
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Detecting user actions from HTTP traces: Toward an automatic approach / Vassio, Luca; Drago, Idilio; Mellia, Marco. -
ELETTRONICO. - (2016), pp. 50-55. ((Intervento presentato al convegno 7th International Workshop on TRaffic Analysis
and Characterization tenutosi a Paphos, Cyprus nel September 2016.

Original

Detecting user actions from HTTP traces: Toward an automatic approach

Publisher:

Published
DOI:10.1109/IWCMC.2016.7577032

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2655377 since: 2016-11-09T10:44:15Z

IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234913058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Detecting User Actions from HTTP Traces:
Toward an Automatic Approach

Luca Vassio, Idilio Drago and Marco Mellia
1 Politecnico di Torino, Italy

name.surname@polito.it

Abstract—Detecting explicit user actions, i.e., requests for
web pages such as hyper-link clicks, from passive traces is
fundamental for many applications, such as network forensics or
content popularity estimation. Every URL explicitly visited by a
user usually triggers further automatic URL requests to obtain
all objects that compose the web page. HTTP traces provide a
summary of all URLs requested by users, but no information
that could be used to separate explicit from automatic requests.
Previous works have targeted this problem and ad-hoc heuristics
have been proposed. Validation has been typically done using
synthetic traces. This paper investigates whether an approach
based solely on machine learning can successfully detect user
actions from HTTP traces. A machine learning approach would
come with many advantages – e.g., it minimizes manual tuning of
parameters and can easily adapt to page structure changes. We
build both real and synthetic traces to assess the performance and
gain insights on the features that bring most advantages in classi-
fication. Our results show that machine learning reaches similar
or better performance as previous heuristics. Furthermore, we
show that models built with machine learning algorithms are
robust, presenting consistent performance in different scenarios.

Index Terms—Machine Learning, Feature Selection, Passive
Monitoring, Clickstream.

I. INTRODUCTION

A user action is a URL explicitly requested by a user to
fetch a web page. The request can be done either by clicking
on a hyperlink, by typing the URL in the browser address bar,
or through bookmarks. Knowing the URLs visited by users
is fundamental for many applications. For instance, network
security and forensics applications [1] profit from logs of
HTTP requests to detect when and how users get infected
by malware or virus. Equally, URLs requested by users can
unveil web content popularity [2] and be used for ranking and
promoting content [3]. One possible way of obtaining user
actions is by passively observing network traffic [4], [5]. One
can extract HTTP requests and save requested URLs. Similar
information can be obtained from proxy or firewall logs too.
Many off-the-shelf flow meters are able to export HTTP traces
along with traditional flow-level information [6], thus making
HTTP traces sometimes readily available for processing.

However, identifying the URLs explicitly requested by users
in HTTP traces is very hard. Modern web pages are rather
complex [7] and include many HTML files, JavaScript, multi-
media objects and dynamically generated content. These are all
automatic objects fetched by browsers. This complexity results
in hundreds of automatic objects being fetched by browsers,
but very few user actions. Furthermore, non-interactive web

applications (e.g., cloud storage clients, OS update agents, etc.)
rely on HTTP to exchange data too, and all those requests are
logged together with users’ activity.

Some methods for identifying explicit user actions in
HTTP traces have already been introduced in previous works.
StreamStructure [7] exploits the referer field1 in HTTP
requests and the widespread deployment of Google Analytics
beacon to reconstruct web page structures from HTTP traces
and to determine the URL originally requested by users.
Authors claim both precision and recall above 80% among
pages using Google Analytics. Authors of [4] follow a similar
approach, exploiting the referer field to group requests
into HTTP streams. A series of manual rules – e.g., based
on size of HTTP response, Content Type and the number
children of requests – are used to decide whether a request
is explicitly made by the user or not. Precision and recall
above 90% are claimed. Finally, authors of [3] present another
heuristic to identify user actions that operates only with the
HTTP requests. The proposed heuristic is shown to scale well
in high-speed networks, and it achieves 66%–80% precision
and 91%–97% recall, depending on parameter choices.

Previous works however present some drawbacks. First, they
are all based on manually tuned heuristics. Whereas the heuris-
tics are shown to produce good results, they require time-
consuming work to be configured, and the procedure might
even need to be performed periodically to adapt parameters as
web pages evolve. Second, given the difficult to obtain HTTP
traces simultaneously to ground truth of actual users’ requests,
previous works have mostly validated proposals using limited
synthetic datasets. In fact, ground truth datasets are generally
built by automatically visiting arbitrary links, which may miss
(create) artefacts (not) seen in real traces. More important,
synthetic datasets do not contain the variate of browsers
and behaviors of real traces. This is worrisome, given that
some browsers even skip filling the referer fields in some
cases [5], thus potentially affecting heuristics’ precision when
deployed in practice.

In this paper we study whether machine learning algorithms
can successfully be used to detect user actions on HTTP traces.
An approach based on machine learning would have many ad-
vantages. It would allow automatic tuning of parameters, could
automatically learn which features are the best candidates for

1The referer is an HTTP header field that identifies the address of the
web page that linked to the resource being requested.

Edge Router

Volunteers

Selenium

Tstat

Alexa Top-500

Internet

(a) Capture

Volunteers’
History

Tstat
HTTP Traces

Selenium
Traces

Match &
Filtering

Fe
at

ur
e

E
xt

ra
ct

io
n

Browsing
Simulation

Volunteers’ Activity

Synthetic

(b) Post-processing

Fig. 1. Workflow of the data capture and preparations.

solving the problem, and could easily adapt to the evolution
of web pages, and to different scenarios.

For testing, we build up two types of datasets to train and
validate the algorithms. First, we collect browsing histories
of 10 volunteers for several months, while also recording all
HTTP requests of their web navigation. Second, we create
synthetic datasets by revisiting a large number of arbitrary
links and websites. We post-process the synthetic traces to
vary parameters of users’ navigation, such as the time between
consecutive requests, to simulate different navigation scenar-
ios. We then extract a large number of features from both
real and synthetic datasets, which are used in experiments to
select the most informative ones for the problem. We discuss
results of using different datasets for training and testing and,
finally, explore the performance of classification algorithms
when trained with datasets of increasing sizes, by varying the
number of users for training and validation.

Our results show that machine learning can reach simi-
lar performance of the previous heuristics without requiring
manual set up of parameters. Moreover, we show that models
built with machine learning algorithms are robust, presenting
consistent performance in different scenarios.

Aiming to foster further researches and re-validations of our
results, we make our datasets available (in Weka’s format).2

II. DATASETS AND GROUND TRUTH

Fig. 1 summarizes our data collection and preparation
methodology. We simultaneously collect datasets by instru-
menting web browsers and by passively observing traffic at
edge routers. Two types of datasets are prepared as follows.

A. Volunteers’ Activity
We collect browsing histories of 10 volunteers in the cam-

pus. We extract the history from three major browsers directly

2https://lucavassio.wordpress.com/useractions

from volunteers’ machines (i.e., Safari, Chrome and Firefox).
Browsing histories include (i) timestamps of actual page
visits; (ii) the URL requested on every visit; and (iii) codes
describing page transitions – e.g., whether the visit resulted in
a redirection to another page. In total, we observed more than
12 000 visits to more than 2 000 domains in up to 3 months
of browsing activity.

In parallel, we collect HTTP traces by observing volunteers’
traffic from edge routers of our university network. We use
the HTTP monitoring plug-in of Tstat [8]. The plugin exports
information present in HTTP headers for each HTTP request
and response. This includes (i) timestamps of requests and
responses; (ii) URLs requested by client browsers; (iii) User
Agent and referer fields in the requests; and (iv) Content
Type, Content Length and Status Code in the responses.

Next, we post-process HTTP traces and browsing histories.
We first match requests and responses (when available) in
HTTP traces. Then, we label every entry in the resulting
dataset as user-action, if it matches an entry in browsing
histories, or automatic, otherwise. This step however requires
ingenuity. For example, we observe situations in which users’
visits are redirected, and the redirection is already cached at
users’ browsers. Thus, we label as user-action any non-cached
request in a redirection chain if it appears on both HTTP traces
and browsing histories.

Finally, we filter out any HTTP requests coming from web
browsers we did not capture data (i.e., Internet Explorer and
mobile browsers). We however leave requests of background
applications that we mark as automatic, such as Dropbox
or Windows Update, since our goal is to train models able
to discern such requests. Tstat recorded more than 800 000
HTTP requests related to volunteers during the captures and,
after filtering, around 600 000 HTTP requests remain for our
analysis. The resulting HTTP Trace annotated with the classes
of our problem is the input for the feature extraction algorithms
described in the next section.

B. Synthetic Datasets

We create synthetic datasets by instrumenting a Firefox
browser with Selenium.3 Selenium revisits a list of pre-
provided URLs, and automatically follow links found in the
visited pages. We provide Selenium a list with the top-
500 Alexa HTTP domains, and instruct it to follow up to
10 random links in each domain, thus generating around
5 000 simulated user actions. For these experiments, we have
disabled caching on the instrumented browser. Selenium saves
the list of visited URLs, together with timestamps of the visits.
As for the captures with volunteers, all activity in the testing
machine is observed by Tstat and all URLs are logged.

Next, we match HTTP traces with Selenium actions follow-
ing the same approach used for post-processing real traces.
Then, we simulate web browsing behaviors by replacing the
timestamps of user actions in synthetic datasets according
to a simple model of user behavior. More precisely, the
user behavior is modeled as a first-order time continuous
Markov process with exponentially distributed dwell times.

3http://www.seleniumhq.org/

For experiments, we select dwell times from an exponential
distribution with mean of 32 s, corresponding to the average
dwell time found in the volunteers’ activity dataset. The inter-
arrival time of automatic HTTP requests is kept as originally
recorded by Selenium. In total, Selenium made around 300 000
HTTP requests during our captures.

III. METHODOLOGY

Classification is the problem of identifying to which class a
new observation belongs. In our case, an observation is a URL,
which belongs to one of two classes: user or automatic action.4

In the field of machine learning, several supervised algorithms,
i.e., classifiers, have been proposed. They are based on two
steps: training and classification. During training, the system
is given a labeled dataset where the class of observations
is known. Observations are characterized by features, i.e.,
explanatory variables that describe observations. The classifier
uses the knowledge of the class to build a model that, from
features, allows it to better separate objects into classes.
During classification, the classifier uses features as input and
the model built during training to return a class as output.
Depending on the adopted model, classification may be much
faster than training.

A. Machine Learning Classifiers
Different classifiers have been proposed, based on the model

they adopt. Here, we are not interested in providing a complete
assessment of which classifier performs the best, but rather to
coarsely observe if there are significant differences for our
specific case. We arbitrarily consider three types of models
that we briefly summarize below. We use the implementations
offered by Weka for experiments.5

Decision Trees and Random Forests (RF): A decision
tree is a tree-like classifier for making sequential decisions
on features [9]. Internal nodes represent tests on features,
branches are the outcomes of tests, and leafs represent classes.
We use J48 – an open source implementation of the C4.5
decision tree. Random Forests [10] are an improvement of
trees. They construct a multitude of decision trees at training
time using subsets of features, outputting the class that is the
mode among those trees. RF are more robust to over-fitting.
Bayesian Network (BN): BN [11] is a probabilistic graphical
model that represents a set of features and their conditional
dependencies via a Directed Acyclic Graph (DAG). Such
networks are factored representations of probability distribu-
tions that generalize the naive Bayesian Classifier, one of the
simplest models.
Multi-Layer Perceptron (MLP) Neural Network: MLP is
a feedforward neural network that maps input features into
classes [12]. It consists of multiple layers of nodes in a
directed graph, where each node is a processing element with
a nonlinear activation function. We use the backpropagation
algorithm to train the network.

4In this paper we use data from volunteers which are uniquely identified
by client IP addresses and User Agents. The deployment of any approach
to identify user actions requires the isolation of traffic per user. IP addresses
and User Agents may be insufficient if many users are aggregated in NATs.
Discussing alternatives to isolate traffic is out of our scope.

5http://www.cs.waikato.ac.nz/ml/weka/

B. Performance Evaluation

For a given class c, we may have a True Positive – TP (c) –
when the returned class c is correct; a False Positive – FP (c)
– when incorrectly returned as c; a False Negative – FN(c)
– when non identified c; and True Negative – TN(c) – when
returned correctly as not c.

Given we are particularly interested in user-
action classification, we evaluate four performance
metrics: (i) Accuracy: the fraction of requests that
are correctly classified regardless of their classes; (ii)
Precision(c) = TP (c)/(TP (c) + FP (c)): the fraction of
requests correctly classified considering class c =user-action;
(iii) Recall(c) = TP (c)/(TP (c) + FN(c)): the fraction of
user-actions that the classifier is able to classify; and (iv)
F −Measure(c): the harmonic mean of Precision and Recall
for the class c =user-action.

After the model has been built on a dataset, we want to
estimate its performance for selecting the best approach. We
use stratified 10-fold cross-validation. The training dataset is
partitioned into 10 sub-samples of equal size. Of the 10 sub-
samples, one is retained for measuring the performance, and
the remaining 9 sub-samples are used for training the model.
This process is repeated 10 times, with each of the 10 sub-
samples used exactly once as the validation data. Finally, the
10 results are averaged to produce a single estimation.

Once the best method has been chosen with this validation
procedure, we assess the final performance through different
test sets, with data never seen during training. In particular, we
explicitly analyze testing data from two independent ground
truths (i.e., synthetic and volunteers’ data). This is key for net-
working applications, given the very heterogeneous scenarios
the classifier may be called to face [13]. After assessing the
final model on the test set, it is important to not tune the model
any further, otherwise it could bias the expected performance.

C. Feature Extraction and Selection

Features play a key role in classification. In previous works,
ad-hoc and custom features have been proposed. Following
the best-practice of machine learning instead, we define and
extract a large number of possibly generic features. Then,
we use feature selection algorithms to determine the most
informative ones.

1) Extracted Features: Table I summarizes the features
we extract from traces. We consider 18 features that can
be roughly grouped into four non-independent categories:
(i) based on referring relations among requests; (ii) based
on timestamps; (iii) describing properties of HTTP responses;
and (iv) describing properties of URLs. Features are sorted by
their Information Gain with respect to the user-action class in
our dataset of volunteers’ activity (see next section). Previous
works that use some of these features as part of the manually
tuned heuristics are reported in the Table.

Features are extracted by tracking URL and referer
fields, and timestamps of requests. Given a URL, we first
extract the time interval (∆t) from the previous request from
the same user. We then check if the request has a referer.
We call the URL in the referer the parent of the request.

TABLE I
FEATURES AND THEIR INFORMATION GAIN WITH THE user-action CLASS.

Feature referer Time Object URLs IG
No. Children [3][4][7] x 0.2706
Content Type [3][4][7] x 0.0287
∆t – Previous Request x 0.0140
HTTP Status Code [4] x 0.0061

URL length x 0.0060
∆t – Sibling x x 0.0048
Ads in URL x 0.0040

∆t – Parent [4][7] x x 0.0036
Content Length [4] x 0.0027
Parent Status Code x x 0.0016

Has referer? x 0.0014
Parameters in URL x 0.0014
Max ∆t – Child x x 0.0010

Parent Content Type x x 0.0007
Ads in referer x x 0.0005

Max Length – Child x 0.0005
Min ∆t – Child x x 0.0003

Parent Content Length x x 0.0002

We then determine whether the request has children – i.e., the
set of other requests that have the referer pointing to it.
Based on such relations of parents and children, we extract:
the number of children, the time interval between the request
and its eventual parent, and the time interval between the
request and its last sibling – i.e., other request sharing the same
parent. If the request has children, we compute the minimum
and maximum time to see a child, and the maximum Content
Length among all its children.

We consider also features that are straightforwardly avail-
able in our data, representing statistics of HTTP responses,
such as the Status Code, Content Type and Content Length. We
augment the feature set of a request with statistics of its parent
too (if it exists), such as by retrieving the Content Length,
Content Type and Status Code of the parent request.

Considering directly the URL string, we include features
that describe it. We manually create a blacklist of terms
associated with advertisement domains (e.g., ads, adserver,
etc.) and include a feature that shows whether the URL
contains any of the terms in the blacklist. Similarly, another
feature marks whether those terms are present in the referer
of the request. Finally, we add the length of the URL and the
number of parameters passed on the URL in the feature set.

2) Feature Selection: Feature selection is the process of
selecting a subset of relevant features for use in model
construction. The central idea when doing feature selection
is that the data may contain features that are irrelevant, and
thus can be removed to reduce the complexity of classification
models without incurring in loss of information. We compute
the Information Gain (IG) of each feature, that is the reduction
in entropy caused by partitioning the dataset according to
the values of a specific feature. Then we rank features: the
higher is the information gain, the higher the information
about the class that the specific feature carries. In Table I
features are sorted by their IGs with the user-action class,
considering volunteers’ data. Table I gives an initial overview
of discriminating power of each feature in isolation. Later we

TABLE II
PERFORMANCE OF DIFFERENT CLASSIFIERS TRAINING WITH

VOLUNTEERS’ DATASET. CROSS-VALIDATION RESULTS SHOWN.

(a) Accuracy

Training Set Tree RF BN MLP
All Features 0.9956 0.9962 0.9887 0.9923

Top-5 Features 0.9944 0.9943 0.9916 0.9905
No referer 0.9936 0.9931 0.9866 0.9831

(b) F-Measure

Training Set Tree RF BN MLP
All Features 0.899 0.912 0.774 0.822

Top-5 Features 0.872 0.866 0.819 0.752
No referer 0.846 0.831 0.700 0.529

will also discuss the performance of classifiers trained with
sub-sets of features.

We see that Number of Children is by far the feature with
the highest gain. Next, Content Type is well ranked as well.
These results confirm the intuition of the previous works [3],
[4], [7] that referer relations and the Content Type of
responses provide strong indications about user actions. Next,
the time interval (∆t) between consecutive requests of a single
user appears. We see some other features that are independent
of referer among the top features, such as HTTP Status
Code and Size of URL. Note that these features may help
in solving artifacts related to lack of referer in HTTP
requests [5]. To this ends, classifiers that do not use referer
are worth to investigate. We will train classifiers that use only
non-referer-based features in the next section.

IV. SUPERVISED CLASSIFICATION RESULTS

A. Comparisons of Models and Feature Sets

We first evaluate how the different classifiers perform. We
consider 85% the dataset of volunteers’ activity for the training
and the 10-fold cross validation, and leaving the remaining
15% for the final testing. Table II(a) reports the classification
accuracy, whereas Table II(b) reports the F-Measure for the
user-action class. Best results are marked in gray cells.

Focusing on classifiers using all features – first row in
Table II(a) – notice how accuracy is higher than 98.8%.
Random Forest and decision trees reach the best classification
results. Recalling that we have 12 000 user actions and 600 000
automatic actions, this is expected, since the two classes in our
problem are strongly unbalanced. A naive classifier that always
returns “automatic” would have similar accuracy.

As such, it is important to focus on the class user action.
Table II(b) reports the F-Measure for this class. RF is the best
classifier again, with F-Measure equal to 91, 2%, thanks to its
precision of 94% and recall of 89% when using all features.

Focusing now on the second rows of results in the tables,
notice how numbers for the classification using only the top-5
features (see Table I) are very similar to the ones with all
features. For instance, the F-Measure for the Random Forest
is reduced from 91.2% to 86.6%. These numbers confirm
that automatic feature selection is important. Then the mix

TABLE III
RANDOM FOREST MODEL TRAINED WITH VOLUNTEERS’ DATA, ALL
FEATURES. TESTING ON VOLUNTEERS’ AND SYNTHETIC DATASETS.

Testing Data Accuracy F-measure Precision Recall
Volunteers 0.9963 0.916 0.891 0.943
Synthetic 0.9891 0.792 0.685 0.938

of features representing inter-timing of requests, referer,
as well as properties of responses and URLs provides very
good classification, despite the complexity of the problem.

Last rows in the tables show how the performance varies
when all features in Table I that have relation to referer are
excluded. We see that performance decreases when compared
to previous experiments. However, even without attributes
related to referer, the J48 decision tree reaches a precision
of 89% and recall of 80% – i.e., F-Measure of 84.6%. BN and
MLP classifiers show lower-quality results.

B. Testing on different datasets

Given these considerations, the Random Forest model
trained with all the features of the Volunteer’s dataset is
selected as the best classifier. We now test its performance
on data never seen during training. The first row of Table III
reports results considering the volunteers’ test set (15% of the
dataset, not previously used), that are very similar to the cross-
validation ones of Table II. Second row of Table III reports
results against synthetic traces, that was never used during the
training. In this latter case, results are slightly worse, with a
significant decrease of precision (68.5% instead of 89.1%).
This can be explained by factors such as: (i) while volunteers
have visited thousand of pages during data collections, they
are members of a homogeneous community (academy). Thus,
the training set misses types of pages seen in more generic
top-500 Alexa domains; (ii) synthetic datasets does not real-
istically represent navigation paths (thus, referer relations)
and inter-request times. This somehow questions the results
obtained in previous works when only synthetic traces are used
for validation. Despite this, numbers are in-line with previous
works, suggesting that the machine learning approach reaches
performance similar to or better than ad-hoc heuristics.

C. Training with Different Numbers of Volunteers

Next, we perform different experiments by varying the
number of users in the training set to assess its impact on
results. We consider Random Forest and all features. On each
experiment round, we increase the diversity and size of the
training set by considering traces from an increased number of
volunteers. Then, we compute performance metrics (i) using
10-fold cross validation on the volunteers used for training;
(ii) validating the trained model using the other volunteers’
traces not included in the training. We refer to this second
case as inter-validation case.

Results are in Fig. 2, where both accuracy (Fig. 2(a)) and F-
Measure (Fig. 2(b)) are plotted for cross-validation and inter-
validation datasets. Notice that not all volunteers have the same
number of user-actions, and the number of volunteers in the

Number of Volunteers used for training

1 2 3 4 5 6 7 8 9 10

A
c
c
u

ra
c
y

0.991

0.992

0.993

0.994

0.995

0.996

0.997

Cross-validation

Inter-validation

Test

(a) Accuracy

Number of Volunteers used for training

1 2 3 4 5 6 7 8 9 10
F

-m
e

a
s
u

re
0.75

0.8

0.85

0.9

0.95

Cross-validation

Inter-validation

Test

(b) F-Measure

Fig. 2. Effects of varying the number of volunteers for training.

inter-validation set decreases as we move volunteers to the
learning set. The training with 10 volunteers corresponds to the
trained Random Forest model of the previous section, and its
testing results of Table III are reported in Fig. 2 (Test marker).

Considering the cross-validation estimates, both accuracy
and F-Measure improve until they reach a plateau. When two
or more volunteers form the learning set, results do not change
significantly in the cross-validation. More interesting and more
important, the inter-validation with independent users shows
consistent results, with numbers approaching those of the
cross-validation when seven or more volunteers are in the
learning set. In a nutshell, the behavior of these independent
volunteers have already been learned from others in the
learning set. Since our data is focused on a close community,
we cannot verify whether performance of models remains the
same in larger populations. Such evaluation requires further
datasets, and we plan to tackled that in future works.

D. Training on Synthetic Dataset

In previous sections we used for training the traces collected
from actual users, since these data is more realistic and capture
web browsing behavior of actual users. Now we investigate
what happens when considering synthetic datasets for training
and testing, as normally done in the literature. Furtehrmore,
we also check performance when the classifier is trained with
synthetic data, and then tested with the Volunteers’ dataset.
This answers the question “what happens in practice” when
actual users’ traces have to be classified.

TABLE IV
RANDOM FOREST MODEL TRAINED WITH SYNTHETIC DATA, ALL

FEATURES. TESTING ON VOLUNTEERS’ AND SYNTHETIC DATASET.

Testing Data Accuracy F-measure Precision Recall
Synthetic 0.9989 0.975 0.981 0.970
Volunteers 0.9764 0.529 0.482 0.582

As for the dataset with volunteers’ activity, classes in the
synthetic data are unbalanced, with 97% of requests marked
as automatic. Thus, a naive classifier could reach accuracy of
0.97 by labeling all requests as automatic.

As before, we consider only the Random Forest classifier
using all features. Again, performance metrics are extracted
using 85% of synthetic data for training. Then, we validate
results on either 15% of remaining synthetic data, or on the
whole volunteers’ dataset.

Table IV reports test results. We can see that the machine
learning approach seems to present an impressive performance
(much better than any heuristics presented in related works)
when looking at synthetic test set in the first row. Precision,
recall and F-Measure for the user-action class are above 97%
in this experiment. Compare these results to Table III, where
similar results are presented for volunteers’ learning set. This
means that the browsing behavior in synthetic datasets is
simpler to learn with respect to volunteers’ dataset.

However, a completely different picture emerges when the
classifier is called to work on volunteers’ data, last row
in Table IV. Performance drops considerably, with the F-
Measure becoming as low as 52.9%. This happens because
volunteers’ behavior is much more complex, and clearly the
dataset contains nuances that cannot be learned from synthetic
or simulated data. Such results illustrate the importance of real
data for training the machine learning algorithms, and question
also testing on pure synthetic traces.

E. Comparison with Methodology in [3]

We apply the heuristic presented in [3] to our datasets, to
contrast its performance with the machine learning approach
we propose. Results are in Table V.

TABLE V
PERFORMANCE OF HEURISTIC PRESENTED IN [3] TESTED WITH

VOLUNTEERS AND SYNTHETIC DATASETS.

Dataset Accuracy F-measure Precision Recall
Volunteers 0.9880 0.784 0.711 0.870
Synthetic 0.9680 0.782 0.628 0.944

Numbers in the table are compatible with what is reported
in [3] – i.e., precision is on the 66%–80% range, whereas recall
is close to previously reported results (91%–97% range). More
interesting, we can contrast these numbers to those in Table III
to compare an ad-hoc heuristic vs machine learning classifiers.
Consider the testing on volunteers’ dataset. It confirms that the
machine learning approach delivers better performance than
previous work, thanks to the ability of exploiting all features
when building the model and during classification. Overall,
machine learning offers thus a solid alternative for classifying
user actions.

V. SUMMARY AND FUTURE WORK

This paper discussed the use of machine learning classifiers
for the identification of explicit user actions in passive HTTP
traces. In particular, we have (i) evaluated different subsets
of features and machine learning models; (ii) analyzed the
importance of dataset choices for training and testing the
algorithms, and how such choices affect classification results;
and (iii) studied how the performance of algorithms varies
when different numbers of users are used for training.

Our work is a first step toward an automatic methodology
for the analysis of HTTP traces. Some of our analyses have
limitations which we plan to tackle in future work. First,
we acknowledge that our data of volunteers’ activity is not
representative of the complete Internet population, nor it
covers all types of client browsers. Yet, it is at least similar
to previous works, and allowed us to show that the machine
learning approach can reach comparable performance. Second,
the machine learning approach may also require periodical
updates of the classification model to keep pace with the
web evolution. This will require mechanisms to obtain ground
truth data from users with different profiles. Finally, although
we compared three distinct models, many other algorithms
and configurations of parameters could be tested, as well as
mechanisms to evaluate and avoid over-fitting during training.

ACKNOWLEDGMENT

The research leading to these results has been partly funded
by the Vienna Science and Technology Fund (WWTF) through
project ICT15-129, BigDAMA.

REFERENCES

[1] A. Finamore, S. Saha, G. Modelo-Howard, S.-J. Lee, E. Bocchi, L. Gri-
maudo, M. Mellia, and E. Baralis, “Macroscopic View of Malware in
Home Networks,” in Proceedings of the CCNC, 2015, pp. 262–266.

[2] R. Kumar and A. Tomkins, “A Characterization of Online Browsing
Behavior,” in Proceedings of the WWW, 2010, pp. 561–570.

[3] Z. B. Houidi, G. Scavo, S. Ghamri-Doudane, A. Finamore, S. Traverso,
and M. Mellia, “Gold Mining in a River of Internet Content Traffic,” in
Proceedings of the TMA, 2014, pp. 91–103.

[4] G. Xie, M. Iliofotou, T. Karagiannis, M. Faloutsos, and Y. Jin, “Resurf:
Reconstructing Web-Surfing Activity from Network Traffic,” in Proceed-
ings of the Networking, 2013, pp. 1–9.

[5] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Willinger, “Un-
derstanding Online Social Network Usage from a Network Perspective,”
in Proceedings of the IMC, 2009, pp. 35–48.

[6] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis with NetFlow and IPFIX,” Commun. Surveys Tuts., vol. 16,
no. 4, pp. 2037–2064, 2014.

[7] S. Ihm and V. S. Pai, “Towards Understanding Modern Web Traffic,” in
Proceedings of the IMC, 2011, pp. 295–312.

[8] A. Finamore, M. Mellia, M. Meo, M. M. Munafò, and D. Rossi,
“Experiences of Internet Traffic Monitoring with Tstat,” IEEE Netw.,
vol. 25, no. 3, pp. 8–14, 2011.

[9] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Monterey, CA: Wadsworth and Brooks, 1984.

[10] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[11] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian Network Clas-
sifiers,” Mach. Learn., vol. 29, no. 2-3, pp. 131–163, 1997.

[12] S. Haykin, Neural Networks: A Comprehensive Foundation, 1st ed.
Upper Saddle River, NJ: Prentice Hall PTR, 1994.

[13] H. Kim, K. C. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and
K. Lee, “Internet Traffic Classification Demystified: Myths, Caveats, and
the Best Practices,” in Proceedings of the CoNEXT, 2008, pp. 1–12.

