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To improve the energy efficiency of a large building stock, authority planners and designers need to identify which

buildings consume most energy and why. For this purpose, this paper provides a data mining-based methodology for

setting decision-making rules to identify patterns of energy consumption for a large data set of flats and evaluate

the potential effects achievable by retrofitting actions. The calculated normalised primary energy demand (EPDn) and

the geometrical, thermo-physical and heating system attributes of 92 906 flats are analysed. Firstly, an accurate

statistical description of the building stock and its main technological features is provided. Secondly, a supervised

classification algorithm to rank flats as ‘low’, ‘medium’ or ‘high’ EPDn is developed based on the flats’ attributes. To

classify EPDn, reference threshold values are set between the attributes. These values will benefit authority planners

and designers when setting performance objectives. Finally, the high-EPDn flats are analysed in depth through an

unsupervised classification algorithm. Thus, intrinsic properties and hidden dependencies are discovered. Moreover, a

manageable number of real reference flats representative of the entire high-consumption class are identified. These

real reference flats can be used to study the causes of high-EPDn and propose different energy retrofit actions.
Notation
DD degree day
EPD primary energy demand
EPDn normalised primary energy demand
EPDnDD normalised primary energy demand on degree day
rFi real reference flat of i-cluster
S/V aspect ratio (ratio of heat transfer surface on heated

volume)
Uenv average U-value of the vertical opaque envelope
Uw average U-value of the windows
z(c) z-score centroid for an attribute in a specific cluster
z(x)n z-score of the n attribute
h average global efficiency of the system for space

heating and domestic hot water

1. Introduction
In recent years, the application of energy efficiency and sustainable
green design measures in new and existing buildings has become a
crucial issue for building owners, designers, contractors and
facility managers (Kim et al., 2011; Xiao and Fan, 2014).
Moreover, the amount of data generated by energy simulations,
surveys and building management systems has increased
dramatically. In the study of Swan and Cantab (2015), different
UK practitioners were interviewed, highlighting the need for
standardised and structured analysis methods to extract and
transfer knowledge from these huge amounts of data.

In particular, the application of intelligent analysis methods to large
data sets would benefit designers and authority planners who need to

■ identify the major causes of high energy consumption and
suggest rules for incentivising energy retrofit actions
(Fracastoro and Serraino, 2011)

■ evaluate benchmark values to drive policies for building
sustainability design approaches (Capozzoli et al., 2003;
Elghali et al., 2008; Parkin et al., 2003)
1
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■ have a framework of building stocks (Aksoezen et al., 2015;
Capozzoli et al., 2015a) and evaluate a manageable number of
reference buildings representative of the entire data set
(Filogamo et al., 2014)

■ provide simple tools for a fast estimation of energy
consumption classes (Motawa, 2015).

In the past decade the use of data mining in the building energy
sector has increased considerably in different applications
(Capozzoli et al., 2015c; Fan et al., 2015; Khan et al., 2013;
Kumar, 2011; Yu et al., 2013). In this paper, some of these
techniques are proposed to analyse a data set of 92 906 energy
certificates related to residential flats. The data set contains
information on envelope and technical plant features and on
primary energy demand (EPD) for space heating and domestic hot
water (DHW) for each flat, calculated in ‘standard rating’
conditions, according to the methodology proposed in EN ISO
13790 (ISO, 2008), UNI TS 11300-1 (UNI, 2008a) and UNI TS
11300-2 (UNI, 2008b).

This paper aims to cover some crucial aspects of practical
relevance for both authority planners and building energy experts
and designers. Section 2 provides an overview of the applied
methodology, and Section 3 offers briefly the theoretical basis for
the data mining techniques adopted in the present work. In
Section 4 an accurate description of the main attributes and
construction typologies of the flats composing the data set was
carried out. Section 5 describes the results obtained by a
classification process of the data set according to the work carried
out in Capozzoli et al. (2015b), while Section 6 investigates
the intrinsic properties and hidden dependencies of high-
consumption flats and proposes specific tailored retrofit actions. In
2
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particular, the present work on the basis of a classification process
(Capozzoli et al., 2015b) does the following.

■ It offers authority planners a simple method to set reference
threshold values (to respect or to create incentives) for some
thermo-physical attributes that drive the classification of
energy consumption (Section 5). Moreover, it provides a
method to evaluate a manageable number of real reference
flats representative of the entire high-consumption class
(Section 6).

■ It provides building energy experts and designers with a set of
decision-making rules, based on a small number of attributes
that can drive different patterns of normalised primary energy
demand (Section 5). The intrinsic properties and hidden
dependencies of the high-consumption flats are identified with
the aim of finding specific possible retrofit actions on the
basis of the small number of variables available (Section 6).

2. Methodology
Figure 1 highlights the main steps that were carried out in this
paper. A pre-processing analysis (data preparation) in the first
part of the work was helpful to clean the data set by removing
outliers. Afterwards, a data transformation analysis was performed
introducing criteria for labelling each building as having a ‘high’,
‘medium’ or ‘low’ normalised primary energy demand (EPDn).
The classification and regression tree (CART) algorithm, which
consists of a supervised multistage decision-making process to
classify the observations in a finite number of classes, was
implemented. The output of the model is a flow chart subdividing
the observations into homogeneous subsets (Yu et al., 2010)
according to respect response, represented in the model by
categorical variables related to primary space heating and DHW
Step 1 Step 2 Step 3
Pre-processing analysis Data mining Post mining – knowledge

discovery

Data preparation Classification process  Cluster analysis on
‘high‘-consumption flats• Selection of samples (from

energy certificates)
• Outlier detection

• Normalisation on heated surface
and degree days

Cross-validation

Influencing attributes:

Response variable:

• K-means algorithm for
identification of homogeneous

cluster of flats

• Apect ratio
• Global system efficiency
•  U-value of opaque walls

• U-value of windows

Data transformation

• EPDn (‘low‘, ‘medium‘, ‘high‘)

Results analysis
• Threshold values identification

• CART confusion matrix
• CART limits

• Algorithm identification (CART)
• Rules setting the tree arrest
• Selection of impurity indices

• Decision rules (training data set)

Selection of variables

Results analysis
 • Identification of real reference

 flats (rF1, rF2, rF3)
• Selection of potential retrofit

actions (A1, A2, A3)
Figure 1. Framework of the paper
g, all rights reserved.
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energy demand. The classification process made it possible to
introduce a set of decision rules capable of outlining the splitting
criteria. The outcome of this process consists of useful
information that helps to recognise the patterns which drive the
evaluation of the energy performance of buildings. Furthermore, a
detailed analysis on the high-consumption flats was performed
using K-means algorithm. This kind of analysis made it possible
to group the high-consumption samples into similar clusters
and to find for each of them a real reference flat. Some useful
information was retrieved regarding the attributes that need to be
considered in potential retrofitting measures.

3. Methods
In recent years, the techniques of machine learning, data mining
and knowledge discovery in data set were successfully applied for
energy saving purposes (Yu et al., 2013). In this scope, pattern
recognition is a subarea of data mining and consists of the analysis
of patterns within the data in order to identify a correct
classification. The aim of pattern recognition is to learn classifier
data (patterns) based on prior knowledge or statistical information
extracted from the pattern. In general, these classification algorithms
treat groups of measurements or observations, defining points in an
appropriate multidimensional space. In this study, a supervised
classification algorithm (CART) was developed. This technique
produces only a binary split (considering all 2k − 1 ways of
creating a binary partition of k attribute values) beginning with the
root node, which contains the whole learning sample, and splitting
each subsequent parent node into two child nodes. The split is an
iterative process that splits the data set into subclasses. The best
way to divide the record depends on the type of measure chosen.
This measure is defined in terms of the record’s class distribution
before and after splitting. In this work, the Gini index was used
as a degree of impurity of each node. The statistical performance
of each classification algorithm has to be evaluated in order
to apply it into a new data set. The k-fold cross-validation is
 [ POLITECNICO DI TORINO] on [27/06/16]. Copyright © ICE Publishing, all
the method used in this paper to evaluate the accuracy of the
classification tree.

According to D’Oca and Hong (2015), in a classification process,
a minimum confidence of 50% ensures the reliability of each leaf
node. In the studies of Gao et al. (2010) and Yu et al. (2010), the
accuracy of the whole classification process is considered
acceptable where the uncertainty is lower than 20–30%.

For a further investigation of a determined group of samples, an
unsupervised classification algorithm (K-means) was performed
(Wu, 2012) on the most energy-consuming samples. This is an
algorithm that allows for objects with similar characteristics to be
grouped together into clusters. In particular, each cluster captures
the natural structure of the data. Since the data are located in an
n-dimensional space, the similarities according to distance-based
metrics were evaluated. In this study, the Euclidian distance was
used in order to apply the K-means algorithm correctly. This process
requires as an input parameter the number k of partitions. The
optimal number of partitions (k) was valued using the minimisation
of the Davies-Bouldin index as the internal validation method.
4. The adopted data set

4.1 Construction of the data set
The value of EPD was calculated using the standard rating
methodology suggested in the aforementioned technical standard
and considering energy needs for DHW production and space
heating. The DHW energy demand was calculated by considering
standard values referring to floor area, while the space heating
energy demand was evaluated by considering building energy
balance. The modelling of the building geometry considers real
shapes and self-shading or overshading of other buildings. The
quasi-steady-state calculation method is based on the monthly
balance of heat losses (transmission and ventilation) and heat
Q

a c

b
a.1

b.1

c.1
Figure 2. Examples of possible construction typologies with
different positions of the flats in multifamily buildings. Flats
indicated as ‘a’ are characterised by lower aspect ratios, while ‘c’
flats have higher aspect ratios
3
 rights reserved.
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Typology 1: U = 0·338 W/m2 K, s = 0·615 m
4
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Typology 2: U = 0·984 W/m2 K, s = 0·640 m

Material
 s: m
 k: W/m K
 all rights reserved.
Material
 s: m
 k: W/m K

Plaster
 0·020
 0·800
 Plaster
 0·020
 0·800

Polystyrene
 0·080
 0·041
 Brick
 0·600
 0·800

Brick
 0·500
 0·676
 Plaster
 0·020
 0·800

Plaster
 0·015
 0·800
Typology 3: U = 2·167 W/m2 K, s = 0·490 m
 Typology 4: U = 0·638 W/m2 K, s = 0·355 m

Material
 s: m
 k: W/m K
 Material
 s: m
 k: W/m K

Plaster
 0·020
 0·800
 Plaster
 0·200
 0·800

Stonewall
 0·450
 2·300
 Hollow brick
 0·120
 0·387

Plaster
 0·020
 0·800
 Polystyrene
 0·300
 0·059
Air cavity
 0·500
 0·278

Hollow brick
 0·120
 0·387

Plaster
 0·015
 0·800
Typology 5: U = 1·053 W/m2 K, s = 0·315 m
 Typology 6: U = 1·285 W/m2 K, s = 0·235 m

Material
 s: m
 k: W/m K
 Material
 s: m
 k: W/m K

Plaster
 0·200
 0·800
 Plaster
 0·020
 0·800

Hollow brick
 0·120
 0·387
 Hollow brick
 0·200
 0·387

Air cavity
 0·080
 0·444
 Plaster
 0·015
 0·800

Hollow brick
 0·080
 0·400

Plaster
 0·015
 0·800
Typology 7: U = 0·246 W/m2 K, s = 0·385 m
 Typology 8: U = 0·313 W/m2 K, s = 0·380 m

Material
 s: m
 k: W/m K
 Material
 s: m
 k: W/m K

Plaster
 0·020
 0·800
 Roof tile
 0·030
 1·000

Polystyrene
 0·100
 0·041
 Wood deck
 0·030
 0·120

Alveolar brick
 0·250
 0·183
 Polystyrene
 0·100
 0·041

Plaster
 0·015
 0·800
 Concrete
 0·200
 0·720
Plaster
 0·020
 0·800

Typology 9: U = 0·901 W/m2 K, s = 0·095 m
 Typology 10: U = 2·019 W/m2 K, s = 0·065 m
Material
 s: m
 k: W/m K
 Material
 s: m
 k: W/m K

Roof tile
 0·030
 1·000
 Roof tile
 0·030
 1·000

Wood deck
 0·020
 0·180
 Air cavity
 0·030
 —
Fibreglass
 0·030
 0·043
 Wood deck
 0·050
 0·180

Wood deck
 0·015
 0·180
Typology 11: U = 0·288 W/m2 K, s = 0·495 m
 Typology 12: U = 1·190 W/m2 K, s = 0·425 m

Material
 s: m
 k: W/m K
 Material
 s: m
 k: W/m K

Underlayer
 0·005
 0·260
 Underlayer
 0·005
 0·260

Concrete
 0·050
 1·490
 Concrete
 0·050
 1·490

Fibreglass
 0·120
 0·043
 Air cavity
 0·050
 0·313

Concrete
 0·300
 0·720
 Concrete
 0·300
 0·720

Plaster
 0·020
 0·800
 Plaster
 0·020
 0·800
Typology 13: U = 1·546 W/m2 K, s = 0·325 m

Material
 s: m
 k: W/m K

Underlayer
 0·005
 0·260

Concrete
 0·300
 0·720

Plaster
 0·020
 0·800
Materials are listed from outdoor to indoor

Table 1. An overview of possible reference construction
technologies in the Piedmont region for vertical and horizontal
opaque envelopes
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gains (solar and internal) evaluated in monthly average
conditions. Transmission heat losses were estimated by taking
into consideration opaque and transparent surfaces and the
thermal bridging effect. In standard rating, parametrical values
depending on floor area or heated net volume are taken into
consideration when evaluating the ventilation rate and internal
heat gains. The dynamic effects on the net space heating energy
demand are considered by introducing the dynamic parameters
utilisation factor. These parameters depend on the thermal inertia
of the building, on the ratio of heat gains to heat losses and on the
occupancy/system management schedules. The annual EPD is
calculated from the net energy demand through different system
efficiencies, which take into account the thermal losses in the
various subsystems related to both space heating and DHW.
For the heating season, the average global system efficiency
represents the ratio between the annual building net energy need
and the annual EPD for space heating and DHW.
 [ POLITECNICO DI TORINO] on [27/06/16]. Copyright © ICE Publishing, all
The standard rating approach could produce results for EPD also
far from actual energy requests, because standard assumptions for
occupant behaviour, climatic conditions and ventilation are taken
into consideration (Summerfield et al., 2011). However, since a
large data set was analysed in this paper, the potential information
that can be extracted in relation to the main patterns driving the
EPD can be considered consistent.

4.2 Description of the data set
The samples analysed in the present work was retrieved from a
data set of energy certificates until 2014 for several buildings
and single habitation units sited in Piedmont region (Northern
Italy). In Piedmont, all energy certificates were collected on a Web
platform developed by CSI Piemonte (Consorzio per il Sistema
Informativo) and are regulated by the authority Piedmont region
(Settore Sviluppo Energetico Sostenibile). Designer and energy
labellers upload the data directly onto this platform by using a
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Uw ≤ 2·00 W/m2 K

Uenv ≥ 1·20 W/m2 K
 0·80 W/m2 K < Uenv < 1·20 W/m2 K

 0·40 m–1 < S/V < 0·65 m–1

Uw ≥ 2·50 W/m2 K
 2·00 W/m2 K < Uw < 2·50 W/m2 K

Aspect ratio: m–1 Average global efficiency of the system for space heating and DHW

(c) (d)

(a) (b)

η ≤ 0·75

η ≥ 0·80
0·75 < η < 0·80
Figure 3. For different construction periods, percentage of flats
included in interval of (a) average U-value of the vertical opaque
envelope; (b) average U-value of windows; (c) aspect ratio and (d)
average global efficiency of the system for space heating and
DHW
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specific application. In recent years, the EU projects Tabula and
Episcope (Ballarini et al., 2011, 2014) individuated in this data set
a precious source of information to have a framework of the
building stock in terms of energy performance.

In this study, homogenous end use and construction typologies
were carefully chosen to allow the comparison between the
samples. Indeed, among the 269 544 samples classified as
‘residential dwelling with continuous utilisation’, only the 92 906
‘single flats’ included in multifamily houses and blocks of flats
were selected (excluding villas, single houses, co-housing, etc.).
The data set collects information related to EPD for space heating
and DHW, year of construction and last refurbishment, floor area,
heated volume, heat transfer surface, aspect ratio, average
U-values of the opaque and transparent envelope, subsystem
efficiencies of the heating plant (emission, distribution, control
6
ed by [ POLITECNICO DI TORINO] on [27/06/16]. Copyright © ICE Publishin
and generation subsystem), average global efficiency for space
heating and DHW systems, boiler size and Italian energy label
(according to Italian legislation updated to 2014).

A frequency distribution analysis of the geometrical features of the
samples reveals that 44% of the data set is composed of flats with
a floor area ranging between 60 and 90m2, 37% ranging between
30 and 60m2, 15% ranging between 90 and 120 m2 and the
remaining 4% with other dimensions. Since the data set is very
large, the previous analysis could be representative of the typical
dimensions of single flats in Italy. Considering the construction
periods, three different clusters were highlighted. The first one
includes 38% of the data set, and it is composed of flats built
before 1960. In general, their thermo-physical characteristics are
very poor and an energy refurbishment should be implemented.
The second set considers the samples built between 1960 and
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Figure 4. Frequency distribution and cumulative frequency
distribution of (a) average U-value of the opaque envelope; (b)
average U-value of windows; (c) aspect ratio and (d) average
global efficiency of the system for space heating and DHW
g, all rights reserved.
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2005, while new flats built within the last decade are included in
the third cluster construction period. The second and the third
subset refer to 58% and 4% of the data set, respectively.

Through a sensitivity analysis, the attributes selected as the most
important to consider in the data mining analysis are listed below

■ S/V – aspect ratio (ratio of heat transfer surface on heated
volume): m−1

■ Uenv – average U-value of the vertical opaque envelope: W/m2K
■ Uw – average U-value of the windows: W/m2 K
■ h – average global efficiency of the systems for space heating

and DHW.

Figure 2 provides a schematic representation of possible shapes
and construction typologies of the single flats in multifamily
houses and their relative aspect ratio. The aspect ratio determines
how large the surface exposed to the external environment is, and
consequently it provides information on the heat gain and loss
through the building envelope.

Table 1 shows some possible reference technological constructive
typologies that were individuated for the vertical and horizontal
opaque envelopes. These technologies were inferred among
the ones indicated by the Tabula project (Ballarini et al., 2011,
2014) as the most diffused in the Piedmont region in different
periods. Figure 3 illustrates the frequency distribution of these
attributes according to the different building construction periods.
Figure 4 shows an overall frequency distribution. The average
 [ POLITECNICO DI TORINO] on [27/06/16]. Copyright © ICE Publishing, all
U-value of the vertical opaque envelope and the windows
influences heat losses by transmission, while the average global
efficiency provides information on the quality of the space
heating and DHW system. The technological improvements
changing the performance of buildings in the past decade can
be deduced from Figures 3 and 4. In particular, the building stock
in the last decade has reached U-values that are significantly
below 0·80W/m2 K and the majority of them present an average
global efficiency of the system for space heating and DHW
of over 80·0%. Meanwhile, for older buildings the performance
is poor.

4.3 Pre-processing analysis
A preliminary analysis was conducted first normalising the
primary energy demand on the floor area of each flat. In this way
a normalised primary energy demand (EPDn) was obtained for
each flat. The average EPDn of the data set is 214·22 kWh/m2,
while the median value is 205·54 kWh/m2. Figure 5 reports the
frequency distribution of EPDn.

A data transformation analysis was performed introducing criteria
for labelling each flat as ‘high’, ‘medium’ or ‘low’ EPDn. This
data transformation is necessary for the construction of the
classification tree, which is based on a categorical response
variable. The selection of threshold values between consumption
classes must be accurate to obtain reliable information from the
data set (Fracastoro and Serraino, 2011). In the Piedmont region,
residential flats with an energy demand lower than 82·00 kWh/m2

are considered low-consumption buildings (energy class labels
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A+, A and B). In this paper, the same criterion was adopted and
these samples were labelled as ‘low consuming’. Furthermore, the
authors noticed that this cluster represents the 5th percentile of
flats with the better EPDn. This is a value that could be used for a
further generalisation: in a generic data set samples labelled ‘low’
are the 5th percentile of EPDn. Afterwards, the median was used as
a threshold value for splitting medium-EPDn flats from high-EPDn

flats. For this reason, flats with an EPDn higher than
205·54 kWh/m2 were classified as ‘high’. Table 2 summarises the
selected threshold values between classes. Moreover, in Table 2 a
further normalisation of EPDn considering Turin degree day (DD)
was performed (EPDnDD).
5. Supervised classification process

5.1 Results of classification tree (CART)
A classification tree was built (Capozzoli et al., 2015b) based on
the most important attributes influencing the EPDn (aspect ratio,
opaque and transparent envelope average U-value and average
global efficiency of the system for space heating and DHW). The
classification process involved the introduction of a set of
decision rules for the characterisation of the splitting criteria.

By considering the four input attributes, a classification tree
model was developed to predict three categorical variables of
EPDn: low, medium and high. The classification tree was
initially developed to its maximum size by setting the minimum
number of cases in the parent and child nodes (1000 and 800
cases, respectively) and the maximum decrease in the impurities
of each split (impuritySPLIT = 0·001). Subsequently, a pruning
analysis was carried out to remove the leaf nodes, which did not
improve the classification process. Thus, each leaf node with an
error rate higher than 25% was removed. Each leaf node in the
final tree contains at least 1% sample of the total and has a
minimum accuracy of 75%. To evaluate the performance of the
learning process, the number of validation k was set equal to 15
(cross-validation). In Table 3 the confusion matrix is reported,
illustrating for each class how instances from a specific class
received various classifications. The rows show the real
categorical label attributes, whereas the columns illustrate the
label attributes given by the classification process. The numbers
of correctly classified cases appear as bold values in Table 3. The
last row shows that 83·70% of all training records are correctly
classified as low, medium and high EPDn.
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The boxes in Figure 6 represent the different nodes of the
classification tree. The first node is the root node, which considers
the whole data set of 92 906 flats. The leaf nodes report the final
class of EPDn in which the samples are classified. Furthermore, in
each node the number of split samples and their percentage of the
total are also reported. When the node is not a leaf node, the logic
condition for the following split is marked in the third row. In this
case, if the logic condition is fulfilled, branch Y (yes) has to be
followed; otherwise, branch N (no) has to be followed.

The algorithm can be translated into a set of decision rules, which
have the following form: if antecedent conditions, then
consequent conditions. In Table 4 the results of the classification
tree are presented in terms of decision rules, starting from the root
node and following all the possible ways of reaching each leaf
node. The first column titled ‘EPDn class’ shows the final nodes of
the tree, which classify the EPDn. The second column shows the
rules that have to be respected in order to classify flats in
categorical energy classes, considering the conditions in different
rows. The third column indicates the amount of samples included
in a final node and their percentage on the total data set.

5.2 Critical analysis of the classification tree split
variables

Useful information and benefits can be inferred from a
classification tree. Therefore, by examining the decision rules, the
significant factors influencing EPDn profiles can be identified and
threshold values of the influencing attributes can be derived
(Mikučionienė et al., 2014). The first split is driven by the
Consumption class
 EPDn: kWh/m2
g,
EPDnDD: kWh/DD m2
 all rights reserved.
Percentile
Low
 0 £ EPDn £ 82
 0 £ EPDnDD £ 3·13 × 10−2
 1–5

Medium
 82 £ EPDn £ 205·54
 3·13 × 10−2 £ EPDnDD £ 7·85 × 10−2
 6–50

High
 EPDn ≥ 205·54
 EPDnDD ≥ 7·85 × 10−2
 51–100
DD, degree day

Table 2. EPDn classes
Classified
Correct: %
Low
 Medium
 High
Real
 Low
 3188
 1327
 0
 70·6

Medium
 232
 33 151
 8440
 79·3

High
 0
 5131
 41 437
 89·0

Accuracy
 83·7
Bold numbers are the numbers of correctly classified cases

Table 3. Confusion matrix
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attribute that most influences the EPDn. As shown in Figure 6 the
average U-value of the opaque envelope is the first split variable
of the classification model. In particular, with U-value lower than
0·84W/m2 K, all the flats are classified as ‘medium’ or ‘low’.
This part of the tree is highlighted in Figure 6 with the area
marked as A. In this area, the flats classified as low-EPDn

(£82·00 kWh/m2) can be divided from flats with medium-EPDn. In
comparing the threshold U-value with the ones reported in Figure
 [ POLITECNICO DI TORINO] on [27/06/16]. Copyright © ICE Publishing, all
3, it is clear that each flat built after 2005 is included in area A. In
particular, following the rules listed in Table 4, the ‘low’ samples
are characterised by average U-value of the opaque envelope
lower than 0·45W/m2 K and an average global efficiency of the
system higher than 0·84.

If the average U-value of the opaque envelope is higher than
0·84W/m2 K, branch N should be followed after the first split.
92 906
100%

Uenv ≤ 0·84

Y

A

21 616
23·3%

η ≤ 0·84

Uenv ≤ 0·45

5875
6·3%

N

N

N

Y

Y

Medium-EPDn

Medium-EPDn

Medium-EPDn

Medium-EPDn

Medium-EPDn

High-EPDn

High-EPDn

Low-EPDn

N

N

N

N

Y

Y

Y

Y

C

B

71 290

76·7%
S/V ≤ 0·46

Uw ≤ 4·00

29 651
31·9%

14 098
15·2%

η ≤ 0·66

41 639
44·8%

η ≤ 0·83
Figure 6. Classification tree obtained using the CART algorithm
EPDn class
 Attributes
 rights reserved.
Amount
Low
 Uenv £ 0·45
 —
 h > 0·84
 —
 4275
 4·6%

Medium
 0·45 £ Uenv £ 0·84
 —
 h > 0·84
 —
 1600
 1·7%
Uenv £ 0·84
 —
 h £ 0·84
 —
 15 741
 16·9%

Uenv > 0·84
 —
 h > 0·83
 S/V > 0·46
 2171
 2·3%

Uenv > 0·84
 Uw £ 4·00
 —
 S/V £ 0·46
 15 553
 16·7%

Uenv > 0·84
 Uw > 4·00
 h > 0·66
 S/V £ 0·46
 5416
 5·8%
High
 Uenv > 0·84
 —
 h £ 0·83
 S/V > 0·46
 39 468
 42·5%

Uenv > 0·84
 Uw > 4·00
 h £ 0·66
 S/V £ 0·46
 8682
 9·3%
Table 4. EPDn classes and classification criteria
9
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The following child node takes into account the flat aspect ratio.
This second split highlights that the aspect ratio is the principal
attribute affecting the EPDn of flats with a higher average U-value
for the opaque envelope. If the aspect ratio is higher than 0·46,
the B area is defined. In general, the samples in this area are
mainly classified in the high energy demand class. Only a small
10
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percentage with an average global efficiency of the system for
space heating and DHW higher than 0·83 belongs to the
medium-EPDn class.

Finally, an aspect ratio lower than 0·46 leads to the C area. Once
again, the flats included in this area belong to medium and
Real reference flat
 S/V: m−1
 Uenv: W/m2 K
g, all righ
Uw: W/m2 K
ts reserved.
h
 EPDn: kWh/m2
rF1 (cluster 1)
 0·65
 1·17
 3·74
 0·74
 259

rF2 (cluster 2)
 0·44
 1·37
 4·02
 0·60
 263

rF3 (cluster 3)
 0·71
 1·55
 3·92
 0·65
 359
Table 5. Real reference flat attributes for each cluster
1·50
Real reference flat – cluster 1
Real reference flat – cluster 2
Real reference flat – cluster 3
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(b)

(a)
 Normalised primary energy demand: kWh/m2
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Cluster 2
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rF1 = 259 kWh/m2 rF2 = 263 kWh/m2 rF3 = 359 kWh/m2
Figure 7. (a) EPDn for high-consumption flats, highlighted with
different shades of grey for each cluster; (b) vector components of
cluster centroids
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high-consumption classes. The parent node of area C splits the
data based on the average U-value of the windows. If it is lower
than 4·00W/m2 K, the energy demand is classified into a leaf
node belonging to the medium-consumption class. Additionally,
21·50% of the flats (3351) grouped in this leaf node were built
before 1960 and the average U-value of window of these sample
is lower than 2·50W/m2 K. Therefore, it can be deduced that
these windows were subject to a refurbishment.

5.3 Classification accuracy
In the developed classification tree, 83·70% of the data set was
correctly classified, demonstrating a reliable accuracy. The best
classified class includes the high-consumption flats. On the
contrary, the worst classified samples belong to the low-
consumption class. This result was predictable mainly because of
the intrinsic definition of this class. Indeed, having to include the
best 5% performing samples, the dimension of this cluster is
significantly lower than the others and some affecting attributes
could be neglected. Nevertheless, 70·60% of samples in this class
are correctly classified and this accuracy is still acceptable.
Moreover, misclassifications between extreme classes (‘low’ to
‘high’ and vice versa) were not present. Lastly, the remaining
16·30% of inaccuracy of the model can be amply explained.

Furthermore, some of the misclassification drawbacks are due to
the restricted number of attributes considered in the classification
tree. Indeed, on the one hand, the lower the number of attributes,
the simpler the usability of the classification model. On the other
hand, a low number of attributes might cause the neglecting
of some physical processes. Considering low-EPDn samples
misclassified as ‘medium’, some of these drawbacks can be
attributed to the neglecting of the data regarding ventilation need.
In fact, to split the samples, the classification tree does not use
any variables related to the efficiency of a potential mechanical
ventilation heat-recovery system installed. It is commonly known
 [ POLITECNICO DI TORINO] on [27/06/16]. Copyright © ICE Publishing, all
that for low-consumption buildings, ventilation represents an
important voice to be considered for the evaluation of EPDn.
6. Descriptive learning from high-
consumption flats

6.1 Unsupervised classification and real reference flat
selection

The 46 568 flats labelled as high-EPDn were further investigated
since in this class high energy saving opportunities exist. Other
authors have demonstrated that a large building stock can be
efficiently simulated by using a small number of reference
buildings (Filogamo et al., 2014; Mata et al., 2014; Petcharat et al.,
2012). Furthermore, an important step to promote the efficient
use of energy is to establish benchmark values and to identify
the flats that most need energy improvements (Mikučionienė
et al., 2014).

In this research, a K-means algorithm (Wu, 2012) was adopted to
find clusters of high-consumption flats with common features.
Before performing the cluster analysis, each attribute was
standardised by the z-score method to compare attributes between
them by assuming the same distribution (m = 0; s = 1). The same
input attributes used in the classification tree were selected. The
evaluation of the Davies-Bouldin index (Wu, 2012) showed that
the K-means algorithm with three clusters produced the best
clustering output. In particular, the samples are evenly distributed
in the three clusters (13 970 samples in cluster 1; 14 436 samples
in cluster 2; 18 162 in cluster 3), allowing to have a balanced and
representative segmentation.

For each cluster the real reference flat (rFi) closest to the centroid
was selected as the most representative. The reference flats
characterised by minimum distance di were found using the
least squares method (Equation 1). In particular, Table 5 shows
1·10

1·00

0·90

0·80

0·70

0·60
Generation subsystem Distribution subsystem Control subsystem Emission subsystem

Cluster 1
Cluster 2
Cluster 3

Su
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te

m
 e

ffi
ci

en
cy
Figure 8. Box plot analysis of the heating subsystems efficiencies
for each high-EPDn cluster
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the attributes of the reference flats (rF1, rF2 and rF3) for each
cluster.

di ¼ min
Xn
j¼1

zðxÞj � zðcÞj
h i2( )1=2

2
4

3
5
f

8<
:

9=
;

1.

where i = cluster, n = attribute and f = flats of i cluster.

Frequency distribution of EPDn reported in Figure 7(a) for high-
consumption flats shows the location of the objects in each
cluster. However, the causes of high consumption are more
evident if the attributes standardised with z-scores are analysed
for each reference flat (Figure 7(b)).

From Figure 7 it is possible to see that the three reference flats are
characterised by different values of geometrical, constructive and
12
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system variables. This allows the data set to be further investigated
due to the cluster analysis ability to emphasise the inter-cluster
similarities and intra-cluster dissimilarities at the same time. In the
first instance, the aspect ratio factor has been considered due to its
direct effect on the energy losses through the building envelope.

In particular rF1 and rF3 are characterised by a higher aspect ratio
than rF2. For this reason the EPDn of rF1 and rF2 are much more
influenced by the thermo-physical performance of the opaque and
transparent envelope. Indeed, the EPDn of rF3 is significantly
higher than the EPDn of rF1 due to the worst combination of the
constructive and system attributes. A different reasoning can be
applied to flats grouped in cluster 2. Indeed, for this cluster the
low value of the EPDn is mostly due to the low aspect ratio. In
this case, the geometrical shape of the flats belonging in this
cluster compensates for the low efficiency of the building
envelope and system.
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Autonomous heating system Central heating system

(b)

(a)

Central heating system
Autonomous heating system

24%
6%31%

39%

30%

Cluster 1
Cluster 2
Cluster 3
Figure 9. (a) Pie chart highlighting the distribution of the flats
among the different clusters and pie chart highlighting system
typologies (central or autonomous) in cluster 2; (b) box plot
analysis on the distribution subsystem efficiency for the two
different system typologies (central or autonomous) in cluster 2
g, all rights reserved.
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Additional information for high-consumption flats can be
extracted by means of an expert analysis supported by
visualisation tools, also using attributes previously not considered
for the classification tree and clustering analysis. For example
Figure 8 shows the box plots of the efficiencies of each heating
subsystem. It is clear how flats included in cluster 2 present
efficiencies of control and distribution subsystems with the lowest
median value and the highest inter-quartile range. As shown in
Figure 9, 80% of the flats grouped in cluster 2 have a centralised
heating system. In general, these flats are characterised by higher
heat losses in the distribution subsystem, especially in old systems
where pipes are not well insulated. Moreover, the control
subsystems have low performance because they are generally
‘climatic’ and based and not specific for each thermal zone/
ambient. The combination of these two aspects suggests the
assumption that high energy savings are achievable by retrofitting
the control and distribution subsystem of flats equipped with old
centralised heating systems. It is important to have dominant
 [ POLITECNICO DI TORINO] on [27/06/16]. Copyright © ICE Publishing, all
features in a cluster in order to extract useful information to
formulate strategies for energy saving.

6.2 Analysis of possible retrofit actions
Benefits achievable from some possible common retrofit actions
was analysed for each reference flat. The aspect ratio is an
intrinsic feature of each flat; thus, it cannot be improved through
refurbishment actions. However, energy retrofitting designers can
improve the other three construction attributes with different
retrofit actions, called A1, A2 and A3. Action A1 is related to the
increasing of the insulation of the vertical opaque envelope and
A2 to the substitution of the existing windows with new high-
performing ones. Thus, U-value of the vertical opaque envelope
and U-values of the windows become lower than 0·30, and
1·90W/m2 K, respectively, which are the Italian legislation
limits for the Turin climatic zone in a refurbishment process
(Ministero dello Sviluppo Economico, 2015). Moreover, action
A3 consists of the refurbishment of the heating and DHW system
A1
 rights reserved.
A2
 A3
Wall insulation
polystyrene

(l = 0·040W/m K)
Wall insulation
cork

(l = 0·041W/m K)
Air cavity cork
insufflation

(l = 0·037W/m K)
Roof insulation
fibreglass

(l = 0·040W/m K)
Window
substitution
Boiler
substitution
Thermostatic
valve

installation
s: cm
 Cost: €/m2
 s: cm
 Cost: €/m2
 s: cm
 Cost: €/m2
 s: cm
 Cost: €/m2
 Cost: €/m2
 Cost: €
 Cost: €
8–12
 60–65
 8–12
 75–80
 6–10
 25–30
 8–12
 35–40
 350–400
 1700–1900
 80–100
Reference prices according to Piedmont Region guidelines

Table 6. Possible cost related to retrofit actions (A1, A2 and A3)
individuated as the most suitable and commonly used for the
investigated flat typologies
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Figure 10. (a) Classification tree after the application of the
retrofit actions A1, A2 and A3 on the real reference flat rF2;
(b) classification tree after the application of the retrofit actions
A1, A2 and A3 on the real reference flats rF1 and rF3
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(distribution subsystem refurbishment, boiler-controller-terminal
substitution). An h > 0·85 can be considered a target threshold in
a refurbishment process. In particular, for the flats equipped
with autonomous boilers, action A3 includes boiler substitution
and installation of zone thermostatic valves. For flats equipped
with centralised boilers (mainly similar to rF2), action A3
should include also additional refurbishment of the distribution
subsystem at building level. Table 6 provides an evaluation of
unitary reference prices (according to Piedmont region guidelines)
required for each of the actions A1, A2 and A3 (only for
autonomous heating system) to respect the limit values in the
retrofitting process. The cost of roof insulation is reported for the
sake of completeness.

The classification tree previously trained was tested to classify
rF1, rF2 and rF3 considering the three retrofit actions and the limit
values for the attributes suggested by the Italian energy
legislation. In this way it is possible to evaluate roughly the effect
of a single action or of a combination of actions. The
classification testing is shown in Figure 10 for the three reference
flats. Table 7 summarises the results of this analysis. On the one
hand, the application of one single refurbishment action can
provide indications on the most suitable energy efficiency
measure for each cluster. On the other hand, the application of all
the refurbishment actions at the same time gives an indication of
the best class in which a reference flats can be classified.

As it can be seen from Table 7, in seven over nine cases the
retrofit of a single attribute allows the flats to switch from the
high to the medium-consumption class. In the remaining two
over nine cases, the consumption remained high. These cases
coincide with the substitution of windows (A2) in rF1 and rF3.
14
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This fact highlights that this energy efficiency measure is not very
effective on flats with a high value of aspect ratio. Furthermore,
it is clear that the adoption of all three measures at the same
time allows the all reference flats to switch from the high to the
low-consumption class. This means that the energy consumption
after the refurbishment could reach potentially a value lower of
82 kWh/m2 K. The average achievable energy saving for each
high-EPDn flat would be higher than 208 kWh/m2.

7. Conclusions
In this paper, a classification process involving 92 906 flats was
conducted. Due to the large dimensions of the adopted data
set, the information provided can be considered representative
of the Piedmont region residential flat stock. The method is
easily adaptable to different data sets and attributes, since the
classification criteria are based on statistical variables.

The influence on the normalised primary energy demand (EPDn)
of four influencing attributes (aspect ratio, U-value of vertical
opaque envelope and windows and average global efficiency of
the system for space heating and DHW) was analysed through a
classification tree. Further analyses on flats classified as high-
consumption were carried out. Three different clusters with
similar feature patterns were identified through a cluster analysis.
For each of them a reference flat was located and the effect of
different retrofit actions was investigated.

Future works will firstly investigate additional data sets, to lower the
error rate limit of the classification tree and to increase further the
reliability of the proposed methodology. Secondly, the real reference
flats for the high-EPDn class can be used as reference buildings for
more accurate energy simulations (Filogamo et al., 2014). Finally,
the influence of building owners decision on the application of the
proposed retrofit actions (Galiotto et al., 2015) and a cost optimal
analysis (Ferrara et al., 2014) will be investigated.
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