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CHAPTER I 

INTRODUCTION 

1.1 DENTAL ANATOMY 

In order to design and to develop biomaterials substitutes for the replacement of dental and bone 

tissues, it is mandatory to understand how the tooth and the surrounding tissue, which supports and 

stabilizes it, are composed. Craniofacial and, in particular, dental and mandibular tissues are very 

interesting and complicate to replicate, since they are a combination of hard and soft tissues that 

have to communicate and work together.  

1.1.1 Tooth development 

 

Tooth development, namely odontogenesis, is a complex process that occurs in the 6
th

 week of 

embryonic life and continues to 15
th

 year of birth, when the roots of the permanent 3
rd

 molars reach 

their completion
1
.Tooth development involves a series of interactions, and differentiations of 

epithelial cells, from the mucosal lining of the oral cavity, and ectomesenchimal cells, which 

originate at the ectodermal junction of the developing brain
2–4

. These cells instruct the overlying 

ectoderm to start tooth development, which begins in the anterior portion of the future maxilla and 

proceeds posteriorly
2,5,6

. The early stage of tooth formation involves three sequential phases: bud 

stage, cap stage and bell stage
5,7

. Briefly, in the cap stage, tooth formation starts with formation of 

the dental lamina. The localized proliferation of cells in dental lamina forms oval swellings, the 

tooth bud which grows into the mesenchyme, the focal bud-like thickenings determine the site of 

the future teeth (20 for the deciduous teeth and 32 for the permanent one)
1,6

. The deep surface of 

each ectodermal tooth bud becomes invaginated and the ectomesenchymal cells which are within 

this concavity form the dental papilla that will become the soft tissue core of the tooth, the dental 

pulp. The ectodermal, cap-shaped covering over the papilla is called enamel organ since it will 

produce the future enamel of the teeth. The outer cellular layer of the ectodermal enamel organ is 

named outer enamel epithelium, the inner layer coating the cap is the inner enamel epithelium, and 

the cell region between the above layers forms the bulk of the cap and is called the stellate 

reticulum
3,8,9

. As the enamel organ and the dental papilla form, the surrounding condenses to 

become the dental sac, which lathers forms the cementum and periodontal ligament
5
. The formation 
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of a concavity along the inner surface and the continuous growth of the tissue of the cap leads to 

bell stage. In this phase the inner enamel epithelium develops into enamel-forming ameloblasts, 

while dental papilla cells differentiate into odontoblasts, which produce predentin and deposit it 

adjacent to the inner enamel epithelium. The predentin is a matrix of collagen fibers, that 

subsequently calcifies to become dentin. Dentin has a tubular structure, due to cytoplasmic 

processes of single odontoblasts, which recede from the dentine-enamel junction and leave behind a 

cytoplasmatic extension in the deposited dentinal matrix. Whereas the development of dental pulp 

cells occurs after a stimulus of the inner enamel epithelium, differentiation of the inner enamel 

epithelium in ameloblasts occurs only after dentin deposition
7,9,10

. After  a tiny layer of dentin is 

formed, ameloblasts produce enamel in form of prisms or rods over the dentin layer, thus helping to 

form the outer layer of the tooth, namely the crown. The enamel matrix is a high mineralized tissue 

that, approximately, consists of 95% of minerals. Meanwhile odontoblasts form dentin and 

ameloblasts form enamel, inner and outer enamel epithelia cells proliferate together in the neck 

region to surround the dental papillary part, forming the so called epithelial root sheath, or Hertwig 

epithelial root sheath
11

. In this region, the inner enamel epithelium stimulates dental pulp cells to 

differentiate into odontoblasts instead of ameloblasts, in order to generate the dentin of the 

root
3,4,7,12

. As the dentin increases, the pulp cavity becomes smaller and a tight canal for vessels and 

nerves is formed at the bottom of the root. 

After formation of dentin in the root region, root sheath undergoes disintegration, allowing 

ectomesenchymal cell penetration from the dental sac to the root surface, which will differentiate 

into cementoid-depositing cementoblasts over the root dentin, converting it into calcified 

cementum
2,13,14

. As the teeth develop, jaws ossify and ectomesenchymal cells from dental follicle 

become active in bone and in other periodontal tissues formation. Some cells from dental follicle 

differentiate into periodontal fibroblasts, which will form the periodontal ligament, while others 

become osteoblasts involved in alveolar bone development in which fibers of the periodontal 

ligament, will get anchored ensuring tooth stability
15,16

. It has been hypothesized, even if not yet 

proved, that ectomesenchymal cells remain in the mature periodontium and take part in the tissue 

turnover 
17

.  

The subsequent crucial event is represented by the completed tooth crown eruption into the oral 

cavity; as the tooth erupts and passes through the oral epithelium, the incisal part of the reduced 

dental epithelium is destroyed, but the present epithelium interacts with oral epithelium to become 

the junctional epithelium, and the tooth reach the final position
10

. Deciduous teeth usually erupt 

between the 6
th

 and 24
th

 months after birth, indeed permanent teeth develop later, but in a similar 

manner to the deciduous one and, as they grow, the root of the corresponding deciduous tooth is 
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resorbed by osteoclasts
10

. Permanent teeth eruption usually starts during the sixth year of life and 

keeps going on until early adulthood. 

1.1.2 The components of tooth   

 

The tooth is divided in two zones, the crown and the root. The upper part, exposed to the mouth 

environment, is the crown, while the root is usually embedded within the bone.  

There are four tissues that make up a tooth: enamel, dentin, cementum (hard tissue) and pulp (soft 

tissue).  

The Enamel constitutes the outer surface of crown, it is formed by ameloblast and its structure is the 

hardest in the body
18

. Thus, it makes the tooth able to withstand cyclic and high stresses, the 

chewing process and changes in pressure and temperature. The enamel does not have the ability to 

regenerate itself, or to further grow after it is completely formed; however, it does have the ability 

to re-mineralize, allowing the tooth structure to be protected, to regain minerals and to stop caries, if  

proper nutrition and oral cares are followed
18–20

.  Furthermore, the enamel covers the second tissue 

that makes teeth, the dentin, which is the most abundant component of the tooth
5,21,22

. The dentin is 

softer than the enamel, but harder than bone, because it is composed by microscopic canals named 

dentinal tubules, which contain dentinal fibers. These fibers, confer mechanical strength and 

transmit stimuli and nutrition throughout the tissues
23

. The dentin is formed by odontoblast cells 

and, unlike enamel, it has the ability to grow during life. For this reason, three types of dentin exist: 

primary dentin is the tissue that forms when a tooth erupts, secondary dentin is the result of primary 

dentin growth and the third type, named reparative dentin, is formed as a response to irritation and 

trauma (erosion or caries)
21,22,24,25

. The root of tooth is covered by a tissue that is not as hard as 

enamel or dentin, but it is still harder than bone: it is the Cementum. It contains attachment fibers 

that anchor the tooth at the bone, so its role at the interface with alveolar bone is crucial in order to 

give stability to the tooth
26,27

. The cementum could be divided in primary cementum, which covers 

the entire length of the root and does have the ability to grow and cellular cementum, which 

continues to form on the apical half of the root. The inner tooth tissue is the pulp, a soft tissue 

located in the center of tooth, surrounded by dentin. The pulp composition includes connective 

tissue, blood vessels, lymph vessels and nerve tissue; which are responsible for signal transmission 

of pain and sensitivity; and dentin-producing cells, having a role in repairing structural 

damages
10,28

. The pulp tissue is retained in two zones in the pulp chamber, which are the crown and 

the pulp canals located in the root; the amount of pulp tissue decreases with the growth of dentin
1
.  
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Figure 1. Dental anatomy
29

. 

1.1.3 The components of periodontium  

  

The Periodontium is a combination of hard and soft tissue and its principle function is to anchor the 

tooth to the jaw bone tissue. It is formed by two units, the gingival and the attachment unit
8,30

. 

Gingival unit is formed by two different tissues, gingiva which is a soft tissue that surrounds the 

teeth and the alveolar mucosa, which consists of the soft tissue that constitutes cheeks, lips, soft 

palate and the underside of tongue. The gingiva is steadily bound to the underlying bone and it is 

connected with the alveolar mucosa by the mucogingival junction. The gingiva consists of a free 

gingiva that is unattached to the underlying bone and an attached gingiva, that extends from the 

base of the free gingiva to the mucogingival junction
30–33

. A crucial role is played by the cemento-

enamel junction, also called epithelium junction, since it seals off the periodontal tissue from the 

oral cavity. A healthy periodontium depends on the integrity of this junction, in fact a failure of the 

epithelium junction is the starting point of many periodontal pathologies 
30,34,35

. 

 

 

 

Figure 2. Periodontium structure
36

. 
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The attachment unit is composed by the cementum, the periodontal ligament and the alveolar 

process. Cementum is a biphasic material, composed of about 50% mineral substituted apatite and 

50% organic matrix, which contains around 90% collagen type I, and trace of other collagens (III, 

V, VI,XII,  XIV) and non-collagenous proteins (such as bone sialoprotein, dentin matrix protein 1, 

dentin sialoprotein, fibronectin, osteocalcin, osteonectin, osteopontin, tenascin)
30,37

. This hard, 

avascular connective tissue that covers roots of teeth, serves primarily to attach the periodontal 

ligament fibers, and could be divided in two different types: the acellular extrinsic fiber cementum, 

also named primary cementum
8
, and  the cellular intrinsic fiber cementum. Most of the periodontal 

ligament fibers are inserted in the primary cementum, which is highly mineralized and develops 

very slowly, because it is considered acellular since cells that form it remain on the surface
30,33

. The 

cellular intrinsic fiber cementum is less mineralized and with cementoblast cells entrapped in the 

lacunae within the matrix that they produce
30

. The cellular intrinsic fiber cementum is produced as a 

repair tissue for root fractures and to fill resorptive defects. 

Concerning periodontal ligament, it is a soft tissue consisting of specialized connective tissue, 

which ranges in width between 0.15 and 0.38 mm, with a decrease of thickness with aging
8,30,38

. Its 

principal function is to support teeth in their socket and, at the same time, to permit them to 

withstand the considerable forces of mastication
30,33,39

. Furthermore, the periodontal ligament could 

act as a sensor for the positioning of jaws and, most important function, is that it is a reservoir of 

cells for tissue regeneration
30

.  

The alveolar process is the portion of the maxilla and mandible that forms and supports the tooth 

socket (alveoli). It forms when the tooth erupts to provide the osseous attachment to the forming 

periodontal ligament. It consist of an external plate of cortical bone formed by Haversian bone and 

compacted bone lamellae. The inner socket wall of thin, compact bone called the alveolar bone, 

contains a series of openings through which neurovascular boundless link the periodontal ligament 

with the central component of the alveolar bone and the cancellous bone and trabeculae, between 

these two compact layers, which acts as supporting alveolar bone
30,40

.  
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1.2  TISSUE ENGINEERING CONCEPT 
 

1.2.1 The History of Tissue Engineering 

 

Tissue engineering can be defined as the use of a combination of cells, engineering materials, and 

suitable biochemical factors to improve or replace biological functions in an effort to improve 

clinical procedures for the repair of damaged tissues and organs. The first definition of tissue 

engineering is attributed to Drs. Langer and Vacanti who stated it to be "an interdisciplinary field 

that applies the principles of engineering and life sciences toward the development of biological 

substitutes that restore, maintain, or improve tissue function or a whole organ" in the 1993
41

.  

The ambitious objective of tissue engineering is to create functional constructs able to restore, 

maintain and improve the damaged tissues or whole organs. Since ancient times, artificial creation 

of tissues and organs was a dream and a desire of human mankind. The first historical reference to 

tissue engineering, is usually referred to the famous painting “Healing of Justinian” by Fra 

Angelico, which depicts the brothers Saints Damien and Cosmos transplanting a homograft limb 

onto a wounded soldier (278 AD). Many others examples that could be referred to the field of 

earlier tissue engineering could be find in history, from both literature and arts, which reveal the 

desire of human to create by himself living individuals or, at least, parts of them. In the early 1500, 

Paracelsus, a Swiss physician, alchemist and astrologer, tried to find a formula to create life starting 

from a mixture of chemical substances closed in a defined environment. Two hundred years later, 

Johann Wolfang von Goethe, in his literature’s work “Faust”, posed as central theme the desire to 

create life as a mean to be powerful. The creation of the Homunculus in Faust drama, could be 

considered a precursor of the modern technology, such as cloning, genetic or stem cell technique. 

Besides literature, art and mythological reports, various people performed pioneering works to 

replace body parts combining materials, usually metallic, and the first knowledge in clinical 

medicine and biology. The first example of tissue substitution, was in dentistry
42

. Since the Galileo-

Roman period, it was quite usual to substitute lost teeth or parts of skull with metallic implants or 

with homologous transplantation, as it is detailed in Ambroise Parè’s work published in the 1564 

“Dix livres de la chirurgie”, where he provided information about instrumentations, measures and 

materials needed to reconstruct teeth and maxillofacial parts
43

. It was in the middle of 18
th

 Century 

that, in parallel with clinical studies animal experiments began. The first to perform studies on the 

fate of transplantation using animals was John Hunter, posing the basis for the future transplantation 

medicine
44

. But hundred years had to be passed for the first successful transplantation, performed 

by Heinrich Christian Bünger, who transplanted the first skin graft within 1817
45

. He used the 

method to restore the nose of a woman who had suffered for fifteen years from a skin eruption that 
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caused the loss of her nose and affected other areas of the face so that a forehead or cheek graft was 

inadvisable. Christian Heinrich Bünger chose as a donor site the superior lateral surface of the upper 

thigh, taking an oval piece of skin which he trimmed to shape and applied to the freshened nasal 

region one and a half hour after removal, a delay caused by attempts to stanch excessive bleeding in 

the freshened area. The graft was partially successful and an year later other procedures were 

carried out on the upper lip and nose with a flap from the arm. A new era was being born, more 

related to science and experimental proofs, even more the link between medicine and engineering 

technique became strong, in particular between dental technique and clinical medicine which led the 

formation of a Maxillofacial and Plastic Facial Surgery discipline at the Westdeutsche Kieferklinik 

in Düsseldorf. Furthermore, the darkness time during the First and Second War was, from the side 

of the early tissue engineering, a huge field for generate knowledge and experience.  

The milestone breakthrough was reached when scientists understood that the tissue regeneration is 

dependent on the cell proliferation, in particular the first reference could be attributed to Rudolf 

Virchow, in his publication “Zellularpathologie”. But the art became science, in 1950s when R.G. 

Harrison first, maintained frog neural tissue outside of the body for weeks, and it was in those years 

that investigators understood the requirements of cells in order to maintain the viability, avoiding 

particular bacterial contamination with the addition of antibiotics
46

.  

This long history, started thousand years ago, brought to the recent and first definition of tissue 

engineering that, in 1987, set as fundamental the relationship between tissue and substitute, a 

cooperation between biology and engineering to create or restore human tissues
47

. The concept of 

“scaffold” as a substrate to culture and grow cells, started to be the basis concept of this new agreed 

multidisciplinary science. Key point in tissue engineering was given by a co-working between 

Boston Children’s Hospital and MIT, in particular between Dr. Joseph Vacanti and Prof. Robert 

Langer, who generated skin grafts from a culture of dermal fibroblasts and keratinocytes grown on 

protein scaffolds, and used it for regeneration of burn wounds 
48

. Their article in Science
41

 (1993), 

could be considered as the beginning of a new biomedical discipline and they could be considered 

as the founders of modern Tissue engineering, which is supported on three pillars, the three 

paradigms of tissue engineering: cells, matrix(scaffold materials) and regulators 
41,49,50

.  

Cells are the building blocks of tissues, and tissues are the basic units of function in the body. 

Generally, groups of cells make and secrete their own support structure, the so called extra-cellular 

matrix (ECM). This matrix, acts as a support for cells, furthermore it receives messages in form of 

signaling molecules from many sources that constitute the local environment (ECM). Each signal 

can start a chain of responses that determine what happens to the cell. By understanding how 

individual cells respond to signals, interact with the ECM, and organize into tissues and organs, 
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researchers have been able to manipulate these processes to restore damaged tissues or even create 

new ones.  

The process often begins with building a from a wide set of possible sources, from naturals (e.g. 

proteins) to synthetics (e.g. polymers, ceramics). Once scaffolds are created, cells with or without 

regulators, called growth factors, can be introduced. If the environment is right, a tissue develops.  

1.2.2 The Three Paradigms of the Tissue Engineering 

 

Tissue engineering is an interdisciplinary field where biology and engineering are combined 

together to develop substitutes that could replace, maintain and eventually improve the damaged 

functions of human tissues. Unlike drug therapy or organ transplantation therapy, tissue engineering 

approach provides implants specifically designed to treat the disease state, trying to avoid 

complications due to rejection, immune response or systemic drug therapy issues. Tissue 

engineering, is based on the use of a combination of cells, engineered materials and methods, as 

well as suitable biochemical and physio-chemical factors to improve or replace biological function 

of the tissue
41,50,51

. There are two approaches in order to generate a substrate that allows the tissue 

regeneration: 

- Development and growth of human tissues in vitro, for future implantation in the body to 

replace tissue loss; 

- In vivo implantation of cell-free devices or three dimensional constructs with cells, in order 

to induce regeneration of tissue loss directly in the site of implantation. 

The ideal approach of tissue engineering is to first isolate cell samples through a biopsy in the 

patient, to subsequently seed and culture them on a 3D scaffold under specific and controlled 

accompanied conditions, until a new tissue layer is formed and the scaffold is degraded and, finally, 

to implant the novel tissue into the wound.  

Since tissue formation results from cellular action, cell paradigm is a key factor aimed at 

regenerating tissues. In particular, three different strategies are commonly adopted in order to 

generate a new tissue: cell injection, cell induction and cell-seeded scaffolds
52

. Cell injection 

approach involves injection of scaffold cell-free in the defect site
53

. Unfortunately, this kind of 

strategy shows limited effects, since a low engraftment and an inadequate localization of the 

injected cells, in particular in tissue characterized by a continuous movement (such as cardiac 

tissue).  In order to improve this approach, cells have to be injected using a carrier which acts as 

vehicle. This improvement allows an adequate localization, the prevention of a direct contact with 

the immune system and a proper cell proliferation and differentiation
53,54

. Due to their 

characteristics, stem cells are becoming an important tool of tissue engineering and are the most 

javascript:;
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successful candidate for cell injection approach
55

. Stem cells could be divided, according to their 

potency in: totipotent (a single cell divides and produces all of the differentiated cells in an 

organism), pluripotent (cells that have the potency to differentiate into any of the three germ layers: 

endoderm, mesoderm, and ectoderm), multipotent (cells that have the potential to differentiate into 

multiple, but limited cell types), oligopotent (potency to differentiate into a few cell types) and 

unipotent cells (one stem cell has the ability to differentiate in only one cell type)
56

. Stem cells can 

be divided into different types of cells, according to their potential ability, and could be classified as 

Embryonic stem cells (totipotent, pluripotent) and adult stem cells (multipotent, unipotent)
55

. 

Embryonic stem cells (ESCs) are derived from the 5-7 days old blastocyst, prior to germ layer 

formation and, as such, ESCs are thought to be pluripotent and to give rise to progenitor cells from 

all of three germ layers. The clinical application of ESCs is limited, due to ethical issues as well as 

their enhanced possibility to form teratomas after implantation
57

. Adult stem cells can be found in 

adults and are thought to be tissue specific
58

. For example, bone marrow contains mesenchymal 

stem cells (MSCs) that are capable of differentiating into cartilage (chondrocytes), bone 

(osteocytes), muscle (myoblast), tendon (fibroblast) and other connective tissues.  

The second strategy, cell induction therapy,  involves the use of an engineered matrix (biomaterial) 

that induces tissue regeneration without the use of any exogenous biological factor. In fact, a 

biomaterial should mimic the ECM, should serve as a compatible interface with the biological 

system and promote cell functions such as cell adhesion, migration, proliferation, and 

differentiation
59,60

. Furthermore, the designed material should avoid an immune system response. 

The structural, chemical and mechanical properties of biomaterials are also important, as they could 

influence cell functions and the foreign body response in vivo. Moreover, an applied biomaterial 

should maintain the shape of the defect and prevent distortion of surrounding tissues. 

Biocompatibility, adequate mechanical property, biodegradability, porosity and inter pores 

connectivity, depot for sustained release of biomolecules (e.g. growth factor) and cells as well as 

post process and sterilizing ability, are the fundamental characteristics that a material used to induce 

regeneration in a wound tissue should have
51,52,61

. Usually, in cell induction therapy a biomaterial is 

coupled with regulators, since a biomaterial, on its own, is not enough able to induce stem cell 

differentiation and, in most cases, it is recognized as a foreign body by the immune system, which 

tries to isolate it
52,62,63

. Growth factors are biochemical regulators that include proteins, peptides and 

signaling molecules that bind to receptors residing on the cell surface, with the primary result of 

activation or inhibition of cellular functions such as proliferation and differentiation. Many growth 

factors are versatile, stimulating cellular function in numerous cell types, while others are specific 

to a particular cell type. A tissue engineering implant is a combination of biological cues and 
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biomaterials, where the biomaterial could be used as carrier for growth factor and its delivery in 

vivo enhances tissue regeneration
64–66

. The signaling molecules could be incorporated into the 

scaffold during or after fabrication and the degradation rate of the material, as well as the pore size 

and the interconnectivity control the time of releasing
67–70

.  

The third strategy, cell-seeded scaffold, combine all the previous described paradigms: cells, matrix 

and regulators
52,71

. A synergic effect of all components create an engineered tissue, which promotes 

tissue regeneration without immune or inflammatory responses. A complex study of all variables is 

needed, chemical and physical properties of biomaterial should be designed and developed for 

every specific tissues as well as the type of regulators and the type of cells (the most likely 

candidate for such therapies are the MSCs)
72

. There are a lot of concerns about this therapy, 

regulatory and industrialization steps are difficult to be defined, but a construct made by 

combination of materials, cells from a patient and growth factors, ready to be implanted, is the real 

goal of tissue engineering
73

.  

The following paragraph will focus on craniofacial tissue engineering, in particular dental and 

periodontal tissue engineering, with particular emphasis on the state of the art of stem cells, 

regulators and materials.   

1.3  CRANIOFACIAL TISSUE ENGINEERING 
 

Craniofacial region is an unique tissue composed by a multitude of parts, including bone, cartilage, 

nerve, blood vessels and soft tissues. This melting pot of tissues, makes it one of the most difficult 

part of the body to regenerate and requires biological and engineering knowledges in order to 

prepare a correct tissue engineered construct. Furthermore, craniofacial tissues play important 

physiological and anatomical roles and, in addition, have an important aesthetic function
52,74

. Many 

congenital defects, diseases and injuries could affect this tissue equilibrium and require specific 

surgical procedures and therapy in order to replace functionality
75–77

. The most used strategy in 

order to replace the lost tissue, is the use of autologous material, therefore the insufficient host 

tissue and the morbidity of the donor site result in a second surgical procedure, with economical and 

psychological consequences
78

. Nowadays, clinical approach involves more and more the use of 

engineered construct made with natural or synthetic materials, coupled with growth factors that 

could stimulate new tissue regeneration
59,60,79,80

. Researchers are working with even more effort, in 

order to create constructs using stem cells from the body of the patient and to implant a formed 

tissue that reduces immune system responses and inflammation. The use of stem cells is still far 

from a clinical use, because regulatory and practical issues are still to be clarified, but the great 

potential of this tool need all the efforts in order to get clinical available.  
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There are three different approaches for the regeneration of craniofacial region, each one different 

in terms of levels of complexity: conduction, induction by bioactive regulators, and cell 

transplantation
81

. In this research work, we focus on bone tissue engineering, which serves several 

important functions in the craniofacial region. In craniofacial, bone, maintains the mechanical 

integrity of head, protects the soft tissues and the cranial cavity. Many pathologies and injuries 

result in bone deficiencies, such as resorption and loss of alveolar bone, scoliosis of the mandibular 

arch, mandibular asymmetry and defects following removal of sinus. Gold standard strategy for 

bone replacement involves the use of autologous tissue from cranium, iliac crest or rib
79

. This 

approach is associated with some issue, such as bone resorption, problems in the harvesting process 

and site donor pain
82

. Furthermore, in the case of large bone defect, limited autogenous bone does 

not permit to fill the defect site in a properly manner. A tissue engineering approach, that involves 

the use of synthetic or natural materials, bioactive molecules, cells or a combination of the three, 

has the opportunity to conduct regeneration, without creating uneasiness to the patient. Conductive 

approach involves the use of an engineered natural or synthetic matrix alone
59,83–87

. Several 

materials have been developed and some of them are already being used for craniofacial bone 

regeneration, such as synthetic polymers (Poly-lactic acid, Poly(methyl metacrylate), poly(dioxane-

co-glycolide), poly(propylene fumarate), PEO/PBT)
88–91

, ceramic (hydroxyapatite, β-tricalcium 

phosphate, coralline hydroxyapatite, orto-calcium phosphate)
92–96

, natural materials (collagen, 

chitosan, alginate, pectin, hyaluronic acid)
97–99

and combinations of them
100,101

. The implanted 

material in the defect site, acts as a passive three dimensional scaffold on which cells could adhere, 

proliferate and differentiate. In craniofacial bone tissue engineering, and in particular in periodontal 

regeneration, some materials are used as barrier, (guided tissue regeneration, GTR), in order to 

promote proliferation and infiltration of only certain type of cells
33

. For example, in alveolar bone 

regeneration, porous osteoconductive scaffolds and membrane barriers are usually used, in order to 

promote bone growth and to avoid fibroblast infiltration from the gingiva tissue, respectively
102,103

. 

Materials used should have a degradation rate compatible with formation of new tissue, should 

mechanically sustain the surrounding tissues until the new bone has replaced the matrix, produce 

biocompatible by-products from the degradation process, promote cell migration as well as vascular  

infiltration and should not stimulate an immune response. 

However, it is desirable not to only have conduction of tissue growth, but also stimulation and this 

is the case of the induction approach. With this strategy, cells and, subsequently the tissue, are 

controlled and forced to migrate into the scaffold by specific regulators such as peptide, proteins, 

growth factor and signaling molecules. The encapsulation of growth factors into the matrix, reduces 

their degradation and acts as a storage, facilitating the interaction with receptors on the cell surface. 
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There are many growth factors and hormones used to guide osteoid matrix deposition by osteoblasts 

and mineralization: bone morphogenetic proteins (BMPs), basic fibroblast growth factor (bFGFs), 

insulin-like growth factor (IGFs), transforming growth factor β (TGF-β), platelet derived growth 

factor (PDGF), growth hormone (GF) and parathyroid hormone (PTH)
64,104

.  

The strategy involves the release of these bioactive molecules into the defect site, which can 

influence new bone formation through their effect on bone cell recruitment, proliferation and 

differentiation. Many research works, showed the effect of growth factors in vitro and in vivo on 

bone mineralization; for example, the BMP family members BMP-2 and BMP-7 have been shown 

to stimulate formation of periodontal tissue (bone and cementum), in studies in animals including 

rodents, dogs, and non-human primates
51,65,105,106

. Many inductive approaches are still undergoing 

testing and clinical trials prior to approval by the Food and Drug Administration (FDA), however 

the use of this approach in clinical surgery could help in the treatment of large bone defects where 

there is a lack of cellular and vascular invasion from the surrounding tissues, due to pathologies 

such as cancer.  

The third strategy, namely the cell transplantation approach, could involve seeded cells (usually 

MSCs) into an osteoconductive scaffold that acts as carrier, in order to recruit and differentiate 

bone-forming cells
107

. In this technique, typically the cells are taken by a biopsy from a donor, 

isolated, expanded and seeded onto a scaffold. The cells adhere and migrate into the scaffold, 

proliferate and differentiate into specific cell lineages and form a new tissue. This construct then 

could be implanted in the defect site
108

. However, this technique seems to be promising, there are 

many issues, in particular regarding the type of cell used. The best choice are cells from the patient 

himself, since they do not generate any immune response, but this approach takes long time to get a 

construct ready to be implanted in the defect site. Cells from other sources can be more readily but 

have the drawback to generate immunological problem. Regulatory and practical issues make this 

technique nowadays far from the clinical application, but stem cells from the oral facial tissue are 

interesting and many research groups are working on it. There are many sources of stem cells: 

Dental Epithelial stem cells (EpSC), Dental follicle Precursor cells (DFPCs), Dental Follicle Stem 

cells (DFSC), Stem cells from Human Exfoliated deciduous Teeth (SHED), Stem cells from Apical 

papilla (SCAP), Dental Pulp stem cells and Periodontal stem cells
75

. These cells have great potential 

in the transplantation technique and the combination of osteoconductive scaffolds, growth factors 

and stem cells could allow, in the future, new tissue ready to be implanted to be generated and to be 

implied in large defects without any immunological response, with the intended outcome to 

generate new tissue.  

 



13 

 

REFERENCES 
 

1. Slootweg, P. J. Dental Pathology: A Practical Introduction. (Springer Science & Business Media, 2014). 

2. Ibarretxe, G. et al. Neural crest stem cells from dental tissues: a new hope for dental and neural regeneration. 

Stem Cells Int. 2012, 103503 (2012). 

3. Chai, Y. et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. 

Development 127, 1671–1679 (2000). 

4. Bei, M. Molecular genetics of tooth development. Curr. Opin. Genet. Dev. 19, 504–10 (2009). 

5. Thesleff, I. & Tummers, M. Tooth organogenesis and regeneration. StemBook 1–12 (2008). 

doi:10.3824/stembook.1.37.1 

6. Thesleff, I. The Genetic Basis of Tooth Development and Dental Defects. 2535, 2530–2535 (2006). 

7. Maas, R. & Bei, M. The Genetic Control of Early Tooth Development. Crit. Rev. Oral Biol. Med. 8, 4–39 

(1997). 

8. Palumbo,  a. The Anatomy and Physiology of the Healthy Periodontium. Gingival Dis. - Their Aetiol. Prev. 

Treat. 3–22 (2011). 

9. S, R. G. B. D., Pathology, M. & Sciences, B. Development of Tooth and Supporting Tissues. 

10. Metivier, A. & Bland, K. Dental Anatomy: A Review. Contin. Dent. Educ. (2014). at 

<http://www.dentalcare.com/en-US/dental-education/continuing-education/> 

11. Luan, X., Ito, Y. & Diekwisch, T. G. H. Evolution and development of Hertwig’s Epithelial Root Sheath. 

Developmental Dynamics 235, 1167–1180 (2006). 

12. Sharpe, P. T. Neural crest and tooth morphogenesis. Adv. Dent. Res. 15, 4–7 (2001). 

13. Yao, S., Pan, F., Prpic, V. & Wise, G. E. Differentiation of stem cells in the dental follicle. J. Dent. Res. 87, 

767–771 (2008). 

14. Hiatt, W. H., Schallhorn, R. G. & Aaronian, A. J. The induction of new bone and cementum formation. IV. 

Microscopic examination of the periodontium following human bone and marrow allograft, autograft and 

nongraft periodontal regenerative procedures. J. Periodontol. 49, 495–512 (1978). 

15. Morsczeck, C. et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 

24, 155–165 (2005). 

16. Miletich, I. & Sharpe, P. T. Neural crest contribution to mammalian tooth formation. Birth Defects Research 

Part C - Embryo Today: Reviews 72, 200–212 (2004). 

17. Clinical Periodontology and Implant Dentistry, 2 Volume Set. (Wiley, 2015).  

18. Jayasudha, Baswaraj, H K, N. & K B, P. Enamel regeneration - current progress and challenges. J. Clin. Diagn. 

Res. 8, ZE06–9 (2014). 

19. Moradian-Oldak, J. Protein-mediated enamel mineralization. Front. Biosci. 17, 1996–2023 (2012). 

20. Honda, M. J. & Hata, K. Enamel Tissue Engineering 1. 281–297 

21. Goldberg, M., Kulkarni, A. B., Young, M. & Boskey, A. Dentin: structure, composition and mineralization. 

Front. Biosci. (Elite Ed). 3, 711–35 (2011). 

22. Tjäderhane, L., Carrilho, M. R., Breschi, L., Tay, F. R. & Pashley, D. H. Dentin basic structure and 

composition-an overview. Endod. Top. 20, 3–29 (2009). 

23. Sano, H., Ciucchi, B., Matthews, W. G. & Pashley, D. H. Tensile properties of mineralized and demineralized 

human and bovine dentin. J. Dent. Res. 73, 1205–1211 (1994). 

24. Nakajima, M., Kunawarote, S., Prasansuttiporn, T. & Tagami, J. Bonding to caries-affected dentin. Japanese 

Dental Science Review 47, 102–114 (2011). 

25. Lee, Y. L. et al. Dentin-pulp complex responses to carious lesions. Caries Res. 40, 256–264 (2006). 

26. Diekwisch, T. G. H. The developmental biology of cementum. International Journal of Developmental Biology 

45, 695–706 (2001). 

27. Ho, S. P. et al. Structure, chemical composition and mechanical properties of coronal cementum in human 

deciduous molars. Dent. Mater. 25, 1195–1204 (2009). 

28. Demarco, F. F. et al. Dental pulp tissue engineering. Braz Dent J 22, 3–13 (2011). 

29. IFDEA. International Federation of Dental Educators and Associations. (2012). at 

<http://www.ifdea.org/pages/default.aspx> 

30. Nanci, A. & Bosshardt, D. D. Structure of periodontal tissues in health and disease. Periodontol. 2000 40, 11–

28 (2006). 

31. Schroeder, H. E. & Listgarten, M. a. The gingival tissues: the architecture of periodontal protection. 

Periodontol. 2000 13, 91–120 (1997). 

32. Bartold, P. M., Walsh, L. J. & Narayanan, A. S. Molecular and cell biology of the gingiva. Periodontol. 2000 

24, 28–55 (2000). 

33. Melcher,  a H. On the repair potential of periodontal tissues. J. Periodontol. 47, 256–260 (1976). 

34. Marks, S. C., McKee, M. D., Zalzal, S. & Nanci, A. The epithelial attachment and the dental junctional 

epithelium: ultrastructural features in porcine molars. Anat. Rec. 238, 1–14 (1994). 

35. Bosshardt, D. D. & Lang, N. P. The junctional epithelium: from health to disease. J. Dent. Res. 84, 9–20 (2005). 



14 

 

36. The tooth and its supporting structures. General dental anatomy. at <http://www.virbac-

dentals.com/home/clinical-handbook/anatomy/general.html> 

37. Gonçalves, P. F., Sallum, E. A. & Sallum, A. W. Dental cementum reviewed: development, structure, 

composition, regeneration and potential functions. Brazilian J. Oral Sci. 4, 651–658 (2005). 

38. Van der Velden, U. Effect of age on the periodontium. J. Clin. Periodontol. 11, 281–94 (1984). 

39. Berkovitz, B. K. Periodontal ligament: structural and clinical correlates. Dent. Update 31, 46–50, 52, 54 (2004). 

40. Saffar, J. L., Lasfargues, J. J. & Cherruau, M. Alveolar bone and the alveolar process: the socket that is never 

stable. Periodontol. 2000 13, 76–90 (1997). 

41. Langer, R. & Vacanti, J. P. Tissue Engineering. Science (80-. ). 260, 920–926 (1993). 

42. Crubézy, E., Murail, P., Girard, L. & Bernadou, J. P. False teeth of the Roman world. Nature 391, 29 (1998). 

43. The workes of that famous chirurgion Ambrose Parey translated out of Latine and compared with the French. 

by Th: Johnson. at <http://quod.lib.umich.edu/e/eebo/A08911.0001.001?view=toc> 

44. The natural history of the human teeth. Explaining their structure, use, formation, growth, and diseases : Hunter, 

John, 1728-1793 : Free Download & Streaming : Internet Archive. at 

<https://archive.org/details/naturalhistoryof00huntrich> 

45. Meyer, U. The History of Tissue Engineering and Regenerative Medicine in Perspective. Fundam. Tissue Eng. 

Regen. Med. 5–12 (2009). doi:10.1007/978-3-540-77755-7 

46. Harrison, R. G. The outgrowth of the nerve fiber as a mode of protoplasmic movement. J. Exp. Zool. 9, 787–

846 (1910). 

47. Skalak, R. & Fox, C. F. Tissue engineering: proceedings of a workshop, held at Granlibakken, Lake Tahoe, 

California, February 26-29, 1988. Alan Liss New York 107, 22 (1988). 

48. Cima, L. G. et al. Tissue Engineering by Cell Transplantation Using Degradable Polymer Substrates. J. 

Biomech. Eng. 113, 143 (1991). 

49. Zeugolis, D. I., Chan, J. C. Y. & Pandit, A. Tissue Engineering. Tissue Eng. From Lab to Clin. 18, 537–572 

(2011). 

50. Howard, D., Buttery, L. D., Shakesheff, K. M. & Roberts, S. J. Tissue engineering: strategies, stem cells and 

scaffolds. J. Anat. 213, 66–72 (2008). 

51. Shimauchi, H., Nemoto, E. & Ishihata, H. Possible functional scaffolds for periodontal regeneration. Jpn. Dent. 

Sci. Rev. 49, 118–130 (2013). 

52. Abou Neel, E. A., Chrzanowski, W., Salih, V. M., Kim, H.-W. & Knowles, J. C. Tissue engineering in 

dentistry. J. Dent. 42, 915–928 (2014). 

53. Press, D. Minimally invasive cell-seeded biomaterial systems for injectable / epicardial implantation in 

ischemic heart disease. 5969–5994 (2012). 

54. Park, H., Choi, B., Hu, J. & Lee, M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue 

engineering. Acta Biomater. 9, 4779–4786 (2013). 

55. Robey, P. G. Stem cells near the century mark. J. Clin. Invest. 105, 1489–1491 (2000). 

56. Leblond. Classification of cell populations on the basis of their proliferative behavior. Natl. Cancer Inst. 14, 

119–150 (1964). 

57. Thomson, J. A. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science (80-. ). 282, 1145–1147 

(1998). 

58. Ami, A. R., Laurencin, C. T. & Nukavarapu, S. P. Bone Tissue Engineering:Recent Advances and Challenges. 

40, 363–408 (2012). 

59. Zhang, Y., Sun, H., Song, X., Gu, X. & Sun, C. Biomaterials for periodontal tissue regeneration. Rev. Adv. 

Mater. Sci. 40, 209–214 (2015). 

60. Stevens, M. M. Biomaterials for bone tissue engineering. Mater. Today 11, 18–25 (2008). 

61. Karageorgiou, V. & Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–

5491 (2005). 

62. Lee, J. S. et al. Maturation of periodontal tissues following implantation of rhGDF-5/??-TCP in one-wall intra-

bony defects in dogs: 24-week histological observations. J. Clin. Periodontol. 39, 466–474 (2012). 

63. Nakashima, M. & Reddi, A. H. The application of bone morphogenetic proteins to dental tissue engineering. 

Nat. Biotechnol. 21, 1025–32 (2003). 

64. Kaigler, D., Cirelli, J. A. & Giannobile, W. V. Growth factor delivery for oral and periodontal tissue 

engineering. Expert Opin. Drug Deliv. 3, 647–62 (2006). 

65. Taba, M., Jin, Q., Sugai, J. V & Giannobile, W. V. Current concepts in periodontal bioengineering. Orthod. 

Craniofac. Res. 8, 292–302 (2005). 

66. Giannobile, W. V & Somerman, M. J. Growth and amelogenin-like factors in periodontal wound healing. A 

systematic review. Ann. Periodontol. 8, 193–204 (2003). 

67. Zhang, Y., Wang, Y., Shi, B. & Cheng, X. A platelet-derived growth factor releasing chitosan/coral composite 

scaffold for periodontal tissue engineering. Biomaterials 28, 1515–1522 (2007). 

68. Zhang, Y. et al. Novel chitosan/collagen scaffold containing transforming growth factor-??DNA for periodontal 

tissue engineering. Biochem. Biophys. Res. Commun. 344, 362–369 (2006). 



15 

 

69. Nakahara, T. et al. Novel approach to regeneration of periodontal tissues based on in situ tissue engineering: 

effects of controlled release of basic fibroblast growth factor from a sandwich membrane. Tissue Eng. 9, 153–

162 (2003). 

70. Teare, J. a, Ramoshebi, L. N. & Ripamonti, U. Periodontal tissue regeneration by recombinant human 

transforming growth factor-beta 3 in Papio ursinus. J. Periodontal Res. 43, 1–8 (2008). 

71. Miron, R. J. & Zhang, Y. F. Osteoinduction: a review of old concepts with new standards. J. Dent. Res. 91, 

736–44 (2012). 

72. Zhang, Q. Z., Nguyen, A. L., Yu, W. H. & Le, A. D. Human oral mucosa and gingiva: a unique reservoir for 

mesenchymal stem cells. J. Dent. Res. 91, 1011–8 (2012). 

73. Marler, J. J., Upton, J., Langer, R. & Vacanti, J. P. Transplantation of cells in matrices for tissue regeneration. 

Advanced Drug Delivery Reviews 33, 165–182 (1998). 

74. Zaky, S. H. & Cancedda, R. Engineering craniofacial structures: facing the challenge. J. Dent. Res. 88, 1077–91 

(2009). 

75. Patil, A. S., Merchant, Y. & Nagarajan, P. Tissue Engineering of Craniofacial Tissues – A Review. J. Regen. 

Med. Tissue Eng. 2, 6 (2013). 

76. Nussenbaum, B. & Krebsbach, P. H. The role of gene therapy for craniofacial and dental tissue engineering. 

Adv. Drug Deliv. Rev. 58, 577–591 (2006). 

77. Xu, H. H. K., Weir, M. D. & Simon, C. G. Injectable and strong nano-apatite scaffolds for cell/growth factor 

delivery and bone regeneration. Dent. Mater. 24, 1212–22 (2008). 

78. Altiere, E. T., Reeve, C. M. & Sheridan, P. J. Lyophilized bone allografts in periodontal intraosseous defects. J. 

Periodontol. 50, 510–9 (1979). 

79. Shue, L., Yufeng, Z. & Mony, U. Biomaterials for periodontal regeneration A review of ceramics and polymers. 

271–277 (2012). 

80. Ma, P. X. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 60, 184–198 (2008). 

81. Dietmar, H. W., Jan, S. T., Christopher, L. F. X., Kim, T. C. & Thiam, L. C. State of the art and future 

directions of scaffold-based bone engineering from a biomaterials prespective. J. Tissue Eng. Regen. Med. 1, 

245 – 260 (2007). 

82. Kumar, G. & Narayan, B. in Classic Papers in Orthopaedics 503–505 (2014). doi:10.1007/978-1-4471-5451-

8_132 

83. Tevlin, R. et al. Biomaterials for craniofacial bone engineering. J. Dent. Res. 93, 1187–95 (2014). 

84. Cho, Y. R. & Gosain, A. K. Biomaterials in craniofacial reconstruction. Clinics in Plastic Surgery 31, 377–385 

(2004). 

85. Chen, Q., Liang, S. & Thouas, G. A. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 38, 

584–671 (2013). 

86. Neovius, E. & Engstrand, T. Craniofacial reconstruction with bone and biomaterials: Review over the last 11 

years. Journal of Plastic, Reconstructive and Aesthetic Surgery 63, 1615–1623 (2010). 

87. Kretlow, J. D., Young, S., Klouda, L., Wong, M. & Mikos, A. G. Injectable biomaterials for regenerating 

complex craniofacial tissues. Advanced Materials 21, 3368–3393 (2009). 

88. Robert, P., Mauduit, J., Frank, R. M. & Vert, M. Biocompatibility and resorbability of a polylactic acid 

membrane for periodontal guided tissue regeneration. Biomaterials 14, 353–358 (1993). 

89. Campos, D. M., Gritsch, K., Salles, V., Attik, G. N. & Grosgogeat, B. Surface Entrapment of Fibronectin on 

Electrospun PLGA Scaffolds for Periodontal Tissue Engineering. Biores. Open Access 3, 117–26 (2014). 

90. Polimeni, G. et al. Histopathological observations of a polylactic acid-based device intended for guided 

bone/tissue regeneration. Clin. Implant Dent. Relat. Res. 10, 99–105 (2008). 

91. Garcia-Giralt, N. et al. A porous PCL scaffold promotes the human chondrocytes redifferentiation and hyaline-

specific extracellular matrix protein synthesis. J. Biomed. Mater. Res. A 85, 1082–9 (2008). 

92. Al-Sanabani, J. S., Madfa, A. A. & Al-Sanabani, F. A. Application of calcium phosphate materials in dentistry. 

International Journal of Biomaterials 2013, (2013). 

93. Chow, L. C. Next generation calcium phosphate-based biomaterials. Dent. Mater. J. 28, 1–10 (2009). 

94. Morra, M. et al. Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler. 

J. Mater. Sci. Mater. Med. 26, (2015). 

95. Yamada, S. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium 

phosphate ratios. Biomaterials 18, 1037–1041 (1997). 

96. Schaefer, S., Detsch, R., Uhl, F., Deisinger, U. & Ziegler, G. How Degradation of Calcium Phosphate Bone 

Substitute Materials is influenced by Phase Composition and Porosity. Adv. Eng. Mater. 13, 342–350 (2011). 

97. Stoecklin-Wasmer, C. et al. Absorbable collagen membranes for periodontal regeneration: a systematic review. 

J. Dent. Res. 92, 773–81 (2013). 

98. Kashiwazaki, H. et al. Fabrication of porous chitosan/hydroxyapatite nanocomposites: Their mechanical and 

biological properties. Biomed. Mater. Eng. 19, 133–140 (2009). 

99. Munarin, F. et al. Pectin-based injectable biomaterials for bone tissue engineering. Biomacromolecules 12, 568–

77 (2011). 



16 

 

100. Peter, M. et al. Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for 

alveolar bone tissue engineering. Chem. Eng. J. 158, 353–361 (2010). 

101. Sowmya, S. et al. Biocompatible β -chitin Hydrogel / Nanobioactive Glass Ceramic Nanocomposite Scaffolds 

for Periodontal Bone Regeneration. Trends Biomater. Artif. Organs 25, 1–11 (2011). 

102. Singh, A. K. GTR membranes : The barriers for periodontal regeneration. 4, 31–38 (2013). 

103. Aurer, A. Membranes for Periodontal Regeneration. 107–112 (2005). 

104. Giannobile, W. V. Periodontal tissue engineering by growth factors. Bone 19, S23–S37 (1996). 

105. Sheikh, Z., Sima, C. & Glogauer, M. Bone Replacement Materials and Techniques Used for Achieving Vertical 

Alveolar Bone Augmentation. Materials (Basel). 8, 2953–2993 (2015). 

106. Jin, Q. M., Anusaksathien, O., Webb, S. A., Rutherford, R. B. & Giannobile, W. V. Gene therapy of bone 

morphogenetic protein for periodontal tissue engineering. J. Periodontol. 74, 202–13 (2003). 

107. Mao, J. J. et al. Craniofacial tissue engineering by stem cells. J. Dent. Res. 85, 966–79 (2006). 

108. Barron, V. & Pandit,  a. Combinatorial Approaches in Tissue Engineering: Progenitor Cells, Scaffolds, and 

Growth Factors. Top. Tissue Eng. 1–21 (2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

CHAPTER II 
 

PERIODONTAL TISSUE ENGINEERING 

2.1  CURRENT APPROACHES IN PERIODONTAL TISSUE ENGINEERING 
 

The main objective of periodontal tissue engineering is to regenerate tooth’s supporting tissues. 

Tooth loss is a possible consequence of trauma or periodontal disease, such as gingivitis, 

periodontitis or tissue decay. Periodontal tissue regeneration involves formation of new connective 

tissue (cementum and periodontal ligament) and new alveolar bone. The American Association of 

Oral and Maxillofacial Surgeons reported that 69% of adults aged 35 to 44 have lost at least one 

permanent  tooth and, by age 74, almost 26% of adults have lost all of their permanent teeth
1
. More 

than 300.000 dental implants are placed per year, and until 2020 this number is expected to 

increase
2–4

. The restoration of tooth by using titanium dental implants is nowadays a quite common  

procedure, furthermore the rate of success of dental implant is around 98%, but despite this 

encouraging  number the positive fate of a surgical procedure that involves an insertion of titanium 

screw depends on the quality and quantity of alveolar bone which is present in the extraction site
5
. 

In the last decades beyond hard tissue reconstruction, correction of soft tissue defects has gained 

increasing attention, involving prevention of advanced periodontal defects related to mucogingival 

anomalies, as well as satisfying the increasing aesthetic demands of patients
6
.   

Periodontal regeneration is one of the earliest clinical disciplines that has achieved the therapeutic 

application of tissue engineering-based technology
7
. Many strategies have been studied, some of 

them are already commercially available, while others are under clinical trial investigation. 

Biomaterials, growth factors and stem cells are the three elements that are involved in the treatment 

of periodontal disease.  

Current therapy for periodontal regeneration could be divided in four main groups: conservative 

therapy, radicular conditioner, bone graft and bone substitutes and guide tissue regeneration, or a 

combination of these last two therapies. 

2.1.1 Conservative therapy 
 

Conservative therapy involves a surgical debridement of the periodontal pathogenic bacteria, 

mineralized deposits on the root surface and infected cementum and removal of all the containing 
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toxin tissue parts
8,9

. This approach is still one of the most used methods for periodontal healing, and 

an essential step before any type of regenerative technique is applied.  This approach is based on the 

concept that fibroblast cells from the epithelium possess the fastest growing, so increasing by 

surgery the distance between epithelia layer and the wound allows slower connective tissue 

formation and avoid achieving the radicular surface before the osteogenic cells. The first author that 

reported the importance of the debridement and the morphology of the bone defect was Prichard, 

and his article was published in 1957 
10

. After this first publication, many other clinical studies have 

been developed and, the results, confirm the importance to achieve a clinical situation characterized 

by no inflammation and a controlled bacterial plaque, in which the periodontal tissue could find an 

ideal condition to completely develop its regenerative capacity
11–13

.  

  

 

 

Figure 3. Debridement of periodontal zone. This therapy is an important step before any type of regenerative 

technique used 
8
. 

 

2.1.2 Non –Surgical disinfection 
 

After a surgical procedure, or due to a periodontal disease, the root surface could be exposed to the 

oral cavity, which per definition is full of various type of bacteria, that see the radicular surface as 

an adequate substrate for adhesion and biofilm formation, increasing the inflammatory response
14

. 

In these cases, the use of chemical conditioners is a common approach,  in order to obtain a more 

biocompatible surface, especially in clinical practice
8,15

. Citric acid, EDTA and tetracyclines are the 

most common used acids, in facts their role is to decontaminate the surface from bacteria and 

endotoxins, furthermore the collagen fibers are exposed by their surface to the etching of detergents, 

allowing attachment of tissue-regenerating cells
8
. Like surgical debridement, the nonsurgical 

disinfection therapy gave controversially results, which led to the conclusion that there are no 
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evidences for the use of these chemical agents as providers of clinical benefits for patients, 

compared with conventional surgical procedure 
16

. 

2.2.3 Bone graft materials and guided tissue regeneration membranes 

 

Conventional technique alone promotes a periodontal repair, instead of regeneration; in order to 

achieve a good repopulation of the defect site, researchers developed the so called bone graft 

materials, which have to be used after debridement of the root surface and which promotes bone 

formation
17

. Current approaches are based, in particular, on bone graft materials and guided tissue 

membranes, or a combination of them and on the use of specific growth factor. A more recent 

strategy under development also involves the use of stem cells
18,19

. Stem cell therapy is a 

fascinating approach and their potential could overcome the well-known drawback of the nowadays 

used biomaterials, such as the lack in the induction tissue formation. Despite their great potential, 

there are many regulatory and ethical issues concerning the use of stem cells, furthermore they are 

still far from the practical use. Nevertheless, it is important to understand which are the current 

approaches and which kind of tools are used in order to achieve periodontal regeneration. 

Periodontal regeneration depends on four basic paradigms.. Scaffold materials act as a guide and 

form a three-dimensional template in which new tissue could grow. Cells are the principle actresses 

of the tissue regeneration process, since from their proliferation and differentiation a good 

periodontal regeneration could be achieved. Growth factors target cells activity, promoting 

proliferation and differentiation, as well as new matrix production towards the developing tissue. 

The blood supply provides nutrients for tissue growth and guarantees the homeostasis inside the 

three dimensional scaffold. Before the introduction of tissue engineering and of regenerative 

medicine concepts, the traditional approach to achieve the healing of the wound after surgical 

debridement of the periodontal tissue, was by repair
7
. Repair is defined as the healing of a wound 

by tissue that does not fully restore the architecture and, consequently, the function of the lost 

tissue
20,21

. Regenerative medicine used tissue engineered constructs in order to restore the original 

function and composition of the tissue
22

. Current approaches in periodontal tissue engineering, 

include the use of barrier membranes and bone grafting materials to encourage the growth of key 

surrounding tissues, while excluding unwanted cell types such as epithelial cells
23

.  

The native periodontium is formed by alveolar bone, cementum, junctional epithelium and a 

gingival connective attachment and, based on its embryonic origin, is formed by the interaction of 

mesenchymal and epithelial cells
24,25

. Periodontal regeneration follows a series of independent but 

linked sequence of events: osteogenesis, cementogenesis and connective tissue formation
26

. During 

healing process, cells respond differently to a variety of stimuli, and the quality of healing critically 
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depends on the type of cells that repopulate the wound first
23

. During a periodontal regeneration, 

there are four type of cells that compete: periodontal ligament cells, alveolar bone cells, 

cementoblasts and epithelial cells. The first three types of cells are capable of generating 

periodontal tissue, whereas the epithelial cells are responsible for the soft tissue regeneration, and 

usually migrate ten times faster than other periodontal cell types, this is the reason why periodontal 

therapy typically results in the formation of long junctional epithelium
27

. Infiltration of epithelial 

cells inside the defect promotes repair and formation of unusual architecture with a loss of 

function
28

. Current approaches in periodontal tissue engineering, involve the use of guided tissue 

membranes, which have the function to exclude infiltration of the epithelial cells
29

. If epithelial cells 

could be excluded long enough from the wound, allowing other cell types with regeneration 

potential to become established, epithelial down-growth could be prevented
23

. A combination of 

bone graft material, which acts as osteoconductive material to promote migration and differentiation 

of osteoblast cells, and GTR is the most used approach aimed at achieving periodontal 

regeneration
30,31

.  Conventional techniques have the great disadvantage that results which could be 

obtained are not predictable. In the last three decades, the efforts of researchers in the field of 

periodontal tissue have been directed to find procedures that could regenerate tissue in a predictable 

manner. Many experiments and trials have been done and two types of strategies with the combined 

use of grafts and guided tissue membranes (GTR) have been successfully developed. The 

combination of bone grafts and guided tissue membranes has been demonstrated to stimulate 

alveolar bone regeneration. This synergic effect is based on the biological performance of bone 

grafts and on the “Melcher hypothesis”, which proposed that the nature of the attachment in 

periodontal healing depends on the origin of cells which repopulate the area of the defect and, 

furthermore, the only cells that could achieve complete periodontal regeneration are cells 

originating from the periodontal ligament and from the perivascular bone cells 
8,32,33

.  

The biological principles induced by bone grafting materials, in order to achieve bone lost 

regeneration, could be divided in three interrelated, but not identical, healing processes: 

osteointegration, osteoconduction and osteoinduction 
34

. 

 

Osteointegration
35

 

 

Osteogenesis is achieved by using the so called autologous bone graft. In this case the osteoblastic 

cells and Harvesian system have been replaced by the primitive, undifferentiated, and pluripotent 

cells derived from the graft material itself,  which are somehow stimulated to develop into the bone-

forming cell lineage, for example, osteoblast, which form new bone 
36

. 
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Osteoconduction 

 

The ability of a material to recruit immature cells and to operate as a scaffold to guide the tissue 

regeneration. The material  induces these cells to develop into pre-osteoblasts and osteoblasts from 

the surrounding tissue at the graft-host site, which results in bone growth, and replaced the graft
34,37

.  

Osteoinduction 

 

Osteoinduction is conditioned  by the presence of growth factors on the site and is the ability of a 

material to support the growth of bone over a surface
38

. In that case, the graft material, excludes the 

connective undifferentiated cells and induces the differentiation and proliferation of osteoblast cells, 

into newly bone formation
34,39,40

.  

 

Melcher hypothesis 

 

Melcher hypothesis, involves the use of barrier materials, which enable cells migration from the 

connective tissue, in order to avoid repair process
23,31,41

. The healing process of periodontal tissue 

wounds, is characterized by three correlated steps. Firstly, the internal face of flap is epithelized 

forming the so called long epithelium attachment; more apically, the second step involves the 

maturation of the connective tissue which forms the so called connective attachment and, at the end, 

at the level of alveolar bone, in the deepest point of injury, the recovery of bone architecture and of 

the periodontal ligament takes place. Morphologically, the structure of the new tissue formed in the 

wound could be classified as repair or regeneration 
7
. Repair process is a formation in a bone defect 

of a part of connective tissue formed by cells and fibroblasts, which replace, in part or totally, the 

osteoblasts, inhibiting the deposition of osteoid matrix and, consequently, new bone formation
20,21

. 

On the other side, regeneration involves the completely recovery of the structure and also the 

function of the periodonatal tissue
7,42

. Practically, the Melcher hypothesis is achieved through the 

application of  barrier membranes
43

. Many animal experiments have already proved the efficacy of 

the GTR procedure and, for this purpose, different guide tissue membrane materials have been used, 

both non-resorbable and resorbable
31,41

.  
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Figure 4. Steps to achieve periodontal regeneration
7
. 

 

Despite the implementation of this approach, reaching  an optimal periodontal regeneration depends 

on the capacity to control the infection, that derives from the presence of microbial pathogens that 

contaminate periodontal wounds
44–46

. Periodontal defects are often the result of the removal of 

necrotic tissue or of a zone with an acute infection, where there is a high risk of bacterial growth 

and re-infection of new tissue
47,48

. Considering dental defects, bacterial infection possibility 

increases, at the interface with a lot of bacteria from different sources, owing to the natural function 

of mouth and teeth
49

. Hence, it is important to implement appropriate strategies in order to 

regenerate the periodontal tissue and to restrain bacterial growth. The current available strategy, 

aimed at reducing the risk of wound infection, involves the use of a conventional systemic antibiotic 

therapy, which can cause systemic toxicity, with associated renal and liver complications, resulting 

in the need of hospitalization for monitoring
50–53

. However, several research groups are working on 

complex systems in order to release low dosage of antibiotics direct in situ
54–57

. Antibiotic drugs 

used in periodontal tissue engineering, should struggle against bacteria, as well as should be 

biocompatible, nor damage the surrounding host tissue
58–60

. There are many research groups that 

implement antibacterial properties on bone graft materials or on the implant surface, in order to 

avoid bacterial adhesion. Current approaches involve the coating of titanium implants with several 

antibiotic drugs, modification of allograft with chemical groups which inhibit the adhesion of 

bacteria, and the use of specific signaling molecules which act as bactericidal substances
55,61–63

.  
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2.2  BIOMATERIALS IN PERIODONTAL TISSUE ENGINEERING 
 

2.2.1 Types of bone grafting materials 

Bone graft materials are widely used in periodontal tissue engineering, since they are used in order 

to augment the alveolar bone and to provide a mechanical sustain for a future implant. Material 

used as bone grafting could be divided in: autografts, allografts, xenografts and alloplastic 

materials. Different are also the formulations in which bone graft could be produced: particles, 

three-dimensional scaffolds, injectable pastes and in combination with polymeric materials. In the 

last years, one of the most devastating periodontal disease was due to microbial infection, so many 

materials with antibacterial properties have been developed, in order to control the infection and  to 

reduce the failure of the implant.    

2.2.1.1 Autograft  

 

Autogenous grafts are considered the current gold standard bone replacement graft material
64

. 

Autograft is a tissue transplanted from one part of the body to another in the same patient. 

Typically, if the material needed to fill the defect is small, the site from which autograft materials 

are obtained are intraorally, in particular from the extraction sockets, edentulous ridges, ramus, 

symphysis, tuberosity, or from the surrounding buccal plate. In large bone defects, the material 

needed is larger and is typically obtained from extraorally areas, such as the iliac crest or the tibia. 

For autologous bone grafts, the implant survival rate varie from 76% to 100%, with worse results 

for iliac crest bone compared to calvaria bone
65–68

. On the other side, other studies reported that the 

results obtained with intraoral grafts were similar to those obtained with extraoral sources, making 

this source more favorable since the material available is larger
67,69

. This multitude of controversial 

results depend on donor site variability and complications, which allow assessing that there is no 

scientific evidence to indicate which technique is the best
70

. 

The great advantages in using this approach are represented by the fact that these grafts are 

osteogenic, prevent disease transmission and are low cost. Clinical tests show excellent periodontal 

regeneration with new cementum formation. Schallhorn et al. used iliac crest grafts to treat 

infrabony defects and reported up to 4 mm gain in bone healing
71

. However, the main complication 

is that  they require a second surgery and it is important to consider the possible donor site 

complications, such as infection and pain
72

. Furthermore, the limited supply of autograft materials is 

an additional issue that makes this approach always less attractive. 
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2.2.1.2 Allograft 
 

An allogenic material is a graft derived from a donor of the same species, but genetically dissimilar. 

Allograft materials allow overcoming the issue of a second surgical procedure and the limited 

supply source
6
. The graft is typically obtained from tissue banks that process the donor tissues and, 

on the base on which the tissues are processed, allografts could be divided into freeze-dried bone 

allografts (FDBA) and decalcified freeze dried bone allografts (DFDBA). These types of graft have 

the great disadvantage to potentially include a foreign body immune response and the possibility of 

diseases to be transmitted; furthermore, a high risk of graft contamination during processing is 

present
73–75

. Despite these drawbacks, allografts have relatively high success rates and, depending 

on the remaining proteins into the matrix, they could act as osteoconductive or osteoinductive 

materials
76

.  

In particular, the decalcification process exposes bone morphogenic proteins which act as inductive 

molecules for bone regeneration, while ,on the other hand, this type of process causes a higher rate 

of resorption, resulting in less effective scaffolding properties. Several studied compared FDBA and 

DFDBA allograft materials. Yukna et al. performed animal studies in which both FDBA and 

DFDBA were placed into surgically created infrabony defects and evaluated by histological 

analysis
77

. After three months, FDBA allograft showed more substantial new bone formation than 

DFDBA. Excellent results in new bone formation, using FDBA graft, were also reported from 

Altiere et al. and Blumenthal et al.
78,79

. The great variability of these types of graft, is demonstrated 

by the study of Mellonig et al., where DFDBA report similar bone filling percentage compared to 

FDBA in one study and show higher bone filling percentages in a previous study using FDBA 

mixed with an autologous graft material
80,81

. Another disadvantage of these kinds of approach is the 

high material cost, because many commercially available bone graft materials are xenograft
82

. 

2.2.1.3 Xenograft 

Xenograft materials are bone grafts obtained from other  species (typically bovine and porcine) and 

transplanted in human. Tissue banks usually choose these graft materials, because it is possible to 

extract larger amount of bone with a specific microstructure as compared to auto or allografts. Since 

the main disadvantage of xenografts is their antigenicity, tissues are carefully processed to remove 

all organic constituents. There are many commercially available products based on this process, 

such as Geistlich BioOss® particles from bovine source, which is considered the gold standard graft 

material in dental application. However, despite the positive results obtained from studies 

conducted on xenograft materials, the tissue/bone regeneration with this graft material might be 

unpredictable
83

. In one study, where defects were treated with bovine derived bone grafts, at 1 years 
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follow up, 78% of defect healed successfully, even if no difference was detected with the no treated 

lesion
84

. Furthermore, in another study, eight infrabony defects were filled with xenografts and the 

results show that 7 defects went thought successful healing, but ones defect healed by repair 
85

. 

Great advantage of these types of graft is that only one surgical procedure is necessary, on the other 

hand many people are put off by the fact that for this type of procedures animal bone is used.  

2.2.1.4 Alloplast 

 

The graft materials described above have different disadvantages, such as second surgery 

procedures, risk of diseases transmission, limited availability and unpredictable results. In the last 

decades, synthetic materials have aroused even more interest because they can be implanted in the 

host tissue in a large amount, showing diverse advantages in filling large bone defects, such as 

controlled degradation properties, osteoconductive or osteoinductive characteristics, 

biocompatibility and customized mechanical properties
86

.  The development of alloplast grafts is 

divided in two classes: ceramic and polymers, and a mix of the two
64,87

. Ceramic-based materials 

include calcium phosphate, calcium sulfate and bioactive glasses
88,89

. Natural polymers include 

modified polysaccharides, polypeptides and synthetic polymers such as poly(glycolic acid), poly(L-

lactic acid). Natural or synthetic polymers are typically used in addition to the ceramic graft, in 

order to provide osteoinduction properties (peptides), or to increase mechanical properties, and to 

tune the degradation rate and cell adhesion.  

Alloplastic materials are the most commonly investigated grafting materials for periodontal 

regeneration, and many positive results have been reported
64,86,90

.  

2.2.2 Ceramic hard materials 
 

2.2.2.1 Calcium phosphate 

Calcium phosphate (CaP) materials have a long history, in fact the first studies about them appeared 

in the early 1920
91

 and, from that date, numerous studies were conducted and an enormous amount 

of data related to biological actions, chemistry and formulations were produced
92–94

. Calcium 

phosphate materials are widely used in bone and dental tissue engineer, since they are the principal 

compound of inorganic phase in native bone. This kind of composition induces a biological 

response, which is  similar to the one generated during bone remodeling, that is resorption of the old 

bone and, in parallel, formation of new bone. Since the calcium phosphate graft materials are 

chemically similar to the natural bone, the degradation product of the synthetic material are non-

toxic and naturally metabolized without any accumulation of calcium and phosphate in sensible 

organs, such as liver and kidney
95

. Calcium phosphate materials could be formed in different 
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geometry: three-dimensional porous or bulk scaffolds, granules and pastes or cements. The most 

used calcium phosphate materials as bone grafts in periodontal tissue engineering are 

hydroxyapatite, tricalcium phosphate materials and the combination of them. 

 

2.2.2.2 Hydroxyapatite 

Hydroxyapatite (HA),  (Ca10(PO4)6(OH)2),  is the most abundant inorganic component of native 

bone, around 65% of inorganic phase, and it has found many application as bone filler in clinical 

practice. Many studies have  been conducted on the interaction between HA implants and bone
96–

100
. It is well-known that a chemical bond directly occurs between bone and the HA graft, giving 

rise to a kind of bone matrix on the implant surface that is either composed of globular deposits or 

an organized network of collagen fibers, which may enhance the bonding between bone matrix and 

HA
101

. Osteoblastic cells are found on the HA surface, starting mineralized osteoid formation that 

matures into fully mineralized bone on the HA surface
102

. Apatite crystals appear on the surface of 

implanted HA grafts and, these one, are similar to the apatite found adjacent to the alveolar bone
103

. 

However, from a chemical point of view, hydroxyapatite has a great potential as bone filler, since 

osteoconductive properties have been proved, but it has a very slow degradation rate, which limits 

its use alone
104

.  

2.2.2.3 Tri-calcium phosphate 

 

In recent years, due to the limitation of hydroxyapatite in terms of degradation rate, the interest on 

tricalcium phosphate materials (TCP) has been rapidly increased. The most studied TCP phase is 

the β one, which has shown good biocompatibility and osteoconduction properties in many 

studies
90

. βTCP materials have been studied in periodontal tissue engineering and have shown 

regenerative properties similar to those of autogenous bone
105

. However, βTCP has poor 

mechanical properties and its application as material is recommended just in low bearing 

applications and in particle form. Furthermore, the resorption rate could be too fast in certain 

applications, such as in large bone defects. The mechanism of βTCP resorption is based on two 

main hypothesis. The first manner is due to the dissolution by biological fluids, while the second 

mode hypothesizes that the resorption is due to the action of osteoclast cells
106

. The reality is that 

the two ways are related, in fact more soluble is the material, more extensively it is resorbed by 

osteoclasts
106

. However, a very soluble material might inhibit active resorption, indeed calcium ions 

inhibit osteoclast activity
107,108

. The dissolution of the material depends on many parameters, such 

as sintering process, micro- and macro-porosity, and purity of the row material
109

. The best way to 
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control the degradation rate is to mix the Ca-P materials in a rate which fits the needed 

characteristics
110,111

.  

2.2.2.4 HA/βTCP bi-phasic calcium phosphate 
 

A grafting material used in periodontal tissue engineering should possess peculiar characteristics: 

osteoconductivity, good mechanical properties in order to sustain the load applied on the defect site, 

a resorption rate comparable with formation of new bone and, finally, the degradation products 

should not be toxic for the surrounding tissue
64,112,113

. In the last years many research works have 

been based on the combination of HA and βTCP materials, being aimed at managing the important 

properties and at achieving an excellent and predictable periodontal regeneration. The balance 

between HA and βTCP is a key point to obtain both mechanical strength and degradation and to  

stimulate excellent osteointegration. Several studies were performed in order to understand the best 

HA:βTCP, however the results are difficult to compare, since there are many variables that affect 

the results from one to another group of researchers
110,114,115

. For example, the degradation rate and 

the mechanical properties, as well as the biological properties, strongly depend on the sintering 

parameters, on the mixing technique, on the row material source and on the type of final geometry 

(3D scaffold, porosity, granules, paste, etc.). An interesting study conducted in 1997 by Yamada et 

al., compares different Ca-P ceramic  materials in terms of osteoclastic resorption; HA and βTCP 

was maintained the same, and the percentage of ratio in the bi-phasic material was changed from 

100 % of βTCP, to 100% HA, through 75/25 βTCP/HA and 25/75 βTCP/HA
106

. The results show 

that resorption lacunae were observed on pure βTCP and 75/25 βTCP/HA material; instead, 

osteoclasts did not resorb the material with a prevalence of HA in the composition. The lobulated 

lacunae detected on the Ca-P biphasic material surface were similar to those formed on natural 

bone, furthermore the high dissolution rate of pure βTCP and the totally absent osteoclast activity 

on the pure HA, suggest that HA/ βTCP biphasic material allows osteoclast to act in a more natural 

way. As osteoblastic bone formation is strongly related with osteoclast resorption during bone 

remodeling, biphasic Ca-P promotes a surface similar to that of the native bone, hence presumably 

the dissolution/precipitation process which occur during osteoclast resorption promotes chemical 

bonding between bone apatite and similar apatite formed on the ceramic surface. By changing the 

ratio between HA and βTCP, it is possible to manage the degradation rate of the bone graft, and 

consequently the bone formation. Mechanical properties of grafting materials, depend on the 

amount of βTCP and HA inside the biphasic material; in particular, as expected, poor mechanical 

properties are associated to the material with a high percentage of βTCP. In a recent study, of 

Morra et al.
116

, a biphasic granulate bone filler was developed with a HA/βTCP ratio of 75/25, and 

animal study showed an excellent new bone formation without any inflammatory response. 
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Furthermore, the mechanical resistance not only depends on the composition, but also on the 

geometry and process parameters (i.e. sintering). These kinds of wide range of possibility make 

these bone grafts highly interesting for periodontal tissue engineering.    

2.2.2.5 Bioactive Glass 
 

A bioactive material, in tissue engineering field, has been defined as a material that undergoes 

specific surface reactions when implanted in the body, promoting the formation of an apatite-like 

layer which allows a strong bond formation between bone and grafting material
87

. This ability is 

different from the osteoinduction stimulation, since the only materials that could promote induction 

are the autogenous grafts. Osteoinduction is the property to induce osteoprogenitor cells and other 

tissues to not only migrate into the structure of the graft material, but to also promote 

differentiation, through affecting gene expression of undifferentiated cells
34

. In the case of 

bioactivity, it is more correct to speak in terms of osteostimulation, as the definition given by 

Schepers and Ducheyne 
117

. Bioactive materials could be added to the autologous graft in large bone 

defects, where the material needed is high
118

. Bioactive glasses showed osteostimulation and high 

mechanical strength. There are three main different bioactive glasses: silicate, borate and phosphate. 

The most used and with a 40-year history, is the silicate bioactive glass, named Bioglass® (45S5), 

for example the key compositional features responsible for the bioactive of  45S5 glass are its low 

SiO2 content, high Na2O and CaO content, and high CaO/P2O5 ratio 
119

. This composition promotes 

formation, on the surface of glass, of the carbonate-hydroxyapatite-like layer, which is similar to the 

mineral constituent of bone, therefore firmly bonds between bone and tissue are obtained
120,121

. In 

clinical evaluation PerioGlas, a commercially available bioactive glass, has shown the ability to 

inhibit the downgrowth of epithelial cells, promoting the regeneration of bone
122,123

. More recent 

studies have proposed borosilicate glass as a bioactive material, although further studies are needed, 

but a first encouraging result was obtained with small animal models, in which borate glasses were 

demonstrated to be non-toxic. Despite bioactive glasses’ brittleness, which constitutes their main 

disadvantage, their unique properties to release ions in the surrounding tissue, which stimulate new 

bone formation, make these materials interesting for periodontal tissue engineering. 

2.2.2.6 Calcium sulfate 
 

Calcium sulfate, also called plaster of Paris, was used as augmentation material for the first time in 

1892, in cavities caused by tuberculosis
124

. From that date, more than thousands of articles have 

been published, on the use of calcium sulfate as bone filler
125

. There are three different forms of 

calcium sulfate, based on the amount of water molecules inside the crystalline structure: anhydrate, 

dehydrate and hemihydrate, the latter state found in medical grade products
126,127

. Calcium sulfate is 
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a biocompatible, osteoconductive and biodegradable material, which is completely dissolved into its 

component elements and recedes leaving behind calcium phosphate deposits that stimulate bone 

growth
125,128

. Furthermore, its porosity and hygroscopic properties allow adsorption and infiltration 

of platelets, in order to stimulate bone formation and enhance angiogenesis. No immunogenic, or 

adverse reactions have been reported in literature and, due to its degradability, it is classified as a 

short term space maintainer. Calcium sulfate material is used, in dentistry, preferably in forms of 

paste or putty, and numerous publication report clinical effectiveness and safety as bone substitutes 

in periodontal defect
129–131

. Furthermore, calcium sulfate has also been used as a barrier membrane 

to prevent ingrowth of soft tissues, no improvement was reported if it is used with a barrier 

membrane
132,133

.  

It has been reported a study in which calcium sulfate pellets were impregnated with a drug and used 

as a system for antibiotic release in situ
134

. Despite many studies showed great potential for the 

application of calcium sulfate as a graft material, its enhanced solubility in contact with blood and 

saliva reduces its conversion from paste to rigid matrix, making the fate of the material 

unpredictable
128,135

. This reason limits its use as graft material but, in order to overcome this 

drawback, the researchers have been trying to combine calcium sulfate with other materials, such as 

calcium phosphate materials, aiming at stabilizing the structure, and controlling the degradation 

rate
130,131,133

. Other approaches involve production of a bi-phasic calcium sulfate, in which both 

dehydrate and hemihydrate forms are mixed, in order to manage the solubility and to obtain a rigid 

matrix after implantation
136

. The primary use of calcium sulfate and composite of calcium sulfate 

bone grafts are as injectable bone fillers for different applications, such as sinus augmentation or 

alveolar bone regeneration, with the great advantage that the use of a barrier membrane is not 

necessary, since the barrier properties of calcium sulfate enable epithelial cell downgrowth.  

2.2.3 Natural soft materials 

 

Non rigid materials are widely used in periodontal tissue engineering as barrier membranes, 

hydrogels and in combination with ceramic materials. Natural soft materials could mimic the 

extracellular matrix (ECM) of bone, allowing cell infiltration, proliferation and new bone 

formation. Elasticity, hydrophilicity, biodegradability, mouldability and biocompatibility are the 

most important properties of these materials. On the other hand, their disadvantages include source 

variability, immunogenicity if they are not pure, limited range of mechanical properties and lack of 

control over pore size. The most used natural biomaterials in periodontal tissue engineering include: 

collagen, chitosan, pectin
137

 and alginate. A briefly introduction for each of them is reported as 

follows. 
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2.2.3.1 Collagen 
 

Collagen is the most used natural material in the field of tissue engineering, since it proven 

biocompatibility and ability of promoting wound healing
138

. It could be extracted from several 

allogenic sources as it is the most prevalent structural protein found in the extracellular matrix of 

different connective tissues like cartilage, bone, tendon, muscle, skin etc.
139

. Several studies and 

commercially available products are based on type I collagen, the most abundant form of collagen 

present in the body and the major component of periodontal connective tissue
138,139

. It offers 

advantages of biocompatibility, cellular adhesion, migration and growth. Collagen materials 

degrade via enzymatic action and the by-products do not cause any inflammatory response
140

. 

Collagen is widely used in barrier membranes, as guiding materials for tissue regeneration, but it 

could be also used in hydrogel sponges and as coting material on ceramic scaffolds or dental 

implants, mimicking the natural component of ECM of bone, thus providing a biomimetic 

surface
79,141

. Collagen material has a good tensile strength, which could be enhanced by 

crosslinking agents, such as EDC, glutaraldehyde and tannic acid. Crosslinking of collagen fiber 

enhances mechanical and degradation properties, but could influence the cell response since most of 

this chemical crosslinking agents are toxic
142,143

.  

2.2.3.2 Chitosan 
 

Chitosan is a natural polysaccharide derived from chitin that can be extracted from the crustaceous 

exoskeleton and is composed by β–(1,4)–glucosamine and N-acetyl-D-glucosamine
144

. Owing to its 

biocompatibility, its intrinsic antibacterial nature, its ability to not induce any foreign body reaction 

and to promote cell adhesion, proliferation and differentiation, chitosan has aroused great interest in 

tissue engineering and pharmaceuticals, finding many applications especially in bone tissue 

engineering
145,146

. Furthermore, chitosan has a backbone similar to that of glycosaminoglycan, the 

major component of bone ECM
147

. The application of chitosan in patients with periodontitis 

showed reduction of the gingival inflammation, due to its antimicrobial properties
148

. Many 

applications involve combination of ceramic materials with chitosan, for example Ca-P grafts 

mixed with chitosan in order to produce porous sponge or paste
149,150

. Chitosan could be extracted 

also from white mushrooms, eliminating the immunogenic issue due to the animal source.  

Another important characteristic of chitosan materials is its poly-cationic nature, which allows ionic 

interactions with other poly-anionic materials to be created and to generate the so called 

polyelectrolyte (PEI)hydrogel
144,151–153

. These properties were used to produce materials for drug 

release, in particular for drug release in the intestinal track, since this ionic bond is pH sensible and 

the drug could be released more or less depending on the pH of the organ
151,154

.  
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2.2.3.3 Pectin 
 

Pectin is a natural anionic polysaccharide, a major component of citrus cell walls or apple peel by-

product, consisting in a poly D-galacturonic chain with carboxyl groups, in part methoxylated
155,156

. 

Pectin is already widely used in the food industry and, in the last decades, it has found application 

in bone tissue engineering, in particular as a drug carrier
157,158

. Pectin carboxylic groups could be 

ionically crosslinked by calcium ions (Ca
2+

) forming the so called “egg box” structure, where a 

divalent cation is bonded with different carboxylic anions
159,160

. Furthermore, ionic interactions 

occur with poly-cationic polysaccharides, to form a well-known polyelectrolyte structure (PEI)
161

 . 

The limit of pectin is its great water-solubility, which causes fast dissolution and, when used as a 

drug carrier, a burst release of the therapeutic molecules occurs
153

. To overcome this problem, many 

research groups have been trying to combine pectin with other materials, such as chitosan, to 

stabilize and increase the resistance in water
152,154,162–164

. Pectin polysaccharide has been used in 

combination with Ca-P particles, since it could mimic the extracellular matrix and guide cell 

proliferation and as a coating material in different medical applications, such as chirurgic mesh as 

antiadhesive material
165–169

. 

2.2.3.4 Alginate 
 

Alginic acid or alginate, is a natural material extracted from a brown algae, or synthetized through 

bacteria biosynthesis, which allow obtaining an alginate with more controllable structure.  Alginic 

acid is a linear copolymer containing block of (1,4)-linked β-D-mannuronate (M) and α-L-

guluronate residues (G) 
170

. The blocks are composed of consecutive G and M residues, whose 

different amounts define the characteristics of the alginate material, since they affect the physical 

properties of the material, for example only the G residues could be ionically crosslinked by 

calcium ions
171

. Alginate is an anionic natural polymer that has been widely investigated and used 

for many biomedical applications, because of its biocompatibility, low toxicity, relatively low cost 

and simplicity of gelation by addition of divalent cationic ions, such as Ca
2+113

. Alginate, like all 

other natural polymers, has a low mechanical strength; for this reason, it is usually coupled with 

other materials, such as pectin, chitosan, or ceramic tricalcium phosphate or bioactive glasses
152

. 

Alginate hydrogels and alginate/bioactive glasses composite hydrogels have been used in 

periodontal tissue engineering, having shown an induction in osteoblast-like cell differentiation and 

enhanced alkaline phosphatase activity of human periodontal ligament fibroblast cells
172,173

.  

2.2.3.5 Hyaluronic acid 
 

Hyaluronic acid (HyA) is one of the most used natural material, along with collagen, in the 

biomedical field and, in particular, in periodontal tissue engineering, since it is one of the 
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glycosaminoglycans present in the extracellular matrix of connective tissue, with an excellent 

potential as scaffold for tissue regeneration
174

. Hyaluronic acid is a linear polysaccharide and, in 

dentistry, it has shown anti-inflammatory and anti-bacterial effects in the treatment of periodontal 

diseases
175

. Furthermore, due to its tissue healing properties, it could be used as an adjunct in the 

treatment of periodontitis. The precise chemical structure of hyaluronic acid, is a repeating unit of 

d-glucoronic acid and N-acetyl-d-glucosamine
176,177

. The most important characteristics of HyA 

are: a hygroscopic nature, which allows the material to adsorb huge amount of water maintaining 

conformational stiffness
177,178

, viscoelastic properties, which allow the material to maintain the 

space and to protect the surface in periodontal regeneration
179

. Furthermore, the viscoelastic nature 

makes unable virus and bacteria penetration. Recent studies have showed a bacteriostatic effect of 

HyA, making this material a suitable tool for barrier membranes, in order to reduce the bacterial 

contamination of surgical wounds, thus reducing the risk of post-surgical infections and promoting 

a more predictable regeneration
180–182

.  

2.3  MORPHOLOGY OF BONE GRAFT MATERIALS 

Bone grafting materials could be shaped in different forms and formulations, depending on the 

application and on preference of the dental technician
30

. Bone graft materials should fill the void, 

avoiding collapse of the defect, promoting platelet, vessels and cells infiltration, should be easy to 

manage and to degrade, with the same rate in which the new bone growth. Hence, the important 

characteristics such as mechanical properties, porosity and degradability depend in part on the 

chemical composition of the scaffold and, in part, on the final material morphology. Porosity is the 

most important feature, because all other parameters depends on it
183

. Many studies and lot of 

works have been done to understand which pore size and porosity are the best, in order to promote 

osteoblast proliferation and bone ingrowth
184

.  

2.3.1 Porosity of bone graft materials and osteogenesis 

 

The scaffolds used as bone graft, have primarily the function of osteoconduction and serve as 

template in which the cells could proliferate and differentiate
185,186

. In order to achieve an optimal 

osteointegration, the material should mimic bone morphology and allow blood vessel infiltration, 

nutrients transportation and the degradation rate should follow the new bone regeneration. Natural 

bone is composed of hydroxyapatite crystals deposited in a collagen matrix
187

. The morphology of 

bone is characterized by a trabecular bone, which is typically a porous environment within 50% to 

90%, and pore sizes in the order of 1 mm and, surrounded by dense cortical bone, with a porosity 

between 3–12%
188–190

. Bone is a dynamic tissue, in constant remodeling, with osteoblasts producing 
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and mineralizing new bone matrix, and osteoclasts resorbing the matrix. The mechanical properties 

of bone vary by age and from the place in the body, for example in the femoral zone, the Young’s 

modulus could vary from 7 to 17 GPa
190

. Of course, a scaffold material could not reach these 

properties, because if it promotes mineralization in vivo, properties will increase and allow a 

mechanical sustainment. Porosity and pore size of biomaterial scaffolds play a critical role in bone 

formation in vivo and in vitro
184

. The morphology of the bone graft influences the osteogenesis, as 

well as the mechanical properties and the degradation rate
191

. Porosity is defined as the percentage 

of void space in a solid and is independent from the nature of the material
192

. Pores are fundamental 

for bone tissue, because they allow osteoblast migration and proliferation as well as vascularization; 

furthermore, the porosity allows a better stability of the implant, since a better interlocking between 

the biomaterial and the surrounding tissue occur.   

There are many techniques that could be used to obtain porous materials, such as gas foaming
193

, 

salt leaching
194

, phase transformation
195

, freeze-drying
196

, and sintering
197

. Of course, the process 

technique depends on the material used and, in the case of ceramic materials, the most used 

technique is a sponge replication, which allows an interconnected porosity to be obtained, with a 

controlled pore size
119

.  

The importance of porosity in bone regeneration has been shown by Kuboki et al. using a rat ectopic 

model, in which porous and dense particles of hydroxyapatite were implanted
191

. The results show 

that no new bone has formed on the dense particles, while porous particles promote new bone 

formation. The percentage of void (porosity) and the size of these voids (pore sizes), have been 

studied for long time from many research groups. Microporosity allows in vitro osteogenesis 

through suppressing cell proliferation and forcing cell aggregation; however, in vivo lower porosity 

promotes osteochondral differentiation, since hypoxia conditions are favored. Macroporosity 

promotes in vivo osteogenic differentiation, since it allows cell infiltration, bone ingrowth and 

vascularization; on the other side, macroporosity reduces the mechanical properties of the scaffold. 

Hulbert et al. define, as the lowest limit for osteogenic promotion, 100 µm of pore size. They used 

calcium aluminate material, with different pore size and a constant porosity of 46%, and then they 

implanted the scaffolds in a femoral dog
198

. The results show that no bone ingrowth was present in 

the scaffold with a pore size lower than 100 µm, while the highest rate of new bone formation was 

detected for the sample with a pore size between 150 and 200µm. These results are in agreement 

with the diameter of the Harvesian system, which reaches values around 100–200 µm, but in 

contrast with other research group works, which demonstrated no significant variation between 

samples with pores lower than 100 µm and samples with pores higher than 100µm. Bone ingrowth 

was similar in all of the pore sizes of the material implanted in rabbit femoral defects under non-
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loading bearing condition. These results demonstrated that 100µm are not a critical size for non-

loading bearing applications.  

The effect of pore size and porosity, depends on the study, because if it is conducted in vitro or in 

vivo, different results are obtained in the two cases and what is demonstrated in one study is usually 

totally opposite in the other study
191,198,199

. This is mainly due to the different complexity of the two 

systems: in vivo osteogenesis depends on many variables and, in particular, from vascularization, 

furthermore there is a concurrence between osteochondral and osteogenic formation, and pore size 

and porosity influence in a heavier way these processes. 

2.3.2 Porosity and pore size in vitro 
 

The effect of porosity and pore size, was evaluated in vitro using osteoblasts and mesenchymal 

cells
200,201

. Small size pores allow cells aggregation and inhibit cells proliferation in vitro, resulting 

in an increase of expression of alkaline phosphatase activity and osteocalcin
202

. Macroporosity 

allows cell proliferation, since large pore size and higher porosity enhance nutrients and oxygen 

transportation. In general, in vitro, osteogenesis is not affected by pore size, but it is enhanced by 

lower porosity
184

. Akay et al. studied the effect of pore size in a primary rat osteoblast culture and 

showed that more cells were found in smaller pores than in large pores, where however cells 

migrate faster, but the mineralization was not affected by pore size
201

.  

2.3.3 Porosity and pore size in vivo 
 

In vivo condition is characterized by many variables, for example osteogenesis depends, in 

particular, on the degree of vascularization, which is promoted by higher porosity and large pore 

size. Furthermore, small pores (around 100µm) promote chondrogenesis before osteogenesis and 

low porosity does not permit nutrients transportation
203,204

. In vivo it is demonstrated that high 

porosity and large pores promote osteogenesis by recruitment of cells, which are stimulated to 

migrate into the scaffold, as well as vascularization is enhanced and promote new bone 

formation
184

. Furthermore, this assumption is supported by the fact that no clinical results on the 

positive effect of pore lower than 40µm are present. In particular, higher porosity showed an 

increase in bone formation and bone ingrowth when a scaffold with a higher porosity is implanted. 

Pore size plays a critical role in bone formation and many studies were conducted to understand the 

better pore size range for bone regeneration in vivo. Porous hydroxyapatite scaffolds, with different 

pore size, were implanted subcutaneously in rats and the results showed that an increase between 

300–400 µm in the expression of alkaline phosphatase activity was calculated for the material with 

a pore size range, furthermore capillary infiltration was detected just above this range
204,205

. 

However, there are many other articles that do not observe any statistical significant difference 
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between samples with different ranges of pore size
199,206

. Another interesting aspect about porosity 

and pore size, is the impact on the progression towards osteogenesis. Large dimension pores 

promote osteogenesis, small pores, in contrast, promote chondrogenesis first
203,204,207

. Furthermore, 

large pores allow vascularization and oxygen ah nutrients transportation promoting direct bone 

formation
203

. Pore geometry also affects bone regeneration: long channel pore promotes infiltration 

of cells and bone ingrowth, on the other side curved pores on the surface of the scaffold, without 

interconnection, hinder osteoblast precursor cells penetration and capillaries infiltration, promoting 

a bone formation only on the surface 
203

.  

The mechanical properties of scaffolds used for bone regeneration, are affected by the degree of 

porosity, the pore size and, of course, the interconnectivity. Although increased porosity and pore 

size result in a promotion of bone ingrowth, the drawback is a reduction in mechanical properties, 

since the large volume of void compromises the structural integrity of the scaffold.  

The degradation rate of the material used to produce the scaffold, should be taken into account, 

because if the material has a fast degradation rate, the porosity should not be high, since the rapid 

erosion of the trabeculae and the bridge of the material could compromise mechanical and structural 

integrity, before substitution by newly formed bone. On the other side, if the degradation rate of the 

biomaterial is low, it is possible to reach high porosity, since the presence of channels and 

interconnected pores can accelerate degradation due to macrophages via oxidation and/or 

hydrolysis.  

There is not an exact porosity and pore size suggested to achieve an optimal bone regeneration, 

since the multitude of studies in vitro and in vivo presents different results, depending on the 

biomaterial used, from the cells and cytokines used and from the bone features in vivo.  

A balance between micro- and macro-porosity is recommended, in fact it is necessary that the 

material possesses both pore <100µm which allow protein adsorption and promote cells aggregation 

and large pore >300 µm, which allow vascularization and new bone ingrowth
208

. Furthermore, a 

balance between large and small pore allows controlling the mechanical properties and the 

degradation rate. In order to increase and customize the mechanical properties and the degradation 

behavior, ceramic or hard materials are coupled with a natural or synthetic polymer
209

. Furthermore, 

coating the bone graft ceramic with, for example, natural materials such as collagen protein, gives 

to the material such biomimetic properties and could enhance the osteointegration of the scaffold
116

. 

Ceramic materials used as bone graft materials, could be formed in different ways, such as particles, 

three-dimensional scaffolds, injectable pastes
210

. On the base of the application, it is possible to 

choose a different type of bone graft material. In large bone defects, dental technician prefers to use 

three-dimensional scaffolds to fill the void and sustain the surrounding tissues. Particles as bone 
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graft are widely used, since they could be mixed with blood and could also fill irregular or small 

shape around titanium dental implants. Injectable bone grafts are usually a mix of natural or 

synthetic polymers with ceramic micro-particles; their use is increased in the last years, since they 

are easy to use and could fill irregular void and defects, otherwise difficult to reach.  

Bone grafts are usually coupled with membranes, in order to achieve an excellent osteointegration 

which excludes gingival epithelial cells from the bone socket 
41

.  

2.4  GUIDED TISSUE REGENERATION MEMBRANES (GTR) 

 

Melcher’s hypothesis assumes that certain cell populations will have the potential to generate new 

cementum, alveolar bone and periodontal ligament, if they have the opportunity to populate the 

periodontal wound
23

. This condition is obtained when epithelial cells or fibroblast cells from 

gingiva front and connective tissue are excluded from the wound space. This goal is arised through 

development of a membrane barrier, which guides soft tissue regeneration without downgrowth in 

the defect site
31

. Characteristics for guided tissue regeneration membranes should include 

biocompatibility, cell exclusion, space maintenance, tissue integration and ease of use. Membrane 

should separate the gingiva flap from the coagulum in the wound space, furthermore it should 

withstand the masticatory stress, the flap tension and avoid the collapse of the soft tissue, 

maintaining the space for the regeneration of new alveolar bone
41

. An important property is the 

tissue integration ability, since it could ensure the stabilization of the wound and guide fibroblast 

cells to regenerate soft tissue without a downgrowth in the periodontal defect space. Finally, it is 

really important that the developed membrane for GTR is manageable and easy to use by the dental 

technician, without any additional difficult during the surgical procedures. The first material used as 

barrier membrane was cellulose acetate filter and, for the first time, the guided tissue process was 

histological verified. From that point of view, different types of barrier materials have been 

developed, resorbable and non-resorbable, natural and synthetic 

2.4.1 Non-resorbable 

The mechanical stability, the ability to retain their shape, besides the proved capacity to exclude cell 

migration from the gingiva in the wound defect, are the principle advantages of nonresorbable 

membranes
41

. Despite the encouraging results obtained with this type of GTR, the second surgical 

procedure and the possibility to interfere with the healing process are the principle drawbacks and, 

thus, further efforts in the development of resorbable membranes are necessary. Non-resorbable 

membranes include expanded polytetrafluorethylene (ePTFE) and titanium reinforced PTFE 

meshes.   



37 

 

The ePTFE membrane was the first membrane approved for clinical use
211

. ePTFE is chemically 

indentical to PTFE, but while PTFE is non-porous, the high thermal tensile stress process in ePTFE 

allows formation of a porous microstructure and fibrils, which allow connective tissue ingrowth. 

ePTFE, also called commercially Goretex®, is formed by two layers: the first is an open structure 

which promotes cell ingrowth, the second layer is an occlusive membrane serving as a space 

provider for regeneration, inhibiting the cell downgrowth and giving structural stability
212,213

. The 

first layer is 1 mm thick and has 90% of porosity, instead the second layer is around 0.15 mm thick 

and 30% porous. Goretex® non-resorbable membrane, has an exceptional inertness, 

biocompatibility, and does not elicit foreign body reaction. Many clinical trials have been done, and 

histological analysis revealed that ePTFE membrane can lead to significant periodontal regeneration 

after 3 months healing period
212,214

. Although many studies demonstrated the efficacy of ePTFE 

membranes, some studies did not find any significant difference between the use of ePTFE 

membrane and the conventional debridement therapy with open flap, furthermore the insertion of 

ePTFE GTR membrane has been seen to cause additional complication such as pain, purulence and 

additional costs for the second surgery procedure
215

.  

Another non-resorbable membrane with ePTFE reinforced with a titanium mesh between the two 

layers was made, increasing the mechanical strength and the maintenance of a better space
41,216

. The 

addition of a titanium mesh allows a better positioning under the flap by the dental practice and 

increases the stability of the membrane, avoiding collapse. Furthermore, the microporosity of the 

membrane avoids cell ingrowth, but allows fluid infiltrations. Animal studies demonstrated relevant 

cementum and bone regeneration
217,218

, although in clinical trials no difference was detected 

between ePTFE membrane and titanium mesh GTR
216,219

. Furthermore, the main disadvantage is 

the increased exposure, due to its stiffness and also to a more complex secondary surgery to remove 

it
220

.  

The future of periodonatal tissue regeneration, and of tissue engineering in general is to develop and 

use materials which could degrade during tissue formation without any further surgical procedure, 

in order to decrease patient’s pain and hospitalization costs.  Furthermore, the use of natural 

resorbable membranes allows bioactivity to be promoted during the regeneration process. For these 

reasons, in the last decades many efforts have been spent, in order to study and develop degradable 

membranes made with both natural or synthetic materials
31,41

.   

2.4.2 Resorbable 

 

Natural. Due to the need of a second surgery to retrieve non-resorbable membranes, in the last 

decades the demand for bio-absorbable membranes with comparable, and even better clinical 
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outcome, became real. Furthermore, the resorbable membrane reduces the patient discomfort, as 

well as costs and eliminates any possible surgical complication
41

. A disadvantage of resorbable 

membranes is the unpredictable resorption, due to the different degradation process which could 

take place, enzymatically or by hydrolysis. In addition, it is mandatory that the degradation products 

do not interfere with the regeneration process and do not induce any inflammatory response
31

. 

Resorbable membranes could be derived  from natural sources or made by a synthetic process. 

Natural membranes have the advantage to be biocompatible, to be no cytotoxic and to be potentially 

bioactive, but they lack of degradation rate and mechanical properties
41,221

. On the other hand, 

synthetic materials are more predictable since it is possible to tune the degradability and mechanical 

properties, but are less biocompatible and could generate foreign–body reaction.  

Type I collagen is the major component of periodontal connective tissue, and has been used in 

medicine so far, as biocompatibility, low immunogenicity, hemostatic properties and ability to 

attract and activate periodontal ligament and gingival fibroblast cells have been proven
141

. The 

bioactivity of collagen and its potential to augment tissue thickness is demonstrated by the 

interaction with various cell types during the healing process. Several commercially available 

collagen membranes have been developed, such as Geistlich BioOss®, Tecnoss Osteobiol®, 

Zimmer BioMend® and BioMend Extended®, Braun Lyoplant®, etc.. The behavior of the collagen 

GTR depends on the source of the collagen used and from the process technique
222

. Collagen is 

usually extracted from skin, tendons, or pericardium of animals, usually bovine and porcine
141

. 

Collagen extracted from animal sources need to be purified and, according to the EU guidelines, 

chemical elimination of viral and bacterial contamination must be performed, then the collagen 

antigenicity is eliminated by removing lipid and non-collagen protein remnants. A sequential 

segment analysis, biocompatibility and sterility are checked step by step
31

. The most common 

chemical modification process, after purification, is the chemical crosslinking, usually performed 

using aldehyde treatment, which increases the mechanical strength, reduces the degradation rate and 

the water uptake capacity, but increases the risk of cytotoxicity, mostly due to the possibility of 

crosslinking traces inside the collagen network
143

.  Degradation of collagen is due to collagenase 

enzymes, which cut the collagen chain and transform it in gelatin, which is then degraded via 

aminoacids gelatinases
31,141

. The resorption time of collagen GTR varies from 4 weeks to 6 months, 

depending on the source and on the crosslinking processes
223,224

. Several research groups compared 

non-resorbable ePTFE membranes with collagen membranes and the results show that collagen 

membranes stimulate proliferation of gingival fibroblast cells, promoting extracellular matrix 

synthesis in a significant high amount. Wang et al. showed higher osteoblast adhesion on collagen 

surfaces and collagen membrane to stay intact since the epithelial proliferation is critical, preventing 
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apical proliferation
225

. Animal studies conducted on BioOss Collagen® membrane showed that the 

collagen membrane led to periodontal regeneration, that the material resorbs in 8 weeks and that, 

during resorption, a slightly inflammatory zone, completely disappeared after total resorption, is 

visible around the implant
79,223

. A huge amount of studies on collagen membranes has been 

conducted, and all of them reveal excellent biocompatibility and promotion of periodontal 

regeneration, but collagen membrane show limited toughness and low space maintenance
31,226

. 

Therefore, there is still the opportunity and the need to develop a material which could swell and fill 

the irregular shape of the gingiva flap, in order to stabilize the membrane, coupled with 

antiadhesive properties which guides epithelial regeneration without generating inflammatory 

reactions and to prevent cell in-growth in the wound  defect. 

Synthetic. Synthetic materials used in GTR are usually based on organic aliphatic thermoplastic 

polymers, such as poly-lactic, poly-glycolic and co-polymers of them. The advantage of using 

synthetic materials, is that it is possible to customize some properties, such as degradation kinetic 

and mechanical properties, by varying the length of the chain and the amount of lactides or 

glycols
227

. The most important drawback associated with this materials is that, during the 

hydrolysis, by-products increase the local pH and usually cause cytotoxicity
228

. Furthermore, these 

materials typically degrade trough a bulk degradation, compromising the mechanical stability and 

interfering with periodontal regeneration. There are some commercially available synthetic 

products, the first of which to appear on the market was Guidor®, a double-layer membrane, made 

of polylactic acid and citric acid ester acetyl tributyl citrate. This membrane is the example of how 

it is possible to produce a particular morphology in a precise manner. The external layer of 

Guidor® has rectangular perforations to promote tissue integration, while the internal layer has 

smaller circular perforations and an outer space to maintain the space between the membrane and 

the root surface
41,229

. Between the two layers, an internal spacer promotes tissue ingrowth. Animal 

studies showed complete resorption of the membrane within 12 weeks, even if it was detected as a 

foreign-body. Several other products have been developed, such as Resolute®, made of poly-lactic-

co-glycolic acid co-polymer, reinforced with polyglycolide fiber
230

, Vycril Periodontal Mesh® , 

made of a co-polymer of lactide and glycolide
231

, Atrisorb®, which is produced in a flowable form 

of polylactic and is formed after exposure in 0.9% saline solution for 6 minutes, by the dental 

practice
232

. All these membranes have been tested in vitro and in vivo and show good periodontal 

regeneration, but many of them provoke foreign-body reaction, mostly due to degradation of by-

products
41

. Besides the already mentioned polyester membranes, some research groups have been 

trying to produce polyurethane membranes, which degrade via enzymatic degradation
233

. Animal 
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studies showed that these membranes cause inflammation and that recession was more pronounced 

than in polylactic membranes
41,234

.  

2.5  GROWTH FACTORS IN PERIODONTAL TISSUE ENGINEERING 

Bone grafts and membrane materials promote periodontal regeneration, usually in an 

osteoconductive manner
112

. In order to enhance healing and to promote periodontal regeneration via 

induction of osteoblast differentiation, incorporation of bioactive molecules into the scaffold and 

their local release for a period of time is a potential approach
235

. Two different procedures to 

incorporate growth factors are available, one of which is during the preparation of the material
236

, 

the second one is after the fabrication
237,238

. The bioactive molecules which are demonstrated to 

exert strong effects in promoting periodontal wound repair in preclinical and clinical studies, 

include Platelet-rich growth factor (PDGF), Bone morphogenetic proteins (BMPs) and enamel 

matrix derivative (EMD)
235,239–241

. The high potential of growth factors derives from their  ability to 

stimulate the interaction between mesenchymal stem cells and epithelial stem cells during tooth 

formation, with all the consequent processes, such as collagen formation, mineralized matrix 

deposition and fibroblast proliferation, etc
235,242

. Bone grafts or membranes alone, have the potential 

to conduct new periodontal tissue formation, thus by adding these kinds of active molecules it is 

possible to produce osteoinductive materials. The morphology of the scaffold, in which signaling 

molecules are incorporated, is fundamental in order to achieve a prolonged and effective release. In 

particular, the incorporated molecules are released in a diffusion mechanism which depends on 

porosity and interconnectivity of the material. Furthermore, the degradation properties of the graft 

or of the membrane could affect the release of growth factors, that would be fast because of  the 

degradation rate, and also the way in which the material degrades, for example by surface or bulk 

degradation, resulting in a controlled or burst release, respectively
184,243–245

. The research and 

development process, aimed at obtaining a commercially available product containing growth 

factors, is difficult in terms of cost and regulatory steps, but of course growth factors have a great 

potential in tissue engineering, hence it is important to know which are their potential and possible 

applications. 

Platelet-rich growth factor (PDGF): is one of the principal growth factors related to wound healing, 

since several in vitro and in vivo studies showed enhanced proliferation and migration of 

periodontal ligament cells. In nature, PDGF is formed by the conjugation of two polypeptides, 

growth factor-BB and growth factor-AA, encoded by two different genes. Several investigators 

have demonstrated that all isoforms have effect on proliferative activity in vitro 
246,247

. PDGF is a 
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chemotactic growth factor, which promotes collagen synthesis, stimulates gingival fibroblast 

hyaluronate synthesis and fibroblast proliferation. Furthermore, in culture with osteoblast-like cells, 

PDGF regulates the expression of alkaline phosphatase and osteocalcin
248

. PDGF was applied, by 

Lynch et al.
249

, in conjunction with another growth factor, the insulin-like growth factor-1, in dog 

experiments, and the results demonstrated an important effectiveness on periodontal regeneration. 

Furthermore, human clinical trials showed that the combination of these two growth factors 

stimulate significant bone regeneration in periodontal defects
250

. Several studies were performed, in 

order to compare the effect of PDGF and IGF-1, and the results indicate that PDGF alone could 

significant stimulate formation of new cementum and collagen production
251

. Molecular cloning 

and large scale purification has allowed production of recombinant human platelet-derived growth 

factor and a combination of this molecule with β-TCP is commercially available (GEM 21®, 

Osteohealth)
252

.  

Bone morphogenetic proteins (BMPs): BMPs are members of the superfamily of transforming 

growth factor-beta (TGF-β)
235,252

. BMPs are abundant proteins in bone and are produced by several 

cell types, including osteoblasts. BMPs are retained in bone allografts, in particular BMP-2, -4 and -

7; due to this characteristics, allograft materials are defined osteoinductive and could influence cell 

behavior in vivo. Several animal and human studies demonstrated the potential of BMPs growth 

factors in periodontal regeneration, showing a significant increase in alveolar bone healing
253–255

. 

BMPs influence cells, in particular could encourage division and chemotaxis of undifferentiated 

mesenchymal cells and osteoblast precursors, inducing expression of genes involved in bone 

formation, like osteocalcin and alkaline phosphatase
256

.  

Enamel matrix derivative (EMD): in order to achieve periodontal regeneration, mimicking the 

process that takes place during tooth formation is a fascinating approach. During the development 

of a nascent root and periodontal tissue, Hertwig’s cells secrete enamel matrix proteins, which are 

deposited onto root surface, providing an initial and essential step in which the surrounding cells are 

influenced to migrate and form cementum, periodontal ligament and alveolar bone
257,258

. The 

presence of this layer between the peripheral dentin and the developing cementum, have led to the 

development of Enamel matrix derivatives in the form of purified acid extracts of proteins from pig 

enamel matrix (Emdogain®, Strauman AG, Basel, Switzerland)
259,260

. The principal component of 

EMD is Amelogenin, which is composed by highly conserved extracellular matrix proteins codified 

by one gene
241

. Amelogenin, under physiological condition, is assembled into nanospheres which 

form an extracellular matrix, that during degradation by enzyme metalloproteinases, release in a 

controlled process bioactive peptides for weeks
42,242

. This process promotes wound healing, bone 
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formation and root resorption. EMD could mimic odontogenesis by the recruitment and stimulation 

of cementoblasts to form root-cementum in the root-surface
261

. Then, the new root-cementum will 

lead to regeneration of periodontal fibers and alveolar bone. The first application of Emdogian® 

was in 1997 and nowadays it is the only product on the market that has the potential for triggering 

clinically significant regenerative responses in periodontal ligament cells
259

.  

2.6  GENE THERAPY APPROACH IN PERIODONTAL TISSUE  

ENGINEERING 
 

The major drawback associated with the use of local delivery of growth factors is their short 

biological half-life in vivo
240,262

. Furthermore, a high dosage of bioactive molecules is typically 

required to promote tissue regeneration; hence, an alternative approach to growth factor delivery is 

the use of gene therapy for periodontal regeneration
262

. Gene therapy consists in the insertion of 

genes into an individual’s cells in order to promote the expression of a specific growth factor, and 

consequently a biological effect
37,239,263

. Two main strategies have been developed to induce cells to 

produce specific growth factors: 1) in vivo technique, in which the gene vector could be introduced 

directly into the target site
262,264

; 2) ex vivo technique, in which selected cells can be harvested, 

expanded and genetically transduced and then re-implanted
265

.  

 

 

Figure 5. Gene delivery approaches in periodontal tissue engineering
240

. 

 

Gene therapy has been applied to induce the expression of the most used growth factors, such as 

PDGF
266–268

 and BMPs
269

. In the in vivo technique the gene of interest is directly delivered in the 

body, altering the normal expression of the target cells. In the ex vivo technique, instead, the target 

cells are taken with a biopsy and then, by usually using an adenovirus vector, the genetic material is 
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incorporated into cells and transfected cells are subsequently re-implanted in the periodontal 

defect
240,270

. Despite the great potential of these technique, there are several issues, in particular 

related to the safety of the adenovirus vector, that mean gene therapy could be a potent approach for 

the future, but many studies have still to be done to prove the safety
263,271

.  
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CHAPTER III 

PERIODONTAL DISEASES 
 

Periodontium is defined as a complex system of tissues supporting and casing the tooth
1
. 

Periodontium tissue includes root cementum, periodontal ligament, dentogingival junction and  

alveolar bone
1,2

. Each of the periodontal tissues has its specialized structure, which defines its 

function, that is only achieved through structural integrity and interaction between components. The 

National Institute of Dental and Craniofacial Research reports that 86% of adults over 70 years has 

a moderate periodontitis and, over 22% has lost its own teeth which involve several health, 

psychological and economical issues
3
. Any disorder that affects the surrounding tissue which 

supports the teeth, related to inflammation, trauma, genetic, metabolic or neoplastic development is 

considered as a periodontal disease
4
. The most common procedure to replace tooth loss is by using 

titanium implants, but practice is successful if there is sufficient bone which could sustain the 

implant and the future crown
5–7

. Periodontal diseases are usually referred to as common 

inflammatory disorders of gingivitis, which could evolve in periodontitis, caused by pathogenic 

microflora in the biofilm or dental plaque which forms around the teeth
8–10

. Many studies have been 

conducted to understand the cause of these diseases, prevention procedures and many solutions 

have been developed to control inflammation and infection, to achieve a complete periodontal 

regeneration. The most effective prevention and treatment involves controlling of the bacterial 

biofilm and other risk factors, in order to arrest the progressive disease and to restore the lost 

surrounding tissue
11,12

.   

3.1  GINGIVITIS AND PERIODONTITIS  
 

By its nature, the masticatory apparatus provides contiguity of a rich of bacteria environment (oral 

cavity) with soft and skeletal tissue. The mildest form of periodontal disease, known as gingivitis, is 

caused by the bacterial biofilm that accumulates on teeth adjacent to the gingiva
13–16

. Gingivitis 

affects around 90% of adults worldwide, in particular periodontal diseases, in developing country, 

are very common, although no correlation is present between gingivitis and the indigenous 

populations
17,18

, in fact this is just the result of a low oral hygiene, being, by the way, a readily 

reversible disease through a simple, effective oral care
19–21

. Gingivitis does not affect the tissue that 

supports tooth, however if the gingivitis is not controlled, inflammation and bacterial contamination 
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could deeply extend into tissues and cause loss of supporting connective tissue and alveolar bone, 

causing the so called periodontitis. Once a periodontal pocket is formed and has been filled with 

bacteria, the situation becomes largely irreversible with a high probability of tooth loss
22

. 

Periodontitis is the major cause of tooth loss, as the result of bone resorption around the tooth. The 

bacterial contact continuously stimulates immune system cells, which react activating defensive 

mechanism that result in an inflammatory response
23

. Inflammation is the result of a cascade of 

correlated events: the immune system responses after an external stimuli, like bacterial infection, is 

triggered, through production of cytokines and chemokines (such as interleukin 1β); these cytokines 

promote cells to differentiate into osteoclasts, causing loss of physiological homeostasis between 

osteoblasts and osteoclasts, that means an imbalance between resorption and production of new 

mineralized bone, which causes tooth loss, pain, discomfort, impaired mastication and, furthermore, 

many expensive procedures and psychological consequences
4,23

. 

Gingivitis and successive periodontitis are the result of accumulation of pathogenic microorganisms 

in the biofilm, which could be enhanced by genetic and environmental factor, for example tobacco 

use. Furthermore, many studies demonstrated the correlation between periodontitis and other 

pathologies, for example periodontal disease have been associated with cardiovascular disease, 

stroke, pulmonary disease, and diabetes
24,25

. 

3.1.1 Causes of gingivitis and periodontitis 
 

3.1.1.1 Oral microorganisms 
 

Enormous effort has been devoted to the study of periodontal disease associated to the microflora. 

Cultural studies revealed that more than 500 distinct microbial species can be found in dental 

plaque, furthermore even more of this well-studied and familiar microbial environment remains 

uncharacterized
26

. The oral cavity, like all the surfaces of body in contact with the external 

environment, has a substantial microflora living in symbiosis with a healthy host. Hundreds of 

different species of aerobic and anaerobic bacteria, grow on tooth surface as complex, colonies and 

form the so called biofilm
27,28

. First, bacteria adhere on the tooth surface and, following 

accumulation, they produce an extracellular polymeric substance forming a complex multilayer 

structure called biofilm, which protects cells from the action of immune system and external agents. 

Bacterial counts in the supragingival zone, on one tooth surface can exceed 1 x 10
9
 bacteria, below 

the gum, the number of bacteria for a healthy shallow crevice could reach 1 x 10
3
, and increase until 

1 x 10
8 

in the periodontal pocket
29

. During maturation of dental plaque and until the state that is 

associated with periodontal disease, the number of gram-negative and gram-positive bacteria 

increases. A constant and frequent cleaning of the teeth, (every 48 h) can maintain the biofilm mass 
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at an amount compatible with gingival health
30,31

. Research efforts have identified specific clusters 

of bacteria species that are commonly present in the subgingival sites and are associated with 

periodontal disease. These pathogens include Porphyromonas gingivalis, Tannerella forsythensis,  

Trepnema denticola, and Actinobacillus actinomycetemcomitans
32–34

. These and other bacteria and 

fungi as Candida albicans, are associated with periodontal disease, in particular in young adults
35

. 

Infections of periodontal tissues caused by these and other organisms are accompanied by the 

release of bacterial leucotoxin, proteolytic enzymes such as collagenases, fibrinolysin and others, 

which degrade the connective tissue and modify the bone homeostasis. In addition to biofilm 

formation, and consequently penetration of bacteria in periodontal pocket from gingival sites, other 

co-factors could enhance and promote periodontal disease, such as genetics, smoke, stress, 

concomitant pathologies
36

.  

3.1.1.2 Tobacco and alcohol use 
 

Tobacco use is a major risk factor for periodontal disease
37

. The rate of periodontal disease 

progression is increased in smokers and decreased to the same rate as non-smokers after tobacco 

cessation
38

. Tobacco enhances biofilm formation and could promote gingivitis, loss of tooth support 

and precancerous gingival leukoplakia. Furthermore, treatments after diagnosis of periodontitis are 

less effective in smokers and regeneration of periodontal tissue after surgical procedures is 

compromised by tobacco, which could promote new biofilm formation in the periodontal socket and 

cause the so called peri-implantitis, the resorption of bone around the titanium implant
38–41

. In the 

US, about half the risk of periodontitis can be attributable to smoking
42

.  

Alcohol consumption has also a significant correlation with loss of periodontal support
43

. Many 

studies on the negative effects of alcohol consumption on degeneration of periodontal disease
43

 

have been conducted. Researchers demonstrated that consumption of alcohol can occasionally cause 

inflammation of the gingiva and, if it falls in the abuse, the alcohol’s drying effect on mouth can 

contribute to the formation of plaque, a sticky bacterial layer that can trigger an inflammatory 

response in gums. Alcohol slows production of saliva, which helps to neutralize the acids produced 

by plaque, so an accumulation of these acids can lead to the development of the early stages of 

periodontal disease
44

. The effects of alcohol or tobacco on periodontal disease have been explained 

by poor oral hygiene of chronic alcoholic consumers or smokers. However, biologic plausibility of 

this relationship exists, in fact both alcohol and tobacco have adverse effect on the neutrophil’s 

function, on the clotting mechanisms, causing complement deficiency, increased resorption and 

decreased formation of bone, reducing the vitamin B-complex production and having direct toxic 

effects on periodontal tissues
45–47

. 
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3.1.1.3 Presence of other pathologies 
 

Several studies conducted on patients with osteoporosis, showed a possible correlation between the 

presence of osteopenia and the increased progression of periodontal attachment loss
48,49

.  

People affected by type I and type 2 diabetes, have more widespread or severe periodontal disease 

than individual without diabetes
50

. However, people with a controlled diabetes do not show any 

increased risk of periodontal disease than people without diabetes
51

. The correlation between 

diabetes and periodontitis is not unexpected, since diabetes is associated with impaired wound 

healing, increased monocyte response to dental plaque antigens and impaired neutrophil 

chemotactic responses and all of these events can lead to increased local tissue destruction
52

.  

Finally, people with HIV disease have a relation with oral necrotizing at gingiva and periodontal 

level
53

. Before the advent of highly active antiretroviral therapies (HAART), the oral disorder in 

patient with HIV virus were more common
54

. The disorder was characterized by pain, bleeding 

gums, halitosis, low-grade fever and malaise. The severity of oral symptoms of HIV has generally 

reduced in population with access to HAART
54

.  

3.1.1.4 Nutrition and stress 
 

Nutrition and stress are two causes which have poor demonstration in correlation with periodontal 

disease
55

. It is demonstrated that a Vitamin C deficiency causes a decrease in the formation and 

maintenance of collagen, an increase in periodontal inflammation, hemorrhages and tooth loss
564

. 

However, in developed countries studies trying to demonstrate correlation between hypovitaminosis 

and periodontal disease failed, and also in the developing country the relation is poorly  quantified. 

For sure, malnutrition is an important factor which may promote gingivitis and future periodontitis, 

in particular in populations which could acquire unusual species of oral bacteria from living near 

cattle
57

. Physio-social disease, as many other diseases, may have an effect in the progression of 

periodontal disease, but their precise role in the pathogenesis is unknown
58,59

.  

3.1.1.5 Genetics 
 

During the last decades, the scientific literature has seen an exponential increase in the number of 

reports claiming links for genetic polymorphisms with a variety of medical diseases, particularly 

chronic immune and inflammatory conditions
60

. Periodontal diseases are multifactorial in nature, 

while microbial and other environmental factors are believed to initiate and modulate periodontal 

disease progression, there now exist strong supporting data that genetic and environmental risk 

factors play a role in the predisposition to and progression of periodontal diseases
61,62

. Several 

features like cytokines, cell-surface receptors, chemokines, enzymes and others that are related to 

antigen recognition, the immune system, host response, among others, are determined by genetic 
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components, polymorphisms of which may increase the susceptibility of an individual to 

periodontal disease
63

. The application of genetic information, identifying genes and their 

polymorphisms, can result in a novel diagnostic method for risk assessment, early detection, and 

selection of treatment approaches. The relation between microbial cause and periodontal disease 

was demonstrated and well established
22

. However, if periodontitis was simply caused by a 

combination of specific periodontal pathogens, the disease should have developed in the majority of 

subjects infected by these organisms, which happens just in the subject with gingivitis and minor 

periodontitis. In subjects in whom the disease quickly progressed from chronic gingivitis to 

destructive periodontitis, the cause could not be explained by the microbiology alone. The scientific 

literature, during the last decades, has been seeing an exponential increase in the number of reports 

claiming links for genetic polymorphisms with a variety of medical diseases, particularly chronic 

immune and inflammatory conditions
64,65

. Most of genetic research in periodontitis has now 

focused on gene polymorphisms that play a role in immunoregulation or metabolism, such as 

cytokines, cell-surface receptors, chemokines, enzymes and others that are related to antigen 

recognition. Future strategies for utilization of genetic polymorphisms in periodontics should 

consider two factors. The first, is to perform large-scale genetic analysis in different populations 

using many target genes; the second factor is the need to develop a statistical analysis which 

combines genetic aspects with environmental factors
60,66,67

.  

3.2  PATHOGENESIS AND DIAGNOSIS 

 

Pathogenesis is the mode of origin or development of diseases. Gingivitis and chronic periodontitis 

are due to a combination of multiple factors; in particular, the bacteria biofilm is the principal 

responsible of gingivitis and, if not treated, it could transform into periodontitis. Although bacteria 

are necessary for periodontal disease to take place, a susceptible host is however needed. Chronic 

marginal gingivitis is clinically characterized by gingival redness, edema, bleeding, changes in 

contour, loss of tissue adaption to the teeth and increased flow of gingival crevicular fluid
23

. The 

inflammatory and immune system response, which is stimulated in the gingival and periodontal 

tissues in response to the chronic presence of plaque bacteria, results in a destruction of the 

periodontal tissues leading to clinical signs of periodontitis. During an infection, the host response 

is essentially protective, but both hypo-responsiveness and hyper-responsiveness of certain 

pathways could result in enhanced tissue destruction
68

. Both the host and bacteria in the periodontal 

biofilm release proteolytic enzymes that damage tissue. The initial stage of gingivitis involves an 

initial lesion which appears as an acute inflammatory response with characteristic neutrophilic 

infiltration
69

. This first stage is due to chemotactic attraction of neutrophils by bacterial constituents 
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and direct vasodilatory effects of bacterial products
23,70

. Progression of lesion is dominated by the 

expression of cytokines which are responsible for recruitment, differentiation and growth of the 

characteristic cell types with progressive chronicity of the lesion
23

. At this time point, an accurate 

removal of plaque results in a restoration of healthy tissue without residual tissue destruction
71

. If 

not treated, chronic lesion could necrotize as acute ulcerative gingivitis, which is an acute infection 

of the gingiva characterized by interdental soft tissue necrosis, ulceration, pain and bleeding
72

. It is 

histologically characterized by a bacterial infiltration in the connective tissue. A common feature of 

nearly all cases is a very poor oral hygiene and nearly all cases can be managed with local 

debridement, improved plaque control, and judicious use of antibiotics
22,23

.  

Periodontitis is clinically different from gingivitis, since it is characterized by loss of the connective 

tissue attachment to the teeth in presence of gingival inflammation
8,73

. Many studies demonstrated 

the similarity in the histopathology between gingivitis and periodontitis, and seems that periodontal 

inflammation is a consequence of gingiva inflammation
74

, but the mechanisms of this progression 

are not clear, and the factors that lead to the initiation of periodontitis lesions are unknown
75

. The 

infiltration of bacteria in the periodontal pocket is the major cause of progression of gingivitis in 

periodontitis, and results in a loss of periodontal ligament and disruption of its attachment to the 

cementum, as well as to the alveolar bone resorption
23

. Bone resorption occurs when inflammatory 

mediators reach a critical concentration, which depends on the expression of pro-inflammatory 

cytokines, such as interleukin 1β  (IL-1β) 
76

. On the opposite site, pro-inflammatory cytokines 

expression levels are controlled by the expression of anti-inflammatory cytokines, like interleukin 

10 (IL-10)
77

. In normal physiological conditions, there is a balance between bone formation and 

bone resorption. As it happens in certain inflammatory conditions, this balance can be altered and, 

in the case of bone tissue, bone formation could be enhanced, or diminished. This equilibrium is 

regulated by the relative expression of proteins, such as receptor activator of nuclear factor kappa-B 

(RANKL) and the soluble decoy receptor osteoprotegerin (OPG). During an inflammation response, 

RANKL/OPG ratio is altered by the action of pro-inflammatory cytokines, such as IL-1β, that 

induces osteoclastogenesis increasing the expression of RANKL, while counteraction by anti-

inflammatory mediators, such as IL-10, decreases RANKL or increases OPG, in order to inhibit 

osteoclastogenesis. During periodontitis, this equilibrium is loss and osteoclastogenesis is 

promoted, resulting in alveolar bone resorption; without an adequate treatment, active periodontitis 

leads to tooth loss
71

.  

Diagnosis of gingivitis and further periodontitis is important to find a possible treatment strategy 

and to avoid tooth loss. Chronic gingivitis usually results in bleeding from the gum during tooth 

brushing, or in the most critical case could be present an underlying blood dyscrasias or bleeding 
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disorders. Gingivitis could be avoided by an accurate oral hygiene, and systematic controls by 

specialists.  Otherwise, chronic periodontitis is usually asymptomatic, until the disease is so severe 

that teeth shift, loosen, or are lost. Furthermore, patients with advanced periodontitis may also have 

recurrent periodontal abscesses and halitosis. The clinical diagnosis of periodontal disease is based 

on visual and radiographic assessment of the periodontal tissues and on measurement of the space 

between gum and tooth, which is usually around 1 to 3 mm
78

. During a clinical examination, pocket 

depth and tissue support are measured at four to six locations around every tooth and the amount of 

supragingival periodontal biofilm, dental calculus, gingival bleeding and exudate are recorded
79,80

. 

These methods are used to diagnose an existing disease, to determine the prognosis and to monitor 

the disease progression. Emerging diagnostic methods include the use of biomarker assays, intraoral 

computer tomography (CT) and saliva-based diagnostic methods. The first emerging diagnostic 

method is based on the fact that the inflammatory exudate adjacent to the teeth contains several 

biomarkers of periodontal inflammation that might be useful in the prediction of future disease 

risk
81

. CT could be used in future to obtain a three-dimensional reconstruction of alveolar bone and 

to calculate important parameter such us height, porosity, density and the possibility to compare 

data from different site and from different time points
82

. Finally, saliva in the future will replace 

blood for many diagnostic assays, and is already used to monitor the concentration of drug and viral 

load, for example
83

. For periodontal disease, saliva-based diagnostic methods are promising because 

periodontal pathogens are readily detectable in it
84

. 

3.3 PREVENTION AND TREATMENT OF GINGIVITIS AND 

PERIODONTITIS 
 

Controlling risk factors that cause gingivitis and periodontitis is the common approach to prevent 

degeneration of periodontal disease. The widely accepted causes related to the gingivitis and 

periodontitis is the formation of bacteria plaque on teeth, in the absence of proper oral 

hygiene
15,16,31

. Furthermore, several ancillary factors such as smoking, diabetes, poor education, 

infrequent dental attendance and stress could enhance the progression of periodontal disease
4,8

. 

Tooth brushing and the use of dental floss and other devices to remove bacterial plaque from the 

teeth are the most common ways of disrupting or removing the periodontal biofilm from teeth, 

however these procedures are effective if used every days
31

. In fact, after oral hygiene procedures 

are ceased, the biofilm begins to form on the teeth within 24 hours and could cause gingivitis in 10 

days
85

. However, through tooth cleaning, the gingiva could return in healthy conditions in about 1 

week, that means that, by accurate tooth cleaning, gingivitis could be controlled and periodontitis 

could be avoided for many years
31,85

. In the last years, many mouthwashes and dentifrices with 
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antimicrobial effect have become commercially available, and could be helpful in the disruption of 

biofilm. In addition, mechanical cleaning methods, performed by practitioners, can reduce 

gingivitis
86,87

. The role of these prevention methods, have not been established in the prevention of 

periodontitis, but there are evidences that antimicrobial compounds, and a proper cleaning of teeth, 

can reduce recurrence of periodontal disease after non-surgical periodontal treatment
86,88

. The major 

ancillary risk associated with the progression of periodontal disease, is the use of tobacco
39

. The 

rate of periodontal disease progression increases in smokers than in non-smokers, furthermore 

treatments of periodontitis are less efficacy in smokers people
89–92

.  These approaches need an 

adequate health education and promotion program, in particular in the developing country, where 

poor general health, restricted access to dental care and inadequate oral hygiene usually translate 

into a high occurrence of gingivitis and periodontitis. Gingivitis could be prevented and treated, 

usually with dental care and, in some case with the use of antimicrobial compounds, on the other 

hand, periodontitis treatments would involve both non-surgical and surgical approach in the most 

chronic case
93–95

. Dental plaque and calculus can be removed from tooth and root surface manually 

or with specific instruments, in particular it is important to mechanically act and with attention to 

the periodontal pocket. Once a periodontal pocket becomes filled with bacteria, the situation 

becomes largely irreversible and, in this case, a surgical procedure might be necessary
8,10

. For 

patients with advanced disease, a variety of types of periodontal surgery to reduce the depth of 

periodontal pocket is used, gaining access for debridement of residual dental calculus and plaque, 

and to stimulate regeneration of lost periodontal tissue support by using bone grafting materials, 

guided tissue regeneration membranes and biological substances
96,97

. Coupled with surgical or non-

surgical treatment, a supplemental use of systemic antibiotics is usually provided
98

 or local 

antiseptic drugs
99

, which provide additional benefit compared with debridement alone
100,101

.  

In addition to mechanical therapy, a novel approach using high and low level energy laser lights has 

attracted considerable attention in periodontics
102,103

. Recent evidences have demonstrated that the 

application of laser energy could be useful to kill bacteria and to control inflammation, furthermore 

it could stimulate tissue regeneration in periodontal and peri-implant disease
104,105

. High-level laser 

therapy is nowadays used to debride diseased tissues and to render aseptic and nontoxic the treated 

sites
106

. When a high-level laser light is applied, a low level of energy penetrates or scatters into the 

surrounding tissues and this low level energy is used to stimulate tissues and cells without 

substantially changing the tissue, and recent studies showed the effect in the increase of periodontal 

wound healing
107

. If high- and low- level laser therapy are properly used, the combined effects 

would result in improved pocket healing, in combination with the regeneration of soft and bone 

tissues
106

. 
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3.4  PERI-IMPLANTITIS AND PERI-PROSTHETIC INFECTION 

 

In order to replace the function of a tooth loss, the most common procedure is the use of a screw 

dental implant
5
. Implants could be divided in three categories: endosteal (implant within the bone), 

subperiosteal (framework placed on bone) or transosteal (implants placed through the bone from the 

superior to the inferior aspect)
108

. The most used dental implant is endosteal and could be placed 

inside the bone with the external cap covered by soft tissue, before to place the crown, or the 

coronal aspect could be placed at the margin of gingiva and not covered with soft tissue. The most 

commonly used metal for dental implant is Titanium and Titanium-Aluminum-Vanadium alloy 

(Ti6Al4V)
109

.  The osteointegration of Titanium implant is related to the design of the screw, the 

surface roughness, the presence of bioactive molecules on the surface, and the status of the 

surrounding tissue
110,111

. Nowadays, surface treatment of dental implant is a well-known technique 

which allows obtaining a micro-roughness surface that directly interacts with osteoblast cells and 

promote a strong fixation between bone and implant
112,113

. New concepts about the surface of the 

implant are the use of biological molecules, such as collagen and hyaluronic acid on the surface not 

only to conduct new bone formation, but also to stimulate it
114–116

. 

As in natural teeth, also for implants many external factors could influence the success of the 

surgical procedures. The main problem is the bacterial contamination of the implant surface, which 

results in an early inflammation of the soft tissue and could progress in a resorption of bone and 

connective tissues around the implant and a consequent failure of it
117,118

. Peri-implantitis is a site-

specific infectious disease that causes an inflammatory process in soft tissues and bone loss around 

an osteointegrated implant in function.  

Although high success rates for endosteal implants have been reported, failures occur, and same 

implants are lost or removed. Around 1% to 5% of implants at 15 years of follow up fail, and in the 

10% of failure the cause could be related to the peri-implantitis
119–121

. One of the major causes of 

peri-implantitits is the bacterial colonization of implant surfaces, but ancillary risk factors are 

involved, such as previous periodontitis, poor oral hygiene, tobacco and alcohol consumption, pre-

and post-operative therapies and genetic susceptibility.  The microflora present in mouth has a 

fundamental impact on the biofilm formation on the surface of the implant, furthermore periodontal 

compromised patients have a higher risk of peri-implantitits than unaffected patients, a transmission 

of periodontal pathogens from periodontal sites to implant is possible
122

. Several researchers studied 

the possible associations between a previous periodontitis and peri-implantitis, and found that 

subjects with a history of periodontitis have a higher risk of re-infection of the implant site
123–125

. 

The peri-implant disease refers to the pathological inflammatory situation that affects the tissue 
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surrounding the implant, and could be classified in peri-implantitis mucositis and peri-

implantitis
11,126

. Mucositis, as gingivitis, is defined as a reversible inflammation of the soft tissue 

surrounding the implant, and could be controlled after the surgical procedures with a proper oral 

hygiene, and by the use of antimicrobial compounds and antibiotic drugs, via systemic or local 

administration
127

. Peri-implantitis is an inflammatory reaction at the interface between implant and 

bone, due to an infiltration of bacteria, which causes a loss of bone and consequent mobility and 

failure of the implant
11

. Most of the bacteria found in the plaque during periodontitis is  also found 

in the biofilm formation on the failed implant, that means the histopathology of periodontitis is 

similar to that of peri-implantitis
128–130

. Peri-implantitis could be also caused by the biomechanical 

issue, due to an overloading at the bone implant surface, that could provoke loss of osteointegration 

and losing of the artificial support, causing infection of the surrounding tissues and consequently 

inflammatory process.
131

  

Diagnosis of peri-implantitis is based on color changes of soft tissue, radiology evidence of a 

vertical resorption of alveolar bone, bleeding, suppuration, swelling of the peri-implant tissues and 

formation of a peri-implant pocket
132

. Treatments of peri-implantitis are quite similar to those 

adopted for periodontitis. There are surgical and non-surgical approaches, which involve 

debridement of the infected site and administration of local or systemic antibiotic drugs
11

. However, 

the reasons why peri-implantitis occurs are poorly understood, even if oral microflora seems to be a 

defining factor for success or failure of a dental implant. Techniques to prevent peri-implantitis 

involve the prevention of bacteria biofilm formation on the implant surface and the removal of all 

microorganisms adhered to the sites of implantation
133,134

. When an implant is exposed to the oral 

cavity, its surface becomes immediately covered by a salivary pellicle and a protein layer, forming a 

substrate further colonized by oral microorganisms, which start forming the biofilm
27,135

. 

A biofilm is an assembling of microbial cells that is irreversible associated with a surface and 

enclosed in a matrix of primarily polysaccharide material. Biofilms are primarily composed of 

microbial cells and extracellular polymeric substances (EPS). EPS may account for 50 % to 90 % of 

total organic carbon of biofilms and could be considered the primary matrix material of biofilm
136

. 

EPS may vary in chemical and physical properties, but it is primarily composed of polysaccharides. 

Van Leeuwenhoek, first observed microorganisms on tooth surface by using a simple optical 

microscope, and can be credited with the first discovery of a microbial biofilm
27,137,138

. 

Periprosthetic infection (PPI) is a consequence of implant insertion procedures and could be due to 

a previously periodontitis, to an infection of the prosthesis during insertion, or during the healing 

process due to a poor oral hygiene
139,140

. In order to avoid contamination of the dental implant 

surface, there are three different approaches: local debridement, surface decontamination and 
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antibiotic therapy
132

, coupled with regenerative procedures using bone graft substitutes in 

combination with membranes
97

. The decontamination of dental implants prior to surgical insertion, 

could be done using different techniques, such as air-powder abrasive techniques followed by citric 

acid application, air-powder abrasive technique alone, gauze soaked in saline followed by citric acid 

or in chlorhexidine
141,142

. These approaches could reduce the nosocomial infection, but do not 

reduce the risk of infection if the microorganisms are still present in the insertion site. Local 

debridement of the infected site, coupled with a regenerative procedure using bone graft and 

membrane, is the most promising and used technique. In addition, it is possible to administrate a 

systemic or local antibiotic therapy
143–146

. Conventional systemic delivery of a high dose antibiotic 

drug causes systemic toxicity with associated renal and liver complications, resulting in the need for 

hospitalization for monitoring
147,148

. For this reason, in the last decades, many studies have been 

conducted aimed at developing bone graft which have the ability to release antibiotics in situ
99,149

. 

 

3.5  ANTIBACTERIAL MATERIALS 

 

Coupling bone grafts and titanium implant is still one of the best solutions to replace bone and 

dental tissue loss, in particular in large defects, where the present bone is not enough to ensure 

stability for the implant. It is necessary the insertion of a so called bone filler material. This kind of 

surgical approach, promotes bone formation and gives stability, guiding bone regeneration around 

the implant. Despite the high success rate, in 1-5% of procedures, the implant fails and must be 

removed
121,139

. Many studies have been done on the side of titanium and titanium alloy implants, in 

order to achieve a good implant bone interface anchorage, in particular surface treatments of 

implants are nowadays well developed and could ensure their stability
112–114,116

, if combined with a 

biomaterial that guides bone regeneration and controls the infection, to avoid the devastating 

consequences of periprosthetic infection (PPI) that are hospitalization, high dosage antibiotic 

therapies, implant removal, limitation in oral function and more surgical procedures, all culminating 

in financial and psychological burden for both patients and healthcare team. 

Current strategies to PPI prevention involve either increasing the rate of new bone formation or the 

release of antibiotics, in most of the cases with a conventional systemic delivery of a high dose that 

is not effective in the control of PPI,  due to a specific adhesion of bacteria on the biomaterials, and 

to the very low penetration of the antibiotic into the osseous defect
27,101,149

. Scaffolding properties 

alone is not enough, large bone defects, zones with acute infections, where bacterial growth is a 

high possibility and re-infection of native bone are often the result of necrotic tissue removal. 

Furthermore, if we take in consideration dental defects, bacterial infection risk increases, mostly 
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due to the natural function of the mouth and teeth, at the interface with a lot of bacteria from 

different sources.   

Obviously, it is necessary to find strategies to prevent PPI, hence the most suitable solution is to 

release an antibiotic drug in situ, using a complex release system to reduce infection and, at the 

same time, to promote bone formation avoiding fibroblast infiltration from the surrounding soft 

tissues.  

Antibiotics used in drug release complexes should be effective against bacteria, as well as 

biocompatible, and not to damage the surrounding native tissues.  

Staphylococcus epidermidis was inserted in the list of National Nosocomial Surveillance System 

Report as one of the most often isolated bacterial pathogens in hospitals, and as the most important 

pathogen involved in nosocomial and periprosthetic infections 
135,150,151

. S. epidermidis colonizes 

the skin and the mucous membranes of the human body and is the most abundant bacterium present 

at the interface between body and external environment
150

. Apart chronic diseases due to previous 

periodontal pathologies, another important factor which could affect the fate of a dental implant, is 

the possibility of a contamination of the implant before insertion. Concerning this possibility the 

most important group of infections caused by S. epidermidis are infections caused by foreign 

bodies, such as implanted devices. This possibility, is one of the most usually cause of PPI, which 

involves the failure of the surgical procedure. On these devices, bacteria and, in particular, S. 

epidermidis, form the so called biofilm
152

. Due to the poor penetration of antibiotics inside the 

polysaccharide matrix, the infection results difficult to be eradicated, in particular in submerged 

implants
11,153

. The infection related to bone defects are quite common not only in periodontal tissue 

engineering, but in all the surgical procedures which involve open bone fractures and trauma, in 

particular many studies related to the infection of the hip joint replacement have been 

conducted
143,145

. Conventional treatments which involve debridement of the pathological site, can 

only control but not treat the local infection, however synchronous bone regeneration and control of 

the infection are necessary in clinical treatment. Recently, vancomycin hydrochloride (VCA.HCL 

or VCA), as one of the most commonly used antibiotic drugs for the treatment of serious, life-

threatening infections, has been proved effective against Gram-positive bacteria, and specifically 

against Staphiloccocus epidermidis, which is related to the infection of bone defects, in particular in 

the nosocomial infections
154,155

. Vancomycin is a widely used antibiotic that provides bactericidal 

activity and biocompatibility
155,156

. In the clinical practice, vancomycin is normally administered 

intravenously for systemic therapy, and the dose levels should be monitored in an effort to reduce 

adverse effects, such as renal disease and toxicity. However, in order to reach effective local 

dosage, it is necessary to give a high systemic dosage; furthermore, penetration of antibiotics in the 
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biofilm matrix is difficult if the antibiotic dose provided intravenously is low. For these reasons, 

local drug delivery systems have aroused great interest in the treatment of PPI and many different 

systems have been developed or are under developing. The most critical part during the developing 

of a system for bone regeneration drug delivery is the selection of bone graft materials, since they 

should have drug-sustained release ability but also an effective ossification bioactivity. The first 

material used in general bone tissue engineering as drug delivery system, was 

poly(methylmethacrylate) (PMMA) cement, which is impregnated with antibiotic during the 

synthesis
157,158

. However, although PMMA cement combined with antibiotic is still considered the 

gold standard, it has many disadvantages, such as exothermic reaction which avoids the use of 

sensitive antibiotic drugs, the slow rate of degradation or the non–degradable characteristic make 

the kinetic release and period of antibiotic deliver difficult to be accurately controlled. In order to 

overcome the drawbacks of PMMA cement and other non-resorbable materials (i.e. hydroxyapatite 

cement, allograft), several biodegradable and absorbable bone materials have been developed as 

antibiotic carriers to prevent or control PPI
11,159–161

. One possible solution, aimed at controlling the 

release in situ and at providing a sustained release for a long time, is to covalently bond antibiotic to 

the surface of bone graft, or directly on the surface of the titanium implant
12,162–164

. The second way, 

is to combine biopolymers with bioceramic materials to create a complex system which is able to 

regenerate new bone and release, in a controlled manner, antibiotic drugs over time. Antoci et al. 

covalently bonded vancomycin on the surface of titanium alloy
162

, and tested it against 

Staphiloccocus aureus and Staphiloccocus epidermidis. Attachment of bacteria to the implant 

surface is the first step in the development of PPI and, for these reasons, preventing this adhesion 

could be a solution to prevent bacterial colonization and infection of the wound site. They tested 

bacterial adhesion and biofilm formation with different assays and demonstrated that vancomycin 

bonded on the titanium surface is able to inhibit bacterial growth within 4 weeks. This system has a 

great potential in the prevention of the devastating bone PPI, however the main drawback is that the 

use of titanium dental implant is dependent on the amount of bone which is present in the defect 

site. Periodontal disease usually involves the extraction of the tooth and the loss of consistent 

amount of bone; so, it is usually mandatory to use a previous bone grafting material to achieve bone 

regeneration, which could sustain the future implant fixation
97

. Usually, tissues affected by 

gingivitis or periodontitis have the highest probability to be re-infected after surgical procedures, so 

it is necessary to use a material able to prevent and control bacterial growth during bone 

regeneration. For example, Lian et al.
159

 developed a complex system, made of nano-hydroxyapatite 

coated with collagen and poly(lactic acid) loaded with vancomycin. The aim of this work, was to 

develop a bone graft with the ability to regenerate new bone and, in parallel, to prevent bacterial 
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proliferation through a sustained release for long time. They demonstrated that the addition of 

vancomycin to the system did not affect the in vitro and in vivo biocompatibility of the composite, 

which showed excellent cell adhesion, spreading and proliferation. Furthermore, no specific 

inflammation response was detected in subcutaneous implantation. Finally, a long-term release was 

assessed, with effective and safe antibacterial ability. However, polyester material made with lactic 

acid or glycolic acid, go through a bulk degradation, which make the system unpredictable, 

furthermore many studies showed that the degradation products of this kind of polyester increase 

the local acidity and stimulate a foreign response
165

. Hence, an approach more predictable is to be 

preferred, thus using natural materials which could mimic the extracellular environment and could 

release the drug in a sustained way for the first week, the time-point in which the highest possibility 

of re-infection exists.   

As it is explained in the following paragraphs, the objective of this research work was to design, 

develop and characterize a set of materials which could prevent PPI, promoting new bone formation 

and achieving an excellent periodontal regeneration.   

 

3.6  OBJECTIVE OF THE PhD THESIS 
 

Periodontium is a complex system of different tissues, such as connective tissue, cartilage and bone, 

which work together to sustain the tooth
2
. Gingivitis and periodontitis are devastating diseases that 

could affect the structure and function of the periodontal tissue
4
. When the gingivitis are not treated 

and controlled with a correct oral hygiene, they could evolve in periodontitis, which could seriously 

damage the tissue surrounding the tooth and lead tooth loss
8,22

. The main objective of periodontal 

tissue engineering is to regenerate the tooth’s supporting tissues. Periodontal tissue regeneration 

involves formation of new connective tissue (cementum and periodontal ligament) and new alveolar 

bone. The restoration of tooth by using a titanium dental implant is nowadays a quite common 

procedure
5
. However, the positive fate of a surgical procedure that involves an insertion of titanium 

screw depends on the quality and quantity of alveolar bone which is present in the extraction site
6
. 

Conventional procedures involve the debridement of the infected site and the use of a bone graft 

material and GTR membranes aimed at promoting new alveolar bone formation and soft tissue 

restoration
97

. Autogenous grafts are considered the current gold standard bone replacement graft 

materials
166

. However, the main complication is that they require a second surgery and it is 

important to consider the possible donor site complications such as infection and pain. On the other 

side, allografts from a donor of the same species could be a source of disease transmission and 

could stimulate a foreign body reaction
167

. In the last decades, the use of synthetic materials has 
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aroused great interest, in particular synthetic ceramic materials such as tricalcium phosphate and 

hydroxyapatite have been used for their good reproducibility, biocompatibility, and non-

immunogenicity, but especially because of their similarity to the components of the native bone 

mineral phase
168

. However, the commercially available products work well as bone graft materials 

in order to promote bone regeneration but they have not effect against possible re-infections. 

Periodontal defects are usually due to periodontitis and the probability of a new re-infection, around 

the titanium implant or before placing it, is high. Hence, it is important to not only promote new 

bone regeneration, but also to control the bacterial contamination and the possible peri-implantitis 

or periprosthetic infection (PPI). Whereas peri-implantitis are usually due to an infection which 

follows a previous periodontitis, PPI could may be also due to a nosocomial infection or to the 

natural function of the oral cavity which is full of bacteria. Titanium implant surface is a perfect 

field on which the bacteria could grow fast and form a biofilm which is hard to eliminate and leads 

to the implant failure
117

. Conventional therapy to control infection of the wound site involves the 

use of an antibiotic treatment via systemic delivery during the regeneration time
100

. Classical 

antibiotic therapy is not effective in the control of the infection, mainly due to a specific adhesion of 

bacteria on the biomaterials and to the very low penetration of the antibiotic into the osseous defect. 

Furthermore, in order to achieve an effective dosage in the defect site, a prolonged and high 

delivery dosage via systemic administration, which could generate renal disease, is necessary.  

The main objective of this doctoral thesis is to develop a set of novel biomaterials, designed to 

improve periodontal bone regeneration in patients and to control or prevent the bacterial infection in 

the wound site, via a sustained in situ drug release. The PhD thesis was conducted in the R&D 

department of Nobil Bio Ricerche srl (NBR), a biomedical company founded in 1994 and located in 

Portacomaro, in the Italian region of Piemonte. NBR is involved in the bone-contacting medical 

devices area and its core business is the surface treatment and packaging of titanium dental 

implants. Costumers are small to medium-size companies that produce dental implants and operate 

in the market of dental devices. NBR treated, last year, about 400.000 dental implants, serving more 

than 30 different producers from Italy and other West European countries. Beside acting as a 

provider to dental implant producers, the company developed and market a bone filler for oral 

surgery and it is developing several other biomaterials, in particular focusing on biomimetic 

materials in order to achieve an excellent bone regeneration and a prevention/control of infections. 

Materials developed are based on a combination of synthetic and natural materials. 

Materials developed during the Doctoral research period are based on β-tricalcium  phosphate and 

hydroxyapatite, used as osteoconductive ceramic materials to produce porous scaffolds or particles, 

since they are widely used as material in bone regeneration and many works have assessed they 
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efficacy in bone regeneration during in vivo studies
169–172

. These hard materials were coupled with 

natural polysaccharides, pectin and chitosan. Pectin and chitosan are nontoxic natural 

polysaccharides that have aroused great interest in the last years in tissue engineering, for their 

ability to crosslink by means of intermolecular interactions, and to form stable and biocompatible 

complexes which may simulate the extracellular matrix and interact with cells from the surrounding 

tissues
173,174

. Pectin is already widely used in food industry but, in the last decades, it has found 

such application in bone tissue engineering, in particular as a drug carrier. Chitosan is a widely used 

material and, owing to its biocompatibility, its intrinsic antibacterial nature, its ability to not induce 

a foreign body reaction and to promote cell adhesion, proliferation and differentiation, it finds many 

applications, especially in bone tissue engineering.  

Three different materials have been developed and characterized: 

 

1. Three-dimensional porous scaffold coated with a polyelectrolyte complex for periprosthetic 

infection prevention 

2. Bioceramic-reinforced hydrogel for alveolar bone regeneration 

3. Antiadhesive guided tissue regeneration membrane  

 

The first project was aimed to develop a complex system in order to prevent periprosthetic infection 

(PPI) in large bone defects. PPI is a consequence of implant insertion procedures and strategies for 

its prevention involve either an increase in the rate of new bone formation or the release of 

antibiotics such as vancomycin. Modern surface-engineering approaches allow combining these 

strategies: in this work, a novel three-dimensional porous scaffold produced using HA and β-TCP, 

coupled with pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin 

(VCA) was developed and characterized.  

The osteointegration of dental implants and the consequent long-term success is guaranteed by the 

presence, in the extraction site, of a healthy and sufficient alveolar bone
6,7

. Placement of titanium 

implants is contraindicated until a vertical bone augmentation is obtained. This goal is achieved 

using bone graft materials, which should simulate extracellular matrix (ECM), in order to promote 

osteoblast proliferation and fill the void, maintaining the space without collapsing until the new 

bone is formed. The goal of the second project was to design, develop and characterize a novel 

chitosan-pectin hydrogel reinforced with biphasic calcium phosphate particles within 100-300 µm. 

The polysaccharide nature of hydrogels simulates the ECM of natural bone, and the ceramic 

particles promote high osteoblast proliferation. Furthermore, the mouldability of the scaffold allows 

its easy use in highly irregular defects, too.  
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Melcher’s hypothesis
175

 assesses that an excellent periodontal regeneration could be achieved if the 

epithelial and fibroblast cells were excluded from the root site, where stimulating the migration of 

pre-osteoblast cells is very important. On the basis of this hypothesis, many guided tissue 

membranes, resorbable and non-resorbable, have been developed in the last years. The gold 

standard ePTFE membrane has the great disadvantage that it makes a second surgery to be 

necessary, while on the other side the resorbable membranes currently available showed an 

unpredictable resorption time and consequent unpredictable periodontal regeneration
176,177

. In the 

third project, we developed a biomimetic GTR membrane, using a polyelectrolyte complex bulk 

material and coated with an antiadhesive hyaluronic acid. In this way, we hypothesized to control 

the regeneration of soft tissue on the membrane surface avoiding the cells down growth, and the 

stability of the PEI complex could sustain the tissue and could make the regeneration of the tissues 

predictable. Furthermore, the swelling behavior of the materials allows the membrane to act as a 

bearing and reduces the possible inflammation response of the surrounding tissues.  

The main results about these three projects are shown in the following sections. Since the research 

work was conducted in the R&D department of NBR company, several other projects have been 

developed and are under developing, in the field of biomaterials for periodontal regeneration, 

however the results will not be shown in this thesis.  
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CHAPTER IV  
 

RESEARCH AND DEVELOPMENT  

4.1  MATERIALS 

4.1.1 Treatment of periprosthetic infection using an engineered porous scaffold 

4.1.1.1 Materials 

In this work we designed, developed and characterized a macroporous ceramic scaffold, 

functionalized with a polyelectrolyte coating loaded with vancomycin. β-tricalcium phosphate (β-

TCP), chitosan (CHIT) with medium molecular weight (Mw = 400 kDa) from crab shell, pectin 

(PEC) from citrus peel, vancomycin (VCA) and all other chemicals were purchased from Sigma-

Aldrich. Hydroxyapatite (HA) was purchased from Fluidinova (Portugal) and the dispersing agent 

Dolapix CE 64 was purchased from Zschimmer&Schwarz (Germany). 

4.1.1.2 Three-dimensional porous scaffold preparation 

HA was used because of its ability to enhance the mechanical strength of the scaffold, while β-TCP 

because of its degradability; they were mixed in a percentage of 25 wt.% and 75 wt.%, respectively, 

to reach an optimum compromise between the two properties. Briefly, the preparation of the 

ceramic scaffolds involved the mixing of the HA and β-TCP powders (45 wt.%) with a binding 

agent (poly(vinyl alcohol), 8 wt.%), and ultrapure water (47 wt.%) to obtain a ceramic slurry. 

Dolapix CE 64 was added as a dispersing agent (0.5 wt.% of the solid load). Polyurethane (PU) 

sponge impregnation method was used to obtain macroporous ceramic scaffolds
1,2

. A commercial 

PU sponge cube (45 ppi) of 11x11x11 mm
3
 was soaked into the ceramic slurry for 90 s, followed by 

compression along the three spatial directions (20 kPa), until 30% of height and left at room 

temperature for 5 min before repeating the cycle. Impregnation/compression cycles were repeated 

for 3 times. The ceramic-coated PU sponge was left to dry overnight at 37 °C and then sintered in a 

furnace at 1150 °C for 12 h in air (heating rate 5 °C/min), in order to obtain a porous HA/βTCP 

scaffold of 10x10x10 mm
3
 (a volumetric retention of 24% was calculated). 
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4.1.1.3 Engineered coating preparation 

Pectin powder was dissolved in a concentration of 1% in acetate buffer (pH 5.5); then, in the same 

solution, 1% of vancomycin was dissolved. Separately, chitosan 0.5% powder was dissolved in 

acetate buffer (pH 5.5). The coating process involves two steps of immersion. In the first step, the 

sintered ceramic scaffold was immersed in the pectin-vancomycin (PEC-VCA) solution for a 

defined time (60 s). In this step, pectin polyanionic polysaccharides were crosslinked on the surface 

of the ceramic scaffold due to the Ca
2+

 ions released from the scaffold; then, the clad material was 

freeze-dried overnight and a HA/βTCP_PEC/VCA scaffold was obtained. The first step allows 

obtaining a pectin-vancomycin coating with a mass of 7.24 ± 1.77 mg, of which 5.04 ± 0.31 mg of 

vancomycin (calculated from HPLC release studies). In the second step, the HA/βTCP_PEC/VCA 

scaffold was immersed for 30 minutes in a chitosan solution: a polyelectrolyte was generated from 

polycationic chitosan and polyanionic pectin. The construct was then freeze-dried overnight and a 

final material called HA/βTCP_PEC/VCA_CHIT was obtained. The coating process was evaluated 

on 20 samples and showed to be repeatable with a final mass value of 11.07 ± 1.7 mg. 

4.1.2 Novel bioceramic-reinforced hydrogel for alveolar bone regeneration 

 

4.1.2.1 Materials 

In this work, a chitosan/pectin hydrogel reinforced with biphasic calcium phosphate particles was 

designed, developed and characterized. β-tricalcium phosphate (βTCP), chitosan with medium 

molecular weight from crab shell (Mw = 400 kDa), pectin from citrus peel and all other chemicals 

were purchased from Sigma-Aldrich. Hydroxyapatite (HA) was purchased from Fluidinova. 

4.1.2.2 Preparation of calcium phosphate particles 
 

HA and β-TCP were mixed in a percentage of 25 wt.% and 75 wt.% respectively, on the basis of a 

previous study by Morra et al.
3
. Briefly, the preparation of the ceramic slurry involved the mixing 

of the HA and β-TCP powders (31 wt.%) in ultrapure water (69%). Guar gum was previously 

dissolved in ultrapure water (3% wt.% of the water content), acting as a pore forming. The slurry 

was then desiccated in oven at 80 °C for 8 h and then shaped in circular disks using a hydraulic 

press (Mignon EA/SSN) with a pressure of 17.5 MPa for 10 s. The ceramic disks were then sintered 

in a furnace at 1100 °C for 1 h in air (heating rate 1 °C/min)
3
. Sintered disks were ground in 

particles using a grinder machine (GM200, Retsch) and the resulting ceramic powder was sieved in 

order to obtain a range of particles between 100 and 300 µm. The biphasic calcium phosphate 
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particles obtained were washed in ultrapure water and desiccated overnight at room temperature 

under laminar flow.  

4.1.2.3 Preparation of composite hydrogel 

Pectin powder (P) was dissolved in a concentration of 7% wt. in acetate buffer (pH 5.5); in the same 

solution chitosan powder (C) was added to obtain a chitosan solution of 4% wt. and a 

pectin/chitosan rate of 20/80. The solution was kept under stirring for 6 h, then it was centrifuged 

and the polyelectrolyte (PEI) precipitated was collected. PEI complex (10 % wt.) was mixed using a 

Thinky Mixer (Retsch) with HA/βTCP particles (90% wt.). The resulting slurry was poured in a 

circular shape polyester mold and freeze-dried with Lyo5P for 12 h, at 0.06 mbar and -56 °C in 

order to obtain pectin/chitosan_ceramic particles (PCC) composite hydrogel. For the 

pectin_chitosan based hydrogel (PC), we poured the PEI solution in a circular polyester mold, and 

freeze-dried with Lyo5P for 12 h, at 0.06 mbar and -56 °C. 

4.1.3 Novel pectin/chitosan guided tissue regeneration membrane coated with hyaluronic 

acid 

 

4.1.3.1 Materials 

Chitosan (C) with medium molecular weight (Mw = 400 kDa) from crab shell and pectin (P) from 

citrus peel, were purchased from Sigma-Aldrich. Hyaluronic acid (HyA) with medium molecular 

weight were purchased from HTL Biotechnology. 

4.1.3.2 Preparation of pectin/chitosan-hyaluronic acid membrane 
 

 

Pectin powder was dissolved in a concentration of 7% wt. in acetate buffer (pH 5.5); in the same 

solution, chitosan powder was added in order to obtain a chitosan solution of 4% wt. and a 

pectin/chitosan rate of 20/80. The solution was kept under stirring for 6 h, then it was centrifuged 

and the polyelectrolyte (PEI) precipitated was collected. The resulting slurry was poured in a 

rectangular polystyrene mold and freeze-dried with Lyo5P for 12 h, at 0.06 mbar and -56 °C in 

order to obtain pectin/chitosan membrane (PCm). Pectin/chitosan membranes were soaked in a 

solution of hyaluronic acid 0.1% w/w for 2 h and crosslinked using ionic interaction between 

carboxylic group of  hyaluronic acid and amine group of chitosan.  The resulting material was re-

lyophilized for 12 h, at 0.06 mbar and -56 °C, in order to obtain an antiadhesive surface (PCmHyA). 
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4.2  METHODS 

The following paragraphs describe the procedures and protocols used to characterize the materials 

developed. At the end of the section, a table summarizes which test has been performed for each 

research work. 

4.2.1 Chemical characterization 

ATR-IR 

Attenuated total reflectance infrared spectroscopy analysis were performed using a Nicolet iS 10 

ATR-IR spectrometer, produced by Thermo Scientific and equipped with a diamond crystal. 

Samples to be analyzed were placed on the crystal and kept in place by the specific crimping tool. 

Experimental setup was conducted by acquisition of 32 scans in the range of 500 – 4000 cm
-1

, with 

a resolution of 4 cm
-1 

 

XPS 

X-Ray photoelectron spectra were obtained using a Perkin Elmer PHI 5400 ESCA system, equipped 

with a Mg anode operating at 10 kV and 200 W. Base pressure was 10
-8

 Pa and the diameter of the 

analyzed spot 2 mm. A wide range survey spectra was acquired from 0 to 1000 eV of binding 

energy, and detailed high resolution peaks of relevant elements were also collected. Quantification 

of elements was performed using the software and sensitivity factors were supplied by the 

manufacturer. Samples were fixed to the instruments sample holder on one side, while 

measurements were performed on the other side. 

 

XRD 

Phase analysis was conducted using X-ray diffraction (XRD, X’Pert Philips, Cu Kα radiation) 

during a preliminary study to detect phase composition and phase transformation of the HA/βTCP 

mix after the sintering process at two different temperatures, in order to decide which processing 

temperature was the optimal. The test was carried out on the material powder at room temperature. 

4.2.2 Structural characterization 

 

SEM 

Scanning Electron Microscopy (SEM) analysis was performed to analyze the morphology of porous 

scaffolds. The samples were mounted on the aluminum stubs and sputtered with gold at 15 mA for 

2 min using Agar Sputter Coater. The morphology of samples was captured using a scanning 
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electron microscope using EVO MA10 system (Zeiss) equipped with a micro-analysis system 

AZTec (Oxford University UK). The quantitative investigation of the organic surface layer on the 

ceramic scaffold, was performed with the Energy Dispersive X-ray spectroscopy (EDX) system. 

µCT 

The microstructure of the scaffold was studied in a nondestructive manner by micro-computed 

tomography (µ-CT), with a desktop μ-CT scanner (SkyScan 1174, Aartselaar, Belgium). The 

scanner was set at a voltage of 50 kV and a current of 800 μA, and the sample was scanned at 9.23 

µm pixel resolution.  

For the ceramic porous scaffold the exposure time per projection was 10000 ms and an aluminum 

filter of 720 µm was used. The samples scanned had a size of 10x10x10 mm
3
.  

For the composite hydrogel, the exposure time per projection was 2300 ms and no filter was used. 

The sample had a cylindrical size of 10mm of diameter and 10mm of height. Imaging analysis were 

conducted using the CT-Analyzer software, reconstructing 2D tomographic raw images. No 

contrasting agent was used. Imaging analysis were conducted using the CT Analyzer software, 

reconstructing 2D tomographic raw images. The threshold levels of the grayscale images were 

equally adjusted for all the samples to allow the measurement of the porosity. 

4.2.3 Physical characterization 

Swelling study 

For investigating the hydration kinetic, the samples  (10mm diameter, 2 mm thickness, three for 

each case studied) were allowed to swell in different solutions (pH of 2.5, 5.5 and 7.4 for composite 

hydrogel and pH of 7.4 phosphate buffered saline solution (PBS) for GTR membrane), after 

recording the initial weight (W0) at 37 °C. The swollen disks were taken out of the solution at 

regular time intervals, blotted with filter paper to remove excess surface water, and their swollen 

weights (Ws) were noted. The water uptake by the network was determined by the following 

equation: 

Hydration Degree (%) = [(Ws – W0)/Ws] x 100   (1)  

Degradation study 

The stability of the samples was analyzed at different pH (2.5, 5.5 and 7.4 for composite hydrogel, 3 

and 7.4 for the porous ceramic scaffold and 7.4 PBS for GTR membrane) at 37 °C. The samples, 

three for each type, were cut in a cylindrical or cubic shape (10 mm of diameter and 2 mm of 

height; or 1x1x1 cm
3
) and immersed in different solutions, after recording their initial weight (W0). 
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During the degradation study, samples were taken out at specific time intervals, freeze-dried and 

weighted (Wf). The mass loss percentage was calculated using the following equation: 

Mass Loss (%) = [(W0 – Wf)/W0] x 100   (2) 

 

Solution at pH 2.5: 100 g of potassium dihydrogen phosphate were dissolved in 800 ml of ultrapure 

water; the pH was adjusted to 2.5 with hydrochloric acid and sufficient water to produce 1000 ml.  

 

Buffer Solution at pH 3: was prepared following the instruction reported in ISO 10993-14:2001 

(“Biological evaluation of medical devices: Identification and quantification of degradation 

products from ceramics”). 21 g of citric acid monohydrate were dissolved in 500 ml of ultrapure 

water in a 1000 ml volumetric flask, then 200 ml of sodium hydroxide 1 M was added and the 

solution diluted to the mark with water; 40.4 ml of this solution were mixed with 59.6 ml of 0.1 M 

hydrochloric acid. 

 

Solution at pH 5.5: 0.49 g of sodium phosphate dihydrate, 13.8 g of potassium phosphate and 0.49 

g of sodium chloride were dissolved in 1000 ml of ultrapure water. 

 

Solution at pH 7.4: 0.78 g of sodium phosphate dihydrate, 0.097 g of potassium phosphate and 4 g 

of sodium chloride were dissolved in 500 ml of ultrapure water. 

 

Buffer solution at pH 7.4: was prepared following the instruction reported in ISO 10993-14:2001 

(“Biological evaluation of medical devices: Identification and quantification of degradation 

products from ceramics”). TRIS-HCl solution was prepared by dissolving 13.25 g of 

tris(hydroxymethyl) aminomethane in 500 ml of water; pH 7.4 was reached adding an appropriate 

amount of hydrochloric acid 1 M. 

 

Dulbecco’s Phosphate Buffered Saline solution (PBS): was purchased from Gibco® by Life 

Technologies (Life Technologies Corporation, Paisley, UK). 

 

High performance liquid chromatography 

A release study was performed using High Performance Liquid Chromatography (Shimatdzu LC 

2010 AHT equipped with Diode array Shimadzu SPD-M10AVP) technique. Three specimens 

(10x10x10 mm size) for each sample were immersed in PBS solution at 37 °C for 1 week. At each 

time point, samples were taken out and immersed in fresh PBS solution. The releasing solution was 
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then filtered with 0.2μm cellulose acetate filters and analyzed using a low pressure gradient method, 

with a mobile phase made-up by 5 mM ammonium acetate in 0.5 % glacial acetic acid in water and 

5 mM ammonium acetate in 0.5% glacial acetic acid in acetonitrile. We used a C18 Kinetex reverse 

phase column (Phenomenex, Torrance, USA) with a flow rate of 1 ml/min and an injection volume 

of 20 µl. Vancomycin peak was analyzed at 280 nm. 

The amount of vancomycin released was calculated from a linear regression curve (from 0.025 

mg/ml to 2.5 mg/ml) with R
2
>0.999. 

4.2.4 Mechanical characterization  

Mechanical characterization was performed using a Bose ElectroForce 5500 equipped with 100 N 

load cell. 

Compressive test 

For porous ceramic scaffolds, samples were tested in a cubic shape of 10 mm gauge length, 10 mm 

of width and 10 mm of thickness, and tested until failure, with a crosshead speed of 1 mm/min.  

For composite hydrogel, samples were cut in a circular shape with 10 mm of diameter, and 10 mm 

of gauge length, with a constant crosshead speed of 1 mm/min. The mechanical properties were 

performed in both dry and hydrated conditions (soaked in PBS at 37 °C for 24 h). For the composite 

hydrogel, during preliminary tests no sample could reach a failure, so we decided to perform the 

compressive test until 40% of the height of the sample which was considered a sufficient value to 

see elastic and plastic deformation of the samples. 

Force-displacement curves obtained from the software-machine, were converted to stress-strain 

curves. Stress (σ, MPa) was obtained by dividing the applied force (N) with the cross section area 

(mm
2
), while strain was obtained from the displacement using ((L-L0)x100/(L0)), where L0 was 

initial gauge length and L was instantaneous gauge length.  

For porous ceramic scaffolds the 5-15% of strain region was used to measure the modulus of 

samples and instantaneous drop in more than 20% stress was considered as a fracture point.  

For composite hydrogels, the elastic modulus was calculated in the linear region between 0.5% to 5 

% of strain, and the stress at 40% of strain was related as maximum elastic stress. The area under 

the stress-strain curve was calculated and related to the toughness of the sample. 

 

Cyclic compressive stress 

For cycling testing, 100 loading and unloading cycles were performed. A first load until 16% of 

initial height was performed and then a sinus cyclic curve with a frequency of 0.5 Hz and a constant 

crosshead speed of 1.2 mm/min was performed between 16 and 41% of initial height. Stress-strain 
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curve was reported and the amount of energy adsorbed and percentage recovered during the 

deformation cycle were calculated every 10 cycles. 

 

Tensile test 

Soft membranes were cut in a rectangular shape with 20 mm gauge length, 2 mm width and a 

thickness around 2 mm. The mechanical properties were tested in both as-prepared (dry) and 

hydrated conditions (soaked in PBS for 10 min). For the uniaxial tensile test, samples were 

stretched until failure (or until the maximum displacement of the testing machine) at the crosshead 

of 0.2 mm/s. Force-displacement curves, obtained from the machine, were converted to stress-strain 

curves. The stress (σ, MPa) was obtained by dividing the applied force (N) with cross section area 

(mm
2
) and strain was obtained from the displacement using ((L-L0) x 100/(L0)), where L0 was the 

initial gauge length and L was instantaneous gauge length. Young’s Modulus was calculated in the 

linear stress-strain region by fitting a straight line. 

 

Suture retention test 

A suture retention test was performed on soft membranes and the protocol setup of 

ANSI/AAMI/ISO 7198:1998/2001/(R) 2004 “Cardiovascular implants-tubular vascular prostheses” 

was followed. In accordance with it, the suture was carried out at 2 mm from the side of the sample, 

the crosshead speed is fixed at 1 mm/s, and the amplitude of analysis was fixed at the maximum of 

the machine, 12 mm. Force-displacement curves obtained from the machine were converted to 

stress-strain curves. The stress (σ, MPa) was obtained by dividing the applied force (N) with cross 

section area (mm
2
) and strain was obtained from the displacement using ((L-L0) x 100/(L0)), where 

L0 was the initial gauge length and L was instantaneous gauge length. Suture retention strength was 

defined as fracture strength during the process test.  

 

4.2.5 Biological characterization 

 

Antibacterial properties 

The strain S. epidermidis RP62A (ATCC 35984) used in this study is a slime and capsular 

polysaccharide producer. It was routinely maintained on both tryptic soy agar (TSA, Sigma) plates 

and monthly transferred to new plates and as frozen suspension in liquid culture medium 

supplemented with 10% glycerol. The bacterial suspension was obtained by inoculating 100 ml 

tryptic soy broth (TSB, Sigma) and incubating overnight at 37 °C. After overnight incubation, the 

suspension was washed three times with PBS, and finally re-suspended in PBS.  PBS used for this 
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experiment has the following composition: 0.2gl
-1

 KCL, 0.2 gl
-1

 KH2PO4, 8.0 gl
-1

 NaCl, 1.15 gl
-1

 

Na2HPO4 with pH at room temperature = 7.3 ± 0.3 and osmolality (mOsm kg
-1

 H2O) = 290 ± 5%. 

The bacterial suspension, according to previous experiments, was spectrophotometrically adjusted 

to the optical density required to obtain 1x10
9 
colony forming units [(CFU)ml

-1
]. 

 

Serial bacterial dilution 

For the serial dilution test, 5 ml of bacterial suspension were poured in 6-wells plate (Greiner) 

containing a total of two replicates for each sample, for each time point (0 h, 24 h and 1week). The 

bacterial suspension was then incubated with samples for 2 h at 37 °C. The number of viable CFU 

in the inoculum was determined by spreading 0.1 ml portions from the serial tenfold dilutions of 

bacterial suspension on TSA. CFU were counted after 48 h of incubation at 37 °C. At the end of the 

incubation time, samples were carefully rinsed with sterile PBS in order to remove loosely adherent 

bacteria, and were then sonicated for 10 min in 3 ml of PBS. Previous experiments have shown that, 

by this way, it is possible to achieve a complete detachment of all bacterial cells from the 

specimens. The number of viable CFU was evaluated by spreading portions of 0.1 ml from the 

serial tenfold dilutions (four dilutions and three replicates each) of suspension on TSA plates. Also 

in this case, CFU counting was performed after 48 h of incubation at 37 °C. 

 

Bacteria adhesion test 

For adhesion experiments, 5 ml of bacterial suspension were poured in 6-wells plates (Greiner) 

containing a total of two replicates for each sample, for each time point (0 h, 24 h and 1week). The 

bacterial suspension was incubated with the samples for 2 h at 37 °C. After incubation time, 

samples were carefully rinsed with PBS in order to remove non-adherent bacterial cells, then were 

fixed in 5% glutaraldehyde – PBS solution and dehydrated using increasing concentration of 

ethanol in water–ethanol solutions up to 100% ethanol. Dehydrated samples were gold sputter-

coated (AGAR Sputter Coater) and observed with an EVO MA10 (Zeiss) scanning electron 

microscope (SEM) equipped with a micro analysis system AZTec (Oxford University UK). 

Adherent bacteria on each replicate were counted in five different fields and reported as percentage 

of analyzed area. 

 

Inflammatory response: TaqMan Real-Time PCR 

The murine macrophage cell line J774.2 (European Collection of Cell Cultures) was maintained in 

Dulbecco’s modified Eagle’s medium (Gibco Invitrogen, Cergy-Pontoise, France) supplemented 

with 10% fetal bovine serum, penicillin (100 U ml
−1

), streptomycin (100 μg ml
−1

) and 4 mM l-
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glutamine. Cells were grown in a 100% humidified incubator at 37 °C with 10% CO2 and passaged 

2–3 days before use. The J774.A1 cells (2 × 10
4
 ml

−1
) were seeded into 6-wells tissue culture 

polystyrene plates (9.6 cm
2
 of growth area; Falcon™) containing the samples. 

After 4 h, RNA was isolated from J774.A1 cell line using the MagMax-96 Total RNA Isolation Kit 

(Life Technologies) and then reverse-transcribed using the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems), according to the manufacturer’s instructions. Total RNA 

concentration was then measured by using a Spectrophotometer (UV-1700, Shimadzu) and RNA 

quality was assessed by evaluating A260/A280 ratio ranging from 1.8 to 2.1. Real-time PCR was 

performed with the TaqMan Gene Expression Master Mix (Applied Biosystems) with the Applied 

Biosystems StepOne Plus instrument (Applied Biosystems). The primer sets for the Real-time PCR 

of mouse interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), monocyte chemotactic 

protein-1 (MCP-1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Applied 

Biosystems Assay’s ID: Mm01336189_m1, Mm99999056_m1, Mm99999062_m1, 

Mm99999056_m1, Mm03302249_g1 respectively) were chosen from the collection of the TaqMan 

Gene Expression Assays (Applied Biosystems). The analysis was conducted using the method of 

Comparative CT (ΔΔCT), which was designed following the manufacturer’s instructions.   

 

Osteoblast – like cell culture 

Osteoblast-like SaOS-2 cells were used for the cell growth experiments. Experimental cell culture 

medium (BIOCHROM KG, Berlin) consisted of Minimum Eagle's Medium without l-glutamine, 

10% fetal bovine serum, streptomycin (100 μg/l), penicillin (100 U/ml), and 2 mmoles/l l-glutamine 

in 250-ml plastic culture flask (Corning™). Cells were cultured at 37°C in a humidified incubator 

equilibrated with 5% CO2. Cells were harvested prior to confluence by means of a sterile trypsin-

EDTA solution (0.5 trypsin g/l, 0.2 g/l EDTA in normal phosphate buffered saline, pH 7.4), re-

suspended in the experimental cell culture medium, and diluted to 1×10
5
 cells/ml. For experiments, 

5 ml of the cell suspension were seeded into 6-well tissue culture polystyrene plates (9.6 cm
2
 of 

growth area; Falcon™), containing the samples. Experiments were performed in triplicate. For 

SEM analysis, at the selected time point, samples were carefully rinsed with PBS and fixed in 5% 

glutaraldehyde-PBS. Samples were dehydrated using increasing concentration of ethanol in water-

ethanol solutions up to 100% ethanol. Dehydrated samples were gold sputter-coated (AGAR 

Sputter Coater). Scanning electron microscopy (SEM) was performed using an EVO MA10 (Zeiss), 

equipped with a micro-analysis system AZTec (Oxford Instruments, UK).  
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The expression of  Collagen (COLL1A1); Osteopontin (OPN); Osteocalcin (OCN); Runt-related 

transcription factor 2 (RUNX2); Alkaline Phosphatase (ALP) and Osteonectin (SPARC)  genes as 

cell proliferation, differentiation and mineralization markers, was assessed using the real time 

reverse transcription polymerase chain reaction (qRT-PCR). Osteoblast –like SaOS-2 cells were 

cultured as previously described and the total RNA was extracted using MagMax Total RNA 

Isolation Kit (Applied Biosystems, Milan, Italy) following the manufacturer’s instruction. RNA 

quality was assessed by checking the A260/A280 ratio (1.6 – 2.0). Then, total RNA was used as a 

template for cDNA synthesis using random hexamers as primers and the MultiScribe® Reverse 

Transcriptase (high capacity cDNA RT Kit from Applied Biosystems). cDNA amplification and 

relative gene quantification were performed using TaqMan probe and primers from Applied 

Biosystems (Hs 00164004_m1, COLL1A1; Hs 00960641_m1, OPN; Hs 00609452_m1, OCN; Hs 

01047976_m1, RUNX2; Hs 01029144_m1, ALP; Hs 00234160_m1, SPARC). Real time PCR was 

performed in duplicate for all samples and targets on a Step-One instrument (Applied Biosystems). 

PCRs were carried out in a total volume of 20 µl and the amplification was performed as follows: 

after an initial denaturation at 95 °C for 10 min, the PCR was run for 40 cycles at 95 °C for 15 s and 

at 60 °C for 1 min. To normalize the content of cDNA samples, the comparative threshold (Ct) 

cycle method, consisting on the normalization of the number of target gene copies versus the 

endogenous reference gene GAPDH, was used. The Ct is defined as the fractional cycle number at 

which the fluorescence generated by cleavage of the probe passes a fixed threshold baseline when 

amplification of the PCR product is first detected. For comparative analysis of gene expression, data 

were obtained using ΔCT method.  

 

Fibroblast cell culture and adhesion test 

Fibroblast L929 was used in the cell adhesion experiments. Experimental cell culture medium 

(BIOCHROM KG, Berlin) consisted of Minimum Eagle’s Medium without L-glutamine, 10 % fetal 

bovine serum, streptomycin (100 g/l), penicillin 100 U/ml, and 2 mmol/l L-glutamine in 250 ml 

plastic culture flask (Corning TM). Cells were cultured at 37 °C in a humidified incubator 

equilibrated with 5 % CO2. Cells were harvested prior to confluence by means of a sterile trypsin-

EDTA solution (0.5 g/l trypsin, 0.2 g/l EDTA in normal phosphate buffered saline, pH 7.4), re-

suspended in the experimental cell culture medium, and diluted to 1 x 10
5 

cells per ml. For 

experiments, 5 ml of the cell suspension were seeded into six-well tissue culture polystyrene plates, 

containing the samples (GTR membranes). Experiments were performed in triplicate, at two 

different time points (24 h and 1 week). To evaluate cell adhesion, cells were seeded at a given 

density on test samples. At given time intervals, 24 h and 1 week, DNA quantification was 
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performed, by removing samples from the wells, rinsing with PBS and placing them in another 

multiwall plate. The total DNA was extracted after 1 week using MagMax Total DNA Isolation Kit 

(Applied Biosystems, Italy) following the manufacturer’s instruction, and the absorbance at 260 nm 

proper of DNA material was detected.  

Cytotoxicity test was performed using neutral red assay. Briefly, it is based on the ability of viable 

cells to incorporate and bind the supravital dye neutral red in the lysosomes. The samples after 24 h 

and 1 week of fibroblast cells culture, were incubated for 2 h with a medium containing neutral red, 

and subsequently washed with ultrapure water. The stained cells were visualized using an inverted 

microscope in a standard mode (Leica DMI 4000 B, Germany). 

 

Statistical analysis 

Experimental data were presented as mean ± standard deviation. Statistical differences between 

samples were analyzed using two-way ANOVA using Tukey’s multiple comparison test, one-way 

ANOVA using Tukey’s analysis and Student’s t-test. Statistical significance was represented as 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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4.3  SUMMARY OF THE TESTS PERFORMED 

 

SAMPLE ATR-IR XPS EDX XRD 

Engineered scaffold x x x x 

Composite hydrogel x  x x 

GTR Membrane x x   

 

SAMPLE µCT SEM 

Engineered scaffold x x 

Composite hydrogel x x 

GTR Membrane  x 

 

SAMPLE Release study Swelling study Degradation study 

Engineered scaffold x  x 

Composite hydrogel  x x 

GTR Membrane  x x 

 

SAMPLE 
Compressive 

test 

Tensile 

test 

Compressive 

cycle test 

Suture retention 

stress test 

Engineered scaffold x    

Composite hydrogel x  x  

GTR Membrane  x  x 

 

SAMPLE Antibacterial 

properties 

Inflammation 

gene expression 

Osteoblast-like 

cell culture 

Fibroblast 

cell culture 

Engineered scaffold x x x  

Composite hydrogel  x x  

GTR Membrane    x 
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4.4 TREATMENT OF PERIPROSTHETIC INFECTION USING AN 

ENGINEERED POROUS SCAFFOLD 

 

 

Figure 6. Graphical abstract of engineered scaffold developed. 

 

4.4.1 Introduction 

Coupling bone graft and titanium implants is still one of the best available solutions to replace bone 

and dental tissue loss. In particular, in large defects, where the residual bone is not enough to ensure 

stability for the implant, the insertion of a so-called bone filler material is often necessary. This kind 

of surgical approach promotes bone formation and gives stability, guiding bone regeneration around 

the implant. Many of these procedures are successful, with an implant survival rate greater than 

90% at 10-15 years of follow-up
1–4

. Despite this success rate, in 1-5% of the procedures, the 

implant fails and must be removed
5,6

. The reason for this could be explained by the biomechanical 

issue on one side, due to an overloading at the bone implant surface
7–9

, and by the biological failure 

on the other side, associated with microbial plaque accumulation and bacterial contamination
10–12

. 

Current strategies for the prevention of PPI involve either an increase in the rate of new bone 

formation by graft material and systemic administration of antibiotics. In the last decades, the 

development of grafting materials has aroused great interest
13–15

. In particular, synthetic ceramic 

materials as tricalcium phosphate and hydroxyapatite have been used for their good reproducibility, 

biocompatibility, and non-immunogenicity, but especially because of their similarity to the 

components of the native bone mineral phase
16–18

. In large bone defects, completely filling the void 

and giving a sufficient mechanical resistance to the implant are the principal issues as they are a key 

factor for the induction of cell migration and proliferation inside the scaffold, in order to achieve a 

satisfactory osteointegration. The hydroxyapatite/β-tricalcium phosphate mix is one of the most 
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used biphasic materials for its great biocompatibility, good degradation rate and mechanical 

support
19

. Morra et al., in a recent work
20

, developed a new bone filler in particles, named 

Synergoss®, made with HA/βTCP in percentage of 25 wt.% and 75 wt.% respectively. In vivo 

studies demonstrated that this filler allows new bone formation, coupled with a compatible 

degradation rate
20

. The balance between HA and βTCP is a key point to obtain both mechanical 

strength and degradation, and to stimulate excellent osteointegration
21,22

. However, dentistry 

practices for large bone defects are expected to use three–dimensional (3D) porous scaffold, in 

order to fill large voids, to stimulate cell infiltration through interconnected pores and to increase 

mechanical stability for the immediate implant loading. The scaffold properties, alone, are not 

enough, in fact large bone defects are often the result of the removal of necrotic tissue or of a zone 

with an acute infection; furthermore, considering the natural function of the oral cavity which is  at 

the interface with a lot of bacteria, bacterial growth and re-infection of native bone are a strong 

possibility
23–25

. The traditional antibiotic therapy is not effective in the control of PPI, because of 

the bacteria specific adhesion on the biomaterials, and to the very low antibiotic’s penetration into 

the osseous defect
10,26,27

. Furthermore, systemic delivery of a high dose can causes systemic toxicity 

with associated renal and liver complications, resulting in the need for hospitalization for 

monitoring
3,28–30

. Development of a complex release system aimed at reducing infection and, at the 

same time, at promoting bone formation, could be a solution. Antibiotics used in drug release 

complexes should be effective against bacteria, as well as biocompatible and they should not 

damage the surrounding native tissues. Vancomycin is a widely used antibiotic that provides 

bactericidal activity against the most relevant germs and shows efficacy and biocompatibility in 

clinical use
31–33

. One solution is the combination of the ceramic material with a polymeric coating, 

which allows encapsulation of drugs and increases the biocompatibility, thus generating a 

biomimetic surface
13,34

. In particular, collagenous materials were used, since collagen is a key 

component of bone, is biocompatible and its degradation products are nontoxic
20

. Collagen is a very 

expensive component and, in order to obtain a stable surface functionalization without a faster 

degradation in vivo, a chemical crosslinking is needed, which implies the use of chemical 

compounds such as glutaraldehyde, which may cause cytotoxic effect on the surrounding tissues
35

. 

Pectin and chitosan are nontoxic natural polysaccharides that have aroused great interest in the last 

years in tissue engineering, due to their ability to crosslink by means of intermolecular interactions 

and to form stable and biocompatible complexes which may simulate the extracellular matrix and 

interact with cells from surrounding tissues
36–41

. Pectin is a natural anionic polysaccharide, a major 

component of citrus cell walls or apple peel by-product, consisting in a poly D - galacturonic chain 

with carboxyl groups, which could be ionically crosslinked by calcium ions (Ca
2+

) forming the so 
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called “egg box” structure. Furthermore, ionic interactions occur with polycationic polysaccharides, 

in order to form a well-known polyelectrolyte structure (PEI)
36

. Pectin is already widely used in the 

food industry and, in the last decades, it has found application in bone tissue engineering, in 

particular as a drug carrier
42–45

. The limit of pectin is its great water-solubility, which causes fast 

dissolution and, when used as a drug carrier, a burst release of the therapeutic molecules occurs. To 

overcome this problem, many research groups have been trying to combine pectin with other 

materials
46–51

. In particular, chitosan is a natural polycationic material that could form a stable 

polyelectrolyte composite in acidic environment when mixed with pectin. Chitosan derives from 

chitin, which can be extracted from crustaceous exoskeleton and is composed by β–(1,4)–

glucosamine and N-acetyl-D-glucosamine. Owing to its biocompatibility, its intrinsic antibacterial 

nature, its ability to not induce any foreign body reaction and to promote cell adhesion, proliferation 

and differentiation, chitosan has aroused great interest in tissue engineering and pharmaceuticals, 

founding many applications, especially in bone tissue engineering
39,40,52–54

. In this work, we 

developed and produced an engineered scaffold coupling inorganic and organic phases loaded with 

vancomycin, as a novel system to prevent and control periprosthetic infection in dental large bone 

defects. As inorganic phase, we used a highly porous 3D biphasic ceramic (25 wt.% of 

hydroxyapatite  and 75 wt.% of β-tricalcium phosphate). We hypothesized and demonstrated that 

the functionalization of the ceramic scaffold with a pectin-chitosan PEI coating allows the control 

of vancomycin release, inhibits bacterial proliferation and biofilm formation, stabilizes the 

degradation rate in physiological and acidic environment and promotes osteoblast proliferation 

without compromising the mechanical properties; moreover, gene expression results demonstrated 

that PEI treatment elicits anti-inflammatory responses. We therefore successfully manufactured a 

three dimensional construct that could prevent the generation of periprosthetic infection and 

promote new bone formation in large dental bone defects.   

4.4.2 Results and Discussion 

Calcium phosphate materials are widely used in bone and dental tissue engineering, since they are 

the principal compound of inorganic phase in native bone
15,20,55

. In particular, hydroxyapatite 

(Ca10(PO4)6(OH)2) is the most stable form of calcium phosphate and the most abundant component 

in bone, around 65%
56,57

. Many studies show osteoconduction stimulation coupled with good 

mechanical properties; therefore, the degradation rate of hydroxyapatite is very slow
58,59

. In this 

work, we decided to combine hydroxyapatite with β-tricalcium phosphate, in the percentage of 25 

% - 75 % respectively, in order to manage the degradation properties of the scaffold and to achieve 

a replacement by the host bone during implantation with a physiological rate. Preparation of the 
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three dimensional scaffold involved a three step process. In the first one, a polyurethane sponge was 

impregnated with a ceramic slurry in a properly manner and, after one night in oven to allow water 

to evaporate, it was sintered. In the second step, the ceramic porous scaffold was impregnated with 

a solution of pectin and vancomycin, lyophilized and, in the third step, it was soaked in a solution of 

chitosan to form a polyelectrolyte (PEI) on the surface of the material; the resulting material is 

called HA/βTCP_PEC/VCA_CHIT scaffold.  In this work, we compared this material with a 

ceramic porous scaffold (HA/βTCP), a ceramic porous scaffold impregnated with vancomycin 

(HA/βTCP_VCA) and a ceramic porous scaffold impregnated with a solution of pectin and 

vancomycin (HA/βTCP_PEC/VCA). 

4.4.2.1 Chemical characterization 

ATR-IR 

In order to control the preparation process of the ceramic scaffold and, in particular, the formation 

of the PEI complex on the surface, we performed different surface analysis. ATR-IR spectra 

reported in Figure 7 a confirm that all peaks belong to the inorganic material. In particular, 

spectrum of HA/βTCP sintered materials contained peaks from both hydroxyapatite and tricalcium 

phosphate. Typically, a peak at 1125 cm
-1

 belongs to tricalcium phosphate, while peaks at lower 

wavenumbers are typically associated with hydroxyapatite. Figure 8 a is a focus on triply 

degenerated asymmetric stretching mode (ν3) of the P-O bond of the phosphate group (1125 cm
-1

 

and 1025 cm
-1

-1010 cm
-1

)
60,61

. Figure 7 b shows spectra of pectin powder, chitosan powder, 

pectin/chitosan physical mixture, a pectin/chitosan polyelectrolyte complex and a HA/βTCP 

scaffold with a PEI functionalization. Pectin and chitosan show typical spectra of polysaccharides; 

in particular, the region between 3700 cm
-1

 and 3000 cm
-1

 for pectin and chitosan is assigned to the 

O–H stretching vibration (νOH), while the region between 3000–2800 cm
-1

 belongs to C-H 

stretching vibration (νCH) (Figure 8 b). Deeper analysis on pectin spectra show two bands 

associated with the stretching vibration at 1740 cm
-1

 of carbonyl group, corresponding to the methyl 

ester group (COOCH3) and carboxyl acid (COOH), while the band at 1606 cm
-1

 belongs to the 

stretching vibration of the carbonyl group of the carboxylate ion (COO
-
). Concerning chitosan 

spectra, the band at 1647 cm
-1

 is due to the C=O stretching vibration of amide I, whilst the band at 

1580 cm
-1

 is due to the NH bending amide II, maybe overlapped to the N-H vibration of the amine 

groups. (Figure 8 b).  
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Figure 7. ATR-IR spectra of raw materials and HA/βTCP scaffold (a) and of HA/βTCP_PEC/CHIT scaffold (b). 

 

The polyelectrolyte complex is formed and stabilized by the electrostatic interactions that occur 

between the positive charge of chitosan, NH3
+
, and the negative one of pectin, COO

-
 (Figure 8 b); 

amine band shift to 1557 cm
-1

 confirms the formation of a pectin-chitosan complex. A series of 

overlapping are also present in the PEI spectra, due to H-bonding interactions between COOH 

groups of pectin or NH2 groups of chitosan and OH or COOCH3 groups within the complex. Band 

assignment is consistent with available literature
36,38

. The most important observation is underlined 

by the spectra of the HA/βTCP_PEC/CHIT scaffold, where both bands, the one assigned to the PEI 
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complex and the other one belonging to the inorganic phase, are presents, in particular the band at 

1557 cm
-1

 and those between 950 cm
-1

 and 1140 cm
-1

, respectively (Figure 8 b). This analysis 

confirms the successful preparation of the materials, with a ceramic material functionalized with a 

polyelectrolyte on the surface. Furthermore, XRD analysis show that no phase transformation 

occurs at the sintering temperature (Figure 9 a, b, c). 

 

Figure 8. a) IR spectra of HA, βTCP powder, and HA/βTCP (25/75 wt.%) biphasic composite before and after 

sintering process, the peak at 1125 cm
-1

 its belongs tricalcium phosphate, while the peak at the lower 

wavenumber are typically associated to hydroxyapatite. b) IR spectra of pectin powder, chitosan powder, pectin-

chitosan as physical mixture, pectin-chitosan as polyelectrolyte complex, and the engineered scaffold 

HA/βTCP_PEC/CHIT, (it is possible to observe the shift of the amine band to 1557 cm
-1

, due to the PEI complex, 

and the bands belonging inorganic phase, in particular between 950 cm
-1

 and 1140 cm
-1

). 
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Figure 9. XRD analysis on HA/βTCP scaffold sintered at 1150 °C (blue line) and 1300 °C (red line). Sintering 

process performed at 1300 °C leads the transformation of βTCP in αTCP. After these analysis the sintering 

temperature of 1150 °C was chosen, in order to preserve the βTCP structure. 

 

XPS Analysis and EDX analysis 

Chemical composition of the surface of four different ceramic disks functionalized with pectin, 

chitosan and the pectin-chitosan polyelectrolyte complex, has been detected by XPS analysis, as it 

is shown in Figure 10 a. As expected, the percentage of Ca and P is high on the surface of 

HA/βTCP, while a significant reduction of Ca and P and an increase of N and C were detected on 

HA/βTCP_PEC/CHIT samples. Spectra in Figure 10 b show a reduction of the peaks associated to 

Ca 2p3 and P 2p3 and the appearance of N 1s peak for the sample functionalized with PEI complex. 

Samples with pectin have a greater reduction for Ca and P compared to the one functionalized with 

chitosan, showing that the procedure to functionalize with pectin first, is an optimal way to obtain a 

stable and uniform coating available for chitosan, in order to generate a stable and uniform 

polyelectrolyte complex on the surface of ceramic (Table 1). 
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Figure 10. a, b) XPS spectra of HA/βTCP, HA/βTCP_PEC, HA/βTCP_CHIT and HA/βTCP_PEC/CHIT, a 

reduction of the peak associated at Ca 2p3 and P 2p3 and the appearance of N 1s peak for HA/βTCP_PEC/CHIT 

sample was detected.   

 

 

  O C Ca P N 

HA/βTCP 30 34,3 19,5 16,2 0 

HA/βTCP_PEC 26,1 64,2 4,3 3,4 2 

HA/βTCP_CHIT 32 52 6,9 5,7 3,4 

HA/βTCP_PEC/CHIT 25,6 65 2,4 1,9 5,1 

 

Table 1. Chemical composition (at.%) of HA/βTCP, HA/βTCP_PEC, HA/βTCP_CHIT and 

HA/βTCP_PEC/CHIT. 

 

Furthermore, EDX analysis made on the surface of HA/βTCP porous scaffold and 

HA/βTCP_PEC/CHIT scaffold confirm the presence of organic material through the appearance of 

Carbon (C) peaks in the spectra (Figure 11). 
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Figure 11. EDX analysis on HA/βTCP and HA/βTCP_PEC/VCA_CHIT porous scaffold confirm the presence of 

organic materials, through the appearance of C peak. Scale bar: 200 µm. 

 

4.4.2.2 Structural characterization 

μCT analysis 

High porosity and interconnectivity of our ceramic scaffold HA/βTCP were qualitatively 

demonstrated by a capillarity test using red ink  (Figure 12 a). In order to confirm this hypothesis, 

we studied the morphological properties of our materials using the µCT and SEM techniques, on 

HA/βTCP and HA/βTCP_PEC/VCA_CHIT scaffolds. A 3-D representation of HA/βTCP ceramic 

scaffolds morphology is shown in Figure 12 b. The results demonstrated that the ceramic scaffolds 

resulting from the impregnation process of the PU open cells sponge, is characterized by open and 

interconnected macro-pores. The calculated porosity for both scaffolds is about 45 - 50 vol.%, in 

particular macropore size ranged within 100 –1100 µm for HA/ βTCP and HA/βTCP_PEC/CHIT 

scaffolds.  
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Figure 12. a) capillarity test performed on HA/βTCP scaffold. b) Three dimensional reconstruction of 

HA/βTCP_PEC/VCA_CHIT scaffold. 

 

The qualitative interconnection and open porosity, demonstrated through capillarity test, were also 

confirmed by the morphometric parameters calculated from 3-D image analysis. The value of total 

porosity (P), structural thickness (St.Th.), structural separation (St. Sp.), Total Porosity (P) and 

Open porosity (OP) have been compared between HA/βTCP  and HA/βTCP _PEC/CHIT 
62

 (Table 

2). 

 

Sample  
St. Sp. 

[µm] 

St. Th. 

[µm] 

P 

[%] 

OP 

[%] 

HA/βTCP 839.98 414.46 49.57 98.02 

HA/βTCP_PEC/VCA_CHIT 807.68 441.59 45.98 98.34 

Table 2. Microstructural parameters calculated from µCT analysis.  HA/βTCP_PEC/CHIT scaffold shows a 

similar morphology to the natural bone.  

As expected, the St.Sp. decreases with the addition of PEI complex, from 839.9 µm to 807.7 µm; as 

well as the total porosity (P) decreases from 49.6 % for HA/βTCP to 45.9 % for 

HA/βTCP_PEC/CHIT. We hypothesize that the addition of pectin_chitosan, as a coating complex, 

increases the thickness of the trabeculae, reinforcing the mechanical structure of the scaffold. This 

assumption was assessed through the calculation of St.Th. parameters, which increases from 414.46 

µm for HA/ βTCP to 441.6 µm for HA/ βTCP_PEC/CHIT scaffold. PEI functionalization slightly 

decreases the porosity, decreases the structure separation and increases the structure thickness. 

However, the open porosity is maintained around 98%  of the total porosity, which is an important 

characteristic to promote cell infiltration into the scaffold. This distribution was also assessed by 

SEM investigation (Figure 13), where interconnected macropores with their struts are shown. SEM 
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investigation shows a particular and explanatory case where a huge macropore is divided and the 

trabeculae are reinforced by PEI polymer (Figure 13)
63

. Comparing the value found through the 

calculation of the morphometric parameter with the reference parameter from a study conducted on 

46 bone implant sites of the maxilla and mandible from 32 volunteers, it was found that the values 

of the engineered porous scaffold were in the range or in the same order of magnitude of the native 

mandibular bone 
62

. 

 

Figure 13. SEM investigation before (HA/βTCP) and after coating with PEI (HA/βTCP_PEC/VCA_CHIT). PEI 

polymer reinforced the structure and maintained the interconnected porosity. 

Morphologic analysis showed that PEI functionalization allows achieving a scaffold with a 

porosity, a pore size distribution, a trabecular internal arrangement and a surface area that could 

potentially direct vascularization and nutrients and promote cellular infiltration and bone growth 

inside the pores. A critical role in bone formation is played by porosity, pore size and 

interconnectivity of biomaterials. Pores in biomaterials for bone regeneration are necessary for 

tissue formation, since they allow migration and proliferation of osteoblasts and mesenchymal cells, 

promote vascularization and improve mechanical strength, by promoting anchoring between natural 

tissues and biomaterials at the interface
64

. Pores could be divided in two classes: micropores (< 5 

um) and macropores (> 100 um), both of them important for bioresorption of materials, however 

macroporosities are fundamental to the promotion of new bone growth 
64,65

 .  

Osteogenesis in vitro and in vivo is affected by the morphology of the materials, as well as the 

mechanical properties. Lower and micro-porosity show high osteogenesis in vitro, because cells are 

forced to aggregation; instead, in vivo higher and interconnected porosity results in an increase of 

bone growth, however higher porosity coupled with high pore size translates in poor mechanical 
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properties, too
64

. Micro-porosity creates a hypoxia environment that promotes osteochondral 

differentiation before osteogenesis, instead macropores promote vascularization and facilitate  the 

oxygen transport inside the scaffold. Many researchers have studied optimum pore sizes for bone 

and have shown that alkaline phosphatase activity, osteocalcin content and new bone formation are 

higher in sample with a high percentage of pore, namely between 300 and 400 µm 
66

. However, 

many studies show that even microporosity contributes to induct protein adsorption and bone-like 

apatite formation with its larger surface area. Another important property is the interconnectivity of 

pores, because a spatial continuous connection promotes bone ingrowth. In addition to new bone 

formation, even morphology influences the mechanical stability of the scaffold, in fact high 

porosity, high pore size and high interconnection are translated in a loss of mechanical properties 

67,68
. One possible strategy to achieve high porosity and good mechanical properties, is to combine a 

highly porous ceramic scaffold with a polymeric phase, that could reinforce the structure and in 

parallel maintain the porosity in a range that allows new bone infiltration 
63

. 

4.4.2.3 Mechanical characterization 

Compression Test 

Compressive stress is the principal load to which a scaffold developed for bone and dental tissue 

regeneration is subjected. A biomaterial should not only resist to stress, but it is also quite important 

that a complete disintegration does not happen; this is because some debris could migrate and cause 

an inflammatory response (Figure 14 a). In this study, we compared the mechanical properties of 

HA/βTCP, HA/βTCP_VCA, HA/βTCP_PEC/VCA and HA/βTCP_PEC/VCA_CHIT scaffolds, in 

order to assess how PEI functionalization can affect the resistance of the materials.  In Figure 14 

b,d an example of stress-strain curve for HA/βTCP scaffold and for HA/βTCP_PEC/VCA_CHIT 

scaffold is reported. For both samples, the stress-strain curve shows a so called “pop-in behavior”, 

already reported in other works, related to the crack propagation inside the material trabeculae
69

. 

After an initial increase of stress, the trabecular structure starts to drop, but the scaffold is still able 

to withstand the load, so stress rises again until a maximum is reached, where the struts cracking 

occur. The HA/βTCP_PEC/VCA_CHIT scaffold shows a compressive strength of 1.12 ± 0.14 MPa, 

compared to 0.51 ± 0.14 MPa for the HA/βTCP one, 0.47 ± 0.03 MPa for HA/βTCP_VCA, and 

0.73 ± 0.11 MPa for HA/βTCP_PEC/VCA (Figure 14 e). These results suggest that the addition of 

a polysaccharide in the structure of the scaffold could help to increase the mechanical strength. The 

addition of pectin or a pectin-chitosan complex produces a reinforced composite scaffold, with the 

result of an increase in the mechanical properties. Elastic modulus calculated from the linear part of 

the stress-strain curve confirms the trend already assessed for the compressive strength; 46.7 ± 3.48 
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MPa for HA/βTCP, 24.34 ± 4.01 MPa for HA/βTCP_VCA, 59.78 ± 4.67 MPa for 

HA/βTCP_PEC/VCA and 77.61 ± 13.14 MPa for HA/βTCP_PEC/VCA_CHIT (Figure 14 f). The 

ceramic scaffold treated with vancomycin (HA/βTCP_VCA) alone shows a mechanical strength 

slightly lower than the control HA/βTCP; a reason for this could be vancomycin treatment’s 

procedure, which involves the scaffold immersion in an acidic environment that could start 

degrading the trabeculae and the sintering necks, thus making the scaffold less resistant. The PEI 

complex yields a more cohesive scaffold, also after a critical stress was reached, making the 

structure not subjected to collapse, differently from the HA/βTCP scaffold which undergoes a 

catastrophic failure, with debris production that could cause some problems in vivo (Figure 14 a, c). 

 

 

Figure 14. a,b) An example of compressive test and stress-strain curve for HA/βTCP and for 

HA/βTCP_PEC/VCA_CHIT (c,d) are reported. The PEI functionalization makes the material more cohesive and 

resistant, since the compressive strength and compressive modulus increase with the coating process (e, f).The 

data are represented as mean ± standard deviation (n=3). (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, one-

way ANOVA with Tukey analysis test). 
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4.4.2.4 Physical characterization 

Degradation properties of the developed material have been tested in neutral conditions (buffer 

solution at pH 7.4) and in acidic environment (buffer solution at pH 3). We compared 

HA/βTCP_PEC/VCA_CHIT scaffolds with the HA/βTCP, HA/βTCP_VCA, HA/βTCP_PEC/VCA 

one, three samples for each were analyzed. Initial weight was recorded and, at each time point, 

samples were taken out from solution, lyophilized and weighted. The percentage of mass loss was 

calculated from the initial weight and from the weight after soaking by Eq. (1). 

Degradation at pH 7.4 

Results of the degradation test in physiological condition for HA/βTCP, HA/βTCP_VCA, 

HA/βTCP_PEC/VCA, and HA/βTCP_PEC/VCA_CHIT samples show a linear low degradation for 

all samples; in particular, pH 7.4 does not affect the ceramic structure within 1 week, in fact 1.33 ± 

0.05 % and 5.83 ± 0.19 % of mass loss was reached for HA/βTCP and HA/βTCP _VCA scaffolds, 

respectively (Figure 15 a). In the case of scaffolds functionalized with pectin or pectin_chitosan, 

pH is an important factor that could change the behavior of the coating.  

In particular, in HA/βTCP_PEC/VCA_CHIT scaffolds weight loss mainly occurs for a ionic 

interaction break, established between pectin and chitosan chains, with the subsequent free chain 

solubilization. Ionized amino groups of chitosan (NH
3+

) transformation in non-ionized amino 

groups (NH2) and preservation of ionized state of COO
-
, occur at pH 7.4. With non-ionized NH2 

groups, chitosan results insoluble in water, while ionized pectin is completely solubilized through 

water uptake. In the case of HA/βTCP_PEC/VCA scaffolds, the presence of a ionized pectin (COO
-

) allows water uptake and consequent solubilization of chain. Moreover, the possible interaction 

between COO
-
 and Ca

2+
 could be neutralized from counterions present in the water uptake, inside 

the network. 

For this reason, mass loss for HA/βTCP_PEC/VCA, 22.08 ± 1.25 mg and 

HA/βTCP_PEC/VCA/CHIT, 11.79 ± 3.28 mg, is mainly ascribed to pectin polymer solubilization, 

which dissolution probably carries away some CaP material. This hypothesis could be confirmed by 

SEM investigations after 1 week (Figure 16), when pectin is almost totally absent on the 

HA/βTCP_PEC/VCA scaffold surface, while a network is still preserved on  

HA/βTCP_PEC/VCA_CHIT scaffolds. The pH trend in solution was monitored during the 

degradation test, in order to see if the degradation products could affect the surrounding 

environment (Figure 15 b).  No significant changing in the pH was recorded, but a slight decrease 

between 48 and 96 h for HA/βTCP_PEC/VCA and HA/βTCP_PEC/VCA_CHIT scaffolds, 
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probably due to a maximum degradation of pectin polymers dissolved in the solution; however, at 

168 h, pH for HA/βTCP_PEC/VCA_CHIT scaffolds was 7.45. 

 

 

Figure 15. Degradation stability in physiological condition was evaluated for HA/βTCP, HA/βTCP_VCA, 

HA/βTCP_PEC/VCA and HA/βTCP_PEC/VCA_CHIT scaffolds. a) The mass loss of engineered scaffolds was 

monitored over a period of 1 week (168 h). In neutral physiological solution, the neutralization of chitosan 

occurs, and the solubility of pectin increase. b) pH trend of the solution was monitored over the degradation test. 

Degradation products do not affect significantly the pH of the solution. The data represented as mean ± standard 

deviation (n=3). (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, one-way ANOVA with Tukey analysis test). 
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Figure 16. SEM investigation for each sample at two different magnification (200x and 500x), after 1 week of 

soaking at pH 7.4, confirm dissolution of pectin on HA/βTCP_PEC/VCA scaffold, and the partial dissolution on 

HA/βTCP_PEC/VCA_CHIT scaffold. Scale bar: 200 µm and 2 µm. 

 

Degradation at pH 3 

Acidic condition represents an extreme working condition for calcium phosphate bone substitute. 

During PPI, it is quite normal that pH is less than the physiological one (7.4), since PPIs are usually 

the consequence of a bacterial infection. Presence of bacteria in a bone wound may decrease the 

level of tissue pH below its normal value, because bacteria subtract nutrients and oxygen to cells, 

creating ischemic conditions which result in an hypoxia, making metabolism to become more 

anaerobic, which is more acidic. Hence, it is important to evaluate the material behavior in an acidic 

environment. Biphasic calcium phosphate scaffold degradation depends on materials composition, 

for example βTCP dissolves to a greater extent and, therefore, faster than HA
40,58,59

. Moreover, 

acidic conditions cause a faster dissolution of calcium phosphate materials and an increase in the 
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tendency to fractures. HA/βTCP_PEC/VCA scaffolds are stable till 48 h, until pectin coating resists 

in the acidic environment in which pectin is soluble, and at 72 h, HA/βTCP_PEC/VCA scaffolds 

are completely dissolved. Pectin-chitosan complex coating on HA/βTCP scaffolds protects the 

calcium phosphate material from degradation in acidic environment and, after 168 h. 

HA/βTCP_PEC/VCA_CHIT scaffolds loss 9.06 ± 2.01 % of initial mass  (Figure 17).  

 

Figure 17. Optical images at time zero, after 24h and 168h of soaking at pH 3. The integrity of 

HA/βTCP_PEC/VCA_CHIT scaffold is clearly visible after 1 week. 

 

HA/βTCP_PEC/VCA scaffolds are stable till 48 h, until pectin coating resists in the acidic 

environment in which pectin is soluble, furthermore pectin neutralization in the acidic environment 

could separate the interaction between Ca ions and COO- neutralized, and at 72 h, 

HA/βTCP_PEC/VCA scaffolds are completely dissolved. Pectin_chitosan complex coating on 

HA/βTCP scaffolds protects the calcium phosphate one, from degradation in acidic environment 

and, after 168 h, HA/βTCP_PEC/VCA_CHIT scaffolds loss 9.06 ± 2.01 mg of initial mass (Figure 

18 a).  
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Figure 18. The stability of the engineered HA/βTCP_PEC/VCA_CHIT scaffold was monitored in acidic 

environment over a time of 168 h (1 week). a) mass loss of ceramic and ceramic coated scaffold was reported. 

HA/βTCP_PEC/VCA_CHIT scaffold shows a stable behavior during degradation in a pH 3 solution, due to the 

interaction between pectin and chitosan which protect ceramic materials from the acidic attack. b) pH trend was 

monitored every hour, within the first 8 h and after 24 h and 168 h. A slight increase in the pH value was 

detected for all sample tested, due to the dissolution of phosphate. The data are represented as mean ± standard 

deviation (n=3). (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, one-way ANOVA with Tukey analysis test). 

 

The pH measurement was recorded every hour upon the first 8 h and, at 24 and 168 h: a slight 

increase in pH trend was recorded compared to control solution, from 3 to 3.64 for 

HA/βTCP_PEC/VCA_CHIT, to 3.81 for HA/βTCP_PEC/VCA, to 3.79 for HA/βTCP_VCA and to 

3.16 for HA/BTCP (Figure 18 b).  

SEM investigations show that, after 1 week in acidic environment, PEI surface coating, is degraded 

but still present, able to protect ceramic from a massive degradation (Figure 19). Furthermore, 

since scaffold microarchitecture could influence the degradation rate, the reduced pore size 

resulting from PEI functionalization protects also grain and trabeculae from the acidic solution’s 
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attack inside the scaffold. These results support the choice of HA/βTCP_PEC/VCA 

_CHIT materials as bone substitutes for preventing PPI, since structure is also conserved in acidic 

environment, allowing vancomycin release in situ, bacterial growth and adhesion reduction and new 

bone formation support. 

 

 

Figure 19. d) SEM investigation at different magnification (100x, 200x and 1000x) of the surface before (T0) and 

after 168 h of soaking in acidic solution (pH 3). 

 

Release study and Agar Germ test 

Infection of dental and orthopedic implants is a devastating consequence of bacterial presence in the 

bone wound site that necessitates a complete removal and antibiotic therapy via systemic 

administration
32,33

. A strategy to target bone healing and to avoid PPI is to provide a bone substitute 

which could fill the void and, in parallel, could release an antibiotic drug in situ, in order to reduce 

bacterial growth and proliferation. Further systemic administration of antibiotics reaches a poor 

infiltration in the bone substitute and makes bacterial infections difficult to treat
70

. Vancomycin is a 

glycopeptidic bactericidal antibiotic marked as a hydrochloride salt and it is in worldwide clinical 

use; results of vancomycin release for HA/βTCP_VCA, HA/βTCP_PEC/VCA and 

HA/βTCP_PEC/VCA_CHIT scaffolds during 30 min, 2 h, 4 h, 8 h, 24 h, 48 h, 168 h, and 336 h (2 

week) performed in physiological solution at physiological pH are reported. For HA/βTCP_VCA 

scaffolds, a massive burst release was recorded within 4 and 8 h, since vancomycin is a high soluble 

drug and, without any kind of interaction or encapsulation, but simply by adsorption on the ceramic 

surface and after soaking in physiological solution, all antibiotic is released in a few hours. Addition 

of pectin (HA/βTCP_PEC/VCA scaffold) permitted a prolonged retention of vancomycin; however 

the high swelling rate of pectin at physiological conditions causes a  burst release within 24 h 

(Figure 20). 
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Figure 20. HA/βTCP_VCA, HA/βTCP_PEC/VCA and HA/βTCP_PEC/VCA_CHIT scaffolds was soaked in 

physiological solution at 37 °C and at each time point, 30 min, 2 h, 4 h, 8 h, 24 h, 48 h, 168 h, and 336 h (2 week), 

the released solution was filtered and analyzed by High Performance Liquid Chromatography. (a) A burst 

release was reported for HA/βTCP_VCA and HA/βTCP_PEC/VCA scaffolds, within 8 h and 24 h respectively. 

HA/βTCP_PEC_VCA/CHIT scaffold shows a controlled and prolonged release until 2 week. The data are 

represented as mean ± standard deviation (n=3). 

 

HA/βTCP_PEC/VCA_CHIT scaffolds show a controlled and prolonged release until 2 weeks, 

because the addition of chitosan and the formation of polyelectrolyte complex permit the creation of 

an engineered coating that controls vancomycin release (Figure 20). The presence of the 

polyelectrolyte network allows vancomycin to be encapsulated and the PEI coating slow 

degradation allows a prolonged release to be reached, which is favorable in order to manage 

bacteria. The agar germ test confirms that the entrapped antibiotic is able to inhibit the growth and 

proliferation of Staphylococcus epidermidis (Figure 21).  Staphylococcus epidermidis is a 

microorganism usually present on skin and it is the main bacterium found in hospitals; for this 

reason, it has become the primary responsible of prosthetic infections, and since these infections are 

often indolent and clinically silent, diagnosis and consequent therapy are difficult
6,71

. The formation 

of a multilayer biofilm on the foreign body surface is difficult to be contrasted with a systemic 

antibiotic therapy; furthermore, it inhibits osteoblast proliferation up to implant failure
72

. In this 

work, we evaluated how bacteria (Staphylococcus epidermidis) adhere and proliferate and, 

eventually, form the biofilm on the scaffold surface; serial dilution test and SEM investigation were 

performed.   
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Figure 21. Agar germ test confirm that entrapped vancomycin scaffold is able to inhibit the growth and 

proliferation of Staphylococcus epidermidis. Inhibition zones are visible until the release of vancomycin persists, 4 

h for HA/βTCP_VCA; 24 h for HA/βTCP_PEC/VCA and up to 2 weeks for HA/βTCP_PEC/VCA_CHIT. No 

inhibition zones are visible for HA/βTCP scaffold. 

 

4.4.2.5 Biological characterization 

Staphylococcus epidermidis is a microorganism usually present on skin and it is the main bacterium 

found in hospitals; for this reason, it has become the primary responsible of prosthetic infections, 

and since these infections are often indolent and clinically silent, diagnosis and consequent therapy 

are difficult to act
6,71

.  

During a periprosthetic infection, due to the presence of a foreign body, two different stages have 

been distinguished: the first step is the adhesion of bacteria on the implant surface and the second 

step is slower and involves bacteria proliferation, accumulation and cell-cell interactions that 

stimulate production of polysaccharides that result in a multilayer biofilm, which is difficult to 

contrast with a systemic antibiotic therapy, furthermore it inhibits osteoblast proliferation until 

implant failure occurs
72

. In this study, we evaluated how bacteria adhere and proliferate and, 

eventually, form the biofilm on the scaffold surface. We performed a serial dilution test on 

HA/βTCP, HA/βTCP_VCA, HA/βTCP_PEC/VCA and HA/βTCP_PEC/VCA_CHIT scaffolds 

using a Staphylococcus epidermidis to quantify bacteria adhesion and proliferation through 

counting bacteria colonies forming units (CFU) (Figure 22). In order to evaluate the tendency of 

scaffolds to promote or to avoid a biofilm formation on the surface, SEM investigations were 

performed at different time points of vancomycin release.  
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Serial bacterial dilution test  

 

 

Figure 22. Schematic diagram of serial dilution test protocol 

 

 

We tested the samples at three different time points of releasing, as prepared (T0), at 24 h and after 

1 week. These data correlated with the HPLC vancomycin release test, giving a more precise 

quantification of bacteria growth on the surface. Bacteria adhesion depends on the vancomycin 

release but on the surface chemistry of the scaffold, too. In Figure 23, the reduction of CFU 

proliferated on the engineered HA/βTCP_PEC/VCA_CHIT, compared to the other scaffolds, at 

different time points, is clearly  showed. HA/βTCP scaffold is highly colonized by bacteria within 

all-time points; obviously, surface micro-porosity, roughness, high macro-porosity and 

interconnectivity, as well as absence of a bactericidal action, leave the scaffold surface free for 

bacterial colonization; this is what could happen in vivo and, in this case, the most likely solution 

would be the implant to be removed, followed by intensive antibiotic therapies and a prolonged 

hospitalization period. 

 

Figure 23. Images of Agar germ plate at time zero, after 24h and after 1 week. Photos shows the absence of CFU 

on Agar germ plate for HA/βTCP_PEC/VCA_CHIT scaffold at already at low dilution of the starting solution. 
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In Figure 24, the count of proliferated CFU on the scaffold surface at different time points is 

reported. HA/βTCP_VCA scaffold shows a CFU count of 1.28 x 10
6 

at T0 and an increase of CFU 

at 1 week until 2.42 x 10
7
; this behavior is confirmed by the release study, where after 8 h 

HA/βTCP_VCA all adsorbed vancomycin has been released in a burst. HA/βTCP_PEC/VCA at T0 

released enough vancomycin to kill bacteria and to inhibit proliferation on scaffolds; CFU count of 

1.88 x 10
5
 increased at 24h 1 x 10

6
 till at 1 week, reaching CFU 3.75 x 10

6
.  The engineered 

HA/βTCP_PEC/VCA_CHIT scaffold shows a similar CFU count compared to the 

HA/βTCP_PEC/VCA one, in the first time due to the slow release, but control provided by PEI 

coating allows bacterial adhesion and proliferation to be maintained low until 1 week, which is one 

order of magnitude low with respect to HA/βTCP_PEC/VCA and two orders of magnitude lower 

compared to HA/βTCP and HA/βTCP_VCA scaffolds. As it was demonstrated by HPLC release, a 

controlled and prolonged release allows inhibition of bacterial growth and proliferation on the 

biomaterial surface, which means that the material developed, HA/βTCP_PEC/VCA_CHIT, shows 

a behavior that confirms its potential use as bone filler to prevent periprosthetic infection, inhibiting 

the first step of infection: the bacterial adhesion. 

 

 

Figure 24. Graph of CFU counted on Agar germ plate at different dilution, the data confirm the low density of 

bacteria adhered on the surface of engineered HA/βTCP_PEC/VCA_CHIT material.  The data are represented 

as mean ± standard deviation (n=4). (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, Two-way ANOVA with 

Tukey’s multiple comparison test). 

Bacterial adhesion test 

Nosocomial infections are the most frequent type of infections caused by Staphylococcus 

epidermidis, which is the most frequently bacterium found in periprosthetic infection
71

. Biofilm 

formation is a two-step process, in which Staphilococcus epidermidis, first adheres on the material 



114 

 

surface and through an accumulation it produces an extracellular polymeric substance forming a 

multilayer structure complex called biofilm
73

. The ability of bacteria to adhere and grow in a 

biofilm structure inhibits the reaction of the immune system, furthermore the polysaccharides 

structure that envelops bacteria protects them from the antibiotic effects. Our goal was to design and 

develop a complex system which was able to inhibit the adhesion of bacteria and the consequent 

biofilm formation, coupling both the effect of a widely and successfully used antibiotic, and a layer-

by-layer surface coating, exposing on the surface a chitosan layer, that has a well-known 

antimicrobial activity. In order to confirm that during the release process the proliferation and 

biofilm formation are controlled, SEM investigation was performed on the engineered scaffold 

HA/βTCP_PEC_VCA/CHIT material, in comparison with HA/βTCP, HA/βTCP_VCA and 

HA/βTCP_PEC/VCA samples (Figure 25). 

All samples, two for each case, were cultured with Staphylococcus epidermidis in as prepared (T0) 

conditions and after a release in physiological solution for 24 h and 1 week. Then, 5 SEM images 

for each sample have been taken on the surface of scaffolds, at three different magnification 2000X, 

5000X and 10000X. For each images at 10000X, Staphylococcus epidermidis were manually 

counted by ImageJ software and a percentage of area covered by bacteria respect the total area of 

the images was calculated. HA/βTCP sample, as already proven by the serial dilution test, shows 

high bacterial adhesion and growth at each time point. The microporosity on the surface and the 

interconnected macropores are perfect niches for bacterial proliferation. SEM images at 30000X 

show an initial accumulation of bacteria inside the pores and an early deposition of polysaccharides 

materials (Figure 26).   

The addition of vancomycin, just adsorbed on the ceramic surface (HA/βTCP_VCA), partially 

inhibits bacterial adhesion and proliferation at the first point, in as prepared condition; but at 24h 

and even more after 1 week of release, the presence of Staphylococcus epidermidis on the surface 

was similar to the HA/βTCP sample, furthermore at 1 week SEM images taken at 30000x show a 

cell-cell interaction and an initial deposition of extracellular polysaccharides matrix (Figure 26). 

Pectin_vancomycin complex (HA/βTCP_PEC/VCA) allows bacterial growth to be inhibited, in 

particular at time zero and after 24 h, then the coating’s degradation makes ceramic surface to be 

available and a later colonization to start at 1 week. 

A completely different situation was visualized for the engineered developed scaffold 

(HA/βTCP_PEC/VCA_CHIT), in which the presence of a bilayer on the surface, which entrapped a 

vancomycin drug active in a long-term release, inhibits the first adhesion step and, therefore, 

biofilm formation until 1 week of release (Figure 25, Figure 26).  
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Chitosan has been investigated for a long time as an antimicrobial material, in such a way that in 

last decades the tendency is to consider chitosan as a bacteriostatic material that hinders bacterial 

growth, rather than a bactericidal one
53

. Different mechanisms aimed at explaining how chitosan 

interacts with bacteria and inhibits growth are under investigations; the most probably hypothesis 

are as following: 1) wall cell leakage, due to ionic surface interactions, since chitosan is a 

polycationic material, 2) penetration of chitosan inside the nuclei of microorganisms which inhibits 

mRNA and protein synthesis and 3) suppression of nutrients necessary for microbial growth by 

formation of an external barrier
53,54

. Nowadays, it is not well understood which one of these 

mechanisms is the predominant one, probably a combination of effects is to take into account, but it 

is proven that chitosan has an antibacterial activity against gram positive and gram negative 

bacteria, particularly medium and low molecular weight chitosan. 
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Figure 25. All samples was kept in physiological solution at 37 °C for 24 h and 1 week, then Staphylococcus 

epidermidis was grown on the surface for 2 h and then a fixation process was performed in order to investigate 

the surface by SEM analysis.  SEM images of HA/βTCP, HA/βTCP_VCA, HA/βTCP_PEC/VCA, 

HA/βTCP_PEC/VCA_CHIT scaffolds in as prepared condition (T 0 h, no release), after 24 h of releasing and 

after 1 week of releasing. Images were taken at 10000x, scale bar 2 µm. Low bacterial adhesion on 

HA/βTCP_PEC/VCA_CHIT at each time point was detected. Images at different magnification as supplemental 

data.  

We report the percentage of the reference material surface area (660 µm
2
) covered by bacteria cells 

(Figure 27). As mean value of bacteria diameter, we consider 0.95 ± 0.12 µm that means an area of 

0.71 ± 0.18 µm
2 

(calculated as mean value on 180 measures). All samples, except for HA/βTCP 

scaffold, show a percentage of area covered by bacteria around 5 % of total area at time zero 
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(without release step). However, the results show that the area covered by bacteria on 

HA/βTCP_PEC/VCA_CHIT biomaterials is almost 10 fold lower at each time point compared to 

HA/βTCP scaffold. HA/βTCP_PEC/VCA scaffold shows a low value at time zero, then an increase 

is observed at 24 h and a value around 10 % is reached at 1 week of release. At 24 h, 

HA/βTCP_PEC/VCA scaffold is characterized by a great standard deviation that is mainly due to 

the non-homogeneity of the degraded pectin coating, which allows an accumulation of bacteria in 

some areas. HA/βTCP_VCA scaffold shows a trend demonstrated with serial bacterial dilution 

tests; the percentage of area covered by bacteria amounts to 10 % of total area at 24 h and rises to 

the value of 30 % at 1 week, which means that any kind of antibacterial effect is still present at this 

time point.  

 

Figure 26. SEM images of HA/βTCP, HA/βTCP_VCA, HA/βTCP_PEC/VCA, HA/βTCP_PEC/VCA_CHIT 

scaffolds in as prepared condition (T 0 h, no release), after 24 h of releasing and after 1 week of releasing .  

Images were taken at 30000x, scale bar 1 µm. After 1 week SEM images show a cell-cell interaction and an initial 

deposition of extracellular polysaccharides matrix, in particular on the surface of HA/βTCP and 

HA/βTCP_VCA scaffolds. 
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These results show that a bilayer PEI between pectin and chitosan is necessary to encapsulate drugs 

for a long term release and to inhibit bacterial adhesion, since after 1 week of release less than 2 % 

of total area analyzed is covered by bacteria and, furthermore, most of the bacteria found on the 

surface are poor adhered, only blocked by the folding of the coating. 

 

 

Figure 27. The percentage of surface area covered by bacteria was calculated respect the total area represented 

on 10000x images (a). The area of Staphylococcus epidermidis was calculated as mean value of 180 bacteria, and 

is equal to 0.71 ± 0.18 µm
2
 (diameter of 0.95 ± 0.12 µm (b). The total area analyzed for each images is equal to 

660 µm
2
. Five points for each scaffold (n=2) were analyzed, as it is represented by the schematic diagram (c). 

HA/βTCP scaffold was covered by bacteria for 30% of total area, at each time point. The addition of 

Vancomycin and Vancomycin-Pectin, inhibits bacterial adhesion until 24 h and 1 week, respectively. Only 

engineered HA/βTCP_PEC/VCA_CHIT scaffold allows antiadhesive properties against Staphylococcus 

epidermidis, up to 1 week. The data are represented as mean ± standard deviation (n=5).  

 

In vitro study 

Developing a new composite bone filler using ceramic and polysaccharides material is important to 

check if some inflammatory responses are generated. Furthermore, prevention strategies of 

periprosthetic infection should involve bacterial growth inhibition as well as osteoblast proliferation 

promotion, with the aim to reach new bone formation. Specific ceramic scaffold’s microarchitecture 

could allow cell infiltration and bone growth inside the scaffold, in particular HA and βTCP 

components have already shown a great potential in bone regeneration, since they are the principle 

inorganic component of bone. Ideally, PEI coating would guide soft tissue regeneration in the first 

times after surgery, avoiding connective tissue infiltration inside the bone substitute, since it has a 

faster growth and through ceramic interaction with osteoblast cells promoting bone formation, 

meanwhile controlling bacterial infection. 
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Inflammatory response 

We performed an RT-PCR gene expression on HA/βTCP, HA/βTCP_VCA, HA/βTCP_PEC/VCA 

and HA/βTCP_PEC/VCA_CHIT scaffolds after 4 h of macrophage cells culture. Gene expression 

analysis on IL-1β, IL-10 and MCP1 were conducted by real time RT-PCR (Figure 28). The target 

of this test was to understand if the different steps of functionalization could stir up an inflammatory 

response, compared to HA/βTCP ceramic scaffold, which were set as a control. As it is reported, no 

material elicits a pro-inflammatory response, IL-1β and MCP1 gene fold expressions are 

comparable to the HA/βTCP ceramic control, which means that neither HA/βTCP_VCA nor 

HA/βTCP_PEC/VCA and HA/βTCP_PEC/VCA_CHIT stimulate an inflammatory response. 

HA/βTCP_PEC/VCA_CHIT shows a 3-fold expression higher compared to other samples tested for 

IL-10 gene.   

 

Figure 28. Gene expression of macrophages after 4 h of cell culture. a) Fold expression of cytokines IL-1β, Il-10 

and chemokines MCP1 for HA/βTCP_VCA, HA/βTCP_PEC/VCA and HA/βTCP_PEC/VCA_CHIT scaffolds 

respect the ceramic control HA/βTCP scaffold. Results demonstrated that any material stimulates a pro-

inflammatory response, and that PEC_VCA_CHIT coating elicits anti-inflammatory response, with a higher 

expression of IL-10. The data are represented as mean ± standard deviation (n=3). (*p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001, Two-way ANOVA with Tukey’s multiple comparison test). 

If implanted materials rose a local inflammatory response, the immune system would be activated
74

. 

Propagation of this local inflammation would activate the release of a set of cytokines and, if not 

controlled, could promote bone resorption and, consequently, implant’s failure. Bone resorption 

occurs when inflammatory mediators reach a critical concentration, which depends on the 

expression of pro-inflammatory cytokines, such as the Interleukin (IL) family, of which IL-1β is the 

most studied member due to its role in acute and chronic inflammatory and autoimmune disorders, 
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and chemokines, a family of chemoattractant cytokines which major role is the selective recruiting 

of monocytes, neutrophils and lymphocytes. Besides IL-1β primary action, monocyte 

chemoattractant protein-1 (MCP-1), the first discovered human CC chemokine, regulates migration 

and infiltration of monocytes/macrophages, thus contributing to raise a response aimed at 

eliminating invading pathogens through phagocytosis. On the opposite site, the inflammatory level 

is controlled by the expression of anti-inflammatory cytokines, such as IL-10. In normal 

physiological conditions, there is a balance between bone formation and bone resorption, and as it 

happens in certain inflammatory conditions, this balance can be altered. This equilibrium is 

regulated by the relative expression of proteins such as receptor activator of nuclear factor kappa-B 

(RANKL) and the soluble decoy receptor osteoprotegerin (OPG). During an inflammation response, 

RANKL/OPG ratio is altered by the action of pro-inflammatory cytokines, such as IL-1β that 

induces osteoclastogenesis, increasing the expression of RANKL, while counteraction by anti-

inflammatory mediators, such as IL-10, decreases RANKL or increases OPG, in order to inhibit 

osteoclastogenesis. The results elucidate that PEI coating stimulates the expression of an anti-

inflammatory mediator; in vivo, this stimulation could help in controlling inflammation and in 

promoting bone formation.  

Osteoblast-like cell culture 

Adhesion and proliferation of osteoblastic SAOS-2 cells are demonstrated through SEM 

investigations (Figure 29). An excellent colonization could be observed on HA/βTCP scaffold after 

1 week of cell culture, on which substrate cells appeared well adherent with many filipodia 

protrusions. HA/βTCP_PEC/VCA_CHIT scaffold shows a good osteoblast colonization, in 

particular where HA/βTCP phase is directly available for cell adhesion, cells appear well spread and 

strong philipodia protrusions were observed. Polyelectrolyte coating did not interfere with 

osteoblast proliferation
38

, instead as it is possible to observe from SEM images, only pectin coating 

avoids cell adhesion, on the calcium phosphate surface, too.  

HA/βTCP_PEC/VCA_CHIT scaffold provides an excellent substrate for osteoblast adhesion, 

spreading and proliferation, and it is confirmed that the vancomycin released is not cytotoxic 

against osteoblast growing cells. HA and βTCP have been widely used as bone filler materials, 

since they are similar to the inorganic phase of natural bone. Many studies show the 

biocompatibility and the attitude to promote bone formation in vivo, furthermore highly porous 

calcium phosphate scaffolds have been demonstrated to enhance osteoprogenitor cell proliferation 

and infiltration
16–18

. However, the major concern against antibiotic release in situ is related to the 

biocompatibility with the surrounding tissues, research work showing that, along all tested 
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antibiotic, vancomycin shows excellent antibacterial activity against germs and the lowest 

osteoblasts cytotoxicity
75

 . 

 

Figure 29. SAOS-2 osteoblast adhesion and proliferation after 1 week were investigated by SEM, after 

glutaraldehyde fixation. An excellent adhesion and spreading was observed on HA/βTCP scaffold. A very low 

cell adhesion was present on the surface of HA/βTCP_PEC/VCA scaffold, as well on the ceramic exposed part. A 

good cell adhesion and philipodia protrusion was observed on HA/βTCP_PEC/VCA_CHIT scaffold, in 

particular on the ceramic exposed part.  
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4.4.3 Conclusion 

Dental infections caused by infected orthopedic implants may cause devastating consequences, 

since they involve the removal of foreign body and damage tissue from a wound.  A multitude of 

surgical procedures are necessary, coupled to an intensive systemic antibiotic therapy, furthermore 

the poor antibiotic penetration inside the infected bone and the specific interaction of the bacteria 

with the foreign body could result in a re-infection of the site. However, leaving the bone defect 

untreated could allow connective tissue infiltration and a loss in the mechanical stability. Bone 

defects have to be filled with a scaffold that could provide a local administration of antibiotic drug, 

could control the infection and could address bone regeneration before a new implant could be 

inserted. In this study, we developed a new-engineered biphasic calcium phosphate scaffold 

functionalized with a pectin and chitosan polyelectrolyte, loaded with vancomycin, 

HA/βTCP_PEC/VCA_CHIT. Performed tests show good mechanical properties and stability during 

degradation in different pH test solutions, coupled with an excellent antibacterial property along 1 

week. Release studies demonstrated that the developed coating allows a long-term release, 

confirmed by SEM investigation on biofilm formation on the surface of scaffolds. Anti-

inflammatory responses have been stimulated in in vitro studies with macrophages and 

polyelectrolyte functionalization does not interfere with osteoblasts growing. 

HA/βTCP_PEC/VCA_CHIT scaffold could be used as new and effective tools to prevent or treat 

periprosthetic infection in bone and dental procedures. 
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4.5 NOVEL BIOCERAMIC-REINFORCED HYDROGEL FOR 

ALVEOLAR BONE REGENERATION 

 

 

Figure 30. Graphical abstract of the bioceramic-reinforced hydrogel. 

 

4.5.1 Introduction 

The restoration of teeth by using titanium dental implants is nowadays a quite common procedure
1
. 

The American Association of Oral and Maxillofacial Surgeons reported that 69% of adults aged 35 

to 44 have lost at least one permanent tooth and, by age 74, almost 26% of adults have lost all of 

their permanent teeth. More than 300,000 dental implants are placed per year worldwide and, until 

2020, this number is expected to increase
1,2

. Tooth loss is a possible consequence of traumas or 

periodontal diseases, such as gingivitis, periodontitis or tissue decay. The rate of success of dental 

implants is around 98%, but it should be taken into account that the positive fate of a surgical 

procedure involving the insertion of a titanium screw still depends on the quality and quantity of 

alveolar bone which is present in the extraction site. In order to get a successful implant insertion, 

the alveolar ridge should have a minimum dimension, which is of 5 mm of width in the maxilla and 

of 10 mm of bone height
3
. If these dimensions are not available, an augmentation strategy will be 

necessary using grafting procedures. A huge alveolar bone loss of around 2 mm in vertical and 

almost 50% in horizontal occurs in the first 6 months after surgery; a continuous bone resorption 

occurs if no treatment is provided during the next years after the extraction procedure, and an 

average of 60% of bone loss could be reached in 3 years
4–9

. These results show the importance of 

the implementation of a strategy aimed at augmenting the alveolar bone volume to provide a stable 

support for the implant and the future crown. The common use of autografts or allografts is affected 

by the morbidity and the risk of disease transmission associated with the donor site, thus the use of 

man-made bone graft biomaterials is more and more attractive
10–12

. A bone graft material should be 
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biocompatible, degradable, osteoconductive, osteoinductive and should mimic the ECM of bone, in 

order to allow cell infiltration, proliferation and new bone formation. Hydroxyapatite (HA) and β-

tricalcium phosphate (βTCP) are well-known ceramic materials, widely used in bone tissue 

engineering as bone grafts in the form of particles or three-dimensional scaffolds
13–15

. HA 

(Ca10(PO4)6(OH)2) is the most abundant component in native bone, around 65% of inorganic phase, 

but despite many studies show osteoconduction stimulation and excellent mechanical properties, the 

slow degradation rate of HA limits its use as a bone filler only
16–18

. Combination of HA with βTCP 

allows the degradation properties to be managed, since βTCP materials have a degradation rate 3 – 

12 times faster than HA, and mechanical properties to be maintained good
19

. The balance between 

HA and βTCP is a key point to obtain mechanical strength, degradation and, ultimately, to stimulate 

osteointegration. Animal studies demonstrated that HA/βTCP biphasic materials in the rate of 25/75 

allow new bone formation
15

. In the irregular post-extractive site, it is important to use materials 

which can fill the void, be shaped in an easy manner and be not prone to migration, hence particles 

and three-dimensional rigid scaffolds are not the best choice. To overcome this issue, we developed 

a pectin/chitosan-based polyelectrolyte hydrogel reinforced with biphasic calcium phosphate 

particles. Chitosan is a natural polycationic material derived from chitin extracted from crustaceous 

exoskeleton, composed of β – (1,4) – glucosamine and N-acetyl-D-glucosamine and, due to its 

biocompatibility, its intrinsic antibacterial nature, its ability to not stimulate a foreign body reaction, 

and its promotion of cell adhesion, proliferation and differentiation, it has aroused great interest in 

finding many applications in bone tissue engineering
20,21

. Furthermore, chitosan has a backbone 

similar to glycosaminoglycan, the major component of bone ECM
22,23

. In order to stabilize the 

structure, we coupled chitosan with a natural polyanionic polysaccharide, pectin, which is a major 

component of cell walls of citrus or apple peel by-products. Pectin consists in a poly(D-galacturonic 

acid) chain, with a carboxyl group, in part methoxylated
24

. In the last decades, pectin has found 

promising application in bone tissue engineering as a drug carrier and, in this work, the ionic 

interactions that occur between chitosan and pectin were used to develop a novel hydrogel which 

could mimic an ECM-like environment for osteoblast cells
25–27

. Combining ceramics with natural 

materials provides many advantages, in particular for dental practice: shape control, optimization of 

adhesion between implant and surrounding bone tissue, easy adaptation of the extraction site, 

promotion of clot formation and avoiding ceramic particles migration
16,23,28–30

.  
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4.5.2 Results and Discussion 

In this work, we designed, developed and characterized a composite hydrogel sponge, which 

combines the advantages of calcium phosphate materials with those of natural materials, and we 

compared it with base hydrogel materials.  

 

4.5.2.1 Chemical characterization 

ATR-IR analysis 

ATR-IR spectra reported in Figure 31 a show the spectra of pectin, chitosan, pectin/chitosan 

polyelectrolyte complex (PC), HA/βTCP particles and pectin/chitosan_HA/βTCP composite 

hydrogel (PCC). The analysis confirms that all peaks belong to inorganic material; in particular, 

triply degenerated asymmetric stretching mode (ν3) of the P-O bond of the phosphate group  is 

associated to the peaks at 1125 cm
-1

 for tricalcium phosphate and at 1025 cm
-1

-1010 cm
-1 

for 

hydroxyapatite
15,31

. Typical spectra of polysaccharides were shown by pectin and chitosan powder. 

The region between 3700 cm
-1

 and 3000 cm
-1

 for pectin and chitosan is assigned to the O–H 

stretching vibration (νOH), while the region between 3000–2800 cm
-1

 belongs to C-H stretching 

vibration (νCH)  (Figure 31 a). Deeper analysis on pectin spectra shows two bands associated with 

the stretching vibration at 1740 cm
-1

 of carbonyl group, corresponding to the methyl ester group 

(COOCH3) and carboxyl acid (COOH), while the band at 1606 cm
-1

 belongs to the stretching 

vibration of the carbonyl group of the carboxylate ion (COO
-
) (Figure 31 b). Concerning chitosan 

spectra, the band at 1647 cm
-1

 is due to the C=O stretching vibration of amide I, whilst the band at 

1580 cm
-1

 is due to the NH bending amide II, maybe overlapped to the N-H vibration of the amine 

groups (Figure 31 b). Band assignment is consistent with available literature
32,33

. PC spectra show 

the formation of PEI complex; a shift of amine band to 1557 cm
-1

 due to the interaction between the 

positive charge of chitosan, NH3
+
, and the negative charge of pectin, COO

- 
, was detected (Figure 

31 b). As expected, the spectra of PCC sample show bands associated with both the PEI complex 

and the inorganic phase; in particular, the band at 1557 cm
-1

 and those between 950 cm
-1

 and 1140 

cm
-1

, respectively (Figure 31 b) 
34

. 
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Figure 31. (a) ATR-IR spectra of pectin and chitosan powder, HA/βTCP ceramic particles, PC hydrogels, PCC 

composite scaffolds. (b) ATR-IR spectra focus between 2000 cm
-1

 and 500 cm
-1

 of materials, show the shift of the 

amine band to 1557 cm
-1

, and the bands belonging inorganic phase, at 950 cm
-1 

and 1140 cm
-1

. 

 

4.5.2.2 Structural characterization 

µCT and SEM analysis 

Three-dimensional scaffolds should allow cell-infiltration and facilitate vascular invasion. 

Furthermore, it is necessary that the ceramic particles are homogenous dispersed in the natural 

matrix, in order to promote uniform osteogenesis. Both, micro-porosity and macro-porosity, are 

important morphological properties
35,36

. Micro-porosity promotes blood vessel infiltration, nutrients 

transportation and allows the clot formation that is important to promote the healing process. On the 
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other side, macro-porosity allows cell infiltration and new bone growth
37,38

. Capillary test using red 

ink, qualitatively shows the porosity interconnection of the PCC material, which could adsorb the 

solution in around 5 seconds (Figure 32). Furthermore, after hydration, if a compressive stress is 

applied on the samples, the solution is expulsed from the matrix, but after removal of the stress the 

PCC material is able to re-adsorb all the solution, without any permanent deformation. The material 

works as a bearing, which is an important characteristic in order to avoid inflammatory response on 

the surrounding tissue due to the stiffness of the material, in particular in application at the interface 

between hard and soft tissues. Furthermore, the ability to adsorb water and retain it into the matrix 

allows formation of a clot in the wound site, which is the first step to stimulate the migration of 

bone cells into the scaffold, and to promote regeneration of alveolar bone. In alveolar bone 

regeneration, the use of sponges is desirable, since they could easily fit into the irregular alveolar 

bone defect, be simply cut with scissors or a lancet, and easily molded in the periodontal cavity  

(Figure 32)
16,38,39

.  

 

 

Figure 32. Easy mouldability of composite scaffold, highly hydration properties (water colored with few drops of 

red ink was used for this qualitative hydration test) and capacity to recover the initial shape after a compressive 

stress. 

A µCT study  (Figure 33 a) confirmed the results of SEM analysis. Pore size distribution for PCC 

sample is in the range around 100 - 250 µm, while the PC scaffold has a pore size distribution 

which goes until 600 µm, with most pores located between 250 and 300 µm (Figure 33 b). Direct 

comparison of mean pore sizes (St.Sp) further confirms the decrease of pore dimension due to the 

introduction of ceramic particles (250 vs. 120 µm). The total porosity decreases by adding ceramic 

particles, too, from around 74% for PC sample to 55 % in the case of PCC scaffold.  
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Figure 33. (a) μCT images confirm SEM investigation and reveal uniform distribution of ceramic particles in the 

pectin_chitosan PEI matrix. (b) Pore size distribution of PC and PCC scaffold, the addition of ceramic particles 

reduces the pore size. (c) 2-D development of PC and PCC scaffold, obtained by placing the analysis planes [xy] 

and [yz] in the mid-length, and moving the [xz] plane from the bottom to the middle and until the top of the 

length of the scaffold; and 3-D reconstruction of the central (approximately mid-length) cross-section along the 

[xy], [xz] and  [yz] orthogonal planes.  

In Figure 34, SEM analysis at different magnifications for PC and PCC samples are reported. The 

addition of ceramic particles reduces the pore size and the total porosity, but reinforces the 

trabeculae and the structure of the materials. Furthermore, the dispersed particles are well 

distributed in the PEI matrix. In vitro and in vivo studies show that a porosity up to 50 %, and pore 

size in the range between 100 to 400 µm are the optimum for bone healing and show higher alkaline 
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phosphatase activity and new bone formation compared with materials with a porosity lower than 

100 µm and higher than 400 µm
40

.  

 

 

Figure 34. (a) SEM investigation of PC and PCC scaffolds, highly interconnected pores are shown for PC 

scaffold; the incorporation of ceramic particles reduces the porosity and pore size of the material. 

 

 

 



133 

 

4.5.2.3 Mechanical characterization 

Compression test 

The incorporation of ceramic particles into soft hydrogel scaffolds is a valuable strategy to improve 

the mechanical properties of the base material
41,42

. A compressive test was performed on PC and 

PCC scaffolds, and the results are show in Table 3 and in Figure 35. The addition of HA/βTCP 

particles increases the compressive strength, the stress strain and the toughness of the material, both 

in as prepared and hydrated condition. Compressive elastic modulus for PC scaffolds was 1005.3 ± 

250.0 kPa in as prepared condition, instead was two-fold higher for PCC scaffold, 2559.33 ± 595.6 

kPa. Hydration kinetics data show that the water uptake at pH 7.4 was higher in both case and, 

therefore, the compressive elastic modulus decreases to 33.3 ± 7.6 kPa for PC material and until 

65.4 ± 8.97 kPa for PCC scaffolds. Alveolar bone regeneration is a low-bearing application, where 

providing stability and three-dimensional shape for functional and aesthetic reasons is more 

important than mechanical strength
16,43

. PC materials show a soft structure, and the incorporation of 

ceramic particles inside the PEI matrix makes the material tougher (Table 3). For example, the 

toughness was 34.28 ± 4.02 kJ/m
3 

and 222.86 ± 1.94 kJ/m
3
 for PC and PCC scaffold respectively, in 

as prepared conditions. There is a relative paucity of literature dealing with the toughness of bone 

tissue engineering scaffolds and, thus, comparison with previous works is difficult; however, it is 

interesting to point out that the toughness of PCC scaffold is ten times higher than that assessed for 

single-phase glass-ceramic porous scaffolds
44

. After 24 h at 37 °C in a solution with pH 7.4, both 

hydrated samples show a decrease of toughness (2.38 ± 0.46 kJ/m
3
 for PC scaffold and 12.04 ± 2.05 

kJ/m
3
 for PCC scaffold) compared to as prepared materials. A similar behavior was also found by 

Liu et al. on bioglass scaffold
45

. The toughness of PCC material in hydrate conditions is 

comparable, as order of magnitude, to the value found by other authors for hydroxyapatite 

scaffolds
46

. Ceramic particles, as expected, reduce the porosity but mechanically reinforce the 

scaffolds, maintaining a range and a degree of porosity that should still allow cell infiltration and 

proliferation
35

.  

 

Table 3. Table reporting compressive modulus, stress and toughness parameters.  
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Figure 35. Stress – strain curves for PC and PCC scaffolds in as prepared and hydrated conditions. 

Cyclic stress is a common situation under which the scaffolds used for alveolar bone regeneration 

are subjected. The stability and integrity of the scaffolds are the most important properties that they 

should have, since material fragmentation could provoke an inflammatory response and a huge 

deformation could cause the collapse of the defect. Hydrogel PC scaffolds show a stable energy 

adsorbed (and recovery network) from the 5
th

 to the 100
th

 cycle, the addition of 90% of ceramic 

particles does not affect too much the trend, the energy adsorbed was slightly higher for the PCC 

composite due to the reduced mobility of the PEI network. The results are affected by the 

deformation of swollen surface of the samples, that does not return instantaneously to the original 

shape after cessation of compression stress. After 100 cycles, no fragmentation was detected for 

both samples, furthermore the sample left without load to recover the shape for 5 minutes, showed a 

variation of the final diameter with respect to the initial diameter of 1.4 ± 0.59 % and 7.52 ± 1.32 % 

respectively for PC and PCC materials (more than 90 % of recovery for both samples). This means 

that, in vivo, the PCC scaffold is able to maintain the shape and to avoid the collapsing of the site 

(Figure 36). Furthermore, tooth extraction site has a non-regular shape, hence ensuring the 

possibility to customize the dimension of the material in order to fit the socket is an important 

characteristic for dental practitioner. In alveolar bone regeneration, the use of sponges is desirable, 

since they could easily fit in to the alveolar bone defect, and could be simply cut with scissors or a 

bistoury, and easily molded in the periodontal cavity
16,38,39

. The addition of calcium phosphate 

particles, doesn’t influence the mouldability of the PC hydrogel base material. 
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Figure 36. PC and PCC samples were subjected to cyclic strain, in fully hydrated condition and the loading and 

unloading curves were monitored for hundred cycles. Energy adsorbed and recovery percentage were monitored 

for PC and PCC samples every 10 cycle. The incorporation of calcium phosphate particles increases the strength 

of the scaffold, but does not reduce the recovery ability of the PCC scaffold, which is similar to the PC material.  

The data are represented as mean ± standard deviation (n=3). 

 

4.5.2.4 Physical characterization  

Hydration studies at different pH 

A high degree of swelling allows cell infiltration into the scaffolds and maximizes the probability of 

cells growth in a three-dimensional structure
29

. Furthermore, high swelling behavior improves the 

ability of the scaffold to adsorb nutrients from the culture media; chitosan/pectin complexes are 

formed by a ionic interaction between positive charges of chitosan and negative charges of pectin, 

hence, the PEI network exhibits a pH-sensitive swelling
47,48

. We tested the swelling behavior in 

three different solutions with three different pH 2.5, 5.5 and 7.4, and the results are shown in Figure 

37. PC based hydrogels showed a significant different behavior depending on the pH of the 

solution. Changing the pH of the solution, the degree of interaction between pectin and chitosan 

changes and the swelling increases or decreases, depending on the degree of dissociation of the 

complex (Figure 37 a). At low pH values (2.5), pectin is neutralized and free positive charges 

(NH
3+

) appear in the network; COOH from pectin chain allows the swelling of the material until the 

value of 1460.42 ± 81.33 % of the initial mass, after 6 h. After 24 h PC, hydrogels soaked in a 

solution of pH 2.5 showed a huge increase in the water uptake; this behavior could be associated to 

the total degradation of pectin and to the loss of PEI network that allows the highest water 
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adsorption, 2495.34 ± 33.87%. At alkaline pH (7.4), free negative charges appear inside the 

network, since at higher pH chitosan is partially neutralized, and the PEI network will be loosen, 

allowing a percentage of solution uptake equal to 1880.16 ± 218.8 %, after 6 h. At pH 7.4, the 

partial neutralization of NH
3+

 has not caused a total loss of the PEI network, since chitosan has still 

some ionized group bonded with COO
-
 of the pectin chain. However, after 24 h, the swelling ratio 

started to decrease, due to an initial degradation of the network. Since the pKa of pectin is 4.0 and 

that of chitosan is 6.0, at the pH of 5.5 over 99% of pectin is still in its ionized form and chitosan 

exists as both ionized form NH
3+

 and unionized form NH2. The swelling percentage of PC network 

in the solution with a pH of 5.5, was 1443.77 ± 14.4 % after 6 h; then, the ability of the network to 

adsorb the solution reduces. However, due to the presence in the network at pH 5.5 of 

intramolecular H-bonding between COOH3 and OH, which makes more stable the PEI matrix, the 

PC hydrogels after 24 h at pH 5.5 show a lower swelling degree (687.69 %) compared with the PC 

hydrogel at the pH of 7.4 and 2.5. Addition of HA/βTCP particles stabilizes the swelling properties 

of the PC based hydrogel (Figure 37 b). Indeed, no significant differences were measured (two-way 

ANOVA test reveals no significant difference between PCC scaffold at different pH) during the 

hydration kinetics in the three different solutions (pH of 2.5, 5.5, 7.4) (Figure 37 b). Furthermore, 

as expected, the maximum water uptake was lower for PCC scaffold compared with the PC 

hydrogel: for example, the swelling degree for PC scaffold at pH 7.4 was after 6 h about 275.05  ± 

35.45 %, almost 10 folds lower than the value reported for PC hydrogel at the same pH. The 

maximum percentage of solution uptake for PCC material was reached after 2 h and was stable until 

24 h. As already reported for PC hydrogels, also in the case of PCC samples the lowest value of 

water uptake was shown for the sample soaked in the solution at pH 5.5. Providing a stable material 

could allow the dental practitioners to use the scaffold independently of the environment, since it 

will work always at the same manner (Figure 38). Furthermore, the swelling of the PCC scaffold is 

high enough to ensure cell infiltration and nutrient transportation, and a mechanical strength is still 

maintained. The incorporation of ceramic particles into the PC matrix reduces the swelling 

capability of the materials, which is maybe due to the interaction between the particles and the 

network. In particular, pectin carboxylic groups could be ionically crosslinked by calcium ions 

(Ca
2+

), thereby forming the so-called “egg box” structure, where a divalent cation is bonded with 

different carboxylic anions
24

. Furthermore, the high percentage of ceramic particles used in this 

work (90 wt.%) reduces the influence of the PC matrix in the swelling properties (Figure 38).  
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Figure 37. Hydration kinetics, of PC and PCC scaffolds, was tested in different pH conditions, 2.5, 5.5 and 7.4 

within 24 h (a).  PCC material results more stable and less sensible at pH variation than PC scaffold that show 

high water uptake at pH 2.5 and 7.4 due to the neutralization of NH
3+

 at high pH and COO
-
 at low pH, which 

causes the loss of the PEI network (b). The results are reported as mean ± standard deviation (n=3), (*p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001, two-way ANOVA with Tukey’s multiple comparison test). 
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Figure 38. Optical images show the samples in as-prepared condition (T0) and the swollen sample at different 

pH, after 24 h. 

Degradation properties at different pH  

After implantation, the composite hydrogel should degrade, and new bone should form and replace 

it. Furthermore, during degradation, the osteconductive HA/βTCP ceramic particles come into 

direct contact with the newly formed bone and should further promote osteointegration. The 

degradation behaviors of PC and PCC samples have been tested in three different conditions of pH 

(2.5, 5.5, 7.4) for 1 week and the results are shown in Figure 39.  During the degradation process, 

the mechanisms are similar to those obtained during the hydration kinetics, since the solutions used 

were the same
49

. PC hydrogel shows the highest degradation rate at pH 2.5 with almost 100 % mass 

loss after 1 week; this mass loss was twice compared to that of PC at pH 7.4 and almost three times 

with respect to the base hydrogel at pH 5.5, which lost around 40% of the initial mass (Figure 39 a, 

b). At the pH of 2.5, the PEI network will be loosen due to the neutralization of the pectin. The 

same behavior is reported for the PCC sample, that lost around 40 % of the initial mass after 1 week 

in the solution at the pH of 2.5. These results are partly due to the neutralization of COO
-
 ions, and 

in part to the dissolution of ceramic particles in a highly acidic environment. Furthermore, the ionic 

interaction between the two polymer chains is reversible and non-permanent, so in aqueous solution 
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this association is gradually reduced and then lost with time. PCC scaffolds tested in the solution at 

pH of 5.5 and 7.4 showed a similar percentage of initial mass loss, around 10 %. The addition of 

ceramic particles makes the materials more resistant and less susceptible to pH variation (Figure 38 

c).    

 

Figure 39. Degradation behavior of the PC and PCC materials was studied during 1 week in different pH 

condition. Slow degradation rate was recorded for PCC scaffold at pH 5.5 and 7.4 (around 10 %), while a higher 

degradation percentage with respect to the initial mass was observed at pH 2.5, maybe due to the high solubility 

of calcium phosphate at low pH (a). PCC material showed high degradation rate in particular at low pH 2.5, and 

a pH 7.4; slower degradation rate was calculated at the pH of 5.5 (b). Optical images of PC and PCC scaffold 

during degradation test (c). The results are reported as mean ± standard deviation (n=3), (*p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001, two-way ANOVA with Tukey’s multiple comparison test). 

 

4.5.2.5 Biological characterization 

Osteoblast-like cell culture 

Adhesion, spreading and morphology of osteoblast-like cells cultured for 14 days are shown in 

Figure 40. SEM images show that, after 72 h, SAOS-2 cells seeded on the PC scaffold surface 

exhibit a round shape and low density, followed by high proliferation and formation of a network of 

cells. In particular, SEM images after 2 weeks show the formation of large cords of cells, which 

prefer to stay together rather than adhering and spreading on the surface of the materials (Figure 40 
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a).  The addition of ceramic particles increases the adhesion and proliferation of osteoblast cells at 

72 h, and the SEM images reveal that, after 2 weeks, SAOS-2 cells are completely adhered on the 

surface and infiltrated inside the porosity, forming bridges and creating a strong and consistent layer 

of cells (Figure 40 b). The higher attachment and proliferation of cells on the PCC material are due 

to the presence of the calcium phosphate phase that conducts osteoblast proliferation
50

. 

Furthermore, the addition of micro-particles increases the roughness and the area of the surface, 

which promote the osteoblast proliferation and adhesion
30

. Since PC and PCC materials show 

different cell morphology at two weeks but both demonstrated cytocompatibility and high 

proliferation, we thus performed ALP gene-expression after 7 days of SAOS-2 cell culture. The 

results are reported in the bar graph in Figure 41, demonstrating that the presence of HA/βTCP 

particles in the PCC composite scaffold promotes ALP activity, which is 3-fold higher than that of 

PC-based hydrogel. In vitro studies show a good biocompatibility of PCC scaffold, furthermore the 

addition of ceramic particles could promote alveolar bone formation and infiltration inside the PCC 

composite hydrogel. 
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Figure 40 (a,b). Adhesion and proliferation of osteoblast-like cells were investigated by SEM analysis on PC (a) 

and PCC (b) scaffolds at 72 h and after 2 weeks. HA/βTCP particles promote adhesion and proliferation of 

SAOS-2 cells after 72 h and a confluent layer of cells after 14 days was detected.  

 

Figure 41. ALP gene expression after 1 week of osteoblast-like SaOS-2 cells culture. Gene expression analysis 

reveals that PCC scaffold promotes Alkaline Phosphatase expression, 2 folds more than PC based hydrogel. Both 

materials are cytocompatible and promote cell proliferation, but the presence of ceramic particles enhances the 

formation of new mineral matrix, which means that it could be an excellent tool for alveolar bone regeneration. 

The results are reported as mean ± standard deviation (n=4), (*p<0.05, **p<0.01, Student’s t-test). 
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In order to better analyze the osteogenic response of the cells in contact with the material 

developed, Saos-2 cells were grown in medium culture with insertion of the two different scaffolds 

and, at different time points (24 h and 72 h), were collected in order to perform RT-qPCR (Figure 

42). The RT-qPCR results show, for PCC scaffold, a progressive increment in the expression fold 

values of Collagen I (2.0 at 24h, 3.0 at 72h), Osteopontin (3.0 at 24h and 13.0 at 72h), Runx2 (2.3 at 

24h and 3.0 at 72h), ALP (2.0 at 24 and 4.0 at 72h) and SPARC (2.3 at 24h and 7.0 at 72h) 

compared to controls (polystyrene), and PC scaffold providing the hypothesis that cells in culture 

medium with the presence of ceramic particles produce more elevated levels of early osteogenic 

markers implicated in matrix deposition and differentiation phases, compared to controls. A 

different trend is seen in the expression of osteocalcin, which is downregulated at time point 24h, 

while at 72h a three-fold expression compared to controls can be appreciated. Given that OCN is a 

late osteogenic marker, whose expression is regulated by the transcription factor Runx2, it can be 

hypothesized that the increment in fold expression of Runx2 seen at time point 72h, positively 

regulates OCN after time point 24h.   

 

Figure 42. Gene expression after 24 h and 72 h of osteoblast-like SAOS-2 cells culture on PC and PCC scaffolds. 

The principal osteogenic genes have been analyzed (COLL1A1=Collagen, OPN= Osteopontin; 

OCN=Osteocalcin; RUNX2=Runt-related transcription factor 2; ALP= Alkaline Phosphatase; SPARC= 

Osteonectin), and the results confirm that the presence of ceramic particles in the polysaccharides matrix allow 

the production of more elevated levels of early osteogenic markers, compared to the control. The results are 

reported as mean ± standard deviation (n=4). 
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Inflammatory response of the surrounding cells 

Gene expression analysis on IL-1β, IL-6 and IL-10 is reported in Figure 43. Inflammatory response 

was evaluated on cells grown on the polystyrene in presence of PC, PCC and without the scaffold. 

The test was assessed in order to evaluate the possible inflammation that could be provoked by the 

implanted material on the surrounding tissue. Degradation products, chemical composition and 

swelling behavior could influence the response of the surrounding tissue; if the material does not 

stimulate any cytokines expression, a foreign body reaction is avoided. As shown in Figure 43, no 

material elicits a pro-inflammatory response, the expression of IL-1β and IL-6 are comparable 

between the cells grown in presence of PC and PCC and with the control polystyrene alone. A slight 

increase in the expression of IL-10 was reported for PCC material compared with the polystyrene 

control, conversely no significance was assessed to the increase of IL-10 for PC material. Bone 

resorption occurs when inflammatory mediators reach a critical concentration, which depends on 

the expression of pro-inflammatory cytokines, such as the interleukin (IL) family, of which IL-1β is 

the most studied member due to its role in acute and chronic inflammatory and autoimmune 

disorders. On the opposite site, the inflammatory level is controlled by the expression of anti-

inflammatory cytokines, such as IL-10. In normal physiological conditions, there is a balance 

between bone formation and bone resorption, and as it happens in certain inflammatory conditions, 

this balance can be altered. This equilibrium is altered by the action of pro-inflammatory cytokines, 

such as IL-1β that induces osteoclastogenesis, while counteraction by anti-inflammatory mediators, 

such as IL-10,  inhibits osteoclastogenesis. An anti-inflammatory response seems to occur in both 

PC and PCC scaffold, although a slight increase of IL-10 gene expression was detected in the latter 

compared to the former  (Figure 43). The hypothesis is that this anti-inflammatory could be due to 

the pectin properties, which has shown an anti-inflammatory behavior in many studies
51–53

. Further 

and in-depth studies have to be done in order to fully elucidate this behavior, but this study confirms 

that PCC could be used as a safe bone graft for alveolar bone regeneration, without the risk of 

inducing inflammation in the surrounding tissue.  
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Figure 43. Inflammatory response of the macrophages cells surrounding the material. Gene expression of IL-1β, 

IL-6 and IL-10 of cells grown in contact with PC and PCC scaffold. Both material do not show any pro-

inflammatory response. The results are reported as mean ± standard deviation (n=4), (*p<0.05, two-way 

ANOVA with Tukey’s multiple comparison test). 
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4.5.3 Conclusion  

Alveolar bone regeneration is a procedure that requires a biomaterial with some peculiar 

characteristics such as mouldability in order to fill the irregular void, biodegradability, swelling 

capacity to promote infiltration of nutrients and avoiding inflammatory response on the surrounding 

tissue, osteoconduction and promoting new bone formation. Composite scaffold comprising a 

pectin/chitosan base hydrogel filled with HA/βTCP particles (PCC) were successfully prepared and 

characterized. The results show that PCC material has a good stability in different pH condition, 

with a high swelling degree (up to 200 % of the initial weight). Mechanical characterization 

demonstrated that the addition of ceramic particles increases the mechanical strength compared to 

the base hydrogel (toughness of PCC scaffold was around 220 kJ/m
3
, and compressive elastic 

modulus was 2.5 MPa in dry condition). The scaffold morphology and porosity as well as the 

presence of osteoconductive HA/βTCP micro-particles promote highly osteoblast adhesion and 

proliferation with a 2-fold higher ALP gene expression at 1 week compared to PC scaffold. Gene 

expression results demonstrated that PCC scaffold elicits anti-inflammatory and pro-osteogenic 

responses; this results confirm that PCC biomaterial could be an excellent tool for application in 

alveolar bone regeneration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



146 

 

REFERENCES 
 

1. Gaviria, L., Salcido, J. P., Guda, T. & Ong, J. L. Current trends in dental implants. J. Korean Assoc. Oral 

Maxillofac. Surg. 40, 50 (2014). 

2. Gupta, A., Dhanraj, M. & Sivagami, G. Status of surface treatment in endosseous implant: a literary overview. 

Indian J. Dent. Res. 21, 433–438 (2010). 

3. Raghoebar, G. M., Batenburg, R. H., Vissink, A. & Reintsema, H. Augmentation of localized defects of the 

anterior maxillary ridge with autogenous bone before insertion of implants. J. Oral Maxillofac. Surg. 54, 1180–

5; discussion 1185–6 (1996). 

4. Liu, J. & Kerns, D. G. Mechanisms of guided bone regeneration: a review. Open Dent. J. 8, 56–65 (2014). 

5. Van Der Weijden, F., Dell’Acqua, F. & Slot, D. E. Alveolar bone dimensional changes of post-extraction 

sockets in humans: A systematic review. J. Clin. Periodontol. 36, 1048–1058 (2009). 

6. Schropp, L., Wenzel, A., Kostopoulos, L. & Karring, T. Bone healing and soft tissue contour changes following 

single-tooth extraction: a clinical and radiographic 12-month prospective study. Int. J. Periodontics Restorative 

Dent. 23, 313–323 (2003). 

7. Tallgren, A. The continuing reduction of the residual alveolar ridges in complete denture wearers: A mixed-

longitudinal study covering 25 years. J. Prosthet. Dent. 89, 427–435 (2003). 

8. Bernstein, S., Cooke, J., Fotek, P. & Wang, H.-L. Vertical bone augmentation: where are we now? Implant 

Dent. 15, 219–228 (2006). 

9. Draenert, F. G., Huetzen, D., Neff,  a. & Mueller, W. E. G. Vertical bone augmentation procedures: Basics and 

techniques in dental implantology. J. Biomed. Mater. Res. - Part A 102, 1605–1613 (2014). 

10. Chen, F.-M. & Jin, Y. Periodontal tissue engineering and regeneration: current approaches and expanding 

opportunities. Tissue Eng. Part B. Rev. 16, 219–255 (2010). 

11. Bashutski, J. D. & Wang, H. L. Periodontal and Endodontic Regeneration. J. Endod. 35, 321–328 (2009). 

12. Elangovan, S., Srinivasan, S. & Ayilavarapu, S. Novel regenerative strategies to enhance periodontal therapy 

outcome. Expert Opin. Biol. Ther. 9, 399–410 (2009). 

13. Tadic, D. & Epple, M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone 

substitution materials in comparison to natural bone. Biomaterials 25, 987–994 (2004). 

14. Yuan, H. et al. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted 

intramuscularly in goats. J. Mater. Sci. Mater. Med. 13, 1271–1275 (2002). 

15. Morra, M. et al. Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler. 

J. Mater. Sci. Mater. Med. 26, (2015). 

16. Matsuno, T., Omata, K., Hashimoto, Y., Tabata, Y. & Satoh, T. Alveolar bone tissue engineering using 

composite scaffolds for drug delivery. Jpn. Dent. Sci. Rev. 46, 188–192 (2010). 

17. Zhang, L. et al. Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast 

differentiation from mesenchymal stem cells. Sci. Technol. Adv. Mater. 10, 025003 (2009). 

18. Alcaide, M. et al. Biocompatibility markers for the study of interactions between osteoblasts and composite 

biomaterials. Biomaterials 30, 45–51 (2009). 

19. Schaefer, S., Detsch, R., Uhl, F., Deisinger, U. & Ziegler, G. How Degradation of Calcium Phosphate Bone 

Substitute Materials is influenced by Phase Composition and Porosity. Adv. Eng. Mater. 13, 342–350 (2011). 

20. Dutta, P. K., Duta, J. & Tripathi, V. S. Chitin and Chitosan: Chemistry, properties and applications. J. Sci. Ind. 

Res. (India). 63, 20–31 (2004). 

21. Finlay, J., Miller, L. & Poupard, J. a. A review of the antimicrobial activity of chitosan. J. Antimicrob. 

Chemother. 52, 18–23 (2003). 

22. Khor, E. & Lim, L. Y. Implantable applications of chitin and chitosan. Biomaterials 24, 2339–2349 (2003). 

23. Peng, L. Preparation and Evaluation of Porous Chitosan/Collagen Scaffolds for         Periodontal Tissue 

Engineering. J. Bioact. Compat. Polym. 21, 207–220 (2006). 

24. Sriamornsak, P. Chemistry of Pectin and Its Pharmaceutical Uses : A Review. Silpakorn Univ. J. Soc. Sci. 

Humanit. Arts 3, 206–228 (2003). 

25. Mishra, R. K., Banthia,  a. K. & Majeed,  a. B. a. Pectin based formulations for biomedical applications: A 

review. Asian J. Pharm. Clin. Res. 5, 1–7 (2012). 

26. Munarin, F. et al. Pectin-based injectable biomaterials for bone tissue engineering. Biomacromolecules 12, 568–

77 (2011). 

27. Liu, L., Fishman, M. L., Kost, J. & Hicks, K. B. Pectin-based systems for colon-specific drug delivery via oral 

route. Biomaterials 24, 3333–3343 (2003). 

28. Killion, J. a. et al. Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and 

characterisation. Mater. Sci. Eng. C 33, 4203–4212 (2013). 

29. Peter, M. et al. Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for 

alveolar bone tissue engineering. Chem. Eng. J. 158, 353–361 (2010). 

30. Sowmya, S. et al. Biocompatible β -chitin Hydrogel / Nanobioactive Glass Ceramic Nanocomposite Scaffolds 

for Periodontal Bone Regeneration. Trends Biomater. Artif. Organs 25, 1–11 (2011). 



147 

 

31. Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical 

methods. J. Biomed. Mater. Res. 62, 600–12 (2002). 

32. Rashidova, S. S. et al. Characteristics of Interactions in the Pectin?Chitosan System. Chromatographia 59, 

779–782 (2004). 

33. Morris, G., Kök, S., Harding, S. & Adams, G. Polysaccharide drug delivery systems based on pectin and 

chitosan. Biotechnol. Genet. Eng. Rev. 27, 257–284 (2010). 

34. Coimbra, P. et al. Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte 

complex scaffold for possible bone tissue engineering applications. Int. J. Biol. Macromol. 48, 112–8 (2011). 

35. Karageorgiou, V. & Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–

5491 (2005). 

36. Woodard, J. R. et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with 

multi-scale porosity. Biomaterials 28, 45–54 (2007). 

37. Scabbia, A. & Trombelli, L. A comparative study on the use of a HA/collagen/chondroitin sulphate biomaterial 

(Biostite) and a bovine-derived HA xenograft (Bio-Oss) in the treatment of deep intra-osseous defects. J. Clin. 

Periodontol. 31, 348–55 (2004). 

38. Matsuno, T. et al. Development of beta-tricalcium phosphate/collagen sponge composite for bone regeneration. 

Dent. Mater. J. 25, 138–44 (2006). 

39. Sheikh, Z., Sima, C. & Glogauer, M. Bone Replacement Materials and Techniques Used for Achieving Vertical 

Alveolar Bone Augmentation. Materials (Basel). 8, 2953–2993 (2015). 

40. Tsuruga, E., Takita, H., Itoh, H., Wakisaka, Y. & Kuboki, Y. Pore size of porous hydroxyapatite as the cell-

substratum controls BMP-induced osteogenesis. J. Biochem. 121, 317–324 (1997). 

41. Xu, H. H. K. & Simon, C. G. Fast setting calcium phosphate-chitosan scaffold: Mechanical properties and 

biocompatibility. Biomaterials 26, 1337–1348 (2005). 

42. Gaharwar, A. K., Rivera, C., Wu, C. J., Chan, B. K. & Schmidt, G. Photocrosslinked nanocomposite hydrogels 

from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics. Mater. Sci. Eng. C 

33, 1800–1807 (2013). 

43. Wahl, D. a. & Czernuszka, J. T. Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cells Mater. 

11, 43–56 (2006). 

44. Vitale-Brovarone, C. et al. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: 

synthesis, properties, and in vitro effects on human marrow stromal cells. J. Biomater. Appl. 26, 465–89 (2011). 

45. Liu, X., Rahaman, M. N., Hilmas, G. E. & Bal, B. S. Mechanical properties of bioactive glass (13-93) scaffolds 

fabricated by robotic deposition for structural bone repair. Acta Biomater. 9, 7025–34 (2013). 

46. Kim, H.-W., Knowles, J. C. & Kim, H.-E. Hydroxyapatite porous scaffold engineered with biological polymer 

hybrid coating for antibiotic Vancomycin release. J. Mater. Sci. Mater. Med. 16, 189–95 (2005). 

47. Bigucci, F. et al. Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for 

colon-specific delivery of vancomycin. Eur. J. Pharm. Sci. 35, 435–441 (2008). 

48. Ghaffari, A., Navaee, K., Oskoui, M., Bayati, K. & Rafiee-Tehrani, M. Preparation and characterization of free 

mixed-film of pectin/chitosan/Eudragit RS intended for sigmoidal drug delivery. Eur. J. Pharm. Biopharm. 67, 

175–86 (2007). 

49. Chen, P.-H. et al. Novel chitosan–pectin composite membranes with enhanced strength, hydrophilicity and 

controllable disintegration. Carbohydr. Polym. 82, 1236–1242 (2010). 

50. Dorozhkin, S. V. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 8, 963–977 

(2012). 

51. Wang, N. L. et al. Polyclonal antibody against a complement-activating pectin from the roots of Angelica 

acutiloba. Planta Med. 60, 425–429 (1994). 

52. Sakurai, M. H., Matsumoto, T., Kiyohara, H. & Yamada, H. B-cell proliferation activity of pectic 

polysaccharide from a medicinal herb, the roots of Bupleurum falcatum L. and its structural requirement. 

Immunology 97, 540–547 (1999). 

53. Salman, H., Bergman, M., Djaldetti, M., Orlin, J. & Bessler, H. Citrus pectin affects cytokine production by 

human peripheral blood mononuclear cells. Biomed. Pharmacother. = Biomédecine pharmacothérapie 62, 579–
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4.6 NOVEL PECTIN/CHITOSAN GUIDED TISSUE REGENERATION 

MEMBRANE COATED WITH HYALURONIC ACID 

 

 

Figure 44. Schematic diagram of the function of guided tissue regeneration membrane. 

4.6.1 Introduction 

Traditional periodontal surgery techniques include gingivectomy, open flap debridement, and 

osseous surgery
1–4

. These techniques allow gaining access to diseased tissues and removing local 

factors, such as plaque, calculus, and endotoxins
5–7

. Chronic periodontitis is a disease caused by an 

untreated bacterial infection, which causes the loss of soft and hard tissue of the periodontal site 

and, in many cases results in the tooth loss
6,8–10

. Whenever the tooth is lost or extracted, surgical 

procedures involve the replacement of it, using titanium dental implants
11,12

. In many cases, bone 

resorption due to the activation of specific cytokines by an inflammation process, does not allow the 

insertion of dental implants. In these cases, it is necessary to promote the regeneration of new 

alveolar bone using the so called bone grafting material, which is usually made of ceramic materials 

in form of particles, porous scaffolds or paste
13,14

. However, the regeneration following these 

techniques usually results in a formation of long junctional epithelium, and the formation of new 

connective tissue in the periodontal wound
15

. The predictability of dental implants to be integrated 

with the surrounding bone is essential to restore functions in patients. According to the hypothesis 

formulated by Melcher, in order to achieve an excellent bone regeneration which could support the 

implant insertion, it is necessary the use of a guided tissue membrane
16

. Epithelial tissue and 
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fibroblasts from the gingiva could grow faster than osteoblast cells and, if not excluded from the 

root socket, they could inhibit formation of new bone tissue
15,17

. Membranes are used to create a 

space and to protect the blood clot in order to preferentially allow bone growth into the space. 

Karring et al. was the first who experimentally and histologically demonstrated the Melcher’s 

hypothesis
16,18

. They showed that periodontal regeneration is achieved when epithelial cells and 

fibroblasts are excluded from the wound space and the pre-osteoblast cells are allowed to migrate in 

the bone graft and to produce mineralized matrix, in order to regenerate bone tissue. The first 

material used for GTR was a cellulose acetate laboratory filter, and it was the first time when 

periodontal regeneration was achieved using GTR technique
19

. From that moment, many studies 

have been done in order to develop membranes with several important properties, such as 

biocompatible, cell exclusion properties, space maintenance, tissue integration, and easy to use
20–22

. 

Many types of materials have been used for GTR membranes, both non-resorbable and resorbable. 

Non-resorbable membranes have the disadvantage that they need a second surgery procedure to be 

removed, the most used non-resorbable membrane is made of ePTFE material, which has the 

advantage that does not generate antigenicity
23

. On the other side, resorbable materials, in particular 

from natural sources, have the advantages that do not require an additional surgery and are 

biocompatible and degradable during tissue formation. The most used material for resorbable 

membranes is collagen from bovine or porcine sources
24,25

. The main disadvantage of xenografts is 

the antigenicity and, for this reason, tissues are previously processed to remove all organic 

constituents, but this process generates high costs that reflect on the final product
26

. Furthermore, 

collagen degradation involves an enzymatic process, due to the collagenase enzymes, and during 

periodontitis bacteria stimulate the production of collagenases which could increase the degradation 

of the membranes, thus making the regeneration unpredictable
27–29

. In order to avoid an un-

controlled degradation rate, the collagen fibers are crosslinked using chemical compounds such as 

glutaraldehyde, which could cause cytotoxicity and inflammation response in the surrounding 

tissue
30,31

. In this work, we developed and functionalized, on its surface, a novel GTR membrane 

made of pectin and chitosan polysaccharides, with hyaluronic acid which gives antiadhesive 

properties to the materials without compromising the membrane’s cytocompatibility.  

Plant-derived biomaterials have aroused great interest in the last years, since they could mimic the 

extracellular environment and avoid a foreign body reaction, promoting cell proliferation and tissue 

formation
32

. Thus, pectin are nowadays under enthusiastic investigation in the biomaterial field as 

novel candidates for soft and hard tissue engineering. Pectin, in plants, creates a wall matrix which 

plays several roles, such as mechanical support, physical barrier against pathogens, and acts as 

bearing for vegetable cells
33

. Furthermore, pectin showed anti-inflammatory properties in vitro, and 



150 

 

in some cases, has been shown to be immunologically inert
34,35

. Another great advantage of pectin 

chain is its polyanionic nature, which allows such a polymer to be ionically crosslinked with 

polycationic polysaccharides such as chitosan
36

. Chitosan is a widely used material in tissue 

engineering, due to its biocompatibility, its intrinsic antibacterial nature, its ability to not induce a 

foreign body reaction and to promote cell adhesion, proliferation and differentiation
37–39

. 

Polyelectrolyte complex (PEI) could be generated coupling pectin and chitosan materials, in order 

to create a stable and non-toxic crosslinked membrane with a predictable degradation rate
36,40–42

. 

Furthermore, the non-immunologically and antimicrobial properties of the complex allow reducing 

the inflammation response. PEI membranes could mimic the natural extracellular environment 

promoting cell proliferation. In order to avoid infiltration, we coated the membrane with hyaluronic 

acid, a well-known molecule, which has antiadhesive properties
43,44

. Hyaluronic acid is a 

polyanionic polysaccharide with excellent lubricity, non-adhesive and anti-bacterial nature
45–47

. 

Among all different surface modification techniques, the layer-by-layer deposition has attracted 

much attention since it is versatile and any type of chemical crosslinker is needed
48,49

. Since 

chitosan is a polycationic material, it is able to form a polyelectrolyte with a polyanionic hyaluronic 

acid, and to form a stable surface layer on the membrane surface. In this work, we developed a 

membrane following the concept of layer-by-layer technique, in order to modify the surface of the 

bulk; a single layer of hyaluronic acid was deposed on the surface using ionic interaction with 

chitosan polysaccharides.    

In this way, it is possible to promote proliferation of the fibroblasts avoiding the infiltration and 

maintaining the root space available for osteoblast proliferation and new bone formation. We 

designed and characterized a GTR membrane, made with pectin and chitosan polysaccharides, 

which are bonded together with a ionic crosslinking (PCm). We coated the PCm membrane with 

hyaluronic acid, in order to obtain an antiadhesive surface, to guide fibroblast regeneration without 

infiltration in the membrane matrix (PCmHyA). Chemical, mechanical and biological 

characterizations have been analyzed, and we demonstrated that the novel PCmHyA membrane 

could be used in GTR procedures. 
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4.6.2 Results and Discussion 

 

4.6.2.1 Chemical characterization 

ATR-IR and XPS analysis 

ATR-IR spectra in Figure 45 a show spectra of pectin powder, chitosan powder, hyaluronic acid 

powder, pectin/chitosan polyelectrolyte complex membrane (PCm) and pectin/chitosan membrane 

functionalized with hyaluronic acid (PCmHyA). The analysis confirms that all peaks belong to  

polysaccharide, the region between 3700 cm
-1

 and 3000 cm
-1

 for pectin and chitosan is assigned to 

the O–H stretching vibration (νOH), while the region between 3000–2800 cm
-1

 belongs to C-H 

stretching vibration (νCH) (Figure 45 b). Deeper analysis on pectin spectra show two bands 

associated with the stretching vibration at 1740 cm
-1

 of carbonyl group, corresponding to the methyl 

ester group (COOCH3) and carboxyl acid (COOH), while the band at 1606 cm
-1

 belongs to the 

stretching vibration of the carbonyl group of the carboxylate ion (COO
-
) (Figure 45 c). Concerning 

chitosan spectra, the band at 1647 cm
-1

 is due to the C=O stretching vibration of amide I, whilst the 

band at 1580 cm
-1

 is due to the NH bending amide II, maybe overlapped to the N-H vibration of the 

amine groups. Band assignment is consistent with available literature (Figure 45 c)
36,40,50

.  

Hyaluronic acid showed a peak around 1040 cm
-1

 and one around 1200 cm
-1

, which are probably 

due to the stretching of C-O-C, C-O and C-O-H, furthermore the weak band around 1650 cm
-1 

could 

be associated at C=O of the amide I (Figure 45 c)
51

. 
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Figure 45. (a) ATR-IR spectra of pectin and chitosan powder, PCm and PCmHyA between 4000 – 525 cm
-1

. (b) 

ATR-IR of all spectra overlapped between 4000 cm
-1

 and 500 cm
-1

 show the shift of the amine band to 1557 cm
-1

, 

and the bands belonging inorganic phase, at 950 cm
-1 

and 1140 cm
-1

. (c) ATR-IR spectra focus between 2000 cm
-1

 

and 500 cm
-1

 of materials. The presence of HyA on the surface could be associated to the presence of a specific 

peak at 1200 cm
-1

, usually attributed to the C-O stretch.  

PCm spectra show the formation of PEI complex; a shift of amine band to 1557 cm
-1

 due to the 

interaction between the positive charge of chitosan, NH3
+
, and the negative charge of pectin, COO

- 
, 

was detected. As expected, the spectra of PCmHyA membrane sample show bands associated with 

both the PEI complex and the hyaluronic acid polymer. In particular, the peak at 1200 cm
-1 

which is 

present in both HyA and PCmHyA spectra but does not appear in the spectra of PCm material; this 

could be due to the carboxylic acid of hyaluronic acid. Furthermore, between 900 cm
-1

 and 1100 
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cm
-1

 the PCmHyA spectra show a different shape, probably due to the presence of hyaluronic acid, 

a slight difference was also observed in the shape of the curve around 1500 cm
-1 

. In order to 

confirm the success of the coating process, we also performed XPS analysis on the PCm and 

PCmHyA membrane (Figure 46). 

 

 

Figure 46. Wide scans of XPS for PCm and PCmHyA substrates. The chemical composition (at.%) indicates that 

the substrate surface is nearly fully covered with the hyaluronic acid layer. 

As expected for both samples, the main peaks are associated to oxygen, nitrogen and carbon. The 

presence of hyaluronic acid on the surface, changes the ratio between O and C, in particular the 

atomic concentration associated to the peak of O1s increases and that associated to the peak of C1s 

decreases, and the ratio O/C increases of two fold, as compared with the PCm material
52

. These 

results confirm the presence of hyaluronic acid on the PCm surface, and assess the success of the 

coating process.  

4.6.2.2 Structural characterization 

SEM Analysis  

The structure of the developed membranes has been evaluated through SEM analysis. PCm and 

PCmHyA were analyzed in section and in flat direction, in order to investigate if the surface coating 

by hyaluronic acid influences the structure of the PCm material. In Figure 47, three different 

magnification (100x, 200x and 500x) of the section for both PCm and PCmHyA are reported. 

Membranes have a highly porous inner structure, and the hyaluronic acid coating does not affect the 
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pore size and shape. It seems that the coating process does not infiltrate inside the membrane, and 

does not fill the pore but remains, as expected, on the surface of the membrane.  

 

Figure 47. SEM images of porous section for PCm (thickness of 855.5 µm)  and PCmHyA (thickness of 726.6 µm) 

materials. The coating with hyaluronic acid, does not affect the inner structure of the membrane.  
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Porosity is necessary, because it allows nutrients transportation and blood vessels infiltration, which 

is mandatory to achieve a correct periodontal regeneration
53

. The porosity is due to the production 

process, which involves a freeze drying step where the water embedded in the PEI matrix leaves 

and generates the interconnected pores
53–55

. PCmHyA involves two steps of freeze dry, one to 

generate PCm and the second after the coating with HyA. The presence of HyA coating is clear in 

the SEM images reported in Figure 48. HyA layer is present on the membrane surface, forming a 

dense network. HyA is a widely studied polymer for applications requiring minimal cellular 

adhesion
46,48,56

. Barriers made from cross-linked HyA have been effectively used to prevent 

adhesion between adjacent tissue layers in postoperative surgery
57,58

. Furthermore, since HyA is 

naturally present in high concentrations in the soft connective tissues, it is an appropriate choice for 

supporting fibroblast and epithelial regeneration and augmentation. It was demonstrated that cross-

linked HyA films accelerate tissue healing in full-thickness wounds
59

. Highly hydration and non-

immunogenicity of HyA, provide a conductive environment for tissue repair. Keratinocytes and 

fibroblast in vitro, generate soft tissue layers, on the surface of HyA coated materials
59

. The 

presence of ionic cross-linked HyA layers on the surface of the PCmHyA material, could allow 

fibroblast and epithelial proliferation avoiding the infiltration into the defect socket. Furthermore, 

there are many studies which demonstrated the effectiveness of HyA layers to prevent bacterial 

adhesion to dental implants
44,47,49

. These properties might be a further useful characteristic in such 

application as periodontal tissue engineering, where the presence of bacteria in the oral cavity could 

inhibit the correct regeneration. The porous structure of the membrane could be used as a carrier to 

delivery drugs or growth factors in situ in a controlled manner
53

.  
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Figure 48. SEM images on the flat direction for PCm and PCmHyA materials. The presence of hyaluronic acid is 

clear visible on the surface, as a dense network. 

4.6.2.3 Mechanical characterization 

Tensile test 

Tensile test was conducted on PCm and PCmHyA samples. Five samples for each type were tested, 

using a tensile machine Bose Electroforce 5500 equipped with a load cell of 100 N. The testing 

conditions are reported in the paragraph 4.2.4 of the section 4.2 Methods. Both conditions, dry and 
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hydrate, have been tested, and as expected the behavior of the membranes changes from stiff to soft 

and elastic.  

In Figure 49 the Ultimate Tensile strength (UTS) and Elongation (εr ) of the membrane in dry and 

hydrated conditions are reported. PCm is made of two natural polysaccharides, which are 

crosslinked with a low ionic interaction, hence the resulting material has a softener characteristics, 

in particular during hydration. In as prepared conditions, the material results indeed rigid and strong 

enough to reach 2 MPa of Ultimate Tensile Stress, which is a comparable result of gold standard 

GTR membranes produced by Geistlich, Biogide® made of non-crosslinked porcine collagen (data 

not shown). A slight increase was detected for the PCmHyA membrane. However, the differences 

has no significant relevance, and this behavior is not confirmed in hydrate conditions. As well as 

elongation follows the trend of UTS, indeed the elasticity of the dry material is slight lower for the 

PCmHyA material compared with PCm material. Dry conditions are not the working conditions of 

the material, which in clinical applications is usually hydrated, hence we tested the mechanical 

tensile properties in this condition. If in dry condition the crosslinking factor allows a higher 

resistance, in hydrated condition the presence of hydrophilic hyaluronic acid on the surface allows a 

higher amount of water uptake, and this results in a decrease in the mechanical properties compared 

with PCm material. For both materials, there is a shift from stiffness to elasticity, indeed the 

maximum elongation is similar for both materials, and reaches value around 50 % of the initial 

length, 5 times more than in as prepared condition (dry) and a value comparable with the 

commercially available membrane. As expected, for a highly natural porous material, the water 

uptake drastically decreases the ultimate tensile stress, that was 0.05 MPa for PCm and 0.03 MPa 

for PCmHyA, two order of magnitude lower than in dry condition. GTR application is usually a low 

load application, furthermore the stress under which the material undergoes is different from a 

classical tensile stress. The main important property that the membrane should have is the capacity 

to sustain the soft tissue avoiding the collapsing of the soft tissue, and from our test analysis the 

PCmHyA material has this properties
60

.   
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Figure 49. Ultimate tensile stress (a and c) and elongation (b and d)  for PCm and PCmHyA membranes in as 

prepared and hydrated conditions. The presence of hyaluronic acid does not significantly affect the mechanical 

properties of the membrane. The higher hydrophilicity of the hyaluronic acid layer compared with the PCm 

material slightly decreases the ultimate tensile stress in hydrated condition. The data are represented as mean ± 

standard deviation (n=5). 

Suture Retention Strength 

GTR application is usually a low bearing application, for which is rarely necessary a suture in order 

to fix the material, but in some cases it could be necessary. Suture retention strength was conducted 

following the ANSI/AAMI/ISO 7198:1998/2001/(R) 2004 “Cardiovascular implants-tubular 

vascular prostheses”
61

 procedure, and the setup is shown in Figure 50. A classical PLA suture 

thread was used. 
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Figure 50. Stress-strain curve of the suture retention strength test for PCmHyA material, and optical images of 

the sequence test. The PLA suture thread, acts as knife on the soft structure of the membrane.  

The test was performed in hydrated conditions on the PCmHyA membrane. The stress-strain curve 

shows a retention strength of 16 kPa, and a maximum elongation of 20 %. Considering the natural 

source of the material and the absence of any kind of chemical crosslinking, but just ionic 

interactions, this is a promising results, in particular about the elongation which confirms the 

elasticity of the material. The suture thread acts as a knife and cuts the soft structure of the material. 

In the optical images in Figure 50 it is possible to see the sequence of the test. 

 

4.6.2.4 Physical characterization 

Degradation and swelling properties 

A degradation test was performed in a phosphate buffered saline solution ( PBS at pH 7.4), for 1 

month under agitation at 37 °C. PCm and  PCmHyA  have been tested, the initial weight was 

registered and at each time point the membranes were taken out, washed in ultrapure water and 

lyophilized, then the final weight was registered and the percentage of mass loss was calculated. 
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The results are reported in the bar graph in Figure 51.  PCm lost 41.28 % of initial mass, a slight 

increase was calculated for PCmHyA  sample which lost after 1 month 46.55 % of the initial mass. 

As it is possible to note, no differences are detected among the two different samples at each time 

point. We expected to calculate a lower degradation rate for PCmHyA material, since it was more 

stable, indeed an opposite behavior was reported. We hypothesize that the highest hydrophilicity of 

the hyaluronic acid and the second lyophilization step, which allows the formation of bigger pores, 

allow the incorporation of more water inside the matrix, and its presence affects the ionic 

interactions and degrades the molecules faster than in the PCm membrane which takes more time to 

degrade. However, the percentage reached for both samples PCm and PCmHyA, was around 40 % 

of the initial mass (no significant difference), and it is a value comparable with the commercially 

available membranes, that means a total resorption in 2 – 3 months that is the time necessary to 

achieve a good bone regeneration excluding the fibroblast cells from the defect site.  

 

 

Figure 51.  The physiological stability of copolymer network determined by in vitro degradation of PCm and 

PCmHyA polymers under physiological conditions (PBS, 37 C°). The weight loss of membranes was monitored 

over the period of 1 month. The increase in the hydrophilicity due to the addition of hyaluronic acid, results in 

slight increase of water uptake that accelerates in a non-significant manner the hydrolysis of the polyelectrolyte. 

The data are represented as mean ± standard deviation (n=3). 

At pH 7.4, the partial neutralization of NH
3+

 has not caused a total loss of the PEI network, since 

chitosan has still some ionized group bonded with COO
-
 of the pectin chain. Furthermore, in the 

network, there exists the possibility of intramolecular H-bonding between COOH3 and OH, which 

makes more stable the PEI matrix. Other studies reported a higher degradation percentage of 

pectin/chitosan complex at alkaline pH, compared with what we found
41,62

. This is probably due to 

two important factors. Firstly, the porosity of the material influences the water uptake capacity, and 
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more water could infiltrate in the structure, higher is the degradation of the structure. And second, 

the ratio between pectin and chitosan inside the PEI complex. Pectin is a water soluble 

polysaccharide, which has the ability to uptake enormous quantity of water; the addition of chitosan 

reduces this ability and in our material we have a higher amount of chitosan than pectin, 80 % and 

20 % respectively (w/w), so the material properties are closer to the chitosan properties, which is 

more resistant in physiological condition (pH 7.4). The pH of the solution where samples were 

soaked, was monitored after 1 month, and any significant difference was detected (data not show), 

that means that the degradation products of the membranes do not cause a changing in the pH. In 

particular, many materials used for GTR, for example synthetic materials based on lactic acid or 

glycolic acid, tend to decrease the pH creating an acid environment, which could activate the 

immune system response and cause an inflammation, and a foreign body reaction
63

.  

The hydration properties of the biomaterials are important factors in determining their targeted 

application. The hydration properties of PCm and PCmHyA were investigated by evaluation bulk 

hydration characteristics (Figure 52).  The samples (n=3) were subjected to physiological 

conditions (37 °C and PBS) and uptake of water was calculated after 24 h. The swelling study 

reveals the maximum equilibrium of water content within 24 h. The percentages of water uptake for 

PCm and PcmHyA biomaterials, were of 86% of the initial mass and 90% respectively. The 

addition of hyaluronic acid as coating material slight increases the water uptake. As it is possible to 

see in the optical images, in Figure 52 before and after hydration, a change in the dimension of the 

thickness of the materials is visible. Moreover, the network becomes translucent in the swollen 

condition, which is the characteristic of an hydrophilic copolymer network. An increase of 50% of 

the initial thickness, was calculated for both biomaterials. 
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Figure 52. Effect of hyaluronic acid on hydrophilicity of PCm network. The presence of HyA layer slightly 

increases the water uptake, which is for both materials up to 80 % of the initial weight. Optical images, show the 

swollen PCmHyA, which acts as bearing after hydration. The data are represented as mean ± standard deviation 

(n=3). 

 

The membrane works as bearing, since through the application of a compressive stress on the 

hydrate membranes, the water was expulsed from the PEI matrix, but after the release of the stress, 

the material adsorbed again the water expulsed. These properties are useful for applications in 

which the material is in contact with soft tissues, or if the application of the materials is between 

different tissues or organs, since their ability to adapt to the movement of the surrounding tissue 

avoids inflammation and foreign body reaction. In GTR procedure, it is important to hydrate the 

PCmHyA membrane before the implantation in the gingiva, in order to reach a maximum water 

uptake and to avoid a possible stretching of the gingiva layer. The ability to adsorb water allows 

formation of a clot which is the first step to achieve tissue regeneration in periodontal site. 
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4.6.2.5 Biological characterization 

Fibroblast cell culture and adhesion test 

In GTR procedures, the most important property that the membrane should have, is to guide the 

fibroblast cells on its surface, avoiding the infiltration inside the wound site
20,64,65

. It is further 

important that the membrane does not cause cytotoxicity, but does promote the proliferation of the 

cells from the gingiva on its surface. We assume that a possible solution is to develop an 

antiadhesive surface which promotes cells proliferation. Hyaluronic acid is a well-known material, 

widely used in tissue engineering, in particular for its biocompatibility, and to its ability to promote 

cell proliferation
43

. Many studies on the biological properties of hyaluronic acid have been done, 

furthermore it is also known for its antiadhesive properties. PCm membrane was functionalized 

with hyaluronic acid, and then the antiadhesive properties of the PCmHyA material were tested 

using L929 fibroblast cells in comparison with PCm. The results are reported in Figure 53, and 

show cells stained with neutral red on the surface of PCm and PCmHyA. As expected, on both 

materials the cells have a round shape with a low adhesion properties. However, in the case of 

PCmHyA, more cell aggregates are present, which are due to the presence of HyA on the surface. 

Cells prefer to stay together than to adhere on the material surface, but in both cases cells are still 

alive, that means no cytotoxicity is highlighted. In order to confirm the low adhesion of fibroblasts 

on the PCmHyA surface, we spectrophotometrically analyzed the DNA quantity of cells on the 

surface. After a gently wash of the material, the nucleic acid has been extracted from remaining 

cells on the surface, and the absorbance at 260 nm proper of DNA material was detected. As it is 

possible to see in Figure 53, the value in mg/ml, associated to the PCm material are higher than the 

value associated to the PCmHyA material, which means a higher adhesion was present on PCm 

than PCmHyA. This test confirms the initial hypothesis, that considers HyA an antiadhesive 

material, and demonstrated that the functionalization could exclude the fibroblast cells from the 

wound site, allowing an excellent bone regeneration on one side and an excellent soft tissue 

regeneration on the other side. 
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Figure 53. Neutral red staining of fibroblast cells, on the PCm and PCmHyA membranes. DNA quantity, is 

related to the amount of cells that strongly adhered on the surface. HyA layer reduces the amount of cells 

adhered on its surface and avoids the infiltration inside the defect site. No cytotoxicity was detected. The data are 

represented as mean ± standard deviation (n=3), (*p<0.05, **p<0.01, Student’s t-test). 
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4.6.3 Conclusion 

In order to achieve an excellent periodontal regeneration, the combination of bone graft materials 

and guided tissue membranes is mandatory
13,16

. In this work, we designed, developed and 

characterized a pectin/chitosan membrane functionalized with hyaluronic acid. The membrane is 

based on the formation of polyelectrolyte complex between pectin and chitosan, which mimics the 

extracellular matrix, modified on the surface with a second polyelectrolyte complex with hyaluronic 

acid. The antiadhesive properties of the HyA molecules were demonstrated through in vitro studies 

using fibroblast cells. The membrane shows a degradation rate around 3 months, that is the time 

recommended to exclude the cells of soft tissue in order to allow bone cells to populate the bone 

graft and to generate new bone tissue. Considering the nature of the materials and the absence of 

any chemical crosslinker, the mechanical properties of the material could ensure the stability of the 

periodontal site avoiding the collapse of the gingiva. The ability to uptake water, reduces the 

possible inflammatory response due to the contact between the surrounding soft tissue and the 

membrane, because the PCmHyA works like a bearing and could be fitted in irregular shape defect. 

Furthermore, it enhances the formation of a clot, which could promote the tissue regeneration. 

Further in vitro and in vivo studies will be necessary, however these results confirm a possible use 

of this novel membrane in periodontal tissue engineering. 
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CHAPTER V 

FINAL DISCUSSION AND CONCLUSIONS 
 

Periodontium refers to the specialized tissues that both surround and support the teeth, maintaining 

them in the maxillary and mandibular bones
1,2

. Tooth loss is a possible consequence of trauma or 

periodontal disease, such as gingivitis, periodontitis or tissue decay
3
. Periodontal tissue engineering 

scope is to regenerate the tooth’s supporting tissue through a combination of materials, which 

stimulate cells and signaling molecules to produce new healthy tissue
4
. Many advances have been 

made in the last decade in the regeneration of complex periodontal and alveolar bone defects
5
. 

Research efforts in polymeric and ceramic scaffolding systems for cell, protein, drug and gene 

delivery have led to develop complex systems with predictable response. In the research world there 

is still some debate as to the best treatment modality for obtaining periodontal regeneration
6
. Some 

groups advocate the use of bone replacement grafts alone, others suggest that a guided tissue 

membrane (GTR) alone might be sufficient, and still others recommend a combination of both. 

Tobon et al.
7
 conducted a study comparing three different treatment modalities for achieving 

periodontal regeneration and GTR after endodontic surgery: one control group without bone graft 

and membrane, one group treated with bone graft alone, and another group treated with both bone 

graft and membrane. They used as membrane a non-resorbable material, and as bone graft they used 

hydroxyapatite ceramic material. The results showed that the best periodontal regeneration was 

assessed through the combination of both membrane and bone graft. The worst results were 

obtained in the control group, where no membrane nor graft were used. Yoshikawa and co-workers
8
 

compared the histological outcome of different types of membrane, non-resorbable ePTFE, 

resorbable PLGA, and resorbable collagen membrane, and found that the greatest amount of bone 

regenerated was achieved using non-resorbable membranes. Another group, comparing an open flap 

debridement with a bone allograft and a bone allograft with a collagen membrane in an animal 

study, showed similar results in terms of bone formation in all cases
9
. The studies mentioned above 

and many others, showed different results and suggest different approaches in order to achieve an 

excellent periodontal regeneration. However, case selection is very important to the success of 

regenerative technique, which might explain some of the inconsistencies in the literature
6
. Factors 

that affect success could be due to the specific patient, specific disease and healing categories. The 

success of a surgical procedure, which involves the use of bone graft or membrane or else a 

combination of both, depends on many factors such as good plaque control, compliance, non-
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smoking, anti-infective therapy, and systemic health
10–12

. Furthermore, also during the surgical 

procedures, there are many variables which could affect the results of the regeneration process, for 

example, the possible infection of the implanted material, which could cause periprosthetic 

infection.  

The thesis was aimed at the development of biologically active materials, with improved 

osteoconductive and antimicrobial properties, in order to control the re-infection of the defect site 

and, in parallel, promote new bone formation. In this work, we focused on the possible application 

of natural polysaccharides in combination with widely used bi-phasic calcium phosphates. 

Specifically, we developed and characterized three different materials, designed to overcome the 

current drawbacks of available materials, i.e. unpredictable tissue response, re-infection of the 

implant site, difficult mouldability, uncontrolled cell response, and high complexity which reduces 

the possibility to reach the market.  

Common approach to control the periprosthetic infection is to combine an osteoconductive material 

with a systemic antibiotic therapy
4,13–15

. This type of approach could cause side effects, since in 

order to be effective against bacteria with this therapy, the antibiotic should be provided in a very 

high dosage to ensure that a clinical amount can reach the defect site
16

. An in situ release is 

preferable to combat against bacteria and to prevent a re-infection of the defect wound
17–19

. On the 

other hand, it is important to provide a mechanically stable material such as an osteoconductive 

scaffold to promote bone formation. Usually, to reach a drug delivery in situ, hydrogel, micro-

spheres, or injectable gels are used
20–24

. However, this approach makes necessary the use of another 

material, which acts as a scaffold to sustain and promote new tissue formation. An engineered 

scaffold was developed, using a bi-phasic calcium phosphate material for fabricating a three-

dimensional porous scaffold, and a natural polyelectrolyte as coating material to encapsulate 

antibiotic drugs, in order to successfully combine in one biomaterial all the needed characteristics to 

achieve periodontal bone regeneration. 

Effective antibacterial properties have been demonstrated through deep biological analysis. The 

material developed could inhibit bacterial growth by in situ drug release, promote osteoblast 

proliferation and mechanically sustain the defect site. 

To treat orthopedic infection, there are several commercial available products, which claim to be 

antimicrobial bone graft substitutes, for example Osteoset-T ®, Perossal ®, BonAlive®, Herafill® 

beads, Cerament-G®
25

. However, a summary of clinical evidences or evidence-based guidelines for 

the application of these products to assist surgeons is not available. Furthermore, some are just 

impregnated in drugs, others are designed to adsorb liquids such as drugs, or with a burst release 

within the first 72 hours.  



171 

 

The biomaterials developed during this doctoral activity were specifically designed to achieve a 

sustained release with predictable responses in different environmental conditions, maintaining the 

mechanical strength and osteoconductive properties typical of calcium phosphate materials
26–28

. 

Furthermore, in vivo studies are needed to ultimately assess the clinical effectiveness of the 

engineered scaffolds and the non-toxicity of the drug released. Depth studies are ongoing in order to 

replace the vancomycin antibiotic with natural molecules with antimicrobial properties, to 

overcome the certification issue arising from the presence of a drug in the system.  

A criticality of a rigid scaffold is the difficult mouldability to fill irregular defect
29–32

. An urgent 

need of professionals working in dentistry is the ability to customize the biomaterial for each 

patient. Furthermore, the osteointegration of dental implants and the consequent long-term success 

is guaranteed by the presence, in the extraction site, of a healthy and sufficient alveolar bone
33,34

. In 

these cases, placement of titanium implants is contraindicated until a vertical bone augmentation is 

obtained. To achieve this goal, in this thesis we developed a bone graft material which should 

simulate the extracellular matrix (ECM), aimed at promoting osteoblast proliferation and filling the 

void, maintaining the space without collapsing until the new bone is formed. For this purpose, a 

novel chitosan-pectin hydrogel reinforced with biphasic calcium phosphate particles within 100-300 

µm has been designed and characterized. The polysaccharide nature of hydrogels simulates the 

ECM of natural bone, and the ceramic particles promote high osteoblast proliferation, assessed by 

in vitro cell studies
31,35–37

. Swelling properties allow water solution adsorption (up to 200 % of 

solution content) and the space to be filled without compromising the mechanical strength, in both 

static and cyclic conditions. The ability to adsorb water is necessary in order to promote the clot 

formation in the defect site
30,38

. Clot formation promotes the migration and proliferation of 

osteoblast cells which regenerate new alveolar bone
39,40

. The incorporation of ceramic particles 

makes the material stable at different pH and increases the compressive elastic modulus, toughness 

and ultimate tensile strength compared to the base polymer. 

A chemical crosslinker is usually employed to obtain a stable polymer; in this work, the stability is 

given by a ionic interaction which makes the material stable and mechanically resistant enough, 

without any cytotoxic effect
41

. Only a few biomaterials like PCC are present on the market, and the 

gold standard could be considered the Geistlich Bio-oss Collagen® material, that consists of 90% 

Geistlich Bio-Oss® granules with the addition of 10% porcine collagen. Compared to Geistlich 

Bio-Oss Collagen®, PCC material possesses enhanced handling characteristics, and is more 

formable and easy to handle. Furthermore, PCC material showed higher swelling behavior, and the 

polymeric network made with pectin and chitosan makes the material more elastic, with a higher 

ability to recover the shape after a cyclic stress, compared to the Bio-Oss Collagen® material. The 
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absence of interactions between the granules and the collagen matrix, makes un-predictable the 

degradation of the Bio-Oss Collagen ® material, with a loss of cohesion in hydrated conditions. The 

interaction between chitosan and pectin and between pectin and calcium phosphate particles reduces 

the migration of the granules in hydrate environment, which could cause an inflammatory 

response
42,43

. The future study will concentrate on the possible anti-inflammatory properties of 

pectin polysaccharides. The preliminary study showed an increase in the expression of IL-10 gene, 

which is correlated with the anti-inflammatory cascade
44,45

. There are some research works that 

hypothesized an anti-inflammatory action of pectin
46

, but few demonstrations are available
46–48

. 

Following the Melcher’s hypothesis
49

, in the research work we developed a guided tissue 

regeneration membrane, always based on the chemistry of pectin and chitosan, but with an 

antiadhesive coating made by hyaluronic acid on the surface, in order to exclude fibroblast cells 

from the wound defect. Gottlow was the first who founded the name “Guided Tissue Regeneration”, 

in 1986
50

. Ten years later, in 1996 at the World Workshop in Periodontics the first definition of 

GTR was given: “procedures attempting to regenerate lost periodontal structures through 

differential tissue response. Barriers are employed in the hope of excluding epithelium and gingival 

corium from the root surface in the belief that they interfere with regeneration”. The hypothesis 

formulated by Melcher
49

, and histologically proven by Karring et al.
51

, argues that certain cell 

populations in the periodontium have the potential to create new cementum, alveolar bone and 

periodontal ligament, when they have provided the opportunity to populate the periodontal wound. 

This opportunity is achieved if the gingival epithelial cells or fibroblasts are excluded from the 

wound space and periodontal ligament cells are allowed to migrate and populate the wound 

space
52,53

. This need led to the development of periodontal devices known as barriers or membranes 

for guided tissue regeneration. Nowadays, many types of membranes are commercially available, 

both non-resorbable and resorbable. Resorbable membranes are the most used and studied since 

they do not require a second surgery for their removal. Absorbable membranes are usually made 

from natural materials such as collagen, pericardium, dura mater, laminar bone, connective tissue or 

periosteum. These materials are completely biocompatible, but the process to purify them and to 

obtain these membranes is expensive and, in many cases, low repeatable, since it depends to the 

source of the native tissue. In our preliminary study, we assessed the mechanical and degradation in 

vitro of seven different absorbable membranes present on the market, derived from animal tissue, 

and the results showed a great variability in both properties. These results are translated in 

unpredictable outcomes during the periodontal regeneration. On the basis of stability demonstrated 

by the polyelectrolyte formed between pectin and chitosan, a novel guided tissue regeneration 

membrane has been developed, with an inner porous structure which allows nutrients transportation, 
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and an antiadhesive surface obtained through a functionalization with hyaluronic acid, a widely 

used molecule to obtain non-adhesive surface in biomedical field
54

. A cheapest, repeatable, and 

predictable production process was developed, using simple and economic natural material. Our 

concept was to avoid the adhesion of the cells to the membrane, and their infiltration in the structure 

enhancing the proliferation and growth in parallel to the material, guiding the gingiva regeneration. 

The results demonstrated that fibroblast cells do not adhere to the surface of the GTR membrane but 

any cytotoxic effect was detected, the cells tend to form aggregate, grow and proliferate on the 

surface of the material. 

Three different materials were successfully developed and the characterization demonstrated that 

they could be used in periodontal tissue engineering with predictable and excellent outcomes. With 

this set of biomaterials it is possible to control or prevent possible bacterial growth, achieve the 

correct alveolar bone quantity and quality and guide the tissue regeneration.  

Future studies will be conducted in the Research and Development department of Nobil Bio 

Ricerche srl and will focus on the development of biomaterials, which could meet the need of 

professionals, and could enhance the regeneration process. Biomimetic materials, based on natural 

molecules, coupled with synthetic controlled materials are the basis on which will be developed the 

future biomaterials.  
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