

POLITECNICO DI TORINO Repository ISTITUZIONALE

Phosphate glass fibrous scaffolds: tailoring of the properties and improvement of the bioactivity through the incorporation of mesoporous glasses

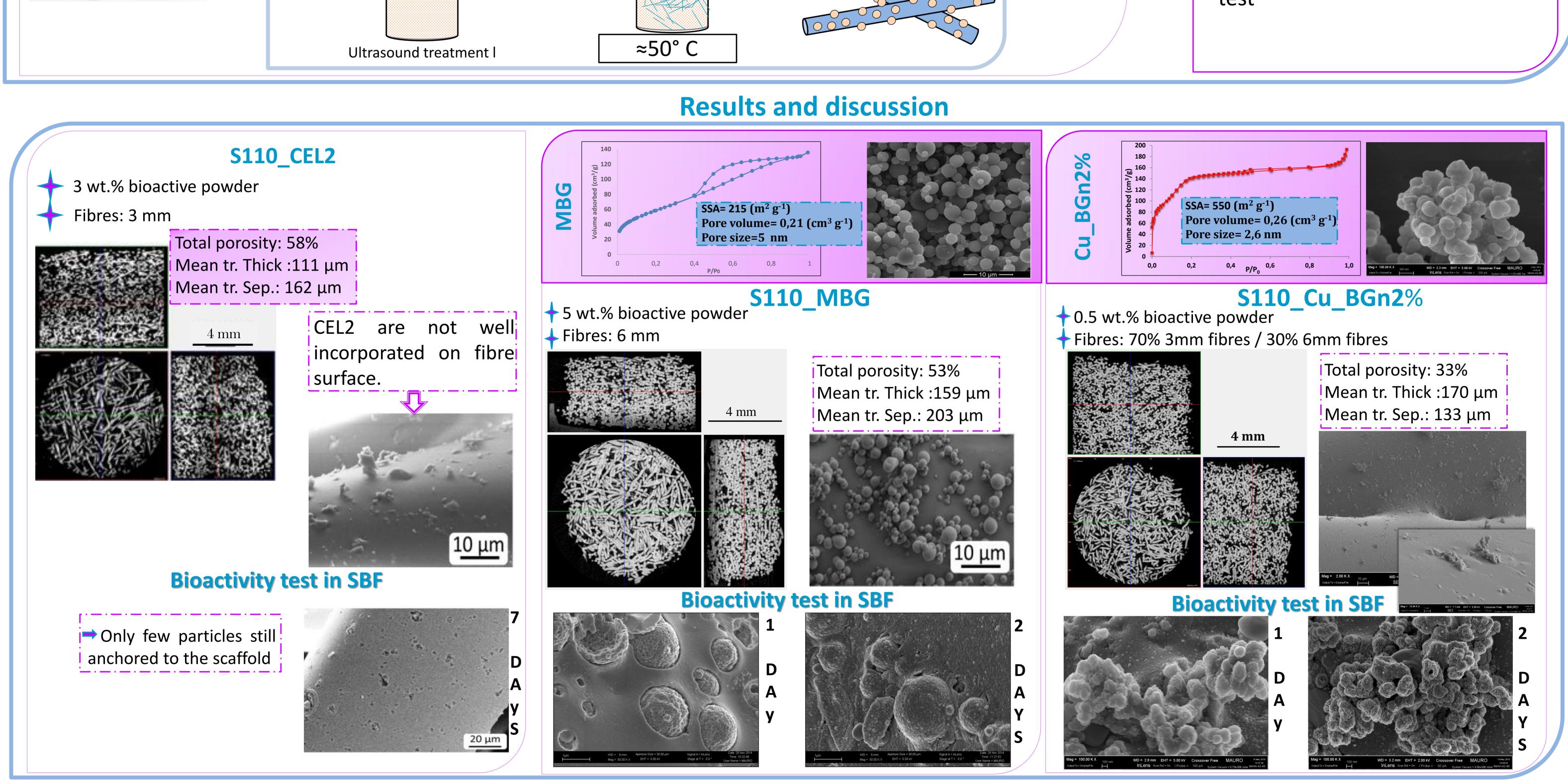
Original Phosphate glass fibrous scaffolds: tailoring of the properties and improvement of the bioactivity through the incorporation of mesoporous glasses / Novajra, G.; Boetti, N. G.; Lousteau, J.; Fiorilli, S.; Milanese, D.; Vitale-Brovarone, C (2016). ((Intervento presentato al convegno World Biomaterials Congress 2016 tenutosi a Montreal (CDN) nel May, 17-22, 2016.
<i>Availability:</i> This version is available at: 11583/2654968 since: 2016-11-03T18:06:11Z
Publisher:
Published DOI:
Terms of use: openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright

(Article begins on next page)

Phosphate glass fibrous scaffolds: tailoring of the properties and improvement of the bioactivity through the incorporation of mesoporous glasses

<u>A. Baria</u>, G. Novajraa, N.G. Boetti^b, J.Lousteau^c, S. Fiorillia, D. Milanesea, Chiara Vitale Brovaronea

^aInstitute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy ^b Istituto Superiore Mario Boella, Via P. C. Boggio 61, 10134, Torino, Italy ^c Optoelectronics Research Centre, University of Southampton, SO17 1BJ, Southampton (UK)


Introduction

Synthetic bone scaffolds are proposed as an alternative to the use of bone grafting technique for bone regeneration. Porous scaffold obtained from cutting glass fibres and randomly arranging into a mould, shows the **open porosity** necessary for tissue ingrowth and vascularization. Moreover the use of a **resorbable glass** and **mesoporous bioactive particles** (*i.e.* specific surface area up to 800 m²/g, adjustable pore size between 2 and 50 nm, large pore volume [1]) allows to obtain a 3D structure in which the newly regenerated bone substitutes the synthetic material.

Materials and methods

Phosphate glass fibers	Bioactive powder		

TiPS 2.5	CEL2	SD_MBG	Cu_BGn2%	
Fibres of a TiO2-containing		s Micro-sized mesoporous glass based on		
phosphate glass fabricated following	(45SiO ₂ , 3P ₂ O ₅ , 26CaO, 7MgO, 15Na ₂ (), SiO ₂ -CaO (80SiO ₂ , 20 CaO mol.%) system	nanoparticles (85SiO ₂ , 13 CaO, 2CuO	
the preform drawing approach [2].	4K ₂ O mol.%) produced by me	It produced by an aerosol-assisted spray-	mol.%) synthetized by an ultra-sound	
	quenching technique [3].	drying technique [4].	assisted sol-gel method.	
	Scaffold preparation		Mesoporous Powder	
			characterization	
FIBRE DRAWING	CUTTING	SHAPING SINTERING	Structural analysis: N ₂	
θ 110 μm		The structure shape	adsorption/desorption technique	
	L= 3 mm, 6 mm	is maintained after mould removal	Morphlogical analysis: FESEM	
			Scaffold characterization	
	(D 13mm, h 1	2 mm)		
			Morphological analysis: FESEM	
ADDITIONAL STEP: INTRODUCTION OF THE BIOACTIVE POWDER				
	ISPENSION OF EVAPORATION OF	DEPOSITION OF THE BIOACTIVE	Inner structure: Micro-CT	
	ISPENSION OF EVAPORATION OF EVAPORATION OF ETHANOL	PARTCILES ON THE GLASS FIBRES		
	ETHANOL		Scaffold bioactivity: SBF soaking	
- w			test	

Acknowledgement

The activity leading to this review has received funding from H2020-NMP-PILOTS-2015 under grant agreement no. 685872 (MOZART).

References

[1] D. Arcos et al. Chem Mater, 21 (2009), 1000–1009
[2] C. Vitale-Brovarone et al. Mat Sci Eng C 31 (2) (2011) 434–442
[3] Vitale Brovarone et al. Acta Biomater 3 (2007) 199–208
[4] Vitale Brovarone et al. Key Engineering Materials Vol. 631 (2015) pp 43-47

Conclusion

The incorporation of **MBG and Cu_BGn2% powder** in the **phosphate glass fibrous scaffold** resulted to be a very interesting strategy to induce hydroxyapatite formation on the scaffold. Their fast bioactive response is due to their **mesoporosity**: it involves a high surface area available for ion exchange which is responsible for the glass bioactivity

These promising results encourage further investigation in order to fully exploit the ability of mesoporous particles to act as a system for **smart release of therapeutic ions and drugs**.