
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

FPGA accelerator of algebraic quasi cyclic LDPC codes for NAND flash memories / Zaidi, Syed Azhar Ali; Tuoheti,
Abuduwaili; Martina, Maurizio; Masera, Guido. - In: IEEE DESIGN & TEST. - ISSN 2168-2356. - STAMPA. - 33:6(2016),
pp. 77-84.

Original

FPGA accelerator of algebraic quasi cyclic LDPC codes for NAND flash memories

Publisher:

Published
DOI:10.1109/MDAT.2015.2497322

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2654903 since: 2016-11-03T10:22:02Z

IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234912958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

FPGA accelerator of Algebraic Quasi Cyclic LDPC
Codes for NAND flash memories

Syed Azhar Ali Zaidi, Abuduwaili Tuoheti, Maurizio Martina, Senior Member, IEEE and Guido Masera, Senior
Member, IEEE

Department of Electronics and Telecommunications,
Politecnico di Torino, Italy

Abstract—Error correction in high density multilevel cell
NAND flash memories is of great concern and Low-Density-
Parity-Check (LDPC) codes are attracting much interest due to
their Shannon-capacity-approaching behavior. In this work, the
error performance of very large block length quasi-cyclic (QC)
LDPC codes is evaluated through a high speed FPGA based
emulator. A novel algebraic QC-LDPC code of rate 0.96 is also
proposed for the 8 KB page size of NAND flash memory and its
performance is shown. At a frame error rate (FER) of 10−9, the
constructed code achieves a coding gain of 0.15 dB with respect
to the previously proposed Euclidean geometry QC-LDPC code
and does not suffer from any error floor.

I. Introduction

The reliability of NAND flash memories has reduced due to
continuous technology scaling and the use of multi-level per
cell (MLC) approach. Typically, the uncorrectable bit error
rate is specified as 10−13 to 10−16 by the storage device
manufacturers [1]. Due to the reduced hardware complexity,
hard decision error correcting codes (ECCs) have been widely
used in NAND flash memory devices. However, as the raw bit
error rate (RBER) is getting worse, more powerful ECCs are
required. ECCs with soft decision decoding algorithm show
better error correcting performance than hard decision codes
[2].

Among the soft decision ECCs, Low-Density-Parity-Check
(LDPC) codes provide very good error correcting perfor-
mance. Recently, many researchers have used LDPC codes
for addressing the error correction in NAND flash memory
[2], [3]. However, in order to adapt LDPC codes for storage
device applications, it is necessary to evaluate their error
correcting performance at very low frame error rate (FER).
This evaluation requires the acceleration of two key functions:
i) the decoding algorithm and ii) a proper channel model. In
this paper, we present an FPGA based accelerator dealing with
both functions: the decoding part supports very high rate and
large block length LDPC codes [4], while the additive white
Gaussian noise (AWGN) model has been adopted as a good,
low complexity approximation of the channel model.

Currently, NAND flash memories are using page sizes of
4 KB and 8 KB. These page sizes are expected to increase
in the next few years, making difficult both the design and
implementation of long LDPC codes with high code rate.
Kou et al. [5] and Li et al. [6] have given the systematic
algebraic construction of LDPC codes. These LDPC codes

have high code rate and have good error correcting and error
floor performance. However, long LDPC codes require a large
amount of resource on FPGA for high throughput imple-
mentation. Moreover, the Euclidean Geometry (EG) LDPC
codes presented in [5] require a complex switching network
in the decoder. Despite of the large number of generalized
FPGA based implementations of QC-LDPC codes in the open
literature, none of them deals with such QC-LDPC codes.
Moreover, to the best of our knowledge, error performance
evaluation is not reported for such large page size storage
devices. The authors in [7] have given the error performance
of randomly constructed QC-LDPC codes up to the maximum
block length of 2 KB. In this work, we have constructed
and evaluated the performance of regular algebraic QC-LDPC
codes for the page size of 8 KB of NAND flash memories.

The contributions of this work are as follows.
• Implementation of a generalized and high throughput

FPGA emulator for very high rate and large block length
regular algebraic QC-LDPC codes.

• Less hardware resources as compared to the decoder
proposed in [4].

• Use of high-level-synthesis to implement a high quality
AWGN channel.

• Construction of a novel algebraic QC-LDPC code for
8KB NAND flash memory. The proposed code has
less hardware complexity and improved performance as
compared with the previously proposed EG-LDPC code
[3].

II. LDPC decoding and hardware acceleration

LDPC codes are characterized by a binary parity check
matrix H with M rows and N columns. The H matrix is
sparse and valid codewords x satisfy H · x′ = 0, where
x′ is the transpose of x. In the Tanner graph terminology,
columns of H (associated with bits of x) correspond to variable
nodes, and rows (associated with parity equations) correspond
to check nodes. Degrees of check and variable nodes are
equal to the numbers of ones along rows and columns of
H, respectively. In structured LDPC codes, H is organized
with partially regular submatrices, to simplify encoding and
decoding procedures. In particular, QC-LDPC codes are a well
known class of structured codes, where H can be represented
as an Mb×Nb array of z× z circulant permutation submatrices,
with M = Mb×z and N = Nb×z (z is called the circulant size of

2

Xilinx VC709 FPGA Borad

PC

Software

µB

Proc
Config

and

Control

Regs

LDPC

Emulator

Hardware

Start
NextSNR
Stop

Config Data

Read_data

Resume
Done_config

RS-232

Curr_Seeds

Wrong_frames

Total_iters

(a)

Contr

ol

Unit

LLR

Generator

LDPC

Decoder

Frame error

Counter

1/σ 2/σ initial

seed

values

Int_

Bits

Frac_

Bits

current seed

valuesNo_iters

Wrong_frames

Op_pc

vld

Start

NextSNR

Stop

Resume
Done_confg

llr

Read_data Done_dec

max_iters

Frames_

Iters cnt

Done_dec

No_frames

cmplt
total_iters

total_frames

(b)

Figure 1: Block Diagram of (a) Complete emulation system and (b) Details of the LDPC emulator hardware.

H). Each submatrix is either a zero matrix or the superposition
of w cyclic-shifted identity matrices (w ≥ 1 is referred to as
the circulant weight of the code).

LDPC decoding is usually handled via Belief Propagation
algorithm or one of its approximations [8]. The decoding
process iteratively updates bit error probabilities (usually rep-
resented as Logarithmic Likelihood Ratios or LLRs), which
express both the value of codeword bits (sign) and their
reliability (magnitude). The decoding algorithm can be seen
as the repetitive exchange of messages between variable and
check nodes, which leads to the progressive refinement of
LLRs towards correct decoded bits.

FPGA based LDPC emulators can be classified based on i)
the type of supported LDPC codes (structured, unstructured or
both), ii) the architecture of the decoder (serial or parallel),
iii) the decoding algorithm and iv) the target application. An
FPGA emulator for structured LDPC codes is presented in [9].
The emulator is able to achieve an average throughput of 1.35
Gbps for the (2048,1723) Reed-Solomon LDPC code using a
single partially parallel core based on the normalized min-sum
algorithm [8]. However, the throughput of the decoder scales
down increasing the circulant size.

The authors in [7] and [10] investigated the error floor per-
formance of LDPC codes for the magnetic recording channel.
In [7] the authors implemented an FPGA based simulator for
hardware-aware and performance oriented QC-LDPC codes.
They constructed randomly high rate QC-LDPC codes with
maximum circulant and column weight of 2 and 4, respectively.
The block lengths of the codes used are from 4608 to 16384
with rates varying from 8/9 to 15/16. The maximum throughput
is 360 Mb/s with iterative detection and decoding. In [10], a
high throughput emulator is designed resorting to multi core
processing. The system occupies three BEE2 boards, each one
containing five Xilinx Virtex-II Pro FPGAs, and implements
27 parallel LDPC decoding cores, with code of length 4923
and code rate 8/9. The throughput of each core is 175 Mb/s,
achieving a total throughput of 4.725 Gb/s. However, the

implementation of such large parallelism is difficult and costly
for large block length LDPC codes.

The emulators discussed above have mostly targeted struc-
tured LDPC codes as they feature simple encoder and decoder
architectures. Indeed, the circulant weight of structured LDPC
codes is usually 1. For EG-LDPC codes [5], the circulant
weight is rather high and it is difficult to find a conflict free
memory mapping for these high-circulant-weight codes. The
authors in [11] have proposed a partially parallel decoder
architecture for regular QC-LDPC codes. To manage high-
circulant-weight matrices they proposed to use one separate
memory bank for each cyclically shifted identity matrix with
a switching network between the memories and the variable-
node and check-node processing units. However, as the circu-
lant weight becomes high, a large number of memory banks are
required and the complexity of the switching network increases
as well.

III. LDPC Emulator

This section presents the proposed FPGA emulator for reg-
ular QC-LDPC codes. The emulator is implemented on a Xil-
inx VC709 FPGA board, containing a Virtex-7 XC7VX690T
FPGA device. The emulator does not require the use of
hardware aware QC-LDPC codes and achieves a throughput of
more than 1 Gb/s. Moreover, the emulator can also be used to
evaluate the performance of very high circulant weight LDPC
codes, such as EG-LDPC codes.

A block diagram of the complete emulator system is shown
in Fig. 1 (a). The hardware is controlled by a GUI based
software running on a PC. The communication between the
hardware and the PC relies on the RS-232 port. The Microb-
laze (µB) soft processor receives the configuration data and
the control signals from the PC and sends them to the Config-
uration and control registers block. Similarly, it also receives
the data from the LDPC Emulator Hardware unit, through the
Configuration and control registers block, and sends them to
the PC. The control signals, shown as dotted lines in Fig. 1

3

SG1

SG2

SGPl-1

SGPl

1xz

1xz

1xz

1xr

Encoder

+

+

x

x

x

x

+

+

Flt_to_Fxd

Converter

Flt_to_Fxd

Converter

Flt_to_Fxd

Converter

Flt_to_Fxd

Converter

Decoder

Abs(1/σ) 2/σ

AWGN Noise

Generators

Q

Int_Bits Frac_Bits

Q

Q

Q

z

z

z

r

Pj

initial seed

values

current

seed values

initial

seed

values

current

seed

values

vld

vld

vld

vld

Start_awgn

Shift Registers

Figure 2: Architecture of the LLR Generator.

(a), include the Start and Stop signals, for starting and stopping
the simulation, NextSNR signal for moving to the next signal-
to-noise ratio (SNR) point, Resume signal for resuming the
simulation for a given SNR point and Done config signal,
which is asserted when the configuration of the hardware is
completed for the current SNR point. The Read data signal is
driven by the LDPC Emulator Hardware module for reading
the number of wrong frames, total iterations of the decoder
and the current seed values of the noise and the source bit
generators. The Read data signal is activated after a specified
number of frames is completed or the maximum number of
wrong frames is reached.

The main blocks of the LDPC Emulator Hardware are
shown in Fig. 1 (b). It consists of the LLR Generator, the
LDPC Decoder, the Frame error Counter, the total iterations
and total frames counters (Frames Iters cnt) and a control
unit. The configuration data for the LLR Generator includes
i) the initial values of the seed for the noise samples and the
source bit generators, ii) the number of integer and fractional
bits for the LLRs of the channel symbols, iii) 1/σ and 2/σ
values, where σ is the standard deviation of the noise at a given
SNR point. Similarly, the maximum number of iterations and
the number of frames, after which the value of total iterations is
read, are applied to the LDPC Decoder and Frames Iters cnt
modules, respectively. The total frames output is read when
the maximum number of wrong frames is reached. The decoder
asserts the Done dec signal after decoding completion of each
frame and provides i) the number of iterations (No iters) used

to complete the decoding and ii) the output of the parity check
circuit, which is high when the frame is not decoded correctly.
These data are added to the current values of the total iterations
and the wrong frames, respectively, by means of two counters.

A. LLR Generator

The LLR Generator hardware, shown in Fig. 2, produces the
source bits, encodes the information frame, adds the Gaussian
noise to model the AWGN channel and generates the LLRs of
the received bits. These LLRs are transfered to the decoder.
As detailed in Fig. 2, source bit generation is implemented
with Pl source generators (SGs), S G1 to S GPl , where Pl is the
number of LLRs generated in parallel by the LLR generator.
For simplicity, the architecture of the LLR generator is shown
for the case Pl = Nb−Mb+1 and Mb = 1. The first Pl−1 SGs
generate z bits, whereas the last SG generates ldr bits, where
ldr is the number of redundant rows (linearly dependent rows)
in the parity check matrix. These information bits are stored
in the corresponding shift registers attached to the source
generators.

After generating the information frame, the whole frame is
encoded. The encoder takes z clock cycles to encode one frame
and produces Mb parity bits per clock cycle. These Mb parity
bits correspond to the last Mb sub-matrices of the H matrix.
After encoding the frame, the codeword bits cn are modulated:
as an example, for the case of a single bit memory cell, simple
two level amplitude modulation is used and mbn = (−1)cn . The

4

LLR for each codeword bit cn is calculated as follows:

ln = (σN (0, 1) + mbn) × 2/σ2. (1)

For hardware implementation purpose, (1) is modified as
follows

ln = (N (0, 1) + mbn/σ) × 2/σ. (2)

Thus, if 1/σ is pre-computed, then (2) needs a single multi-
plication. The single precision floating point AWGN generator
proposed in [12] is used to produce high quality noise samples.
The AWGN generator is based on the Box-Muller algorithm
and is implemented using the Xilinx high-level-synthesis tool
Vivado HLS 2014.2. The HLS tool provides the flexibility
of specifying the throughput of the design and therefore,
high speed implementations can be obtained. The high speed
implementation and the high quality of the noise samples are
very important for accurately measuring the BER or FER,
especially at high SNR.

The Flt to Fxd Converter module is devoted to represent
the LLRs as Q bit fixed point values, where Int Bits and
Frac Bits are the numbers of integer (excluding the sign) and
fractional bits, respectively. The vld signal (as shown in Fig. 2)
is asserted whenever there are valid LLR values at the output
of Flt to Fxd Converter module. There are 31 pipeline stages
in the AWGN generator, 7 pipeline stages in the floating point
adder and multiplier and 17 pipeline stages in the Flt to Fxd
Converter. Therefore, after asserting the Start awgn signal, a
valid LLR value appears at the input of the decoder after 55
clock cycles. The architecture works in pipeline, namely the
SGs generate the source bits of the next frame while the LLRs
are transfered to the decoder.

B. Decoder
The partially parallel decoder architecture for regular QC-

LDPC codes presented in [4] has been reused to implement
the decoder core. The initial architecture was conceived to
support generic EG-LDPC codes with high code rate and
circulant weight. Key architectural features include compile
time flexibility, with respect to the size and rate of the selected
code, high level of parallelism, both at the decoder level
and inside the check node unit, support for layered decoding
scheduling. Two important changes have been introduced in
the decoder architecture. i) To save hardware resources, right
shifting in LLR memory due to pipeline stages in the decoder
is avoided by connecting each processing element to the LLR
memory through multiplexers. This results in a reduction of
50% resources of FPGA as compared to the decoder in [4].
ii) Decoding performance has been enhanced, by adopting
the conditional variable to check node updating rule proposed
in [8], which avoids the performance degradation introduced
by a-posteriori LLR saturation. The update rule is given as
follows:

VTC(k)
i j =

 APP(k−1)
j if APP(k−1)

j =APP(max)
j

APP(k−1)
j −CTV (k−1)

i j else
, (3)

where VTC(k)
i j is the variable-to-check (VTC) message in kth

iteration from jth variable node to ith check node, where 1 ≤
i ≤ M and 1 ≤ j ≤ N, respectively.

IV. Results

In this section, FPGA implementation and simulation results
of the two algebraic QC-LDPC codes developed for the 8 KB
page size of NAND flash memory with 3450 (5%) spare bits
are discussed.

The first code used is the rate 0.961, (69615,66897) EG-
LDPC code [3]. The 4095× 69615 parity check matrix of this
code consists of a 1×17 array of 4095×4095 sub-matrices. The
row and column weights are 272 and 16, respectively. There
are 1377 linearly dependent rows in the matrix. For adapting
this code to the 8 KB page size of NAND flash memory, 1361
zero bits are inserted at the beginning of the information bits
and therefore, the code becomes a (68254,65536) shortened
EG-LDPC code [3]. For the shortening process, the first
1361 locations of the LLR memory on the decoder side are
initialized with the maximum LLR value.

The second developed code is the rate 0.96, (68544,65861)
algebraic QC-LDPC code, based on the construction method
proposed in [6]. We choose the Galois field (GF) 449 and
took two subsets of elements from this field, i.e. S 1 = {α0,
α1, α2, α3, α4, α5} and S 2 = {α50, α51, α52, . . ., α202},
where α is the primitive element of GF. The multiplication
factor β [6], is taken as 1. Based on these two subsets and
β, we constructed a 2688 × 68544 parity check matrix that
consists of 6 × 153 array of 448 × 448 sub-matrices. Each
sub-matrix is a cyclically shifted identity matrix. There are 5
linearly dependent rows in the matrix. The row and column
weights are 153 and 6, respectively. For this matrix we obtain
a (68219,65536) shortened code by inserting 325 zero bits to
the information bits. The shortening process is the same as for
the (69615, 66897) code.

We used the Xilinx Vivado 14.2 tool for all the design flow,
including simulation, synthesis, mapping and place and route
of the whole system for the two codes. We targeted the Xilinx

Table I: FPGA Implementation Results of (69615,66897) EG
and (68544,65861) Algebraic QC-LDPC Codes.

(69615,66897) EG-LDPC Code
AWGN

Generator Encoder Decoder Overall
System

6-input LUTs 4360
(1.00%)

37365
(8.6%)

233368
(53.87%)

339269
(78.32%)

Slice Registers 4296
(0.5%)

69615
(8%)

160897
(18.57%)

351470
(40.57%)

Block RAMs 1 (0.0%) 0 66 (4.5%) 97 (6.6%)
DSP Slices 56(1.55%) 0 0 640 (17.78%)

clock frequency - - - 100 MHz
Throughput
per iteration - - 1.47 Gb/s 1.47 Gb/s

(68544,65861) Algebraic LDPC Code
AWGN

Generator Encoder Decoder Overall
System

6-input LUTs 4360
(1.00%)

72701
(16.78%)

154364
(35.63%)

308736
(71.26%)

Slice Registers 4296
(0.5%)

65861
(7.6%)

99802
(11.5%)

301321
(34.77%)

Block RAMs 1 (0.0%) 0 6 (0.4%) 48 (3.26%)
DSP Slices 56(1.55%) 0 0 640 (17.78%)

clock frequency - - - 100 MHz
Throughput
per iteration - - 1.51 Gb/s 1.51 Gb/s

5

XC7VX690T FPGA device for the implementation of the
system. For the (69615,66897) EG-LDPC code, we selected
the parallelism factor for the decoder as 7 and therefore, the
number of rows processed by a single check node unit of the
decoder is Nr = 585. We used 7 bits for the representation
of LLRs, where 2 bits are used for the fractional part. The
resources consumed by the different modules and the overall
resources of the hardware are shown in Table I. The floating
point AWGN channel unit consumes only 1% of the slice
LUTs of FPGA, while consuming more dedicated DSP slices.
The maximum clock frequency is 100 MHz (9.9 ns). The
parallelism factor at the LLR Generator module, as mentioned
in section III, is taken as 17 i.e. Pl = Nb and, therefore,
17 LLRs are generated in parallel and transfered to the LLR
memory. As a consequence, it takes s = 4095+55 clock cycles
to transfer all the LLRs of the channel to the decoder, where
4095 is the circulant weight and 55 clock cycles are required
due to the pipeline stages in the LLR Generator module. The
throughput per iteration of the system for this code is also
given in Table I and can be calculated as

T =
z × fclk

s + no iters × (Nr + 5)
, (4)

where fclk is the clock frequency, s is the LLR transfer
latency and no iters the number of iterations. For the second
(68544,65861) QC-LDPC code, we took the parallelism factor
for the decoder as 6 with Nr = 448. We used 7 bits for the LLR,
where 0 bits are used for the fractional part. The hardware
resources for this code are summarized in Table I. The number
of clock cycles required to transfer the LLRs for this case is
equal to s = 448×ceil(153/17)+55, where the same parallelism
factor of 17 is taken for the LLR generator. The throughput per
iteration for this code is also given in Table I. As it can be seen
from the table, this code is able to achieve a higher throughput
than the EG-LDPC code due to the number of check nodes
which are almost 65% less than EG code. Moreover, this code
features the degree of the check node unit which is almost half
the EG code, therefore, the resources consumed by the decoder
are less than the ones required by the decoder of the EG code.
The encoder of this code consumes twice the resources as
compared to the encoder of the EG code. This is due to the
fact that all the Mb parity bits (Mb = 6 for second code) are
generated in parallel and the encoding process is completed in
448 clock cycles. The resources can be reduced by generating
one parity bit per clock cycle. In this case, the encoding will
be done in 2688 clock cycles, which is still faster than the first
code i.e. 4095 clock cycles to generate all parity bits.

Fig. 3 shows the comparison of the FER performance of
both codes. The normalization factor γ in the normalized min-
sum decoding algorithm used for the EG-LDPC code is 0.25,
whereas the γ used for the second code is 0.375. The maximum
number of iterations of the decoder is set to 8 for both codes.
The normalization factor is set based on the simulation results
obtained from a software model written in C. 100 wrong
frames are observed at each SNR point except at a FER of
10−9 and 10−10, where at least 10 and 4 wrong frames are
observed, respectively. The average number of iterations for
the first and second code at higher SNR are observed to be

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

5.3 5.4 5.5 5.6 5.7 5.8

FER

SNR

 !"!#$%!!&"'() *)+),-.$(

 !&$//%!$&!#() *)+),-0'$(

Figure 3: Frame error rate performance of rate 0.96 QC-LDPC
codes.

Table II: Throughput and Block length Comparison with
Previous Implementations (single core versions)

[7] [10] [9] This work
Max. Block length 16384 4923 2048 69615

Max. Rate 0.937 0.89 0.84 0.96
Throughput
Single core 360 Mb/s 175 Mb/s 1350 Mb/s 1150 Mb/s

3.2 and 4.23, respectively. Therefore, an average throughput
of 1.15 and 1.13 Gb/s is achieved for these codes. The FER
of 10−9, which requires simulation of at least 1010 frames, is
achieved in 7 days. Both codes do not show any error floor
at a FER of at least 10−9. However, Fig. 3 shows that the
proposed code outperforms the EG code by 0.15 dB at a FER
of 10−9. The software simulations show that the number of bit
errors/block error at different SNR points are also less for the
proposed code as compared to the EG code. It also features
less memory requirements and reduced decoder complexity,
which are important features for the application to NAND flash
memories.

Table II shows the comparison of the block lengths, code
rate and throughput of our work with the state-of-art FPGA
based implementations. As it can be seen from the table,
the block length of the code is very high as compared to
the previously reported work. Moreover, to the best of our
knowledge, the high speed FPGA implementation of very high-
circulant-weight LDPC codes is not addressed in the literature.
The speed of our implementation is comparable to the speed
of the fastest reported emulator (single core version). This
speed can be increased by increasing Pl. As an example, by
taking Pl = 22 for the second code, which consumes only
71.26% LUTs of FPGA, the average throughput of 1.35 Gb/s
can be achieved. This increase in Pl requires two more AWGN
generators, 5 more SGs, adders, multipliers and Flt to Fxd
Converter modules, respectively. As these modules use more
DSP slices and less logic resources of FPGA, this increase in

6

parallelism factor will result in slight increase in the percent-
age of the LUTs usage of FPGA. Moreover, the achievable
throughput of all implementations reported in Table II scales
linearly with the number of allocated cores.

V. Conclusion
For addressing the error correction in 8 KB page size of

NAND flash memories, we evaluated the performance of very
high code rate (0.96) and large block length algebraic QC-
LDPC codes through a generalized and high throughput FPGA
based emulator system. We used two codes, (69615,66897)
EG-LDPC code and (68544,65861) algebraic QC-LDPC code.
Simulation results on AWGN channel show that these codes
do not suffer from error floor at a FER of 10−9. Moreover,
the proposed (68544,65861) algebraic QC-LDPC code shows
good error performance and reduced hardware complexity as
compared to the EG-LDPC code.

References
[1] N. Mielke, T. Marquart, Ning Wu, J. Kessenich, H. Belgal, Eric Schares,

F. Trivedi, E. Goodness, and L.R. Nevill. Bit error rate in NAND flash
memories. In Reliability Physics Symposium, 2008. IRPS 2008. IEEE
International, pages 9–19, April 2008.

[2] G. Dong, N. Xie, and T. Zhang. On the Use of Soft-Decision Error-
Correction Codes in NAND Flash Memory. Circuits and Systems I:
Regular Papers, IEEE Transactions on, 58(2):429–439, 2011.

[3] Jonghong Kim and Wonyong Sung. Rate-0.96 LDPC decoding VLSI
for soft-decision error correction of NAND flash memory. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 22(5):1004–
1015, May 2014.

[4] S.A.A. Zaidi, M. Awais, C. Condo, M. Martina, and G. Masera. FPGA
accelerator of quasi cyclic EG-LDPC codes decoder for NAND flash
memories. In Design and Architectures for Signal and Image Processing
(DASIP), 2013 Conference on, pages 190–195, Oct 2013.

[5] Yu., S. Lin, and M.P.C. Fossorier. Low-density parity-check codes based
on finite geometries: a rediscovery and new results. Information Theory,
IEEE Transactions on, 47(7):2711–2736, 2001.

[6] Juane Li, Keke Liu, Shu Lin, and K. Abdel-Ghaffar. Algebraic
quasi-cyclic LDPC codes: Construction, low error-floor, large girth
and a reduced-complexity decoding scheme. Communications, IEEE
Transactions on, 62(8):2626–2637, Aug 2014.

[7] H. Zhong, T. Zhong, and E.F. Haratsch. Quasi-Cyclic LDPC Codes for
the Magnetic Recording Channel: Code Design and VLSI Implemen-
tation. Magnetics, IEEE Transactions on, 43(3):1118–1123, 2007.

[8] C. Marchand, L. Conde-Canencia, and E. Boutillon. Architecture and
finite precision optimization for layered LDPC decoders. In Signal
Processing Systems (SIPS), 2010 IEEE Workshop on, pages 350–355,
Oct 2010.

[9] F. Angarita, V. Torres, A. Perez-Pascual, and J. Valls. High-throughput
FPGA-based emulator for structured LDPC codes. In Electronics, Cir-
cuits and Systems (ICECS), 2012 19th IEEE International Conference
on, pages 404–407, 2012.

[10] Yu Cai, S. Jeon, Ken Mai, and B.V.K.V. Kumar. Highly parallel
FPGA emulation for LDPC error floor characterization in perpendic-
ular magnetic recording channel. Magnetics, IEEE Transactions on,
45(10):3761–3764, Oct 2009.

[11] Z. Wang and Z. Cui. Low-Complexity High-Speed Decoder Design
for Quasi-Cyclic LDPC Codes. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 15(1):104–114, 2007.

[12] S.A.A. Zaidi, M. Martina, and G. Masera. Rapid prototyping of
floating point AWGN channel using high-level synthesis. In Forum on
specification and Design Languages (FDL),2014 Conference on, pages
165–168, Oct 2014.

