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2Politecnico di Torino, DET, Torino 10146 Italy

Abstract—In the exploding growth of radio mobile and wireless
communication applications, microstrip antennas with its advan-
tages of low cost and flexible fabrications, emerge as the most
suitable candidate. The direct antenna synthesis could, however
do not result in the optimal antenna configuration, and therefore
a possible alternative is considering the problem of optimizing
the antenna as a system of uncertainty, in which each set of
geometrical parameters returns a totally different response; the
best set, i.e. the one that gives the best antenna performances, can
be obtained using global optimizers, as evolutionary algorithms.
The main drawback of this approach is that it is really time
and memory consuming. In this article, a technique based on
the hybridization between Particle Swarm Optimization (PSO)
and Artificial Neural Network (ANN)is introduced with the aim
of reducing this nimerical cost and implemented to optimize a
dual-annular ring proximity coupled feed antenna.

Index Terms—artificial neural network, evolutionary algo-
rithm, microstrip antenna

I. INTRODUCTION

Since modern communication systems demand high quality
data service, bandwidth enhancement of printed antennas has
become a vital study over the last two decades. The easiest
way to reach this scope is that of using mere than one
radiating element, generally located on different dielectric
layers. This technique could however results in defining a quite
complex structure; moreover, in some applications a reduced
antenna thickness is required, and therefore the use of radiating
elements located on the same dielectric layer and eventually
fed by electromagnetic coupling with a microstrip line printed
on a lower layer, is more convenient. Among the single-layer
configurations with enhanced bandwidth presented in literature
there are several that combine different shape annular patches,
located one inside the others: in this way it is possible to
have a compact, multi-resonant structure. The first type of
annular patch considered in literature was the circular one
(see for instance[1] and references therein). The advantage
of structures with different patches is not only that they allow
a bandwidth enhancement, but also that they present different
geometrical parameters that could be properly selected in order
to optimize the antenna performances [2], [3].

However, with the complexity of the structure to be opti-
mized also the computational cost and the memory occupa-
tion required by the optimization increase. With the aim of
reducing both of them, authors have investigated in the past
years the possibility to adopt a surrogate model, base on the
use of an Artificial Neural network (ANN), that, once trained,

behaves as the antenna under optimization, requiring lower
computational and memory effort [4]. This methodology as
illustrated in Figure 1, so-called Regular sampling, was clearly
explained in [5]. In [4], [5], the conventional optimization
scheme, was employed and it was proved to save a significant
amount of computational resources. With the aim of reducing
committed error level, a new solution of multiple neural
networks instead of one network is presented in [7]. In those
aforementioned approaches, all steps are executed separately
[11], [10].

The initial idea of new training scheme and its effectiveness
were presented on dual rectangular ring structure in [6]. In
order to overcome this limitation, a new hybrid method is
proposed, by imposing ”smooth combination” between global
optimizer and ANN. The main difference relays on the way
the optimizer retrieve data: arbitrary data set from unsatisfied
configurations instead of formally chosen in the range of
interest. In order to test the effectiveness of the developed
scheme, it is here applied to the optimization of a proximity
coupled fed dual annular ring antenna.

II. ELECTROMAGNETIC PROBLEM AND OPTIMIZATION
TOOLS

A. Antenna of the test

In order to investigate the robustness of the hybrid tech-
nique, a proximity coupled fed type antenna is chosen as a test
object. This multi-layer structure consists in two concentric
annular rings situated on the top layer, the feeding microstrip
line in the middle layer and the ground plane on the bottom
layer.

Fig. 1. Old optimization scheme by Regular training.



Fig. 2. Top view and side view of the test object antenna.

All these structures are printed on FR4 substrate with
dielectric constant εr = 4.4 and height of 2.4 mm for each
layer. The main object of the optimization scheme is to enlarge
as much as possible the bandwidth over the requested WIFI
band (2.4 GHz to 2.5 GHz). As illustrated in Figure 2, six
geometrical parameters namely a, b, R1, R2, t1, t2 could
vary in a specific range of interest. Fabrication constraint and
feasibility of the structure are also taken into account, and this
means, for example, that, since the two concentric rings cannot
overlap each other, the outer ring cannot exceed the region of
the patch.

III. INTERPRETATION OF HYBRIDIZATION TECHNIQUE

The main idea of the proposed technique is to utilize
the data from unsatisfying antenna configurations as prior
knowledge for the ANN training. ANN is a self-adaptive
modeling tool that changes its structure on the basis of
external or internal information flowing through the network.
Therefore, more information is updated, more accurate outputs
the ANN surrogate model can provide. The crucial difference
between this hybridization technique and the conventional
ANN used in [5] is the way in which the training set data
retrieved. The proposed ANN simulates the behavior of the
radiating structure at the varying of the Frequency, together
with the six geometrical parameters already mentioned above,
i.e. a, b, R1, R2, t1, t2 and uses two hidden layers of 9,
7 neurons respectively. This architecture ends up with two
outputs: the real part and the imaginary parts of the Return
Loss, as illustrated in Figure 3. At the end, the two outputs
are recombined to form the amplitude of Return Loss, which
is the main concern of global optimizer.

IV. NUMERICAL RESULTS AND CONCLUSIONS

In order to prove the efficiency of the proposed method,
it has been compared with the conventional ANN model. In
Figure 4 the magnitude of the return Loss computed with the

TABLE I
COMPARISON OF COMPUTATIONAL EFFORT BETWEEN CONVENTIONAL

AND HYBRIDIZATION TECHNIQUE.

Sampling technique Number of samples Computational time

Regular 56 = 15625 25 days

Irregular 450 17 hours

here proposed technique and with the traditional ANN scheme
are plotted versus frequency f , since antenna structures are
investigated in the band of interest (from 1.5 GHz to 3.5
GHz) with the resolution of 400 steps, and the geometrical
parameter b that has been discretized by 7 samples. The rest
of antenna parameters are fixed as: a = 30 mm; R1 = 12
mm; R2 = 5 mm; t1 = 1.5 mm; t2 = 1.5 mm. The color bar,
ranging from 0 to 0.2, indicates the error introduced by ANN
approximations in conventional scheme [5] and in proposed
hybrid method. As can be seen from the plots, the error
committed by Irregular sampling method is slightly higher
than Regular one. The maximum error value recorded is 0.1
and this difference can be neglected. The primary purpose is
a better control by obtaining training data from arbitrary sets
of inputs rather than formally chosen space so that the total
time consumption is saved radically.

As shown in Table I, according to scheme in [5], in order
to create training set data, 15625 samples are needed. The
proper ANN architecture for this huge data set might not be
found. Provided that it exists, the amount of time for training is
tremendous and it would lead the surrogate-based optimization
by ANN to impractical. By employing this hybridization tech-
nique, the case of over-training data is eliminated by a set of
constraints and loops. Regarding this particular case, the total
amount of time spent is 17 hours, much less than estimated
25 days of conventional scheme. These results confirm the
effectiveness of the proposed scheme, making it extendable to
more complex electromagnetic problems.

TABLE II
OPTIMIZED GEOMETRICAL PARAMETERS BY ANN MODEL WHEN BEING

INTEGRATED WITH PSO OPTIMIZER.

Parameter name Value (mm)

a 40.13

b 39.92

R1 12.7525

R2 6.6776

t1 3.9319

t2 3.7056
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Fig. 3. Artificial Neural Network Architecture.
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Fig. 4. Numerical efficiency comparison between conventional and hybridization technique according to the change of frequency f and b.
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