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Free vibrations of damaged aircraft structures by

component-wise analysis

E. Carrera1, A. Pagani2, and M. Petrolo3

Department of Mechanical and Aerospace Engineering,

Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

By adopting advanced beam models, this paper presents free vibration analyses

of metallic aircraft structures a�ected by local damages. Re�ned theories are devel-

oped within the framework of the Carrera Uni�ed Formulation (CUF), according to

which any order 2D and 1D theories of structures can be implemented in a hierarchical

and uni�ed manner. By employing Lagrange polynomials to expand the generalized

displacement �eld, Component-Wise (CW) models of aircraft structures are imple-

mented in this work. The CW approach provides a detailed physical description of

multi-component structures since each component can be modelled with its own ge-

ometrical and mechanical characteristics, that is, no reference surfaces and axes and

no homogenization techniques are employed. This characteristic allows us to model

accurately global and local damages within the structure. The results show that the

proposed re�ned 1D models can deal with the free vibration analysis of damaged air-

craft structures as accurately as the shell and solid models. Moreover, thanks to the

computational e�ciency of CUF, CW models are good candidates for providing the

vibration characteristics of structures for a wide range of damage scenarios in order to

create databases able, for example, to train neural network for damage detection.
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Nomenclature

d Impairment factor

E Elastic modulus

Fτ cross-section functions

G shear modulus

Kijτs fundamental nucleus of the elemental sti�ness matrix

L dimension of the structure in the y direction

Lext work of external loadings

Line work of inertial loadings

Lint strain energy

M number of expansion terms

Mijτs fundamental nucleus of the elemental mass matrix

N expansion order for TE models

Ni one-dimensional shape functions

p polynomial order of the shape functions

q vector of the nodal generalized displacements

r, s natural coordinates

rτ , sτ natural coordinates of the Lagrange points

u three-dimensional displacements vector

uτ generalized displacements vector

ux, uy, uz three-dimensional displacement components

ux1, uy1, uz1,ux2, ..., uzM generalized displacement components

V beam volume (V = Ω× L)

(x, y, z) coordinates reference system

δ virtual variation

ε strain vector

λ Lame's parameter

ρ material density
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ν Poisson ratio

σ stress vector

Ω cross-section domain

I. Introduction

Damage detection in aircraft structures is of primary interest. Because of economical reasons, in

aircraft maintenance programme, non-destructive testing (NDT) has acquired a predominant role.

These include visual inspection, magnetic �eld tests and ultrasound. However, the modern NDT

techniques require an estimation of the damage location before performing the test. To overcome this

limitation, the evaluation of the modal characteristics through in situ measurements can be used to

detect structural damages [1, 2]. As well-known, in fact, the presence of damages a�ects the vibration

characteristics of a structure, and this has been exploited to develop damage detection techniques

in many works. Some of the most recent papers on this topic are presented hereinafter. Zhang

et al. [3] have proposed a graphical technique to detect the location and severity of delamination

in composite beams by studying the frequency shifts induced by such damages. Capozucca [4]

has studied the vibration response of damaged Carbon Fibre Reinforced Polymer (CFRP) beams.

Pérez et al. [5] have conducted an extensive experimental activity to investigate the e�ects of

damages on the vibrations of composite laminates. Wang et al. [6] have proposed a method for

the damage detection and diagnosis in wind turbine blades that is based on the FEM dynamic

analysis and the variation of the modal shape curvatures. Labib et al. [7] have studied the free

vibrations of frames with multiple cracks by using the dynamic sti�ness method and by modelling

the cracks with rotational springs. Nguyen [8] has utilized 3D beam elements to calculate the mode

shapes for damage detection of a cracked beam with a rectangular cross-section. Pollayi and Yu

[9] have recently investigated the e�ects of the �rst damage mode (i.e., matrix micro-cracking) on

the mechanical behaviour of helicopter rotor or wind turbine blades by modelling each blade as a

beam based on geometrically nonlinear 3D elasticity theory and by employing VABS (Variational

Asymptotic Beam Sectional Analysis) [10] and GEBT (Geometrically Exact Beam Theory) [11].

3



It is clear that the determination of the presence of damage, the quanti�cation of the damage,

the detection of the position of the damage, and the estimation of the remaining service life of

the structure through free vibrations measurements requires the availability of databases including

information about natural frequencies and mode shapes for a wide spectrum of damage cases. These

databases can be provided by mathematical modelling and modal analysis of the structure under

consideration. However, it should be underlined that this approach for damage detection presumes

accurate and reliable measurements of the normal modes and frequencies through in situ tests. This

aspect, although being rather questionable due to the lack of repeatability of the experiments even

under very well controlled conditions, is out of the scope of this paper and further details can be

found in [5].

Computational models for the analysis of damaged structures should be able to provide very

accurate displacement and strain/stress �elds. Damages may lead, in fact, to local and non-classical

e�ects that require 3D-like analysis capabilities. Thus, classical Finite Element Method (FEM)

models that make use of a combination of 2D and 1D elements for the analysis of reinforced-shell

aircraft structures (see for example [12�14]) are not suitable. Currently, most of the techniques

that have been developed for these tasks are based on very cumbersome numerical models, such

as the 3D solid �nite elements. In this paper, re�ned 1D beam �nite elements are proposed and

used to conduct free vibration analyses of damaged aircraft structures. It is obvious that classical

beam theories, such as Euler-Bernoulli (EBBM) [15] or Timoshenko Beam Model (TBM) [16], are

not suitable for damage detection. Many methods have been proposed over the last decades to

enhance classical theories and to extend the application of 1D models to any geometry or boundary

condition and mechanical complexity. A short review on some important advanced beam models

is given below. For a more comprehensive discussion about recent developments in 1D models, the

readers are referred to [17].

Some of the �rst proposed approaches to overcome the limitations of classical models were based

on the introduction of shear correction factors, as in the works by Timoshenko [16, 18, 19], Sokolniko�

[20] and Cowper [21]. The introduction of warping functions to improve the displacement �eld of

beams is another well-known strategy. Warping functions were �rst introduced in the framework
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of the Saint Venant torsion problem [20]. Some of the earliest contributions to this approach were

those by Umanskij [22], Vlasov [23] and Benscoter [24]. More recently, in the approach developed by

Ladevéze and his co-workers [25], 3D elasticity equations were reduced to beam-like structures by

describing the kinematics as the sum of a Saint Venant part and a residual part. Other important

contributions related to one-dimensional structural modelling are those based on the Variational

Asymptotic Method (VAM) and the Generalized Beam Theory (GBT). The work by Berdichevsky

[26] was among the earliest contributions that exploited the VAM. Some valuable contributions

on asymptotic methods are those related to VABS models, as in [27�30]. The GBT has been

derived from Schardt's work [31�33]. The GBT enhances classical theories by exploiting a piece-

wise description of thin-walled sections. It has been employed extensively and extended, in various

forms, by Silvetre and Camotim and their co-workers, see for example [34]. In the framework of the

beam modeling for design of helicopter blades, wind turbine blades, and high-aspect-ratio wings, it

is important to mention the seminal work by Giavotto et al. [35] and the subsequent contributions

of the authors. Many other higher-order theories, based on enhanced displacement �elds over the

beam cross-section, have been introduced to include non-classical e�ects. Some considerations on

higher-order beam theories were made by Washizu [36]. Other re�ned beam models can be found in

the review by Kapania and Raciti [37, 38], which focused on bending, vibration, wave propagations,

buckling and post-buckling.

This work exploits the Carrera Uni�ed Formulation (CUF) for higher-order 1D models [39,

40]. In CUF models, the displacement �eld above the cross-section is modelled through expansion

functions whose order is a free parameter of the analysis. In other words, any-order structural models

can be implemented with no need for formal changes in the problem equations and matrices. CUF

can, therefore, deal with arbitrary geometries, boundary conditions and material characteristics

with no need for ad hoc formulations. The most recent extension of CUF models is the so-called

Component-Wise approach (CW). The CW is based on the use of Lagrange polynomials for the

cross-section displacement �eld description [41] and it allows for multi-component structures to be

modelled through a unique 1D formulation. Recently, the CW approach was used for the analysis

of aerospace [42�44], civil engineering [45, 46] and laminated composite structures [47, 48], where it
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was demonstrated that 1D CW leads to solid-like accuracies with far less computational costs than

the shell and solid FEs.

In this paper, by employing CW models, the free vibration characteristics of damaged metallic

aircraft structures are discussed by natural frequencies tracking and mode shapes changes. In par-

ticular, the Modal Assurance Criterion (MAC) is used to characterize mode variations between un-

damaged and damaged structures. MAC is de�ned as a scalar representing the degree of consistency

between two distinct modal vectors [49]. It takes on values from zero (representing no consistent

correspondence), to one (representing a consistent correspondence). Salawu and Williams [50] ex-

ploited the MAC and Coordinate Modal Assurance Criterion (COMAC) for the damage analysis of

bridges. More recent papers on the same topic are those by Zhao and Zhang [51], Mukhopadhyay et

al. [52], Balsamo et al. [53]. A comprehensive and detailed description of the main computational

tools for damage detection can be found in the book of Gopalakrishnan et al. [54].

The present paper is organized as follows: �rst one-dimensional CUF models are introduced;

then, CW and damage modelling is discussed; subsequently, numerical discussions of simple longeron

to complex wing structures are provided; �nally, the main conclusions are drawn.

II. One-dimensional re�ned models

In the case of slender, solid-section, homogeneous structures subject to bending phenomena,

classical beam models (e.g., EBBM and TBM) provide a reasonably good approximation of the

problem. On the other hand, it is obvious that for damage detection and accurate free vibration

analysis of damaged structures theories able to deal with local phenomena and 3D strain e�ects are

needed. Re�ned beam models can ful�ll this requirement and, if su�ciently enriched kinematics is

adopted, they can provide the same accuracy of 3D elasticity solutions with very low computational

costs. In this paper, the Carrera Uni�ed Formulation (CUF) is employed to automatically develop

1D re�ned models with an arbitrary number of terms in the kinematic �eld. The basic ideas and

the main advantages of CUF are described in this section.
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Fig. 1 Beam and adopted Cartesian reference frame

A. Carrera Uni�ed Formulation

Figure 1 shows the Cartesian coordinate system adopted for a generic beam structure. The

cross-section Ω is normal to the beam axis y, which has boundaries 0 ≤ y ≤ L. It should be

highlighted that the validity of the proposed formulation is not a�ected by the shape of the cross-

section and the rectangular cross-section adopted has merely explicative purposes. In the framework

of the CUF, the kinematics of a beam model can be summarized as follows:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (1)

where u(x, y, z) = {ux(x, y, z) uy(x, y, z) uz(x, y, z)}T is the displacement vector; Fτ indicates

the functions of the cross-section coordinates x and z; uτ is the generalized displacement vector;

M indicates the number of terms in the expansion. It should be noted that the repeated subscript

indicates summation. Moreover, the choice of Fτ and M is arbitrary. Thus, the basis functions

adopted to model the displacement �eld across the section can be di�erent and expanded to any

order. For more details about the e�ects of higher-order terms in the development of re�ned beam

theories within the framework of CUF, the readers are referred to [55].

The models known in the literature as TE (Taylor Expansion) [40, 56] are obtained considering

Taylor-like expansion polynomials as Fτ functions. For example, the displacement �eld of the �rst-

order (N = 1) TE model can be expressed as follows:

ux = ux1 + x ux2 + z ux3

uy = uy1 + x uy2 + z uy3

uz = uz1 + x uz2 + z uz3

(2)

where the parameters on the right-hand side (ux1 , uy1 , uz1 , ux2 , etc.) are the displacements of the
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beam axis and their �rst derivatives. It should be noted that classical beam models, such as EBBM

and TBM, are particular cases of the linear TE model above from the kinematic standpoint. How-

ever, classical theories and �rst-order models require the necessary assumption of reduced material

sti�ness coe�cients to correct the Poisson's locking. In this paper, Poisson's locking is corrected ac-

cording to the method outlined by Carrera et al. [40]. For more details about classical beam theories

as particular cases of re�ned CUF models see [57], where the torsion problem is also considered.

Higher-order terms can be taken into account according to Eq. (1) and higher-order models

can be automatically developed by exploiting the hierarchical capability of the TE. For instance, it

is clear from the literature that at least a third-order model is needed to correctly guarantee the

homogeneity of the shear stresses in the lateral boundaries of the beam (see [58]). This issue is

overcome by adopting, for example, the third-order (N = 3) TE model.

ux = ux1
+ x ux2

+ z ux3
+ x2 ux4

+ xz ux5
+ z2 ux6

+ x3 ux7
+ x2z ux8

+ xz2 ux9
+ z3 ux10

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 + x3 uy7 + x2z uy8 + xz2 uy9 + z3 uy10

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6 + x3 uz7 + x2z uz8 + xz2 uz9 + z3 uz10

(3)

The possibility of dealing with arbitrary expansion makes the TE CUF models able to handle

complex problems, such as thin-walled structures and local e�ects (see [17]).

B. CUF models based on Lagrange polynomials expansions

TE CUFmodels are characterized by generalized displacements variables (namely, displacements

and N-order derivatives of displacements), which lay on the beam reference axis. Recently, a new

class of 1D CUF models was introduced in [41], where Lagrange polynomials were adopted as cross-

section expanding functions, Fτ . The resulting models are referred to as LE (Lagrange Expansion)

and they have only pure displacement variables. Various Lagrange polynomials were used in [41]

to develop re�ned beam theories and some examples are given in Fig. 2. In particular, three-point

linear (L3), four-point bi-linear (L4), and nine-point bi-quadratic (L9) polynomials are shown in

the picture. The isoparametric formulation was exploited to deal with arbitrary shaped geometries.

The Lagrange polynomials can be found in [59]. However, the interpolation functions in the case of
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(c) Nine-point element, L9

Fig. 2 Cross-section L-elements in natural geometry

the L9 element are given as an example

Fτ = 1
4 (r2 + r rτ )(s2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1
2 s

2
τ (s2 − s sτ )(1− r

2) + 1
2 r

2
τ (r2 − r rτ )(1− s

2) τ = 2, 4, 6, 8

Fτ = (1− r
2)(1− s

2) τ = 9

(4)

where r and s vary from −1 to +1, whereas rτ and sτ are the coordinates of the nine points whose

numbering and location in the natural coordinate frame are summarized in Fig. 2c. The displacement

�eld of an L9 beam theory is therefore

ux = F1 ux1 + F2 ux2 + ...+ F9 ux9

uy = F1 uy1 + F2 uy2 + ...+ F9 uy9

uz = F1 uz1 + F2 uz2 + ...+ F9 uz9

(5)

where ux1
, ..., uz9 are the displacement variables of the problem and they represent the translational

displacement components of each of the nine centres of the L9 polynomial. For further re�nements,

the cross-section can be discretized by using several L-elements as in Fig. 3, where two assembled

L9 elements are shown; this is one of the most important characteristics of the CW approach, which

is described in Section III.

C. Finite element approximation

The FE approach is adopted to discretize the beam structure along the y-axis (i.e. the longi-

tudinal axis in Fig. 1). This process is accomplished via a classical �nite element technique, where
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Fig. 3 Two assembled L9 elements in actual geometry

the displacement vector is given by

u(x, y, z) = Fτ (x, z)Ni(y)qτi, τ = 1, ...,M, i = 1, ..., p+ 1 (6)

Ni stands for the shape functions of order p and qτi is the nodal displacement vector,

qτi =

{
quxτi quyτi quzτi

}T

(7)

The shape functions are not given here. They can be found in many books, see for example [60].

Elements with four nodes (B4) were adopted in this work, i.e. a cubic approximation (p = 3) along

the y axis was assumed. The cross-section discretization for the LE class (i.e., the choice of the

type, the number and the distribution of cross-sectional Lagrange elements), or of the theory order

N for the TE class, are entirely independent of the choice of the beam �nite element to be used

along the axis of the beam.

The sti�ness and mass matrices can be obtained via the principle of virtual displacements; it

reads

δLint =

∫
V

δεTσ dV = −δLine (8)

where Lint stands for the strain energy; Line is the work of the inertial loadings; δ stands for the

virtual variation; V = Ω× L is the volume of the beam; ε and σ are the strain and stress vectors,

respectively. The virtual variation of the strain energy is rewritten using the constitutive laws, the

linear strain-displacement relations, and Eq. (6). It reads

δLint = δqT
τiK

ijτsqsj (9)

where Kijτs is the sti�ness matrix in the form of the fundamental nucleus. The derivation of the

FE fundamental nucleus of the sti�ness matrix is not repeated here for the sake of brevity, but it
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is given in [39], where more details about CUF can also be found. However, the components of the

sti�ness matrix nucleus are provided below and they are referred to as Kijτs
rc , where r is the row

number (r = 1, 2, 3) and c is the column number (c = 1, 2, 3).

Kijτs
11 = (λ+ 2G)

∫
Ω

Fτ,xFs,xdΩ

∫
l

NiNjdy +G

∫
Ω

Fτ,zFs,zdΩ

∫
l

NiNjdy+

G

∫
Ω

FτFsdΩ

∫
l

Ni,yNj,ydy

Kijτs
12 = λ

∫
Ω

Fτ,xFsdΩ

∫
l

NiNj,ydy +G

∫
Ω

FτFs,xdΩ

∫
l

Ni,yNjdy

Kijτs
13 = λ

∫
Ω

Fτ,xFs,zdΩ

∫
l

NiNjdy +G

∫
Ω

Fτ,zFs,xdΩ

∫
l

NiNjdy

Kijτs
21 = λ

∫
Ω

FτFs,xdΩ

∫
l

Ni,yNjdy +G

∫
Ω

Fτ,xFsdΩ

∫
l

NiNj,ydy

Kijτs
22 = G

∫
Ω

Fτ,zFs,zdΩ

∫
l

NiNjdy +G

∫
Ω

Fτ,xFs,xdΩ

∫
l

NiNjdy+

(λ+ 2G)

∫
Ω

FτFsdΩ

∫
l

Ni,yNj,ydy

Kijτs
23 = λ

∫
Ω

FτFs,zdΩ

∫
l

Ni,yNjdy +G

∫
Ω

Fτ,zFsdΩ

∫
l

NiNj,ydy

Kijτs
31 = λ

∫
Ω

Fτ,zFs,xdΩ

∫
l

NiNjdy +G

∫
Ω

Fτ,xFs,zdΩ

∫
l

NiNjdy

Kijτs
32 = λ

∫
Ω

Fτ,zFsdΩ

∫
l

NiNj,ydy +G

∫
Ω

FτFs,zdΩ

∫
l

Ni,yNjdy

Kijτs
33 = (λ+ 2G)

∫
Ω

Fτ,zFs,zdΩ

∫
l

NiNjdy +G

∫
Ω

Fτ,xFs,xdΩ

∫
l

NiNjdy+

G

∫
Ω

FτFsdΩ

∫
l

Ni,yNj,ydy

(10)

where G and λ are the Lamé's parameters. If Poisson ν and Young E moduli are used, one has

G = E
2(1+ν) and λ = νE

(1+ν)(1−2ν) . The fundamental nucleus has to be expanded according to the

summation indexes τ , s, i and j in order to obtain the elemental sti�ness matrix.
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The virtual variation of the work of the inertial loadings is

δLine =

∫
V

ρδuTüdV (11)

where ρ stands for the density of the material, and ü is the acceleration vector. Equation (11) is

rewritten using Eq. (6)

δLine = δqT
τi

∫
l

NiNjdy

∫
Ω

ρFτFsdΩ q̈sj = δqT
τiM

ijτsq̈sj (12)

where Mijτs is the fundamental nucleus of the mass matrix. Its components are provided below

in the case of homogeneous material and they are referred to as M ijτs
rc , where r is the row number

(r = 1, 2, 3) and c denotes column number (c = 1, 2, 3).

Mijτs
11 = Mijτs

22 = Mijτs
33 = ρ

∫
l

NiNjdy

∫
Ω

FτFsdΩ

Mijτs
12 = Mijτs

13 = Mijτs
21 = Mijτs

23 = Mijτs
31 = Mijτs

32 = 0

(13)

It is noteworthy that no assumptions about the approximation order have been made in formulating

Kijτs and Mijτs. It is, therefore, possible to obtain re�ned beam models without changing the

formal expression of the nuclei components. This property of the nuclei is the key-point of CUF

that allows, with only nine coding statements, the implementation of any-order of multiple class

theories.

The undamped dynamic problem is obtained by substituting the fundamental nuclei into the

principle of virtual displacement (Eq. 8), by expanding the CUF fundamental indexes and by

assembling the global FEM arrays.

Mü+Ku = 0 (14)

Considering harmonic solutions, the second-order system of ordinary di�erential equations above

results into a classical eigenvalue problem:

(−ω2
kM+K)uk = 0 (15)

where uk is the k-th eigenvector.
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Fig. 4 Component-wise modelling of a sample wing structure

III. Component-wise approach and damage modelling

Recently, LE beam theory has been utilized for the Component-Wise (CW) modelling of complex

structures [42�48]. The term CW refers to the fact that Lagrange elements are used to model the

displacement variables in each structural component at the cross-sectional level.

Most of the engineering structures are made of di�erent components, such as spar caps, stringers,

longerons, ribs and panels in the case of aerospace constructions. However, these components usually

have di�erent geometries and scales. Through the CW approach, one can model each typical part

of a structure through the 1D CUF LE formulation. In a �nite element framework, this means that

di�erent components are modelled by means of the same 1D �nite element. An example of CW

modelling of a typical wing is shown in Fig. 4. According to CW technique, each component of

the structure is modelled via beam elements. Then, by exploiting the natural capability of LE to

be assembled on the cross-section, Lagrange polynomials (L9 in Fig. 4) are appropriately used to

arbitrarily re�ne the beam kinematics. Compatibilities between the various components is enforced

in terms of displacements by superimposing cross-sectional nodes. Alternatively, mathematical

techniques might be used, see [61�63]. If a rib were present in the wing in Fig. 4, it would be

modelled by beam elements laying on the longitudinal axis, see [42]. One of the main feature of

the CW methodology is that it allows for tuning the capabilities of the model by (i) choosing which

component requires a more detailed model; and (ii) setting the order of the structural model to be

13



Fig. 5 Locally damaged wing structure

used. Higher-order phenomena (i.e., warping and 3D strain e�ects) can be, in fact, automatically

described by CUF models by opportunely enriching the beam kinematics (see [39]). Moreover,

via the CW approach, FE mathematical models can be built by using only physical boundaries;

arti�cial lines (beam axes) and surfaces (plate/shell reference surfaces) are no longer necessary. The

numerical assessments detailed in the aforementioned literature, widely demonstrated the capability

of the present 1D CW models of dealing with local e�ects and 3D strain/stress �elds. These

characteristics are of primarily importance for models to be employed for damage detection through

free vibration analysis.

In this paper, a basic isotropic damage modelling approach was adopted. Figure 5 shows an

example of locally damaged structure. In the damaged zone, the material characteristics were

modi�ed according to the following formula:

Ed = d× E, with 0 ≤ d ≤ 1 (16)

where E is the elastic modulus of the material. In other words, Eq. (16) reads

E1 = E; E0.9 = 0.9× E; ...; E0.1 = 0.1× E (17)

The enhanced capabilities of CUF along with the adopted FE approximation, allow us to arbitrarily

place the damage within the structure and evaluate the e�ects of damage placement and intensity

on the free vibration characteristics. It must be underlined, in fact, that the main aim of this

paper is to assess and formulate an e�cient structural model for the analysis of damaged structures,

independently of the damage mathematical characterization. The formulation of more evolute and,

eventually, anisotropic damage models is out of the scope of the present research.

14



L

h

t

A
s

b

z
y

x

Fig. 6 Three-stringer spar

IV. Numerical Results

A. Three-stringer spar

A simple longeron with three longitudinal sti�eners is discussed as a preliminary test case. The

geometry of the spar is shown in Fig. 6 and clamped-free boundary conditions are addressed. The

geometrical characteristics of the structure are: length L = 3 m; cross-sectional height h = 1 m;

area of the stringers As = 1.6 × 10−3 m2; thickness of the panels t = 2 mm; distance between the

middle stringer and the top one b = 0.3 m. The longeron is made of an isotropic, homogeneous

material with Young modulus E = 75 GPa, Poisson ratio ν = 0.33, and density 2700 kg/m3. The

geometrical and material characteristics of the problem were chosen for merely convenience and they

do not a�ect the validity of the following discussion.

Table 1 shows the �rst 15 natural frequencies of the structure by various theories. Classical

(EBBM, TBM), from linear- to fourth-order TE, as well as CW beam models are compared to

a detailed MSC Nastran solid model (NAS3D) in the table. The results from both TE and CW

CUF models were obtained by using 10 B4 elements along the beam axis, which ensured convergent

solutions. Regarding the CW model, 5 L9 elements on the beam cross-section were used (one for

each component); i.e., a bi-quadratic expansion of the primarily variables on the cross-section of

each structural components was assumed. Table 1 also quotes the number of Degrees Of Freedom

(DOFs) for each model adopted. A graphical comparison between the �rst �ve natural frequencies

is provided in Fig. 7, where TBM, second- (N = 2) and fourth-order (N = 4), CW, and NAS3D

15



EBBM TBM N = 1 N = 2 N = 3 N = 4 5 L9 NAS3D

DOFs 93 155 279 558 930 1395 3813 62580

f1 3.24 3.24 3.24 3.43 3.35 3.31 3.46 3.15

f2 20.29 20.28 20.28 16.70 16.34 16.13 3.52 3.55

f3 56.81 56.74 56.74 21.39 20.97 20.75 3.76 3.82

f4 111.36 108.81 108.81 55.25 52.90 51.70 14.27 13.30

f5 117.60 111.11 111.11 60.11 59.23 58.24 16.73 15.06

f6 184.30 183.57 183.57 108.19 100.81 97.87 17.67 16.33

f7 275.94 274.23 269.29 109.44 105.55 102.26 21.17 19.81

f8 386.89 383.36 274.23 117.79 116.61 113.20 21.71 21.49

f9 439.21 439.20 383.36 181.03 165.23 119.39 22.95 22.81

f10 517.91 455.17 439.20 194.59 183.16 161.07 25.11 24.07

f11 622.84 511.36 455.17 276.03 197.98 176.65 25.73 24.63

f12 669.05 658.20 511.36 290.25 229.97 189.01 31.21 29.69

f13 830.95 817.28 658.20 325.69 248.76 243.58 37.92 36.24

f14 1104.56 972.68 807.88 393.92 290.54 258.64 45.79 43.88

f15 1317.62 1055.78 817.28 406.78 302.06 281.59 54.86 51.64

Table 1 First 15 natural frequencies (Hz) of the three-stringer spar

models are employed. It is clear that for damage detection and, in general, for the analysis of

damaged structures, models able to accurately describe the mechanical behaviour of the structures

are needed. Nevertheless, as it was also detailed in [43], classical and re�ned TE models are able to

detect only global modes (e.g., bending and torsional modes). On the contrary, CW re�ned beam

models are able to provide 3D accuracy with very low computational costs. Thanks to CUF and

the CW approach, very e�cient models able to describe both the local (e.g., shell-like modes) and

global modes can be formulated. For illustrative purposes, Fig. 8 shows the �rst ten vibration modes

of the undamaged three-stringer spar by the present CW model. It should be underlined that the

3D mesh in this picture is just a plotting mesh for convenience: the CW models are actually 1D

models. From Fig. 8, the higher-order capabilities of the present modelling technique is pretty clear.

The CW beam model is, in fact, able to describe the behaviour of the structure at the component

16
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Fig. 8 Mode shapes of the undamaged three-stringer spar; CW model

scale. For this reason, the 5 L9 is used in the following damage analysis.

As detailed in Fig. 9, four damage cases were considered for the structure under consideration.

Namely, for damage cases from 1 to 4, the damaged components are, respectively, the top stringer,

the top panel, the intermediate stringer, and the bottom panel. The whole components are modelled

as damaged, i.e. from the root to the tip.

Table 2 shows the e�ect of the damage location and intensity on the natural frequencies of the
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Fig. 9 Distribution of the damaged zone on the cross-section of the three-stringer spar; dam-

aged areas in black

longeron. It is clear from the table that the �rst mode is mainly in�uenced by the damage in the

middle stringer; the second and third natural frequencies is highly a�ected by damage in the top

stringer; higher frequencies are, conversely, sensitive to damage in the lower panel. For each damage

case, the e�ect of damage intensity on the �rst ten natural frequencies is further investigated in

Fig.10 by histograms.

Further investigation was carried out by analysing the e�ects of damages on the mode shapes

by MAC. Figure 11 shows the MAC values between the modes of the undamaged and damaged

con�gurations, for various damage values. The following comments stem from the analysis of the

damaged three-stringer spar:

• The free vibration analysis of structures with localized damages demands for accurate models,

which are able to describe the mechanics of the structure at the damage level. The CW

approach allows us to formulate re�ned 1D models that replicate solid models solutions with

very low computational demand. It represents, therefore, the most e�cient and accurate tool

for damage analysis of structures and it is used in the remaining part of this work.

• It is important to consider the variation of both natural frequencies and mode shapes for

damage analysis and detection. For example, in the case of the three-stringer spar, low damage

((1− d) = 0.1) in the top stringer results in a sensible reduction of the 7th natural frequency

(approximately 10 %). A similar behaviour is observed for low damage in the intermediate

18



Case 1 Case 2 Case 3 Case 4

(1− d) 0 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

f1 3.17 3.03 2.66 1.42 3.16 3.15 3.14 2.79† 2.43‡ 1.36§ 3.16 3.15 2.97

f2 3.56 3.28† 3.23‡ 3.21§ 3.56 3.56 3.56 3.49 3.47 3.45 3.54 3.53 3.49

f3 3.83 3.67† 3.66‡ 3.64§ 3.78 3.74 3.68 3.77 3.75 3.73 3.82 3.82 3.80

f4 14.27 14.27 14.26 7.53 14.27 14.26 14.25 13.76 12.87 6.86 12.39† 10.69‡ 4.94§

f5 16.73 16.73 16.13 14.27 16.73 16.73 16.70 16.71 16.68 15.56 14.05† 11.92‡ 5.65§

f6 17.67 17.67 16.73 16.73 17.67 17.67 17.67 17.59 17.34 16.23 14.86† 12.60‡ 5.69§

f7 21.17 18.96 17.67 17.67 21.17 21.17 20.48 19.50 18.06 16.68 17.73† 15.00‡ 6.72§

f8 21.70 21.17 21.17 20.32 21.67 21.62 21.17 21.15 21.13 20.49 21.43† 18.14‡ 8.12§

f9 22.95 22.07 22.03 21.17 22.89 22.84 22.62 22.80 22.76 22.32 21.63† 21.56‡ 9.87§

f10 25.10 25.06 25.05 22.00 25.08 25.06 24.89 24.60 24.47 22.75 22.93† 22.07‡ 11.9§

f11 25.75 25.74 25.74 25.04 25.74 25.74 25.70 25.68 25.66 24.35 24.32† 22.90‡ 14.48§

f12 31.21 31.21 31.21 25.74 31.21 31.21 26.87 31.20 31.19 25.49 26.11† 23.84‡ 17.35§

f13 37.92 37.92 37.92 31.21 37.92 37.92 27.89 37.91 37.91 31.11 31.73† 26.82‡ 20.59§

f14 45.79 45.79 44.32 37.92 45.79 45.79 28.17 45.78 43.14 37.76 38.31† 32.38‡ 21.43§

f15 54.85 51.76 45.79 39.27 54.85 52.76 29.56 50.34 45.79 38.79 45.89† 38.79‡ 22.79§

†Most severe damage case for a given vibration mode and (1− d) = 0.1

‡Most severe damage case for a given vibration mode and (1− d) = 0.5

§Most severe damage case for a given vibration mode and (1− d) = 0.9

Table 2 First 15 natural frequencies (Hz) of the three-stringer spar for di�erent damage cases

and intensities; 5 L9 CW model

stringer (see Figs. 10a and c). However, the two damage cases can be clearly distinguished

by MAC analysis (see Figs. 11a and g). For higher damage intensity ((1− d) = 0.9), damage

cases 1 and 3 can be easily distinguished from merely observing natural frequencies variation

(see, for example, the variation of the 5th natural frequency in Figs. 10a and c).

• A damage in the top panel can be detected by observing the �rst ten natural frequencies only

if high damage values are considered. The reason is that local modes involving the top panel,

which is smaller than the bottom one, only appear at high frequencies. However, a better

estimation of the damage in this case is possible by MAC analysis.

• The considered natural frequencies are mainly a�ected by damage case 4, i.e. by damage in
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Fig. 10 E�ect of the damage intensity on the �rst ten natural frequencies of the three-stringer

spar; CW model

the lower panel. However, for lower damage intensity, damage location can be confused if only

natural frequencies variation is observed (see Fig. 10d). The MAC analysis, on the other hand,

allows us to detect bottom panel damage even for lower damage intensity (see Fig. 11j). For

example, even for (1− d) = 0.1, modes 9 to 11 clearly change with respect to the undamaged
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(a) Case 1, (1− d) = 0.1
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(b) Case 1, (1− d) = 0.5
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(c) Case 1, (1− d) = 0.9

1 3 5 7 9 11 13 15

1

3

5

7

9

11

13

15

Undamaged, Mode number

D
am

ag
ed

, M
od

e 
nu

m
be

r

 

 

M
A

C
 V

al
ue

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Case 2, (1− d) = 0.1
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(e) Case 2, (1− d) = 0.5
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(f) Case 2, (1− d) = 0.9
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(g) Case 3, (1− d) = 0.1
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(h) Case 3, (1− d) = 0.5
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(i) Case 3, (1− d) = 0.9
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(j) Case 4, (1− d) = 0.1
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(k) Case 4, (1− d) = 0.5
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(l) Case 4, (1− d) = 0.9

Fig. 11 MAC mode-to-mode comparison between undamaged and damaged three-stringer

spar for various damage cases and intensities; 5 L9 CW model
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Fig. 13 Damaged zone of the three-bay trapezoidal wing; damaged areas in black

con�guration.

B. Three-bay trapezoidal wing box

A three-bay wing box is considered in the second analysis. The same structure was analysed by

Rivello [13] and by Carrera et al. [42]. The structure is shown in Fig. 12. The wing consists of three

wing boxes each with a length l = 0.5 m. The cross-section is a trapezium with height b = 1 m. The

two webs of the spar have a thickness of 1.6 mm, whereas h1 = 0.16 m and h2 = 0.08 m. The top

and bottom panels have a thickness equal to 0.8 mm as well as the ribs. The area of the stringers

is As = 8 × 10−4 m2. The wing is completely made of an aluminium alloy 2024, with G/E = 0.4

and ρ = 2700 kg/m3.

Figure 13 shows the damage cases considered in the present study. In damage case 1, the top-

right stringer is considered as the damaged component; in damage case 2, the top panel close to the

clamped end is damaged; and in damage case 3, damage is located in the right web in the �rst wing

box.

Table 3 shows the �rst 15 natural frequencies of both the undamaged and damaged wings.
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Case 1 Case 2 Case 3

(1− d) 0 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

f1 17.78 17.75 17.58 17.23 17.69 13.54 6.09 17.78 17.77 17.77

f2 18.46 18.44 18.36 18.21 18.10 17.82 16.45 18.46 18.45 18.44

f3 19.00 19.00 18.99 18.96 18.68 18.57 17.81 19.00 19.00 18.98

f4 19.12 19.12 19.11 19.09 19.00 18.99 18.56 19.12 19.12 19.12

f5 19.13 19.13 19.13 19.12 19.13 19.13 18.98 19.13 19.13 19.13

f6 19.24 19.24 19.24 19.24 19.18 19.17 19.13 19.24 19.24 19.24

f7 48.01 47.93 47.52 46.86 47.78 36.57 19.17 48.00 47.99 47.97

f8 49.82 49.77 49.55 49.19 48.86 48.10 34.14 49.82 49.80 49.78

f9 51.44 51.44 51.42 51.36 50.41 50.09 48.08 51.44 51.44 51.42

f10 51.60 51.60 51.59 51.56 51.44 51.43 50.06 51.60 51.60 51.60

f11 51.65 51.65 51.62 51.58 51.60 51.60 51.42 51.65 51.65 51.65

f12 51.94 51.94 51.93 51.91 51.78 51.77 51.59 51.94 51.93 51.89

f13 70.18 69.72 67.23 62.59 69.91 68.47 51.76 70.04 69.02 63.83

f14 98.20 98.20 97.11 95.67 97.86 75.85 63.31 98.19 98.17 98.13

f15 102.51 102.41 101.88 101.04 101.71 98.38 65.97 102.50 102.47 102.41

Table 3 First 15 natural frequencies (Hz) of the three-bay trapezoidal wing box for di�erent

damage cases and intensities; CW model

The results by the 1D CW model are given in the table. The CW model was validated in [42]

against classical and re�ned TE CUF beam models, analytical semi-monocoque solutions from

[13], and an MSC Nastran FE model obtained by combining solid and shell elements. It is clear

from the published research that the present CW model can overcome the limitations of classical

and analytical approaches. In fact, it can reproduce the results of complex FE models with one

order of magnitude of DOFs lower and without introducing any geometrical inconsistency in the

mathematical model. The CW model used in the present analysis has only 10046 DOFs.

The variation of the �rst ten natural frequencies versus damage cases and various damage inten-

sities is also graphically depicted in Fig. 14. Finally, Fig. 15 shows the mode-to-mode comparison

between undamaged and damaged con�gurations through a MAC analysis. The analysis suggests
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Fig. 14 E�ect of the damage intensity on the �rst ten natural frequencies of the three-bay

box wing; CW model

the following comments:

• The �rst 15 modes of the structure are mainly local shell-like modes involving the top and

bottom panels of the wing. For this reason, damage cases 1 and 3 do not a�ect sensibly

these modes. In fact, the damage in the stringer is only visible for high damage values (e.g.,
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(a) Case 1, (1− d) = 0.1
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(b) Case 1, (1− d) = 0.5
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(c) Case 1, (1− d) = 0.9
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(d) Case 2, (1− d) = 0.1
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(e) Case 2, (1− d) = 0.5
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(f) Case 2, (1− d) = 0.9
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(g) Case 3, (1− d) = 0.1
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(h) Case 3, (1− d) = 0.5
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(i) Case 3, (1− d) = 0.9

Fig. 15 MAC mode-to-mode comparison between undamaged and damaged three-bay box

wing for various damage cases and intensities; CW model

(1−d) = 0.9). In this case, a reduction of the value of the 8th natural frequency (Fig. 14a) and

a mode exchange in the MAC matrix (10th and 11th modes in Fig. 15c) are observed indeed.

Even for high damage values, a damage in the rear web is barely visible in MAC matrices (see

Figs. 15g to i). Higher frequency modes should be considered for characterizing damage cases

1 and 3.

• A damage in the top panel (damage case 2) can be easily detected by observing the natural

frequencies of the �rst ten modes (Fig. 14b). In the case of lower damage intensities, a
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Fig. 16 Cross-section of the NACA pro�le wing

reduction of the frequencies number 8, 9 and 10 are tangible. For higher damage values, even

lower natural frequencies drop.

C. Complete NACA pro�le wing

A complete wing is considered for the last assessment. The wing, whose cross-section geometry is

shown in Fig. 16, is straight with a NACA 2415 airfoil. The chord c is equal to 1 m. The thickness of

each panel is 3 mm, whereas the thickness of the spar webs is 5 mm. The cross-sectional dimensions

of the spar caps can be found in [43]. The overall length of the structure is L = 6 m. The wing is

made of three wing boxes, separated by transversal sti�ening members at sections y = 2 m, 4 m, and

6 m. The thickness of the ribs is equal to 6 mm. For illustrative purposes, the wing is completely

metallic and the adopted material is an aluminium alloy with the following characteristics: elastic

modulus E = 75 GPa; Poisson ratio ν = 0.33; and density ρ = 2700 kg/m3.

Free vibration analyses of the undamaged and various damaged con�gurations were carried out.

Damages were collocated as displayed in Fig. 17. In particular, in the �rst damage case (Fig. 17a),

the whole rear longeron was considered as damaged; in damage case 2 (Fig. 17b), the damage was

located in the whole leading edge; the front spar was damaged in case 3 (Fig. 17c); and, �nally,

damage interested the top central panel in case 4 (Fig. 17d).

The natural frequencies of the undamaged and damaged structure are shown in Table 4. A

damage intensity equal to (1 − d) = 0.5 was considered. A CW model of the NACA wing was

used to list those frequencies. The adopted CW model was obtained by CUF and by employing

a combination of L9 elements on the wing cross-section as outlined in [43], where the model was

also validated against classical and re�ned beam theories as well as against complex FEM solutions.

For the sake of readability, the �rst 15 natural frequencies are also given in a graphical form in

Fig. 18, where, for each damage case, the variation of the natural frequencies between undamaged
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Fig. 17 Damaged zones of the NACA pro�le wing; damaged areas in black

and damaged structure is clearly highlighted.

Some selected mode shapes of the undamaged wing are shown in Fig. 19. Modes 1 to 5 are

global modes. Namely, the �rst mode (Fig. 19a) is the fundamental bending mode in yz-plane;

mode 2 (Fig. 19b) is the �rst bending mode in xy-plane; mode 3 (Fig. 19c) is the second bending

mode in yz-plane; mode 4 (Fig. 19d) is a torsional mode; mode 5 (Fig. 19e) is the third bending

mode in yz-plane; modes 6 to 15 are local shell-like modes involving top and bottom panels. Mode

9 is shown in Fig. 19f for illustrative purpose.

Mode-to-mode comparisons by MAC between damaged and undamaged structures are shown

in Fig. 20 for all the considered damage cases. The following conclusions can be made from the

analysis of the NACA wing:

• The damage cases 1, 2 and 3 cannot be detected by comparing the mode shapes between the

undamaged and damaged con�gurations. The MAC matrices in Figs. 20a, b and c show, in

fact, an almost perfect correspondence among mode shapes.

• The damage cases 1, 2 and 3 can be distinguished each other by observing the frequencies

variation. For example, in case 1, the variation of frequencies 6 to 15 is approximately the

same (2-3 %) between undamaged and damage con�gurations (see Fig. 18a). In case 2, a
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Undamaged Case 1 Case 2 Case 3 Case 4

f1 4.14 4.10 3.95 3.42 4.09

f2 21.28 20.58 19.78 19.18 21.18

f3 25.00 24.69 23.90 20.59 24.19

f4 39.45 38.99 36.54 36.49 37.69

f5 64.84 63.50 62.41 53.74 63.48

f6 85.61 82.37 84.18 77.28 83.98

f7 91.54 88.96 89.98 81.13 87.30

f8 93.46 91.04 92.41 82.84 91.42

f9 96.99 93.93 94.06 84.86 93.64

f10 103.67 100.98 101.45 94.19 102.34

f11 104.82 102.40 103.09 96.10 104.10

f12 106.76 104.40 105.11 98.13 106.59

f13 109.90 107.11 106.82 99.17 107.80

f14 115.76 112.79 108.78 105.71 114.92

f15 124.19 122.02 121.30 107.38 119.35

Table 4 First 15 natural frequencies (Hz) of the NACA pro�le wing for di�erent damage cases

and (1− d) = 0.5; CW model

higher variation of frequency 14 is noticeable (6 %), whereas the other shell-like frequencies

behave as in case 1 (see Fig. 18b). In case 3, unlike the the other cases, a variation in global

modes is also visible; e.g., 17 % reduction of frequency 5.

• A damage in the top panel (case 4) is clearly detectable by MAC matrix in Fig. 20d, which

shows a clear variation in the local mode shapes between the undamaged and damaged struc-

ture.

V. Conclusions

This work has proposed advanced one-dimensional models for the free vibration analysis of

damaged aircraft structures. Simple spar structures to complete wings have been considered. The

analyses were carried out through a Component-Wise (CW) formulation based on the Carrera Uni-
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(d) Case 4

Fig. 18 E�ect of the damage on the �rst �fteen natural frequencies of the NACA pro�le wing;

CW model

�ed Formulation (CUF). CUF is a tool that allows for the automatic implementation of structural

theories by expressing the displacement �eld as an expansion of the generalized displacements by ar-

bitrary basis functions. If Lagrange polynomials are used, CW models for complex multi-component

structures can be easily obtained and opportunely tuned on the basis of the required degree of ac-
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 9

Fig. 19 Mode shapes of the undamaged NACA pro�le wing; CW model
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(a) Case 1, (1− d) = 0.5
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(b) Case 2, (1− d) = 0.5
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(c) Case 3, (1− d) = 0.5
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(d) Case 4, (1− d) = 0.5

Fig. 20 MAC mode-to-mode comparison between undamaged and damaged NACA pro�le

wing for various damage cases; CW model

curacy. The use of CW features leads to models that provide high-�delity geometrical and material

descriptions of the structure. These are fundamental characteristics demanded for the damage

analysis of structures.
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In this work, the damage was introduced employing reduced sti�ness areas. Globally and locally

damaged aircraft structures were considered. The former were damaged along the entire span. The

latter has damages in given portions of the span. The e�ects of damages in various structural

components were considered, ranging from damages in the stringer, in the entire longeron and in

the panels. The results suggest that

• As known from the previous CUF literature, 1D higher-order models are able to deal with non-

classical e�ects, such as cross-sectional distortions and local e�ects. The presence of damage

worsens the majority of those phenomena. Thus, advanced models are mandatory in damage

detection analyses.

• The e�ect of damage on the natural frequencies and mode shapes depends on the damage

location and intensity. It may be very di�cult to detect damages within the structure in the

case of low damage levels.

• For a given damage, the e�ects on the free vibrations depend on the mode shapes considered

in the analysis. It is important to employ a model able to describe both local and global

modes to deal with a wide spectrum of damage cases.

• Natural frequency tracking must be accompanied by mode shapes comparisons in damage

detection analyses. In fact, some damage can a�ect some natural frequencies and not the re-

lated mode shapes and vice-versa. MAC is a good tool for mode-to-mode comparison between

undamaged and damaged structures.

• The CW approach allows us to deal accurately with damage analysis with very low compu-

tational costs. In fact, as known from the previous CUF literature, CW models provide the

same accuracy of 3D solid FE analyses with one or two orders of magnitude less DOFs.

The use of CUF models for the analysis of damaged aircraft structures may have interesting outcomes

for damage detection. For example, due to its high numerical e�ciency and accuracy, CUF and

CW models may be employed to create a database of possible damage scenarios to be compared to

experimental data, possibly in a CUF-trained neural network.
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