

POLITECNICO DI TORINO Repository ISTITUZIONALE

Energy production from anaerobic co-digestion processing of cow slurry, olive pomace and apple pulp

 Original

 Energy production from anaerobic co-digestion processing of cow slurry, olive pomace and apple pulp / Riggio,

 Vincenzo; Comino, Elena; Rosso, Maurizio. - In: RENEWABLE ENERGY. - ISSN 0960-1481. - 83(2015), pp. 1043-1049.

 Availability:

 This version is available at: 11583/2646111 since: 2016-09-05T09:23:58Z

 Publisher:

 Elsevier Ltd

 Published

 DOI:10.1016/j.renene.2015.05.056

 Terms of use:

 openAccess

 This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

ENERGY PRODUCTION FROM ANAEROBIC CO-DIGESTION 1 2 PROCESSING OF COW SLURRY, OLIVE POMACE AND APPLE PULP. 3

Vincenzo Riggio^a, Elena Comino^{a1}, Maurizio Rosso^a

4 5 6 "Politecnico di Torino, Dipartimento di Ingegneria dell'Ambiente del Territorio e delle Infrastrutture, C.so Duca degli Abruzzi, 24, 10129 Turin, ITALY 7

8 Abstract

9 This paper deals with anaerobic co-digestion of cow slurry, apple pulp and olive 10 pomace mixture and results obtained shown that the production of methane by co-11 digestion of cow slurry, olive pomace and apple pulp is not only possible but also 12 economically and energetically attractive. Tests were performed with a pilot scale 13 anaerobic digester, 128 l in volume, operating under batch and fed-batch condition. The 14 biogas production, methane yield and quality, plus other operating parameters were 15 evaluated under four feeding regimes, to simulate a real situation. Stable biogas 16 production was obtained of about 400 l/kg Volatile Solids at a Hydraulic Retention Time 17 of 40 days in a mixture containing 85% cow slurry, 10% olive pomace and 5% apple pulp 18 (% by volume). The percentage of methane inside the biogas was around 52% and the 19 maximum COD removal was 63%.

20

Keywords: Anaerobic co-digestion; Methane yield; COD reduction; Digestate yield test; 21 Energy production.

22

Corresponding author. Tel.: +39 011 0907647; fax: +39 011 0907602. E-mail address: elena.comino@polito.it

23

24 1. Introduction

25 Many agricultural biogas plants have been, or are going to be, built in Italian territory 26 due to strong public support for renewable energies. These plants are mainly fed with 27 cattle slurry and various type of crops mixture. At the same time, large quantities of agro-28 industrial by-products have no economic value and are discared in landfill [1]. In areas 29 and region where agricultural productions are focused on specific cultivation like apples 30 and olives these biomasses could be used in anaerobic digestion plants [2] and could be 31 used to substitute food crops in the anaerobic reactors feeding mixtures. However very 32 few reasearchers has been conducted to investigate the biogas potential of such 33 biomasses, and all the available references are focused on the anaerobic digestion of one 34 biomass type [3], [4], [5] and [6], or the co-digestion of two agro-industrial by-products 35 [7] and [8]. The Autonomous Province of Trento has a surface of approximately 6,200 km², equal to slightly more than 2% of the Italian territory; 20% of this surface is below 36 37 600 meters, about 20% is between 600 and 1,000 meters, while the remaining 60% of the 38 country lies above 1,000 meters. A real flat land does not exist in the territory, although 39 there are flat strips, more or less uncomfortable, which constitute the valley of Adige and 40 of other major streams. Even if the Region has small cultivalbe area it has a 1,633.3 t/yr 41 production of olives [1]. But Trentino Alto Adige Region is also the principal Italian 42 producer of apples [1]. A parallel market exists around olive and apple, and it consist into 43 processing the obtained by-products, such as the olive pomace and the residual material 44 that remains after the crushing of apples for the production of juice. It was demostrated 45 that in both batch and continuous digesters olive pomace and apple pulp can be codigested 46 with manure and cattle slurry without the need of any chemicals. However, it is still

47 unknown which is the maximum organic loading rate of these two products permitted in 48 continuously operated reactors, and also if a co-digestion of three complementary substrates could bring to a better result in biogas production. Furthermore, optimization 49 50 of the co-digestion process has not been performed. Finally, a practical aspect that is still 51 under question, is whether or not olive pomace can be quantitatively treated in existing 52 digesters of cattle-raising units and under what conditions. The objective of this study 53 was to evaluate the performance of anaerobic digestion for the treatment and biogas 54 production of different mixtures of cattle slurry, olive pomace and apple pulp. The specific aims were to investigate the efficacy of semi-continuous digester at different and 55 56 consecutive feeding ratios under mesophilic condition, to determine the methane potential 57 and biogas production quality of different feeding mixtures, and to evaluate the overall 58 performances of the process.

59 2. Methods

60 2.1 Experimental device

61 Trials were carried out using an own designed and constructed experimental pilot 62 digester shown in Fig.1. The reactor had a 316 stainless steel tank realized by a cylinder 63 90 cm high with a diameter of 40.3 cm, closed by two top and bottom caps, for a total 64 volume of 128 l and a reaction volume of about 103 l. It was equipped with a mixing 65 system, blade propeller and a scraper on the bottom; both 316 stainless steel made and 66 activated by a variable speed electric engine. In this reactor the feed system consists in a small hopper equipped with a 2" diameter pipe. This type of feed system was appropriate 67 68 for fed-batch loads of liquid and semi-liquid biomasses, as clogging was avoided inside 69 the pipe. Two butterfly valves were inserted along the vertical pipe in order to maintain

70 the anaerobic conditions and to stabilize the pressure inside the reactor during the feeding 71 phase. The biomass outlet was allowed through a 2" butterlfy valve placed at the bottom 72 of the reactor (as visible in Fig.1). All the biomass feeding and discharging procedures 73 were done manually. The digester and the gasometer were equipped with a complete 74 probe monitoring system: a temperature probe inserted on one side of the reactor; a 75 temperature and a pressure probes placed inside in the gasometer; a pH probe inserted 76 inside the digester. The temperature was automatically controlled to remain inside 77 mesophilic range (about 35°C), the required heat was supplied by an electrical resistance 78 (15 m long). The heating cable was wrapped around the reactor and covered with 79 insulating coat. The system was also equipped with a small tank to collect the condenses, 80 designed to be emptied automatically. The upper part of the gasometer had a 81 counterweight system, realized with two pulleys, linked to a wire potentiometer to 82 measure the tank vertical displacement. The operational relative gauge pressure was about 83 9-10 mbar. The outlet pipe was equipped with a solenoid valve activated by a relay to 84 allow the automatic quick discharge of the produced biogas when the gasometer was 85 completely full. The system was already described in details in previous experiences [9] 86 and [10].

87 2.2 Feed strategy and used material

The adopted feed strategy was chosen as a good compromise between laboratory experimentation and real scale. Indeed, inside a full scale reactor the feeding ratio are changed in continuous condition. To simulate this situation was reach a compromise where an initial phase 0 of the experiment was realized under batch condition using only one type of biomass (cattle slurry). Then, the investigation started and a continuous feeding regime was adopted using a fed-batch strategy, using all the three selected 94 biomasses under different feeding ratios. At the end was also decided to evaluate if the 95 final biomass was still active in the production of biogas and in which quantities. For this 96 reasons was realized a digestate methane yield test (performed under batch conditions), 97 that it was used for comparison with the data obtained during the Start-up.

98 The cattle slurry was collected in several sessions directly at the exit of the stable grid 99 from livestock farm, Fontanacervo, located in Villastellone (Piedmont Region, Turin, 100 Italy). Part of this biomass was used to fill the digester, and part was stored at 4°C for 101 feeding the system. The digestate used for the Start-up phase was obtained from a full 102 scale anaerobic bioreactor operating on agro-zootechnical biomasses (Biocanali s.r.l., 103 Buriasco – TO – Italy). The olive that were harvested at the end of October to the middle 104 of December, were collected from a crusher of "Riva del Gard" (Trentino Region, Italy). 105 The process adopted for the oil extraction was the cold one, executed in batch mode. 106 About 80 kg of olive pomace were collected and stored at 4°C for feeding the system 107 during the co-digestion phases. The apple pulp was collected from a family run farm 108 located in Bleggio (Trentino Region, Italy). This kind of biomass can also be produced in 109 a fixed period of time as apple harvesting time was set between November and February. 110 About 80 kg of the remains of pressed apples coming from the production of apple juice 111 were collected and stored at 4°C. Prior to each feeding procedure the biomasses were 112 warmed to room temperature (about 22-24°C). The inlet biomasses and the outlet 113 digestate details are listed in Tables 1 and 2.

114 2.3 Start-up phase

A mixture of slurry and inoculum (coming from a previous digestion test) was used for the beginning and the activation of the experiment, respectively 90% and 10% (w/w - P0). The digester was initially filled with 80 1 of mixture and was operated in batch
mode. The Start-up phase was conducted until the anaerobic digestion reaction started
and the system reached a steady state of biogas production [9]. This initial part lasted 35
days, the substrate was stirred every 2 days at 50 Hz (28 rpm) for about 40 min., and the
biogas analysis were performed at the same time.

122 2.4 Co-digestion phase

123 Co-digestion of cattle slurry, olive pomace and apple pulp was started to simulate a 124 continuous feeding condition when stable conditions were reached on day 35. This phase 125 was divided into four subsequent parts with different mixture feeding ratios. Each part of 126 the phase lasted about 33 days of fed-batch feeding, and 7 days of anaerobic rest (batch 127 condition with no further feeding). Starting from the situation describe above activation 128 stage (P0) the reactor was fed with a combination of 85% cow slurry, 10% olive pomace 129 and 5% apple pulp (P1). Feeding was done 3 times a week for a total of 14 times. Also, 130 at the end of P0 phase the biomass volume of the mixture inside the reactor was about 80 1. This biomass quantity was gradually reduced to a volume of 701 during the P1 phase, 131 132 for easily managed the following fed-batch phases. To decrease the total volume was simply reduced the amount of the organic material introduced inside the reactor during 133 134 the feeding. The second phase of the co-digestion (P2) started on day 75 when biomass 135 inside the reactor was substituted with an equivalent mass of mixture (75% cattle slurry, 136 15% olive pomace and 10 apple pulp). The feeding operations were the same described 137 for the first part of the co-digestion. The third phase (P3) of the co-digestion phase was performed with a biomass substitution with a combination of 65% cattle slurry, 20% olive 138 139 pomace and 15% apple pulp. It started on day 115 and the feeding operations were 140 performed similarly to the previous two. The fourth phase of the co-digestion (P4) started 141 on day 153 and aimed to substitute biomass with a combination of 70% cattle slurry, 20% 142 olive pomace and 10% apple pulp. This last mixture was investigated as the Province Law 143 02/05/2012, n. 8 posted on B.U. Autonomus Province of Trento n. 19 of 8/5/2012, 144 introduced a new article, 62-ter, specifically for biogas plants in agricultural areas. In this 145 article was specified that the anaerobic digestion plant must be fed mainly from manure, 146 in an amount equal to at least 70%, which must be produced by the company. The 147 remaining part can be other vegetable biomass resulting from the activities of the same 148 company or produced by farms present in the same territorial context. The feeding 149 procedures were the same of the previous co-digestion trials.

150 Substrate samples were collected at the end of every co-digestion phase for chemical 151 evaluation (Table 2). No immision of nitrogen was done inside the reactor since it was 152 observed that for low percentage (less than 1%) of oxygen in the reactor volume did not 153 adversely affect the anaerobic reaction. The substrate was stirred every time a feeding 154 operation was performed (3 times a week) for 30-45 min at 28 rpm. The pH probe and 155 the gas analyzer were checked, cleaned and calibrated at every starting part. The 156 gasometer was automatically emptied when it reached a pre-established vertical value 157 through the opening of the discharge electro valve.

158 2.5 Digestate methane yield test (DMY)

A Digestate Methane Yield test was realized just after the processing of the last mixture (70% cow manure, 20% olive pomace and 10% apple pulp – P4). It was performed after the conclusion pf co-digestion tests, on day 188. The DMY test was conducted in batch condition using the biomass already inside the reactor and the substrate was stirred every two days at 28 rpm for a period of about 45 min, typically when biogas analysis was performed. The main control parameters were constantly
checked, as it was the methane concentration inside the biogas. On day 220, after 32 days
of detention time, the test was stopped and samples collected for the analysis (Table 2).

167 2.6 Analysis

168 Chemical analyses were performed within 48h by an independent laboratory. The 169 biogas composition and the analysis for the biomass samples for the determination of 170 BOD₅, COD, pH, density, 105°C residual, 550°C residual, volatile solids, ammonia and 171 volatile fatty acids were carried out according to the previous report [9]. The organic 172 loading rate (OLR) and the hydraulic retention time (HRT) were obtained on the basis of 173 the regular substitution of mixture inside the reactor. The C/N ratio was monitored before 174 and after every phases, and it was always inside the range 18-22/1 compatible with good 175 functionality for this type of biomasses. All the experiment was performed in wet 176 condition with a solid fraction inside the mixtures lower than 10%. The aims were to 177 follow with accurancy the different part of the co-digestion test and evaluating the 178 reaction behavior and evolution under different mixture ratios.

179 3. Results and discussion

180 3.1 Start-up phase

In the first 35 day period limited biogas production was observed (Fig. 2 – P0). The pH value started from 7.2, reached 8.1 around day 14th and stabilized around 7.8 for the rest of the Start-up phase. The total biogas volume produced was equal to 8781 (Fig. 2 – P0). The CH₄ proportion inside the mixture was 56.59%, for a 497.21 total volume of methane production. A total of 3.9 kg of VS were processed inside the reactor. Consequently the methane potential of this Start-up phase was equal to 126.91-CH₄/kgVS. The digestion followed the expected steps and the trend of biogas production was similar to trends observed previously in similar studies [10] where the methane potential was 119.17 l-CH₄/kg-VS. Amon et al. [11] found a specific methane yield between 125.5 and 166.3 l-CH4/kg-VS. Braun et al. [12] reported a range between 140 and 266 lbiogas/kg-VS and also Thomè-Kozmiensky [13] and Brachtl [14] found biogas yields between 200 and 300 l-biogas/kg-VS. All these ranges are compatible with the Start-up phase that, gave a value equal to 224.3 l-biogas/kg-VS.

194 3.2 Co-digestion phase

195 The OLR of the different mixtures ranged from 2.75 (P4) to 3.34 (P3) g-VS/l-d (Table 196 3) as a consequence of the increase of olive pomace portion in the feeding. The pH values 197 remained between 7.7 - 8.1, which are fully compatible with the optimal working range 198 after the stabilization obtained in the Start-up phase. The biogas production is presented 199 in Fig. 2 (P1-P2-P3-P4 series). The daily biogas yield shows a very similar trend for P1 200 and P2 mixtures (Fig. 2). P3 also shows a good yield behavior. By contrast, the last part 201 of the co-digestion phase (P4) shows a great difference from the P1 and P2 series, with 202 half the production. All the trends were analyzed, and constant growth rates were 203 observed for almost the entire duration of feeding Subsequently, a progressive and regular 204 biogas yield decrease was recorded, which dropped after about 40 days. In all the stages 205 of the test, the percentage of methane in biogas gradually increased. The highest value 206 was reached typically at the beginning of the second week when the microbiota had 207 adapted to the new mixture. Fig. 2 shows that the CH₄ values were stable between 50-208 60%. The P1 mixture gave the greatest specific yields -396 l biogas/kg SV and 216 l 209 CH₄/kg SV- but interesting results were also obtained with the P2 mixture that gave a 210 specific yield of 342.5 l biogas/kg SV and 189 l CH₄/kg SV. This was unexpected

211 behavior that can be summarized as very similar to or better than the P1 mixture for the 212 whole feeding period, with minimal decreases only during the feeding rest period (Fig. 213 2). The P3 mixture also gave a specific yield, not so different from that obtained with the 214 previous two combinations, 254 l biogas/kg SV and 141 l CH₄/kg SV. The last mixture 215 (P4) that gave the smallest specific yield of all the whole co-digestion phase started with 216 values of 211 l biogas/kg SV and 116 l CH₄/kg SV.

217 The present investigation shows that anaerobic digestion of cattle slurry, olive pomace 218 and apple pulp can be achieved with good methane yield with a 75:15:10 ratio. Even with 219 an increase of olive pomace and apple pulp to 65:20:15, the level of production of biogas 220 is quite near to the results obtained with the optimum ratio. Slight instability was observed 221 only during the P4 feeding phase. Just after day 4 the P4 mixture became less productive 222 than the P3 mixture, and the total biogas volume produced was 1,655 l (40% less 223 compared to the P3 series). The reasons of this big difference in biogas production could 224 be explained by an accumulation of lipids and polyphenols that were difficult to degrade 225 and may have inhibited certain microbial groups [15].

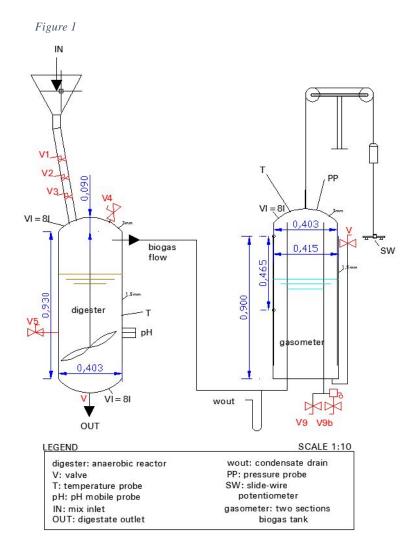
226 The P4 co-digestion phase started with an inlet mixture of a 70% slurry fraction, of 227 20% olive pomace and a 10% fraction of apple pulp, with a COD value equal to 92.5 g/l, 228 an OLR of 2.56 g-COD/l-d and HRT of 36 days with a COD reduction of 55.5%. All the 229 COD reductions are shown in Table 3. Very few experiments have been conducted on co-230 digestion of two of the biomasses used (typically slurry and apple pulp, more rarely slurry 231 and olive pomace) and no references have been found to investigate the tested mixture. 232 During trials with several test combinations of apple waste and swine manure co-233 digestion, Kafle and Kim [8] found a similar methane yield both for batch- and continuous 234 feeding. Llaneza Coalla et al. [7] reported higher methane yield in digestion of different

235 apple pulp tests, but without the use of co-digestion with other biomasses. These authors 236 observed that the NH₄⁺-N quantity inside the reactor led to a critical accumulation inside 237 the reactor (over 2,500 mg/l). A different situation is reported by Tekin and Dalgiç [6] for 238 the production of methane from olive pomace alone, where high concentrations of fat and 239 the presence of other insoluble compounds led a low yield value. Comparing the methane 240 yield obtained the co-digestion experiments described in this present paper with the data 241 collected by Dinuccio et al. [16] on several agro-industrial single biomasses reveals 242 relevant data. Only whey, 501 l CH₄/kg SV, that can not be digested without chemical 243 pH correction, and dried maize residues, 317 l CH₄/kg SV, achieved better values. The 244 substrate that obtained the best production performance was the P1 mixture (85% cattle 245 slurry, 10% olive pomace and 5% apple pulp). Compared with the specific methane yield 246 of the Start-up phase (P0 – only cattle slurry) it rendered an increase in production of 247 about 70%. The P2 combination (75% cattle slurry, 15% olive pomace and 10% apple 248 pulp), that achieved higher OLR and biogas quality then the P1 during the experiment, 249 gave a 48% increase in methane specific yield if compared with the Start-up phase. These 250 results confirm that the co-digestion of these substrates succeed in co-metabolism and 251 strongly contribute to reduce the effect of inhibitory factors. The P1 mixture yield makes 252 it possible to obtain an electricity production of about 2.1 kWhr per t/d (considering a 253 CHP technology with 36% of efficiency).

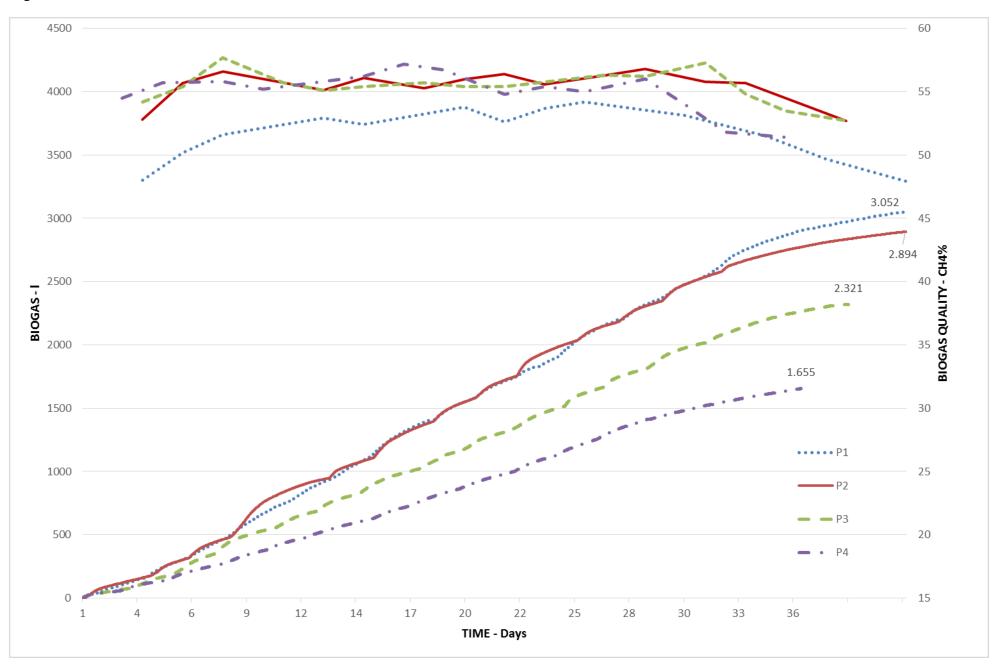
254 3.3 Digestate Methane Yield Test

The digested biomass was used to performed a Digestate Metahen Yield test at the end of phase P4, as described in Section 2.5. The OLR was 0.79 g-VS/l-d, with a 455 l of produced total biogas (Fig. 2). Biogas samples collected during the test, led to an average CH₄ proportion of 51.3%, and with this value the amount of methane inside the biogas

259 volume corresponded to 233.41. The methane yield was 93.51 CH₄/kg SV obtained using 260 a quantity of VS (2.5 kg) calculated using the chemical analysis of the initial digestate. 261 The DMY test showed a poor biogas and methane production if compared with similar 262 studies that used different co-digested substrates [17], [18] and [10]. The main process 263 parameters were both very low as visible in Table 3. In experiments conducted in the past 264 it was observed that digestate can still yield an important amount of biogas. In the DMY 265 test describe in this present paper the obtained results were relevant if compared with the 266 Start-up phase. The cumulative curve of both Start-up phase and DMY test can be 267 observed in Fig. 2. The total biogas volume obtained from the DMY test is about the half 268 of what obtained from the digestion of only cattle slurry. The comparison of the methane 269 yield between the two phases showed a decrease of only the 26% between the Start-up 270 and the DMY. The biogas recovered from the digestate could represent a sensible 271 contribution to the global energy balance. Indeed, with the above values was possible to 272 obtain an electricity production of 0.3 kW per t/d (batch digestion and CHP technology 273 with an efficiency of 36%).


4. Conclusion

The results obtained in this study show that the production of methane by co-digestion of cow slurry, olive pomace and apple pulp is feasible and economically attractive. The P1 and P2 mixtures are very productive and show a very similar biogas production behavior. Infact the methane yields in the experiment performed were equal to 216.3 and 189.4 1 CH_4/kg SV with an OLR of 2.75 and 3.01 g-VS/l-d respectively. The energy potential of this mixture is reasonable near to energy crop and livestock combinations, and could be used to cost-effectly solve a waste problem in Trentino.


283	[1] Servizio statistica Provincia di Trento. 6º Censimento dell'Agricoltura
284	Generale 2010, ISTAT; 2013. Trento.
285	[2] Schievano A, D'Imporzano G, Adani F. Substituting energy crops with
286	organic wastes and agro-industrial residues for biogas production. J
287	Environ Manage 2009; 90:2537-2541.
288	[3] Knol W, Van der Most MM, de Waart J. Biogas production by anaerobic
289	digestion of fruit and vegetable waste A preliminary study. J Sci Fd
290	Agric (4th edn.) 1978; 29:822-830.
291	[4] Lane AG. Laboratory scale anaerobic digestion of fruit and vegetable
292	solid waste. Biomass 1984; 5:245-259.
293	[5] Hamdi M. Anaerobic Digestion of Olive Mill Wastewaters. Process
294	Biochem 1996; 31:105-110.
295	[6] Tekin RA, Dalgiç AC. Biogas production from olive pomace. Resour
296	Conserv Recy 2000; 30:301–313.
297	[7] Llaneza Coalla H, Blanco Fernández JM, Morís Morán MA, López
298	Bobo, MR. Biogas generation apple pulp. Bioresour Technol 2009;
299	100:3843-3847.
300	[8] Kafle GK, Kim SH. Anaerobic treatment of apple waste with swine
301	manure for biogas production: Batch and continuous operation. Appl
302	Energy 2013; 103:61-72.
303	[9] Comino E, Rosso M, Riggio VA. Development of a pilot scale anaerobic
304	digester for biogas production from cow manure and whey mix.
305	Bioresour Technol 2009; 100:5072-5078.

306	[10]	Comino E, Riggio VA, Rosso M. Biogas production by anaerobic	
307	co-di	gestion of cattle slurry and cheese whey. Bioresour Technol, 2012;	
308	114:46-53.		
309	[11]	Amon B, Amon T, Kryvoruchko V, Zollitsch KM, Gruber L.	
310	Biog	as production from maize and dairy cattle manure: influence of	
311	biomass composition on the methane yield. Agric Ecosyst Environ 2007;		
312	118:173-182.		
313	[12]	Braun R. Biogas—Methangärung Organischer Abfallstoffe:	
314	Grun	dlagen und Anwendungsbeispiele (Innovative Energietechnik).	
315	Wier	n, New York: Springer; 2010.	
316	[13]	Thomé-Kozmiensky KJ. Biologische Abfallbehandlung, EF-	
317	Verla	ag für Energie- und Umwelttechnik. Berlin: 1995.	
318	[14]	Brachtl E. Pilotversuche zur Cofermentation von	
319	phar	mazeutischen Abfällen mit Rindergülle. Diplomarbeit.	
320	Inter	universitäres Forschungsinstitut für Agrarbiotechnologie, Abt.	
321	Umv	veltbiotechnologie (Ed.) 2000. A-3430 Tulln, 112 Bl.	
322	[15]	Beccari M, Majone M, Riccardi C, Savarese F, Torrisi L.	
323	Integ	grated treatment of olive oil mill effluents: effect of chemical and	
324	phys	ical pretreatment on anaerobic treatability. Water Sci Technol 1999;	
325	40(1)): 347-355.	
326	[16]	Dinuccio E, Balsari P, Gioelli F, Menardo S. Evaluation of the	
327	bioga	as productivity potential of some Italian agro-industrial biomasses.	
328	Biore	esour Technol 2010; 101:3780-3783.	

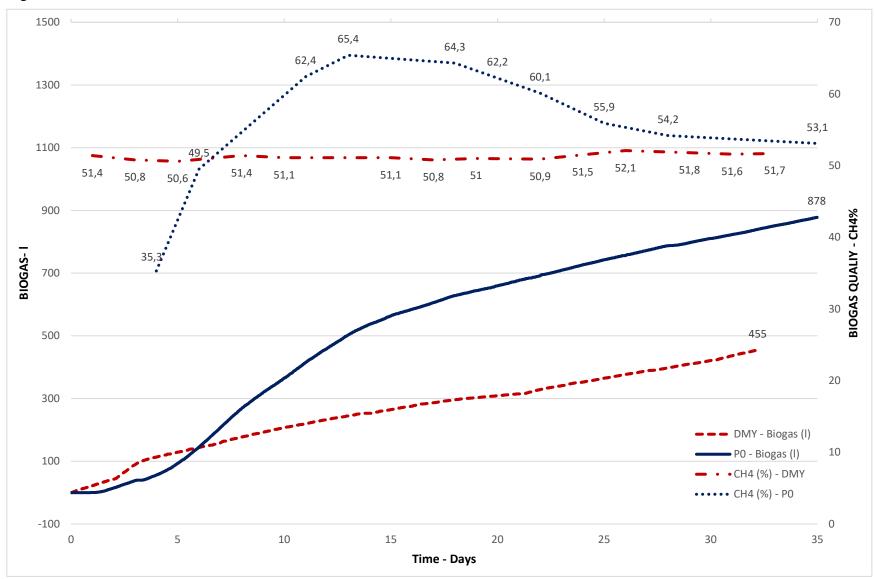

329	[17] Hensen A, Groot TT, Van den Bulk WCM, Vermeulen AT,
330	Olesen JE, Schelde K. Dairy farm CH4 and N2O emissions from one
331	square meter of the full farm scale. Agric Ecosyst Environ, 2006;
332	112:146-152.
333	[18] Lehtomäki A, Huttunen S, Lehtinen TM, Rintala JA. Anaerobic
334	digestion of grass silage in batch leach bed processes for methane
335	production. Bioresour Technol 2008; 99:3267-3278.

FIGURE CAPTIONS

Figure 1 – Technical scheme of the anaerobic digester reactor used during the experiment with all the main components.

Figure 2 – BIOGAS PARAMETERS OF CO-DIGESTION PHASES - Lower graphs: comparison of biogas production for the four tested phases and the Start-up. First phase P1 with 85% cattle slurry – 10% olive pomace – 5% apple pulp, second phase P2 with 75% cattle slurry – 15% olive pomace – 10% apple pulp, third phase P3 with 65% cattle slurry – 20% olive pomace – 15% apple pulp, fourth phase P4 with 70% cattle slurry – 20% olive pomace – 10% apple pulp and Start-up phase P0 with only cattle slurry. Higher graphs: methane quality inside the biogas mixture for the different feeding phases.

Figure 3 - BIOGAS PARAMETERS OF START-UP AND DMY PHASES - Lower graphs: comparison of biogas production for the Start-up phase and the digestate methane yield test (DMY). Higher graphs: methane quality inside the biogas mixture for the Start-up phase and the digestate methane yield test.