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Abstract 

A modern concept for solar thermal collectors is based on volumetric absorption of sunlight, where nanoparticles suspended in 

liquids directly receive the incident radiation. Suspending nanoparticles in traditional fluids can drastically enhance their optical 

properties and improve thermo-physical performances, thus leading to highly efficient volumetric solar receivers. Several studies 

have been addressed on the physical understanding of such nanosuspensions; however, the relation between nanoscale effects and 

macroscopic properties is far from being fully understood. The present work represents a first step towards a multiscale modeling 

approach for relating nanoscale properties to macroscopic behaviour of nanofluids. In particular, a suitable Coarse-Grained (CG) 

method for nanofluids is described. By means of Molecular Dynamics (MD) simulations, the pair Potential of Mean Forces 

(pPMF) between CG beads of nanofluid is evaluated. A complete CG force field can be then defined by including the effects of 

water adsorbed at solid-liquid interface, nanoparticle surface charge and solution pH. Our multiscale model is intended to permit 

a future study of the complex mechanisms of nanoparticle clustering, which is known to affect nanofluids stability and properties. 

We hope that this multiscale approach may start the process of rational design of nanofluids thus facilitating technology transfer 

from lab experiments to large-scale industrial production. 
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1. Introduction 

The majority of current solar thermal technologies exploits absorbing surfaces for converting solar radiation into 

thermal energy, which is in turn transferred to a carrier fluid by conduction. Such surfaces are designed to have both 
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high absorptivity in the solar spectrum and low emissivity in the infrared. However, the thermal resistance between 

heat transfer fluid and absorbing surface may induce large temperature differences between fluid and absorber, 

therefore leading to significant emissive losses and thus reducing the overall solar energy conversion efficiency [1]. 

These thermal re-radiation losses are particularly evident at high levels of solar concentration, as in Concentrated 

Solar Power (CSP) plants. 

On the other hand, volumetric solar receivers are based on fluids directly absorbing the incident radiation, which 

leads to decreased temperature differences between absorber and carrier fluid [2]. Nanofluids are engineered 

suspensions of nanoparticles, which show peculiar optical, heat and mass transport properties in both engineering [3-

6] and biomedical applications [7-9]. Because of these characteristics and of the large surface to volume ratio, 

nanoparticle suspensions have been investigated as solar absorbing fluids for highly efficient volumetric receivers 

[10, 11]. However, the multiscale nature of nanofluids makes difficult to relate nanoscale characteristics with 

resulting macroscopic properties. In particular, the complex mechanism of nanoparticle clustering is known to rule 

nanofluids stability as well as effective optical and thermal properties [12, 13]. In order to properly take into 

consideration nanoscale effects in nanofluids, multiscale simulation methods are needed to guide their accurate 

prediction and rational design in the near future. 

Coarse-Grained (CG) is a modelling technique able to bridge Molecular Dynamics (MD) simulations from 

atomic scale to mesoscale. The basic idea of coarse graining is to combine several atoms into homogeneous groups 

(CG beads), which interact each other by means of bonded and nonbonded interaction potentials. Numerous coarse-

grained techniques have been proposed in the last decades, and they can be classified into top-down or bottom-up 

methods. In the former, many-body potentials are parameterized in order to reproduce the thermodynamic properties 

observed at larger scales. For example, Martini Coarse-Grained force field and its further extensions follow the top-

down philosophy and are widely used to study complex biomolecular systems [14]. In the bottom-up approach, 

instead, the effective potentials between CG beads are developed to represent atomistic features. Among the bottom-

up techniques, effective CG potentials can be defined by iterative processes with the aim to reproduce a target radial 

distribution function [15-17] or force distribution in the atomistic system [18-20]. Although these methods are 

largely employed and provide accurate descriptions for several physical systems, unphysical CG potentials could 

result from these optimization approaches. Therefore, some novel CG methods have been recently designed for 

condensed matter systems. Such non-iterative methods include the pair Potential of Mean Forces (pPMF) [21], the 

Effective Force Coarse Grained (EFCG) [22] and the Conditional Reversible Work (CRW) [23]. 

Here, a suitable bottom-up CG model for nanofluids is employed for directly evaluating the pPMF from MD 

simulations. In particular, a couple of alumina nanoparticles (NPs) solvated in water is chosen as an exemplificative 

building block for nanofluids for volumetric solar receivers [24]. Preliminary analyses about the interaction energies 

between the NPs clarify the role of Coulomb and Lennard-Jones potentials in the resulting inter-particle energy. 

 

2. Methods 

To evaluate the pPMF between suspended       nanoparticles (NPs) in water, MD simulations are carried out 

by using GROMACS package [25]. The following steps describe the adopted simulation protocol (“pulling 

procedure”). 

First, the atomistic model of       NP is prepared by defining the particle geometry and atomistic force field. 

Specifically, a 2 nm alumina sphere is functionalized by adding OH terminal groups on the surface. All bonds, 

angles and dihedral within the NP core are modeled with a harmonic potential; instead, Lennard-Jones and Coulomb 

potentials are imposed for mimicking nonbonded interactions. The CLAYFF force field is adopted for distributing 

partial charges on the NP surface, which is overall neutral [26]. 

Second, two alumina nanoparticles are considered. The NPs couple is placed in a box (22x8x8 nm) made of 

SPC/E water molecules [27]. After the energy minimization, the whole system is equilibrated at T = 300 K in 

canonical ensemble (NVT), by applying Nosè-Hoover thermostat [28]. A second equilibration step is performed in 

isothermal-isobaric ensemble (NPT, 300 K and 1 bar), by means of Parrinello-Rahman barostat [29]. In the first 

configuration, the distance between NPs center of mass is set to 2 nm. Then, by restraining one particle (reference 

group) while pulling the second one (pull group) along a reaction coordinate r, a series of configurations is 
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generated as shown in Fig. 1a. Specifically, the pull velocity is kept constant (                    in order to 

guarantee a linear uniform motion of the pulled particles (Fig. 1b). Each configuration, which corresponds to a 

precise separation distance between the NPs, is taken into account for an independent 2 ns MD simulation. 

Third, the pPMF is calculated by numerically integrating the interacting forces between NPs, and it is corrected 

by adding an entropy term taking into account the center-of-mass distance constraint: 

 

                           
 

    
                                                                                                             (1) 

 

where      is the maximum distance between the two simulated NPs with             ,    is the Boltzmann 

constant and T is the temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results 

3.1. Interaction energy in constrained configurations 

The pulling procedure allows generating several configurations at multiple NP-NP separation distances. Each 

configuration is then simulated by independent MD runs, where the nanoparticles are constrained in a certain 

reciprocal position.  

Some exemplificative configurations are selected to carry out preliminary analyses on the interaction energy 

(    ) between NPs. Such inter-particle energy is calculated as a sum of the nonbonded interactions (van der Waals, 

    ; Coulomb,   ) between the atoms belonging to “reference” and “pull” particles, namely             . 

Specifically, the van der Waals interaction between a generic couple of atoms i and k is here mimicked by a 12-6 

Lennard-Jones (LJ) model: 

 

                                                                                                                                                  (2) 

 

where     and     are the LJ parameters obtained by Lorentz-Berthelot combination rules and     is the inter-atomic 

distance. Instead, the Coulomb potential is modelled by: 

 

                                                                                                                                                         (3) 

 

where    and    are the vacuum and relative permittivity (                  ,      ), and    and    are the 
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Fig. 1: a) Pulling procedure to create the simulated configurations for a couple of         NPs located at different com distances. b) Distance 

between the center of mass (com) of NPs as a function of time during the pulling procedure. 
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partial charges of the i-th and k-th atom, respectively. The particle-mesh Ewald (PME) algorithm is then 

implemented to take into account the long range Coulomb potential [30]. 

The interaction energies corresponding to the initial configuration (center of mass distance = 2 nm) are shown in 

Fig. 2a. The pie chart highlights the different contributions to     : only 13% of the inter-particle energy can be 

attributed to van der Waals interactions, while the remaining 87% is due to Coulomb potential. Moreover, the 

reported negative energy values underline that the superposition of atomic nonbonded interactions leads to a 

resulting attractive energy between the NPs couple. Note that the energy values shown in Fig. 2a are time averaged 

over the whole MD trajectory. In Fig. 2b, it is possible to compare the interaction energy in the case of maximum 

and minimum simulated center of mass distances: the strong adhesive potential (≈ -161±80 kJ/mol) at 2 nm distance 

completely vanishes at 7.2 nm. The intermediate configurations are then systematically investigated by evaluating 

the pair Potential of Mean Forces.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Pair Potential of Mean Forces and DLVO theory 

The pPMF is therefore calculated by integrating the total interaction forces obtained from the MD runs of each 

constrained configuration, and results are plotted in Fig. 3 (red dots). As shown, the minimum energy between 

nanoparticles is achieved at the shortest center of mass distance simulated, namely 2 nm. This confirms the strong 

attractive potential at 2 nm distance in Fig. 2, which represents the pPMF minimum. As the distance between       

NPs increases, the mutual attractive interaction tends to zero. Numerical results can be best-fitted by: 

 

                                                                                                                                  (4) 

 

where   is the center of mass distance between         particles, R=0.9 nm is the particle radius and   
             is the optimized fitting parameter. 

The resulting fitting curve in Fig. 3 is then compared with DLVO theory, which was first introduced by 

Derjaguin, Landau [31, 32], Verwey and Overbeek [33]. This theory is current the milestone to model interactions 

between colloidal particles and their aggregation behavior. Specifically, the DLVO theory assumes that the 

interaction energy between particles can be approximated by two additive contributions: an attractive term, deriving 

from van der Waals potential, and a repulsive, electrostatic double-layer interaction. The latter becomes significant 

when two charged particles approach each other, and their electrical double layers begin to interfere. Since we are 

  

Fig. 2: a) Coulomb and Lennard-Jones contributions to the total interaction energy between two         NPs at 2 nm com distance. b) 

Interaction energy between a couple of NPs in two different configurations: com distance = 2 nm (green solid line) and 7.2 nm (blue solid line). 

The white dashed line is the time average in the 2 nm configuration. 
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here dealing with uncharged nanoparticles, only the attractive contribution of DLVO model should be considered, 

namely:  

 

                                                          ,                                       (5) 

 

where   is the Hamaker constant (            for alumina particles in water [34]).  

The discrepancy between MD results and DLVO theoretical framework (Fig. 3) could be due to the presence of 

partial charges (i.e. dipoles) on the functionalized alumina surface. While such interactions are taken into account in 

the MD simulations, they are generally neglected in the attractive term of DLVO theory. Moreover, the predicted 

inter-particle potential by DLVO theory may fail because of the additional forces associated with the solvent 

structure [35, 36]. Figure 4 highlights a possible source of such extra forces: the graph shows the density profile of 

water between a couple of constrained NPs (center of mass distance: 7.2 nm), where the water density increases in 

the proximity of solid-liquid interface because of water layering and thus reduced mobility [37]. This could lead to 

extra repulsive forces known as hydration forces, which manifest at short NP-NP distance.  

Although these preliminary results do not reproduce all constituents typically present in nanofluids (e.g. 

surfactants, pH, ions and counterions), they are explicative for understanding the main issues concerning clustering 

phenomena in colloidal nanosuspensions. However, the procedure suggested in this work to evaluate the pPMF for a 

couple of uncharged, alumina nanoparticles in water could be easily extended to different geometrical and chemical 

configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Pair Potential of Mean Forces (pPMF) between the         NPs at different com distance. Eq. 4 (red solid line) fits MD results with 

       ; Eq. 5 (black dashed line) shows the Van der Waals attractive term in DLVO theory.  
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4. Conclusions 

The use of nanofluids in volumetric solar receivers have shown promising potential in the last decades. 

However, the multiscale nature characterizing these nanoparticle suspensions makes difficult their modeling and, 

consequently, clear guidelines for designing nanofluids are still missing. A multiscale model for nanofluids may 

allow to study the main physical aspects governing the agglomeration phenomena, and thus to guide a more rational 

design of nanoparticle suspensions for solar applications.  

Here, as an example, the pPMF between alumina nanoparticles in water is evaluated by MD simulations. Due to 

the generality of the proposed procedure, also other nanofluids as for instance those based on carbon nanoparticles 

[38, 39] and those utilized in optically black nanofluids [3] can be treated in a similar manner. 

The results mechanistically demonstrate the adhesion energy between uncharged particles. According to the well-

known DLVO theory, the reason of such attractive interaction is mainly attributed to London-Van der Waals forces. 

However, the present work underlines the non-negligible role of attractive Coulomb interactions arising from 

surface functionalizations.  

Currently, two main techniques have been investigated and experimentally employed to avoid the formation of 

nanoparticle aggregates: on one hand, the use of electrolyte solutions to increase the repulsion between double 

layers of charged nanoparticles; on the other hand, the addition of chemical surfactants introducing steric repulsive 

interactions between nanoparticles. Hence, future perspectives of the present work may include the extension of the 

calculation of pPMF to suspension of charged nanoparticle in electrolyte solutions. Moreover, a systematic 

investigation of the role of hydration forces would allow defining a complete Coarse-Grained model of nanofluids 

for volumetric solar receivers. 
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Fig. 4: Water density profile between a couple of constrained         NPs centered at r = 0 and 7.2 nm, respectively. 
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