predictions
for the decycling fraction θdecðdÞ of ER random graphs with
average degree d, obtained by solving numerically the corre-
sponding equations and extrapolating the results in the large T
limit, are presented for a few values of d in Table 1.

Min-Sum Algorithm for the Decycling Problem. We turn now to the
description of our heuristic algorithm for finding decycling sets
of the smallest possible size. The above analysis shows the
equivalence of this problem with the minimization of the cost
function

P
iψ iðtiÞ over the feasible configurations of the activa-

tion times ftig∈ f0, . . . ,TgV , where feasible means that, for all
vertices i, either ti = 0 (then i is included in the decycling set S) or
if ti > 0, it obeys the constraint ti = 1+max2ðftjgj∈∂iÞ. Because this
minimization is NP hard, we formulate a heuristic strategy in the
following manner. We first consider a slightly modified cost
function with ψ iðtiÞ= I½ti = 0�+ «iðtiÞ, where «iðtiÞ is a randomly
chosen infinitesimally small cost associated with the removal of
node i at time ti. The minimum ftpi g of this cost function is now
unique with probability one and can be constructed as
tpi = argmin  hiðtiÞ, where the field hiðtiÞ is the minimum cost among
the feasible configurations with a prescribed value for the removal
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time ti of site i. From the solution of this combinatorial optimization
problem, we construct one of the minimal decycling sets S by in-
cluding vertex i in S if and only if ti*= 0. It remains now to find a
good approximation for hi; we compute it by the Min-Sum algo-
rithm, which corresponds to the μ→ −∞ limit of BP and is similarly
based on the exchange of messages hijðti, tjÞ between neighboring
vertices, an analog of ηijðti, tjÞ, but interpreted as a minimal cost
instead of a probability. We defer to SI Appendix for a full derivation
and implementation details, stating here the final equations.

hiðtiÞ=ψ iðtiÞ+
X
k∈∂i

LkiðtiÞ+MiðtiÞ, [10a]

hið0Þ=ψ ið0Þ+
X
k∈∂i

Rkið0Þ, [10b]

MiðtiÞ=min


0, min

k∈∂i
fRkiðtiÞ−LkiðtiÞg

�
, [11]

for T ≥ ti > 0, where Lij, Rij, Mij, h0ij, and h1ij form a solution of the
following system of fixed point equations for messages defined
on each directed edge i→ j of the graph:

LkiðtiÞ= min
tk<ti

h0kiðtkÞ , [12a]

RkiðtiÞ=min


h0kiðtiÞ, min

tk>ti
h1kiðtkÞ

�
, [12b]

MijðtiÞ=min


0, min

k∈∂i∖ j
fRkiðtiÞ−LkiðtiÞg

�
, [12c]

h0ijðtiÞ∝ψ iðtiÞ+
X
k∈∂i∖ j

LkiðtiÞ  , [12d]

h1ijðtiÞ∝ψ iðtiÞ+
X
k∈∂i∖ j

LkiðtiÞ+MijðtiÞ, [12e]

h0ijð0Þ∝ψ ið0Þ+
X
k∈∂i∖ j

Rkið0Þ, [12f]

where ∝ includes now an additive normalization constant. An
intuitive interpretation of all of these quantities and equations is pro-
vided in SI Appendix; let us only mention at this point that the
message h0ijðtiÞ [respectively h1ijðtiÞ] is the minimum feasible cost on
the connected component of i in G∖j under the condition that i is
removed at time ti in the original graph, assuming that j is not re-
moved yet (respectively assuming that j is already removed from G).
This system can be solved efficiently by iteration. The com-

putation of one iteration takes OðjEjTÞ elementary (+, −, ×, min)
operations, where jEj denotes the number of edges of the graph,
and a relatively small number of iterations is usually sufficient to
reach convergence. In principle, one should take the cutoff T on
the removal times to be greater than N to solve the decycling
problem. We found, however, that using large but finite values of
T (i.e., constraining the diameter of the tree components after
the node removal) did not increase extensively the size of the
decycling set; in the simulations presented below, we used T = 35.
Note that our algorithm is very flexible, and many variations can be
implemented by appropriate modifications of the cost function. For
example, we exploited the possibility to forbid the removal of cer-
tain marked nodes i by setting ψ iðti = 0Þ=∞ for them.

Results for Dismantling
Results on Random Graphs. The outcome of our algorithm applied
to an ER random graph of average degree 3.5 is presented in Fig. 1.

Here, the red circle corresponds to the output of its first stage
(decycling with Min-Sum), which yields, after the removal of a
fraction 0.1781 of the nodes, an acyclic graph in which the largest
components contain a fraction 0.032 of the vertices. The red line
corresponds to the second stage, which further reduces the size of
the largest component by greedily breaking the remaining trees.
We compare with simulated annealing (SA; black circle) as well as
several incremental algorithms that successively remove the nodes
with the highest scores, where the score of a vertex is a measure of
its centrality. Other than a trivial function that gives the same
score to all vertices [hence removing the vertices in random order
(RND)] and the score of a vertex equal to its degree, we used the
eigenvector centrality (EC) measure and the recently proposed CI
measure (15). We used all of these heuristics in an adaptive way,
recomputing the scores after each removal. Additional details on
all of these algorithms can be found in SI Appendix.
We see from Fig. 1 that the Min-Sum algorithm outperforms

the others by a considerable margin: it dismantles the graph
using 13% fewer nodes than the CI method. The Monte Carlo-
based SA algorithm performs rather well but is considerably
slower than all of the others.
In Fig. 2, we zoom in on the results of the second stage of our

algorithm and perform a finite size scaling analysis, increasing the
size of the dismantled graphs up to N = 108. In this way, we
identify a threshold for decycling (and thus, for dismantling) by the
Min-Sum algorithm that converges toward the value θMS

dec ≈ 0.1782,
which is close but not equal to the theoretical prediction of the
1RSB calculation θ1RSBdec ≈ 0.1753 (vertical arrow in Fig. 2). Fig. 2,
Inset shows a remarkable scaling that indicates that the size of the
largest component after dismantling by removing a given fraction
of nodes does not depend on the graph size.
Combinatorial optimization problems typically exhibit a very

large degeneracy of their (quasi)optimal solutions. We performed
a detailed statistical analysis of the quasioptimal dismantling sets
constructed by our algorithm, exploiting the fact that the Min-Sum
algorithm finds different decycling sets for different realizations of
the random tie-breaking noise «iðtiÞ.
For a given ER random graph of average degree 3.5 and size

N = 78,125, we ran the algorithm for 1,000 different realizations
of the tie-breaking noise «iðtiÞ and obtained 1,000 different
decycling sets, all of which had sizes within 40 nodes of one
another. Randomly chosen pairs among these 1,000 decycling
sets coincided, on average, on 82% of their nodes. For each
node, we computed its frequency of appearance among the 1,000
decycling sets that we obtained. We then ordered nodes by
this frequency and plotted the frequency as a function of this
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ordering in Fig. 3. We see that some nodes appear in almost all
found sets, that about 60% of nodes do not appear in any sets,
and that a large portion of nodes appears only in a fraction of the
decycling sets. We compare the frequencies of nodes belonging
to one typical set found by Min-Sum and the CI heuristics.
An important question to ask about dismantling sets is whether

they can be thought of as a collection of nodes that are in some
sense good spreaders or whether they are a result of highly cor-
related optimization. We use the result of the previous experiment
and remove the nodes that appeared most often (i.e., have the
highest frequencies in Fig. 3). If the nature of dismantling was
additive rather than collective, then such a choice should further
decrease the size of the discovered dismantling set. This scenario
is not what happens; with this strategy, we need to remove 20.1%
of nodes to dismantle the graph compared with the 17.8% of
nodes found systematically by the Min-Sum algorithm. From this
observation, we conclude that dismantling is an intrinsically col-
lective phenomenon, and one should always speak of the full set
rather than a collection of influential spreaders.
We also studied the degree histogram of nodes that the Min-

Sum algorithm includes in the dismantling sets and saw that, as
expected, most of the high-degree nodes belong to most of the
dismantling sets. Each of the dismantling sets also included some
nodes of relatively low degrees; for instance, for an ER random
graph of average degree d= 6 and size 57, a typical decycling set
found by the Min-Sum algorithm has around 460 (i.e., around
17%of the decycling set) nodes of degree 4 or lower. To assess the
importance of low-degree nodes for dismantling, we ran the Min-
Sum algorithm under the constraint that only nodes of degree at
least 5 can be removed, and we find decycling sets almost as small
(only about 50 nodes; i.e., 0.2% larger) as without this constraint.
From this observation, we conclude that none of the low-degree
nodes (even those with high CI centrality) are indispensable for
dismantling, going against a highlight claim of ref. 15.

More General Graphs. Up to this point, our study of dismantling
relies crucially on the relation to decycling. For light-tailed random
graphs, these two problems are essentially asymptotically equivalent.
However, for arbitrary graphs that contain many small cycles, the
decycling number can be much larger than the dismantling one. We
argue that, from the algorithmic point of view, decycling still provides
a very good basis for dismantling. For instance, consider a portion of
N = 532,000 nodes of the Twitter network already analyzed in ref.
15. The decycling solution found by Min-Sum improves considerably
the results obtained with the CI and EC heuristics (Fig. 4).
In a network that contains many short cycles, decycling removes a

large proportion of nodes expressly to destroy these short cycles.

Many of these nodes can be put back without increasing the size of
the largest component. For this reason, we introduce a reverse greedy
(RG) procedure, in which starting from a dismantled graph with
dismantling set S, maximum component size C, and a chosen target
value C′>C for the maximum allowed component size, removed
nodes are iteratively reinserted. At each step, among all removed
nodes, the one that ends up in the smallest connected component is
chosen for reinsertion (details are in SI Appendix). The computa-
tional cost of this operation is bounded by kmaxC′ logðkmaxC′Þ, where
kmax is the maximal degree of the graph; the update cost is thus
typically sublinear in N.
In graphs where decycling is an optimal strategy for dis-

mantling, such as the random graphs, a vanishing fraction of
nodes can be reinserted by the RG procedure before the size
of the largest component starts to grow steeply. For real
world networks, the RG procedure reinserts a considerable
number of nodes, negligibly altering the size of the largest
component. For the Twitter network in Fig. 4, the improve-
ment obtained by applying the RG procedure is impressive:
32% fewer nodes for the CI method and 20% fewer nodes for
the Min-Sum algorithm, which ends up being the best solu-
tion that we found, removing only 3.4% of nodes to dismantle
into components smaller than C= 1,000 nodes. RG makes it
possible to reach, and even improve, the best result obtained
with SA that solves the dismantling problem directly and is
not affected by the presence of short loops (SI Appendix has
details on SA). Qualitatively similar results are achieved on
other real networks [e.g., on the YouTube network with 1.13
million nodes (27), the best dismantling set that we found
with Min-Sum + RG included 4.0% of nodes; this result is a
22% improvement with respect to the CI heuristics].
The RG procedure is introduced as a heuristic that provides

a considerable improvement for the examples that we treated.
The theoretical results of this paper are valid only for classes of
graphs that do not contain many small cycles, and hence, our
theory does not provide a principled derivation or analysis of
the RG procedure. This point is an interesting open direction
for future work. More detailed study (both theoretical and al-
gorithmic) of dismantling of networks for which decycling is
not a reasonable starting point is an important direction of
future work.
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We provide in this Supplementary Information further technical details and additional results in support of the
main text. It is organized as follows. In Section I we prove the NP-completeness of the dismantling decision problem.
In Sec. II we extend the analytic results of the main text, presenting the details of the cavity method computation
of the decycling number of random graphs (IIA), a lower bound on the decycling number valid for all graphs (II B),
and an expansion of the decycling number for Erdős-Rényi random graphs close to their percolation threshold and
for large average degrees (II C). Section III is then devoted to several algorithmic aspects: in IIIA, III B and III C
we detail the three stages of our main algorithm (derivation of the Min-Sum equations, tree dismantling and greedy
reintroduction of cycles respectively), while in IIID we give further details on the other dismantling algorithms we
have studied. Finally in Section IV we provide further results on other real-world and artificial scale-free networks.

I. PROOF OF NP-COMPLETENESS OF THE DISMANTLING PROBLEM

For our proof, we will employ the decisional (minimum) Vertex Cover problem, which is NP-Complete, and is
defined as follows. Remember that a vertex cover is a subset of vertices W ⊂ V such that for each (i, j) in E, i ∈W
or j ∈W .
Vertex Cover: Given a graph G = (V,E) and F ∈ N, does a vertex cover W ⊂ V with |W | ≤ F exist?
The Vertex Cover problem is NP-Complete.
C (N)–Dismantling: Given a graph G′ = (V ′, E′) and F ∈ N, does a C (|V ′|)–dismantling set S with |S| ≤ F of G′
exist?

Theorem 1. Assume C : N→ N to be a non-decreasing (polynomially computable) function with C (N) < Na for
N ≥ N0 with 0 ≤ a < 1. Then the C (N)–Dismantling problem is NP-Complete.



2

Proof. C (N)–Dismantling belongs clearly to NP. If C ≡ 1, one can see that C–Dismantling is identical to Vertex
Cover and is thus is NP–Complete. Otherwise, take N1 such that C (N1) ≥ 2 and consider N ≥ max {N0, N1} .
Define

C ′ = C ′ (N) = min

{
k ∈ N :

C(kN)

k
< 2

}
. (1)

Remark. For constant C (N) ≡ C ≥ 2, then C ′ (N) ≡ C+1
2 if C is odd, and C ′ (N) ≡ C

2 + 1 if C is even.

Note that C ′ ≥ 2 and C ′ is polynomial in N : the value k =
⌈
1
2N

a
⌉ 1

1−a belongs to the set in the RHS of (1), as

k ≥
(
1
2N
) a

1−a so ka−1 ≤
(
1
2N
)−a and then C(kN)

k < (kN)a

k = ka−1Na ≤ 2; so C ′ ≤ k =
⌈
1
2N

a
⌉ 1

1−a . We will prove
that

C ′ ≤ C (C ′N) < 2C ′. (2)

The second inequality in (2) follows from (1). For the first inequality,

C (C ′N) ≥ C ((C ′ − 1)N) (3)
≥ 2 (C ′ − 1) (4)
≥ C ′, (5)

where (3) follows from the fact that C is non-decreasing, (4) follows from the minimality of C ′ in its definition (1)
and (5) from the fact that C ′ ≥ 2.

Now, take a graph G with |V | = N , and construct G′ by adding C ′ − 1 leaves to any vertex of G. Precisely,
let G′ = (V ′, E′) with V ′ = V ∪ {`v,i : v ∈ V, i ∈ {1, . . . , C ′ − 1}} and E′ = E ∪ {(v, `v,i) : v ∈ V, i ∈ {1, . . . , C ′ − 1}}
where we assume the two unions to be disjoint. The number of vertices of G′ is |V ′| = N ′ = NC ′ (which is polynomial
in N). The construction of G′ is clearly polynomial.

Take any vertex cover W of G. Then W is a C ′–dismantling of G′: thanks to the vertex cover property, each
v ∈ V \W can only be connected to the C ′−1 extra leaves `v,i. As C ′ ≤ C (N ′), then W is also a C (N ′)–dismantling
of G′.

Conversely, take any C (N ′)–dismantling set S of G′. Define π : V ′ → V by π (v) = v for v ∈ V and π (`v,i) = v for
v ∈ V, 1 ≤ i ≤ C ′−1. Consider the set W = π (S). In short, W is constructed from S by replacing all occurrences `v,i
by v. Then clearly |W | = |π (S)| ≤ |S| and W is still a C (N ′)–dismantling of G′: replacing `v,i by v introduces a new
component {`v,i} of size 1 but can only reduce the size of the other components. Moreover, W is also a vertex cover of
G: suppose on the contrary that it is not, and take an edge (i, j) ∈ E such that i, j /∈W . Then both vertices belong to
a connected component of G′ \W of size 2C ′ > C (N ′), which contradicts the fact that W was a C (N ′)–dismantling
of G′. Thus, W must be a vertex cover of G with size no greater than |S| and that proves the result.

Corollary 2. For C (N) = const, C (N) = logN , and C (N) = Na with 0 ≤ a < 1, C (N)–Dismantling is
NP-Complete.

Remark. (N − k)–Dismantling is polynomial for any constant k.

II. ANALYTIC RESULTS

A. Details on the cavity equations for the decycling number of random graphs

We give here some more details on the cavity method computation of the decycling number of sparse random
graphs, in particular on the derivation and solution of the BP equations. A full derivation in a more general context
can be found in [1].

When computing the typical free-energy of a large random graph with degree distribution q one has to determine
the probability law P (η) of the messages η, which is the solution of an integral equation of the form:

P (η) =

∞∑
k=0

q̃k

∫
dP (η(1)) . . . dP (η(k)) δ(η − fk(η(1), . . . , η(k))) , (6)

where q̃k = (k+1)qk+1/
∑
k kqk is the size-biased distribution associated to q (i.e. the probability of finding a vertex of

degree k+1 when choosing an edge uniformly at random), and fk the function encoding the local BP equation, eq. (9)
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in the main text, between messages around a vertex of degree k + 1. This type of equation can be efficiently solved
numerically via a population dynamics procedure, in which P is approximated by a large sample of representative
values of η, updated according to (6) until convergence to a fixed point. The free-energy density of the model can
then be computed as the average with respect to P of suitable functions of the messages. In the present model these
messages are real vectors of a dimension which grows linearly with the parameter T introduced above as a cutoff on
the allowed times in the leaf-removal dynamics.

In the Replica Symmetric version of the cavity method a message (or field) η of (6) corresponds to a 2T dimensional
vector of components denoted (a0, a1, . . . , aT , bT−1, . . . , b1). The function fk which gives η as a function of η(1), . . . , η(k)
reads explicitly:

e−µbt = 1 + e
−µ+µ

k∑
i=1

(a
(i)
0 −b

(i)
t−1)

, (7)

e−µat − e−µat+1 = e
−µ+µ

k∑
i=1

(a
(i)
0 −b

(i)
t )

k∑
i=1

(
eµ(b

(i)
t −a

(i)
t+1) − eµ(b

(i)
t −a

(i)
t+2)
)
,

with the conventions used to have more compact expressions: b0 = 0, bT = aT , aT+1 = bT−1. Once the self-consistent
equation on P (η) is solved the thermodynamic quantities are obtained as follows. The limit of (lnZ)/N reads

φ = µ+ E[ln zsite(η
(1), . . . , η(k))]− d

2
E[ln zedge(η

(1), η(2))] ,

where E[·] denotes the average over the i.i.d. copies η(i) drawn from P (η) and over the integer k drawn from the
degree distribution q, and d is the mean of q. The two functions zsite and zedge arise from the local contributions to
the Bethe free-energy of sites and edges respectively, and read

zsite = 1 + e
−µ+µ

k∑
i=1

a
(i)
0

e−µ k∑
i=1

b
(i)
T−1

+

T∑
t=1

e
−µ

k∑
i=1

b
(i)
t−1

k∑
i=1

(
eµ(b

(i)
t−1−a

(i)
t ) − eµ(b

(i)
t−1−a

(i)
t+1)
) , (8)

zedge = eµ(a
(1)
0 +a

(2)
0 )

[
e−µ(b

(1)
T +b

(2)
T ) +

T−1∑
t=0

{
(e−µa

(1)
t − e−µa

(1)
t+1)e−µb

(2)
t + (e−µa

(2)
t − e−µa

(2)
t+1)e−µb

(1)
t

}]
. (9)

The fraction θ of vertices included in the decycling sets selected by the conjugated chemical potential µ and the
entropy s (the Legendre transform of φ) then read:

θ = E
[

1

zsite(η(1), . . . , η(k))

]
, s = φ− µ θ . (10)

Varying the parameter µ one can compute in this way the entropy s(θ) counting the exponential number of decycling
sets containing a fraction θ of vertices. The RS estimate of the decycling number θdec is then obtained as the point
where s vanishes.

This estimate is, however, only a lower bound to the true value of θdec because of the effects of the replica symmetry
breaking. A more precise estimate is obtained by using the (energetic) cavity method at the first level of replica
symmetry breaking (1RSB), in which the parameter µ is replaced by the Parisi breaking parameter y; the message η
of (6) is then a vector (p0, . . . , pT−1, rT , . . . , r0) constrained by the normalization p0 + · · ·+ pT−1 + rT + · · ·+ r0 = 1
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(hence the number of independent parameters is again 2T ). These are updated according to

pt =
1

Z
ey p̃t , (11)

rt =
1

Z
ey r̃t for t ≥ 1 , (12)

r0 =
1

Z

(
1−

T−1∑
t=0

p̃t −
T∑
t=1

r̃t

)
, (13)

Z = 1 + (ey − 1)

(
T−1∑
t=0

p̃t +

T∑
t=1

r̃t

)
, (14)

p̃t =

k∑
i=1

p
(i)
t+1

∏
j 6=i

(
t∑

t′=0

r
(j)
t′

)
, (15)

r̃t =

k∏
i=1

(
t−1∑
t′=0

r
(i)
t′

)
−

k∏
i=1

(
t−2∑
t′=0

r
(i)
t′

)
, (16)

with pT = rT by convention. One computes then a thermodynamic potential Φ(y) with a formula similar to the one
yielding φ(µ) at the RS level, namely

Φ = −y + E[lnZsite(η
(1), . . . , η(k))]− d

2
E[lnZedge(η

(1), η(2))] ,

with

Zsite = 1 + (ey − 1)

 k∏
i=1

(
T−1∑
t=0

r
(i)
t

)
+

k∑
i=1

T∑
t=1

p
(i)
t

∏
j 6=i

(
t−1∑
t=0

r
(j)
t

) , (17)

Zedge = e−y + (1− e−y)

[(
T∑
t=0

r
(1)
t

)(
T∑
t=0

r
(2)
t

)
+

T−1∑
t=0

{
p
(1)
t

(
t∑

t′=0

r
(2)
t′

)
+ p

(2)
t

(
t∑

t′=0

r
(1)
t′

)}]
. (18)

The energetic complexity function (the equivalent of the entropy at the 1RSB level) is then obtained by an inverse
Legendre transform with respect to Φ, namely

Σ = Φ + y θ , θ = 1− E
[
Z ′site
Zsite

]
+
d

2
E
[Z ′edge
Zedge

]
,

where the prime denotes the derivative with respect to the explicit dependence in y of the expressions of Zsite and
Zedge given above. The 1RSB estimate of the decycling number is then obtained from the criterion of cancellation of
the complexity Σ. Both the replica symmetric and 1RSB results for a range of values of T are reported in Table 1
in the main text. Extrapolating the 1RSB estimate of the decycling number in the limit T → ∞ leads to the values
reported in Table 1 in the main text.

The replica symmetric and 1RSB computations yield improving lower bounds on the decycling number of light-tailed
random graphs, in the sense that θRS(q) ≤ θ1RSB(q) ≤ θdec(q). For some degree distributions q these inequalities
become equalities (see [1] for details on random regular graphs), for others the 1RSB estimate is strictly tighter
than the RS one. It is probable that for some choices of q the 1RSB estimate is not equal to the decycling number,
whose exact determination would require the use of the so-called full RSB computation. The latter is not tractable
numerically for models of sparse random graphs, we expect in any case the quantitative difference between the 1RSB
and full RSB results to be rather small.

B. A simple lower bound

We present here a lower bound on the decycling number θdec(G) valid for any graph G (a similar reasoning can be
found in [2]), generalizing the bound θdec(G) ≥ d−2

2(d−1) for d-regular graphs.
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TABLE I: The T -dependence of the RS and 1RSB cavity predictions for the decycling number of Erdös-Rényi random graphs
of average degree d = 3.5. The decycling numbers reported in table 1 in the main text are obtained by interpolation of the
1RSB results to T → ∞.

T θRS(T ) θ1RSB(T )

3 0.22714 0.22797
5 0.20042 0.20077
9 0.18507 0.18515
13 0.18046 0.18051
19 0.17795 0.17797
30 0.17638 0.17638
40 0.17590 0.17590
50 0.17569 0.17569

We denote ki the degree of vertex i and M the number of edges. With

〈k〉 =
1

N

∑
i∈V

ki (19)

the empirical average degree, one has M = N 〈k〉2 .
Consider now a subset S of the vertices, and its complement Sc = V \ S. One can divide the edges in three

categories, with M = M1 +M2 +M3, where M1 is the number of edges between two vertices of S, M2 counting the
edges between S and Sc, and M3 the edges inside Sc. One has∑

i∈S
ki = 2M1 +M2 ,

∑
i∈Sc

ki = 2M3 +M2 , (20)

and in particular

M1 +M2 ≤
∑
i∈S

ki . (21)

Suppose now that S is a decycling set of the graph, in such a way that Sc induces a forest. Hence one has

M3 ≤ |Sc| − 1 = N − |S| − 1 . (22)

Summing these two inequalities, and expressing M in terms of the average degree, yields

1

N

∑
i∈S

(ki − 1) ≥ 〈k〉
2
− 1 +

1

N
. (23)

This inequality constrains the possible decycling sets. To obtain a simpler lower bound on the size of the decycling sets,
consider a permutation σ from {1, . . . , N} to V that orders the vertices according to their degrees: kσ(1) ≥ kσ(2) ≥ . . . .
The inequality above can then be continued to get

1

N

|S|∑
i=1

(kσ(i) − 1) ≥ 〈k〉
2
− 1 +

1

N
. (24)

Let us call the left hand side of this inequality l(θ = |S|/N,G), which is an increasing function of θ, and define θlb(G)
as the smallest value of θ such that the inequality is fulfilled. Then the decycling number θdec(G) of this graph is
certainly lower-bounded by θlb(G).

The shape of l(θ) can be described in terms of the empirical degree distribution of the graph,

q̂k =
1

N

∑
i∈V

δk,ki . (25)

As the graph is finite so is its maximal degree, let us call it K. One realizes easily that l(θ,G) is a piecewise linear
continuous increasing function, starting from 0 in θ = 0, linearly increasing on θ ∈ [0, q̂K ] with slope K−1, then again



6

with a constant slope K − 2 on the interval θ ∈ [q̂K , q̂K + q̂K−1], and so on and so forth. It is thus more convenient
to introduce two integrated quantities:

Q̂k =

∞∑
k′=k

q̂k′ , T̂k =

∞∑
k′=k

q̂k′(k
′ − 1) , (26)

the summations being cut off at K in this finite graph case. Indeed for all k one has l(Q̂k, G) = T̂k, and the function
l(θ,G) is the linear interpolation between this discrete set of points. One can thus determine its intersection with the
right hand side of (24) to compute the lower bound θlb(G).

In the case of random graphs drawn with a degree distribution q the typical decycling number θdec(q) can be lower-
bounded as above by replacing the empirical distribution q̂ by q: θlb(q) = l−1

(
〈k〉
2 − 1

)
, where 〈k〉 is now averaged

with respect to qk, and l is defined by replacing Q̂k and T̂k by their counterparts

Qk =

∞∑
k′=k

qk′ , Tk =

∞∑
k′=k

qk′(k
′ − 1) . (27)

The numerical evaluation of this lower bound for a Poissonian random graph of average degree d = 3.5 yields
θlb = 0.141084, not that far from the 1RSB prediction θdec = 0.175. The lower bound matches the asymptotic
expansion presented below when d → 1 (i.e. close to the percolation threshold), while it reaches the limit 1/2 when
d diverges (the large d limit of θdec being 1).

C. Decycling close to the percolation threshold and for large degrees

In addition to the numerical results obtained by the cavity method let us state analytical asymptotic expansions for
the decycling number of Poissonian random graphs with average degree close to the percolation threshold (d = 1 + ε)
or very large (d → ∞). Close to the percolation a random graph is essentially made of a 3-regular kernel of vertices
joined by paths of degree 2 nodes; decycling the kernel is sufficient to decycle the whole graph, and the decycling
number of a random 3-regular is known [3], which yields

θdec(d = 1 + ε) =
1

3
ε3 +O(ε4) . (28)

On the other hand when d is very large the Poissonian random graph behaves like a regular graph (the degree
distribution being concentrated around its average), an asymptotic expansion in this case was obtained in [1] (in
agreement with the rigorous bounds of [4]), hence

θdec(d) = 1− 2 ln d

d
− 2

d
+O

(
1

d ln d

)
. (29)

III. ALGORITHMS

A. The Min-Sum algorithm and its implementation

In this section we derive the Min-Sum (MS) algorithm introduced in eqs. (10-12) of the main text, that aims at
finding decycling sets of the smallest possible size. As explained in the main text this amounts to find the unique
minimum of the cost function

∑
i ψi(ti), with ψi (ti) = I [ti = 0] + εi(ti), over the feasible configurations of the

activation times {ti} ∈ {0, . . . , T}V . These variables have to fulfill the constraint that for all vertices i either ti = 0
(when i belongs to the decycling set) or it is determined by the adjacent variables according to ti = 1+max2({tj}j∈∂i).
We recall that the εi(ti) are infinitesimally small random variables that are introduced to ensure the uniqueness of
the minimum of the cost function, and its closeness to one of the minima of the original cost function. In practice we
took εi to be uniformly random between 0 and 10−7.

It turns out to be easier to study a slight modification of this optimization problem, with a relaxed constraint

ti ≥ 1 + max2({tj}j∈∂i) if 0 < ti ≤ T (30)

that corresponds to a lazy version of the leaf removal algorithm, in which a node can be removed once it became a leaf,
but it is not necessarily removed as soon as it could be. Thanks to the monotonicity of the leaf removal procedure its
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final outcome, the 2-core of the graph, is independent of the order in which the leaves are removed, and of the parallel
or sequential character of these updates. Hence the optimization problem with the strict or relaxed constraints are
completely equivalent if T ≥ N , the maximal number of possible steps of the leaf removal. For smaller values of T
this equivalence is not ensured, but the optimum with the relaxed constraints still provides a valid decycling set. It
will be useful in the following to use the following logical equivalent of (30),∑

j∈∂i

I [tj ≥ ti] ≤ 1 if 0 < ti ≤ T . (31)

Our goal now is to compute the field hi(ti) defined as the minimum of the cost function over feasible configurations
with a given value of ti, as indeed the unique minimum can be deduced from the fields through t∗i = argminhi(ti),
and then the corresponding decycling set is identified with the vertices i where t∗i = 0. To justify the MS heuristics
for the approximate computation of the fields hi on any graph it is simpler to consider first a tree graph, on which
the MS approach is exact for any local cost function. The function under consideration here is the sum of local terms
ψi(ti) on each vertex, hi(ti) can thus be decomposed as a sum of its own contribution ψi and of the contributions of
the vertices in each of the subtrees rooted at one of its neighbor j ∈ ∂i. Taking into account the constraint (31) for
the positive times, denoted C in the following, it yields

hi (ti) = ψi (ti) + min
{tj}j∈∂i:C

∑
j∈∂i

hji (tj , ti) for 0 < ti ≤ T , (32)

hi (0) = ψi (0) +
∑
j∈∂i

min
tj

hji (tj , 0) , (33)

where hji(tj , ti) are messages defined on each directed edge j → i of the graph, that give the minimum cost of the
variables in the subtree rooted at j and excluding i, over the feasible configurations with prescribed values of tj and
ti. Thanks to the recursive structure of a tree these messages obey themselves similar equations,

hij (ti, tj) = ψi (ti) + min
{tk}k∈∂i\j :C

∑
k∈∂i\j

hki (tk, ti) for 0 < ti ≤ T , (34)

hij (0, tj) = ψi (0) +
∑

k∈∂i\j

min
tk

hki (tk, 0) . (35)

These Min-Sum equations involve O(T 2) quantities for each edge of the graph because of the two time indices of
the messages hij . Fortunately this quadratic dependence on T can be reduced to a linear one by some further
simplifications that we now explain.

As can be readily seen from (34) and (31), the dependence of hij on tj is only through I [tj < ti]. We will thus
define

hij (ti, tj) =

{
h1ij (ti) if tj < ti ,

h0ij (ti) if tj ≥ ti ,
(36)

which gives a parametrization of each message with O(T ) real numbers.
Calling T sij = {{tk}k∈∂i\j :

∑
k∈∂i\j

I [tk ≥ ti] = s}, Eq. (34) can be rewritten as follows for 0 < ti ≤ T :

h0ij (ti) = ψi (ti) + min
T 0
ij

∑
k∈∂i\j

hki (tk, ti)

= ψi (ti) +
∑

k∈∂i\j

min
tk<ti

hki (tk, ti)

= ψi (ti) +
∑

k∈∂i\j

min
tk<ti

h0ki (tk) , (37)

as indeed tj ≥ ti in the definition of h0ij all the other removal times tk for k ∈ ∂i \ j have to be strictly smaller than ti
for the condition (31) to be fulfilled. On the other hand in the situation described by h1ij at most one of the removal
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times tk for k ∈ ∂i \ j can be greater or equal than ti, hence for 0 < ti ≤ T :

h1ij (ti) = ψi (ti) + min
T 0
ij∪T 1

ij

∑
k∈∂i\j

hki (tk, ti)

= ψi (ti) + min

{ ∑
k∈∂i\j

min
tk<ti

h0ki (tk) ,min
T 1
ij

∑
k∈∂i\j

hki (tk, ti)

}

= ψi (ti) + min

{ ∑
k∈∂i\j

min
tk<ti

h0ki (tk) , min
k∈∂i\j

[
min

{
h0ki (ti) , min

tk>ti
h1ki (tk)

}
+

∑
`∈∂i\j,k

min
t`<ti

h0`i (t`)

]}

= ψi (ti) +
∑

k∈∂i\j

min
tk<ti

h0ki (tk) + min

{
0, min
k∈∂i\j

[
min

{
h0ki (ti) , min

tk>ti
h1ki (tk)

}
− min
tk<ti

h0ki (tk)

]}
. (38)

The equations (10-12) of the main text can now be readily obtained by defining the following quantities:

Lki (ti) = min
tk<ti

h0ki (tk) , (39)

Rki (ti) = min

{
h0ki (ti) , min

tk>ti
h1ki (tk)

}
, (40)

Mij (ti) = min

{
0, min
k∈∂i\j

{Rki(ti)− Lki(ti)}
}
, (41)

(42)

in terms of which the equations (37,38) can be rewritten

h0ij (ti) = ψi (ti) +
∑

k∈∂i\j

Lki(ti) for 0 < ti ≤ T , (43)

h1ij (ti) = ψi (ti) +
∑

k∈∂i\j

Lki(ti) +Mij (ti) for 0 < ti ≤ T , (44)

h0ij (0) = ψi (0) +
∑

k∈∂i\j

Rki(0) , (45)

the last equation corresponding to the unconstrained minimization over the removal times of the neighbors of a vertex
i included in the decycling set.

Let us give a more explicit interpretation of the quantities L,R and of the last equations. Lki(ti) is the minimum
feasible cost in the subtree of G \ i rooted in k with the only condition that tk < ti (see Eq. (39)). On the other hand,
in Eq. (40) we define Rki(ti) to be the minimum feasible cost in the subtree of G \ i rooted in k with tk ≥ ti. As
the message h1ij (ti) corresponds to a situation in which j has already been removed at time ti, one of the neighbors
k ∈ ∂i \ j can be removed after i. It follows that for ti > 0 the minimum feasible cost is given by the cost ψi (ti)
plus the minimum between the minimum feasible cost when all neighbors k ∈ ∂i \ j is removed before i and the same
quantity when one of the neighbors is allowed to be removed at a later time.

The field hi(ti) is then obtained from the messages (see Eqs. (32,33)) according to

hi (ti) = ψi (ti) +
∑
k∈∂i

Lki(ti) +Mi (ti) , (46)

hi (0) = ψi (0) +
∑
k∈∂i

Rki(0) , (47)

Mi(ti) = min{0,min
k∈∂i
{Rki(ti)− Lki(ti)}} . (48)

Finally a more efficient implementation can be devised, noting that common quantities can be pre-computed in
order to obtain the hij for all the outgoing edges around a given vertex i. One indeed obtains an implementation
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which runs in linear time both in T and in the degree ki of i by defining

S0
i (ti) =

∑
k∈∂i

Lki (ti) , (49)

S1
i =

∑
k∈∂i

Rki (0) (50)

ki (ti) ∈ arg min
k∈∂i
{Rki (ti)− Lki (ti)} (51)

Qi (ti) = min

{
0, min
k∈∂i\ki(ti)

{Rki (ti)− Lki (ti)}
}

(52)

Mij (ti) =

{
Mi (ti) if j 6= ki (ti)

Qi (ti) if j = ki (ti)
(53)

which can all be computed in time O (Tki); we can then express the different values of the messages hij as

h0ij (ti) = ψi (ti) + S0
i (ti)− Lji (ti) (54)

h1ij (ti) = ψi (ti) + S0
i (ti)− Lji (ti) +Mij (ti) (55)

h0ij (0) = ψi (0) + S1
i −Rji (0) (56)

which can be also computed in time O (T ) for each j ∈ ∂i. The computation time for a complete iteration on all
vertices i is thus O (

∑
i kiT ) = O (|E|T ). The computation of the field hi (ti) in (46)-(47) is similar:

hi (ti) = ψi (ti) + S0
i (ti) +Mi (ti) for 0 < ti ≤ T , (57)

hi (0) = ψi (0) + S1
i . (58)

This derivation of the Min-Sum equations shows that the algorithm is exact on a tree: the recurrence equations on
hij are guaranteed to converge, and the configuration t∗i obtained from the MS expression of hi is the unique minimum
of the cost function over feasible configurations. One can, however, iterate the recurrence equations on hij for any
graph, and use the MS formalism as an heuristic algorithm that provides a good approximation to the optimum, in
particular when there are not many short loops. There are, however, two issues with the convergence of the message
passing equations on hij :

• the hij defined above are extensive energies, that would grow indefinitely in presence of loops in the graph.
This problem is easily cured by adding a constant value Cij to all fields hij(ti, tj), in such a way to keep the
maximum entry of this matrix equal to a constant, for instance zero. This does not spoil the validity of the
algorithm, as we only need informations about the relative energies of configurations to construct the decycling
set: the optimum t∗i = argminhi(ti) is obviously invariant by a shift of the reference energy.

• even with this normalization the message passing equations are not guaranteed to converge. When they did
not we enforced their convergence by employing a reinforcement procedure, that consists in taking ψi (ti) =
I [ti = 0] + εi (ti) + τγhi (ti) where hi is the local field computed with (57)-(58) in the previous iteration, γ is a
small real value and τ is the iteration time. Typically we use in our simulation γ = 10−3.

B. Tree-breaking in decycled graphs

We explain now the second stage of our algorithm, namely the dismantling of the acyclic graph obtained using MS
in the first stage.

1. Optimal tree breaking

The computation of the C-dismantling number of a tree G can be performed in a time growing polynomially with
C and with the size N of the graph, by the following dynamic programming approach.

Let us denote Gi→j the connected component of the vertex i in the graph obtained from G by removing one of its
neighbors j, and call Sij (c) the minimum number of vertices to be removed from Gi→j to have that no component
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of the reduced graph is larger than C and that the component of i is no larger than c. These quantities satisfy the
following recursion:

Sij (c) = min
{ck}k∈∂i\j∑

k∈∂i\j
ck≤c−1

∑
k∈∂i\j

Ski (ck) if 0 < c ≤ C ,

Sij (0) = 1 +
∑

k∈∂i\j

Ski (C) .

Using max-convolutions (see e.g. [5]) these quantities can be computed on all directed edges of the tree in time
O(NC2). By adding an extra leaf i′ attached to a node i on the tree, the quantity Sii′(C) gives the decycling number.
A small modification can be used to also find optimal dismantling sets in time O(NC2). Even though polynomial,
this complexity is often too expensive in practice even for moderate values of C. Fortunately we will see below a
greedy strategy that achieves almost the same performance.

2. Greedy tree-breaking

An alternative approach to the dismantling of a forest is to follow a greedy heuristic, removing iteratively the
node in the largest connected component of the forest (i.e. a tree) that leaves the smallest largest component. This
procedure is guaranteed to C-dismantle the forest by removing S = N/C vertices or less. This ensures the dismantling
to a sublinear size of the largest component C ≤ N/ logN by removing a sublinear number of vertices S ≤ logN .
Moreover, it can be implemented in time O(N(logN + T )) where T is the maximal diameter of the trees inside this
forest. The worst case in terms of number of removed nodes is reached in the case of a one-dimensional chain, in
which one needs to remove S = 2k − 1 nodes to obtain components of size C(S) ≤ N/2k.

For a given tree G on N vertices, let us call F the subset of vertices i which are optimal in the above sense, namely
such that the removal of i from G minimizes the size of the largest component of G \ i. The elements of F can be
characterized in a very simple way. Denote by C(i) the size of the largest component of G\i, so C(i) = maxj∈∂i |Gj→i|
and F = arg mini∈V C(i). Then i? ∈ F if and only if C(i?) ≤ N/2. Suppose indeed that for i? ∈ F , C(i?) > N/2 and
take j ∈ ∂i such that |Gj→i? | = C(i?). Then, as |Gi?→j |+|Gj→i? | = N , we have that C(j) < max{N/2, C(i?)} = C(i?)
which is absurd. Conversely, suppose that C(i) ≤ N/2 and take i? ∈ F \ i. Consider the unique path (i, k1, . . . , kn, i

?)
in G. Then |Gk1→i| ≤ C(i), and |Gi→k1 | ≥ N − C(i) ≥ N/2. But Gi→k1 ⊆ Gkn→i? so C(i?) ≥ N/2.

This characterization of F can be used constructively to find an i? ∈ F efficiently. Pick for each connected component
of the initial forest a “root” vertex i0 ∈ V . For each i compute wi = |Gi→j | where j is the unique neighbor of i on the
path between i and the root i0, starting from the leaves and exploiting the relation wi = 1 +

∑
k∈∂i\j wk; note that

C(i0) = maxj∈∂i0 wj . Place i0 into a priority queue with priority given by the component size K(i0) = 1+
∑
j∈∂i0 wj .

Iteratively pick the largest component from the queue. Then construct the sequence it as follows: for every t, if
C(it) ≤ N/2, then i? = it ∈ F and the process stops. Otherwise, iteratively choose it+1 such that wit+1 = C(it) > N/2.

Once i? is chosen and removed, the component is broken into |∂i?| components, each one rooted at k ∈ ∂i?. From
these, only the component rooted at it−1 needs to have its w values updated, as its orientation changed. The only
needed adjustments are along the path i0, i1, . . . , it and can computed in time proportional to t, which is bounded by
the diameter of the tree, which is in turn bounded by T .

As the cost of the priority queue updates scale as O(logN), the total number of operations for each vertex removal
is thus O(logN+T ), hence the total number of operations for greedily dismantling a forest scales as O(N ·(logN+T )),
as claimed above.

We performed an extensive comparison of the optimal and greedy procedure for values of C sufficiently small for
the optimal one to be doable in a reasonable time, using as a benchmark the forest output by the MS algorithm
applied to an Erdös-Rényi random graph of 78125 nodes and average degree 3.5. As shown in Fig. 1 we found the
greedy strategy to have very close to optimal performances, therefore we used this much faster procedure in all other
numerical simulations.

C. Greedy reintroduction of cycles

The initial condition for the reverse greedy procedure is the graph obtained after the removal from G of a set S0 of
nodes (dismantling set) and characterized by largest connected components of size C. Let us consider a target value
C ′ > C for the size of the largest connected components. As long as the size of the largest connected components
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FIG. 1: Comparison between greedy and optimal forest-breaking on the output of the MS algorithm for an Erdös-Rényi random
graph with 78, 125 vertices and average degree 3.5.

in the graph is smaller than C ′, the removed nodes are reintroduced one at a time by means of the following greedy
strategy: at each iteration step t, we choose for reinsertion the node i ∈ St (and the edges to vertices in V \ St) such
that the connected component V ti the node i ends up in is the smallest possible. An efficient implementation of the
greedy reinsertion is easily obtained by maintaining a priority queue of the removed vertices with priority given by
the size |V ti |. When a vertex i is reintroduced in the graph, the number of connected components that get merged is
at most equal to the degree ki of the vertex (in the original graph G). The number of elements in the priority queue
that have to be modified after the reinsertion of i is bounded by the number of nodes j ∈ St that are connected to
the new component in the original graph G. As the size of the largest component is at most C ′, this number is at
most kmaxC

′, where kmax is the maximal degree of the graph. The computational cost of reintroducing a vertex in
the graph is entirely given by the one of updating the queue, which is thus bounded by kmaxC

′ log(kmaxC
′). In a

sparse graph, the update cost is thus typically sublinear in N , making the reverse greedy strategy very efficient.

D. Competing algorithms

1. Simulated Annealing

Besides our main algorithm based on the Min-Sum procedure we have studied the network dismantling problem
using simulated annealing, i.e. building a Monte Carlo Markov Chain that makes a random walk in the space of
configurations of the subsets S ⊂ V of removed vertices. We assign an energy to each configuration according to

E = |S|ν + C, (59)

in which |S| is the number of removed nodes, C the size of the largest connected component in the graph obtained
by removing S, and ν is a free parameter. Note indeed that a set S of removed vertices can be considered “good” for
two reasons: either because it is small, or because its removal fragments the graph into small components. These two
figures of merits obviously contradict each other and cannot be optimized simultaneously, ν thus controls the balance
between these two frustrating goals.

As usual in simulated annealing algorithms we introduce an inverse temperature β that is slowly increased during
the evolution of the Markov Chain, and at each time step t we consider a move from the current configuration St to
a new configuration Snew, that is accepted according to a standard Metropolis criterion, i.e. with probability

min
[
1, e−β[Enew−Et]

]
, (60)

where Enew and Et are the energies of Snew and St respectively. If the move is accepted we set St+1 = Snew,
Et+1 = Enew, otherwise the Markov Chain remains in the same configuration. The proposed configuration Snew is
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constructed in the following way at each time step: a node i is chosen uniformly at random among all the N vertices
of the graph, and its status is reversed (if i ∈ St then Snew = St \ i, if i /∈ St then Snew = St ∪ {i}). We then need
to compute the energy Enew of this proposed configuration; the first term is easily dealt with as |S| varies by ±1
depending on whether i ∈ St or not. We thus only need to compute the size Cnew of the largest component in the
new configuration, facing three possible cases:

1. if i /∈ St and i belongs to the largest component of G \St the size Cnew of the largest component is recomputed;

2. if i /∈ St but i does not belong to the largest component of G \ St then Cnew = Ct does not change;

3. if i ∈ St then it is only necessary to compute the size Ci of the cluster i belongs to once it is reintroduced in
the graph and compare the latter with the current largest component, i.e. Cnew = max(Ct, Ci).

The Markov chain is irreducible, recurrent and aperiodic, thus ergodic and the Metropolis criterion ensures de-
tailed balance, therefore the SA algorithm would sample correctly the probability measure ∝ e−βE if run with an
infinitesimally small annealing velocity. Unlike standard applications of simulated annealing, such as spin systems
with short-range interactions, in the present problem a single move (node removal/reintroduction) can produce energy
variations over a large range of scales, with the consequence that there is no natural criterion to choose the annealing
protocol. We tested several different annealing protocols and we adopted one in which the inverse temperature β is
increased linearly from βmin to βmax (thus concentrating the measure on close to ground-state configurations), with an
increment of dβ at each time step (i.e. after each one attempted move). Protocols in which the inverse temperature
is varied only after O(N) attempted moves were also considered, with no relevant difference in the results. Similarly,
there is no natural choice of the initial conditions. We tested the cases in which the initial set S0 is empty and in
which nodes are randomly assigned to S0 independently with probability 1/2, but for sufficiently small values of βmin,
different choices had no relevant effects on the optimization process.

Fig. 2 displays the minimum energy achieved using the SA algorithm (with ν = 0.6) on Erdös-Rényi random graphs
of average degree d = 3.5 and increasing sizes from N = 1024 to N = 16384. For comparison we also plot the results
obtained using the Min-Sum algorithm (horizontal lines). For small sizes, the SA algorithm outperforms Min-Sum
when the annealing scheme is sufficiently slow (dβ very small). Increasing N , the quality of the results obtained with
SA degrades, as it would require an increasingly slower annealing protocol in order to achieve the same results obtained
using Min-Sum. These results show that, even though the SA implementation proposed is simple and relatively fast
even on large networks, the necessity of an increasingly slower annealing protocol prevents SA from reaching optimal
results in a reasonable computational time.

The results for simulated annealing presented in Fig. 1 and Fig. 4 of the main text are obtained with parameters
dβ = 10−8, βmin = 0.5 for both, βmax = 20, ν = 1.2 for Fig. 1, and βmax = 10, ν = 2.0 for Fig. 4.
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2. Score-based algorithms

Let us give here more details about the other dismantling algorithms to which we compared our own proposals.
They all proceed by the (irreversible) removal of nodes from the graphs to be dismantled, the differences between
them relying in the choice of a score function that assigns to each vertex i of the graph a score ei, the vertices being
removed in the order of decreasing scores (with random choices in case of ties). This quantity ei should be an heuristic
measure of the importance, or centrality, of the vertex i, in the sense that more central nodes should lead to a larger
decrease in the size of the largest component when i is removed. We have investigated the following score functions,
the names corresponding to the key in the figures:

• RND, ei = 1 for all i; this leads to a random choice of the removed vertices, i.e. to classical site percolation.

• DEG, ei = ki the degree of node i, this corresponds to removing the highest degree nodes first.

• EC, for eigenvector centrality, uses as a score the eigenvector ei associated to the largest eigenvalue λ of the
adjacency matrix Aij = I[〈i, j〉 ∈ E] of the graph, in other words the solution of the linear system of equations

λ ei =
∑
j∈∂i

ej . (61)

For a connected graph the Perron-Frobenius theorem ensures that this eigenvector is unique and that it can be
chosen positive.

• CI`, for collective influence at level `, is a centrality measure introduced by Morone and Makse [6] to provide
a heuristic measure of the influence that a node has on the neighbors within a certain distance ` from it. The
collective influence of node i at level ` is defined as

CI`(i) = (ki − 1)
∑

j∈∂B(i,`)

(kj − 1) (62)

where ∂B(i, `) denotes the set formed by all the nodes that are at distance ` from node i [6]. The CI value of
node i takes two contributions, the degree of node i and the number of edges emerging at distance ` from a ball
surrounding i. On expander graphs, such as random graphs, the number of nodes contained in a ball B(i, `)
grows exponentially with `, hence the calculation of the collective influence scores for all nodes of the graph
becomes computationally demanding already for moderately small distance values (` = 4, 5).

We also made some tests with the score function defined as the betweenness centrality and as the non-backtracking
centrality [7], but for the graphs we considered the results we obtained were both qualitatively and quantitatively
similar (or worse) to those obtained using EC, hence we do not report them.

For a given score function one can envision different ways to implement the dismantling algorithm; the simplest
would be to compute the scores for all vertices of the original graph, and then to remove the vertices in the order defined
by this ranking. We used instead an adaptive version, which gives much better results, that consist in recomputing the
scores of all remaining vertices after each removal of the node with highest score in the current graph; all the results
presented in the main text and the SI have been obtained in this way. Even if it performs better this adaptive strategy
is also much more computationally demanding; an intermediate compromise between these two extreme strategies
would be to recompute the scores only after a finite fraction x of nodes is removed. Another implementation twist
consists in recomputing the scores only for the vertices belonging to the currently largest connected components, as
the removal of a vertex outside it would not decrease the size of the largest component. This is useful in particular if
one tries to compute the EC scores by the power method (multiplying several times an initial guess by the adjacency
matrix); instead of the full adjacency matrix one can consider only the submatrix corresponding to the vertices in the
largest component. By construction this submatrix is irreducible and the power method will converge, hence solving
the possible convergence issues encountered by the power method in the case of coexistence of several connected
components in the graph. The restriction to the largest component modifies also the behavior of the DEG heuristic,
as it avoids the removal of large degree nodes in already small components.

IV. OTHER REAL-WORLD AND SCALE-FREE GRAPHS

We already explained in the main text that dismantling a graph by means of the decycling (plus greedy tree
breaking) is guaranteed to be optimal only for sparse random graphs with locally tree-like structure. Nevertheless,
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with γ = 2.5, as function of the fraction of removed nodes S. The nodes are removed using adaptive Eigenvector Centrality
(EC), adaptive Eigenvector Centrality plus Reverse Greedy (EC+RG), Collective Influence with diameter ` = 4 (CI4), the same
plus Reverse Greedy (CI4+RG), Min-Sum plus Reverse Greedy (MS+RG), and Simulated Annealing (SA) with dβ = 10−8 and
βmin = 0.5, βmax = 20 (and several values of ν).

we observed that when the algorithm is complemented by a simple reverse greedy (RG) strategy the final result is
usually very good also on networks in which many small loops are present, such as in the case of the Twitter graph in
Fig. 4 in the main text. Our way to state the quality of the result is the direct comparison with the other available
algorithms, that are the Simulated Annealing algorithm and the other heuristics (e.g. EC, CI) also complemented by
the RG strategy.
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We studied dismantling in the youtube network [8] with 1.13 million nodes and concluded that the reverse greedy
is of immense importance here. Specifically we obtained that in order to dismantle the network into components
smaller that C = 1000 nodes the CI methods removes 5.12%, the ER removes 4.97%, the MS removes 5.67% nodes.
The reverse greedy procedure improves all the these methods and gets dismantling sizes 4.03% for CI+RG, 4.07% for
EC+RG, and 3.97% for MS+RG.

We also studied dismantling on an example of a synthetic scale-free network. Results reported in Fig. 3, are
qualitatively comparable to the ones for real networks.

In order to better quantify the effect of a large clustering coefficient on the different algorithmic methods under
study, we considered a well-known class of random graphs with tunable clustering coefficient, the small-world network
model introduced by Watts and Strogatz [9]. The WS network is generated starting from a one-dimensional lattice in
which every node is connected with d/2 nearest-neighbors on both sides, then each edge (i, j) with i > j is rewired to
a randomly chosen node k 6= j with probability p. Fig. 4 shows the result of dismantling WS networks of size N = 104,
d = 6 and rewiring probability p = 0.1, 0.5, 0.9. For p = 0.9 the WS network is topological similar to a random graph,
with very small clustering coefficient, because almost all edges have been rewired. On this network, Min-Sum plus
reverse greedy outperforms centrality-based heuristics (EC+RG and CI+RG) and gives results that are comparable
with the best obtained using SA. For p = 0.5, MS+RG still gives a very good result, only slightly worse than SA. We
also replaced the reverse greedy procedure with a reverse Monte Carlo method, in which a dismantling set is sought by
performing the SA algorithm from the solution of the MS algorithm, by keeping only an optimal subset of the nodes
already removed. The replacement of the reverse greedy procedure with a Monte Carlo based method gives improved
results for both p = 0.9 and p = 0.5. We stress that this could be another useful strategy to improve heuristic results
even in large networks, because the SA algorithm runs on a fraction of the original graph.

When p is further decreased, the structure of the WS network significantly departs from that of a random graph
and short loops start to play a very important role, it is clear that we do not expect decycling to be a good strategy
for dismantling in this regime. In this regime SA performs about 30% better than any other algorithm, even though
complemented with the reverse greedy strategy. When we perform SA from the solutions obtained using MS, the
results are improved but still far from the best results obtained using SA alone. This is due to the fact that, in
clustered networks, the dismantling set obtained by SA is not a subset of the dismantling set obtained using any other
heuristic strategy, with an overlap that is usually small.
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