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Abstract. The flow duration curve (FDC) is a fundamental signature of the hydrological cycle to support water

management strategies. Despite many studies on this topic, its estimation in ungauged basins is still a relevant

issue as the FDC is controlled by different types of processes at different time-space scales, thus resulting quite

sensitive to the specific case study.

In this work, a regional spatially-smooth procedure to evaluate the annual FDC in ungauged basins is proposed,

based on the estimation of the L-moments (mean, L-CV and L-skewness) through regression models valid for

the whole case study area. In this approach, homogeneous regions are no longer required and the L-moments are

allowed to continuously vary along the river network, thus providing a final FDC smoothly evolving for different

locations on the river. Regressions are based on a set of topographic, climatic, land use and vegetation descriptors

at the basin scale. Moreover, the model ensures that the mean annual runoff is preserved at the river confluences,

i.e. the sum of annual flows of the upstream reaches is equal to the predicted annual downstream flow.

The proposed model is adapted to incorporate different “sub-models” to account for local information within

the regional framework, where man-induced alterations are known, as common in non-pristine catchments. In

particular, we propose a module to consider the impact of existing/designed water withdrawals on theL-moments

of the FDC.

The procedure has been applied to a dataset of daily observation of about 120 gauged basins on the upper Po

river basin in North-Western Italy.

1 Introduction

Flow duration curves (FDC) are widely used tools to rep-

resent water availability in a river basin and are thus con-

sidered for many water resources planning and management

purposes, like concessions for water uses and the planning

of new hydropower plants. The FDC represents the percent-

age of time a certain value of discharge (usually at the daily

scale) is equaled or exceeded in a river section over a spec-

ified a period of time. A FDC computed for a single year

is called “annual”; if the observations of multiple years are

merged together, the FDC is usually referred to as “period-of-

record” or “total”. The empirical FDC can be easily built up

by plotting the sorted the observations versus their frequency

of non-exceedance computed with the Weibull plotting posi-

tion, although the FDC is more frequently represented with

respect to the exceedance frequency, thus resulting as a de-

creasing function. The evaluation of the FDC in ungauged

basins is still a major issue in hydrological modeling, despite

a large body of literature available on this topic, as recently

reviewed by Castellarin et al. (2013).

In this work, we develop a regional model for prediction

of the FDC in ungauged basins, developed and applied in the

upper Po river basin (in North-Western Italy, an area mainly

characterized by alpine and piedmont environments). The

statistical framework developed is able to take advantage of

local information about some types of anthropic effects. The

aim of the work is to provide a regional tool to estimate the

mean annual FDC in a generic watershed based on morpho-

metric and climatic descriptors.

Published by Copernicus Publications on behalf of the International Association of Hydrological Sciences.
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2 Methods

The regional spatially-smooth (SS) statistical estimation

method proposed in this paper is based on a framework de-

veloped by Laio et al. (2011) in the context of regional flood

frequency analysis. Analogies between the procedures are

obtained by representing the mean annual FDC by means of

its L-moments, i.e. distribution-free statistics which describe

the mean, the variability and the skewness of the empiri-

cal FDC curve. L-moments are linear combinations of order

statistics and are widely used in statistical hydrology; here

we will refer to asµ for the mean value, while the dimension-

less coefficients τ (L-CV) and τ3 (L-skewness) respectively

describe the variability and the skewness of the curve (see

e.g., Hosking and Wallis, 1997, and Grimaldi et al., 2011, for

more details on L-moments).

In the SS method the L-moments are the variables to be

regionalized, i.e. the variables that will be predicted in un-

gauged basins. This is not so common in the literature as

most of the models use as regionalization variables directly

the FDC quantiles or the parameters of an analytical function

fitted to the FDC. Then, the complete FDC can be calculated

by fitting a probability distribution function to the set of pre-

dicted regionalL-moments. In this way, the errors introduced

by the preliminary choice of a distribution to fit the empiri-

cal curve do not enter in the regionalization procedure. The

issue of the choice of a suitable distribution to represent the

estimated FDC represents the last step in the regionalization

process and will be discussed in the results section.

The present approach is referred to as spatially-smooth be-

cause it does not require the delineation of homogeneous re-

gions, i.e. groups of basins sharing the same statistical char-

acteristics (and thus the same L-moments τ and τ3 within

the region). Rather, L-moments are allowed to continuously

vary in the space, so the FDC can vary accordingly. Follow-

ing Wagener et al. (2013), the SS approach belong to the

“mapping function” paradigms in which the set of relation-

ship between the L-moments and the descriptors (and not

the L-moments themselves) remain valid for the whole area

of interest.

Ultimately, this approach can be considered an extension

of the index-flow approach, as the dimensionless FDC is not

constant in a region but is allowed to change site by site.

To build the regional model, the sample L-moments of the

mean annual FDC must be computed at each available gaug-

ing station; estimation in ungauged sites is then obtained by

building multiple linear regression models based on some

basins descriptors (i.e. morphologic, climatic, geological, etc

characteristics of the catchments), also known as descrip-

tors. For a generic variable y to be regionalized, two different

model structures have been considered:

y = a0+ a1 · x1+ . . .+ ad · xd+ ε (1)

y = a0 · x
a1

1 · . . . · x
ad

d · ε (2)

Plant

Gauging 
Station 

Hydropower 

Intake

Outflow

Figure 1. Example of gauging station bypassed by a water flow.

where xd represents the generic basin descriptor, ad are the

coefficients to be estimated, and ε is the residual error to be

minimized. Equation (1) can be solved by the Least Squares

method (LS), while Eq. (2) can be still solved within the LS

framework after the log-transformation of both side of the

equation. After the selection of a set of suitable regression

models, the prediction of µ, τ and τ3 in a generic ungauged

basin can be performed.

To provide reliable results, observed data should be natu-

ral flow observations, i.e. with no alterations due to upstream

water uses. However, many gauging stations are located on

rivers affected by man-induced alterations: in such cases, the

observations should be previously processed to provide “nat-

uralized” values. Where the actual amount of daily derived

flow is known, corrections are straightforward, but this in-

formation is seldom available. This is the case (see Fig. 1)

of run-on-river power plants where the gauging station is lo-

cated between the intake and the outflow of the system and

no information are available about the actual flow derived by

the plant.

To overcome this problem, and exploiting also the data

relative to such stations, a new methodology, developed by

Ganora et al. (2013), has been used to obtain the L-moments

of the “natural”. In essence, the L-moments computed on the

measurements affected by changes (i.e., downstream the in-

take) are converted to a set of naturalized L-moments sub-

sequently used in the analysis. The method only requires the

maximum discharge that can be withdrawn (said 1Q) and

the affected (observed) L-moments and does not need to as-

sess the complete time series of the natural flow. Note that

1Q is a known characteristic of the plants, available, in our

case, from a regional database of water infrastructures.

The correction method uses the parameter:

K =
1Q

µD
, (3)

where µD is the mean observed discharge (i.e. downstream

the intake; superscript D) to correct theL-moments by means

of the equations

Proc. IAHS, 373, 73–80, 2016 proc-iahs.net/373/73/2016/
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Table 1. Observed and corrected L-moments for gauging stations affected by relevant water intakes.

Basin K µ obs. µ corr. τ obs. τ corr. τ3 obs. τ3 corr.

Devero at Baceno 6.069 1.73 4.51 0.385 0.218 0.374 0.161

Germanasca at Perrero 0.637 3.14 4.6 0.708 0.528 0.627 0.465

Isorno at Pontetto 4 0.75 1.93 0.485 0.285 0.677 0.315

Po at Castiglione Torinese 2.016 54.57 117.5 0.585 0.371 0.607 0.33

S.Bernardino at S.Bernardino Santino 0.414 4.35 5.82 0.728 0.576 0.67 0.55

Stura di Demonte at Vinadio 3.053 2.62 5.45 0.482 0.291 0.536 0.258

Stura di Viù at Germagnano 0.734 4.77 7.26 0.596 0.435 0.568 0.406

Toce at Domodossola 3.391 12.21 29.34 0.375 0.224 0.469 0.226

Varaita at Torrette 8.824 1.36 3.2 0.383 0.212 0.541 0.221


µU
= µD

·9[K]

τU
= τD

·
0.5

L∗2[K]

τU
3 = τ

D
3 ·

1

3

L∗2[K]

L∗3[K]

. (4)

In Eq. (4) the superscript D indicates the downstream (ob-

served) value, while U is the upstream (naturalized) statistic.

Functions 9[K], L∗2[K] and L∗3[K] give the correction fac-

tor for each L-moment and are reported in the Appendix A.

Details about the correction method are discussed in Ganora

et al. (2013).

3 Data availability

The available hydrological dataset refers to North-West of

Italy (see Fig. 2) and includes 129 gauging stations with a to-

tal of 1438 station-year of daily observations, that have been

selected after different quality controls. Only years with no

more than 3 missing values have been included in the dataset.

The available records have a mean length of 11 years, with

actual durations ranging between 2 and 52 years. Many sta-

tions are quite recent and their data do not completely over-

lap with longer records, however they allow a larger spatial

coverage of the model. More details about the dataset can be

found in Ganora et al. (2013).

For each station, the annual FDCs have been computed

based on the daily discharge values; theN = 365 values have

been sorted and associated to the non-exceedance frequency

Fi =
i

N+1
, with i = 1. . .N being the index of the sorted sam-

ple (leap years curves have been resampled on the frequency

domain to obtain 365 values). Finally, the mean annual FDC

at each station has been computed by taking the average of

each annual FDC quantile (i.e., the average frequency-by-

frequency of all the annual values).

The database encompasses a number of basins affected by

different water withdrawals for different uses and with differ-

ent intake systems. In many cases, for our purposes, such an-

thropic effects can be neglected (e.g., negligible intake with

Figure 2. Location of gauging stations used in the analysis.

respect to the average flow; high-elevation reservoir affect-

ing only the upper part of the river and with negligible effect

on the long-term statistics). In other cases alterations can be

corrected with measurements of real intake (e.g. large irri-

gation canals). However, other cases require a correction of

the observed streamflow statistics to provide reliable “nat-

ural” values to be used in the regional analysis (with the

method described in the previous section). This is the case

of 9 gauging stations located downstream the intake of run-

of-the-river hydropower plants and upstream their water re-

turn. For these intakes no withdrawal data were available, as

no gauging recording system was installed. Table 1 reports

the main characteristics of the above mentioned stations with

man-induced alterations, as well as the corrected (“natural-

ized”) L-moments.

4 Spatially-Smooth regional estimation

Sample L-moments, i.e. µ, τ and τ3, have been computed

from the available average FDCs with the necessary correc-

tions to obtain “naturalized” values in the 9 cases described

proc-iahs.net/373/73/2016/ Proc. IAHS, 373, 73–80, 2016
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above. To support the implementation of the regional model,

a number of catchment descriptors (about 120), including

morphologic and climatic characteristics of the basin, soil

and vegetation type, land use, etc, have been computed for

each basin. The most relevant descriptors have been also re-

ported in an “Atlas of basin characteristics” (Gallo et al.,

2013). The descriptors act as independent variable in the re-

gression models and some of them are expected to provide a

statistical dependence with each L-moments.

Concerning the mean annual flow, to implement the re-

gression model we considered the transformed variable

h= (µ · 31 536)/A, (5)

which represents the flow in mm when µ in in m3 s−1 and

A the catchment area in km2. Using h in the additive model

structure (Eq. 1) and considering only descriptors that rep-

resents area-averaged values (e.g. mean basin elevation, spa-

tial average of annual rainfall, etc.), the model guarantees the

congruence of the mean discharge along the stream, i.e. the

mean annual flow downstream of a confluence is equal to the

sum of the two mean annual flow values computed upstream.

This is a notable feature of the method that allows to keep the

estimates of mean annual flow congruent at the confluences.

In order to select the most appropriate regional model,

we performed all the possible regressions combining 1 to 4

descriptors as independent variables to estimate h; each re-

gression was tested for significance with the t Student test

(5 % level of significance) and for multicollinearity with the

VIF test (limit value equal to 5, see e.g. Montgomery et al.,

2001). Models passing the tests were finally sorted according

to their adjusted coefficient of determination and the best-

performing ones were further evaluated by visual check of

diagnostic error plots. Regressions have been solved using

the Weighted Least Square method (e.g. Montgomery et al.,

2001) considering the inverse of the square root of record

length as weighting coefficients.

Concerning the L-moments τ and τ3, an analogous pro-

cedure has been performed but without requiring any con-

gruence at the confluences, and thus without restricting the

set of possible descriptors. In this case, both the additive

and the multiplicative model structures have been consid-

ered, thus considering a larger number of possible models

(about 106 models have been checked for each L-moment

and each model structure).

The final models, applicable to the whole area of interests

are:

h=−7.3605× 102
+ 1.2527×MAP+ 3.2569× 10−1 (6)

× zm+ 5.2674× fourierB1− 6.7185× clc2

τ =−2.896× 10−1
− 2.688× 10−3

× clc3+ 9.643

× 10−5
× a75+ 1.688× 10−4

×MAP+ 2.941

× 10× cint, (7)
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Figure 3. Natural values of the L-moments (observed or cor-

rected) compared with regional predictions. Colors represent record

lengths; circled points are the corrected values.

τ3 = 4.755× z−0.2702
max ×SD(IDFa)0.06869

×CV0.2106
rp ,

where MAP is the mean annual precipitation, zm and zmax

are the mean and maximum basin elevation, fourierB1 and

CVrp are rainfall regime parameters, clc2 and clc3 are land

use parameters, a75 is the 75th percentile of the hypsographic

curve, cint and SD(IDFa) are extreme-rainfall statistics. All

the parameters are computed at the basin scale; details are

reported in Gallo et al. (2013).
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Figure 4. Empirical (points) and analytical (lines) flow duration curve for the Agogna at Momo river: (a) fitting on sample L-moments;

(b) fitting on regional L-moments. Probability distributions are: log-Normal (LN3), Generalized Logistic (GLO), Generalized Pareto (GPA),

Gamma (GAM) and Burr XII (B12).

Performances of the selected regression models can be ex-

amined in Fig. 3 where predictions in cross-validation are

reported. The mean annual discharge prediction presents lit-

tle scatter, while L-CV and L-skewness tend to be more dis-

persed. Worse performances in higher-order L-moments pre-

diction were in fact expected, but it is worth nothing that

the points with larger errors are in general characterized by

shorter time series and thus by larger sample uncertainty.

Further diagnostics on residuals (not reported) have been per-

formed to check possible heteroskedasticity and residual cor-

relation.

5 Selection of FDC analytical form

The regional statistical framework presented is related to the

estimation of the L-moments, similarly to Laio et al. (2011).

The L-moments can be used to fit different probability distri-

bution functions to represent the FDC and the choice of the

analytical form of the FDC can be done as the last step of the

procedure. To suggest a suitable distribution to represent the

FDC in ungauged basins, different distributions have been in-

vestigated, all with 3 parameters: the log-Normal (LN3) the

Generalized Logistic (GLO), the Generalized Pareto (GPA)

and the Gamma (GAM) (details can be found in Hosking and

Wallis, 1997), and the Burr XII (also called B12) described,

for example, in Ganora and Laio (2015).

A first series of test of fitting was performed with the more

common distributions (LN3, GLO, GPA, GAM). The main

drawback observed was that in many cases negative stream-

flow values in the lower tail were obtained. This occurs when

the distributions have a variable lower bound that can al-

low (depending on the parameter set) negative predictions

for high exceedance frequencies. Further constraints to the

parameters of the distribution can be added to keep the result

consistent, but such controls seem hardly applicable in a re-

gional context, for two reasons: first, the adjustments in gen-

eral require numerical optimization that become difficult to

be implemented in large-scale models; second, it is in general

preferable to avoid complex (and likely unstable) estimation

methods when the model will be used by practitioners that

may not have confidence with numerical techniques.

To overcome the problem of negative quantiles without op-

timizing the distribution’s parameters, we introduce the use

of the Burr probability distribution, well known in different

scientific communities but rarely used in the hydrological

field (Ganora and Laio, 2015). In particular, the proposed

function is the Burr XII distribution, originally proposed by

Burr (1942) as a two-parameter function, and later extended

in the three-parameter form (cumulative frequency function):

F (x)= 1−
[
1− k

(x
λ

)c] 1
k

k 6= 0

= 1− exp
[
−

(x
λ

)c]
k = 0, (8)

where k and c are the shape parameters and λ is the scale

parameter. The parameter k can be any real number (−∞<

k <∞), while c >−k and λ > 0. The domain is always pos-

itive, being 0≤ x ≤∞ for k ≤ 0 and 0≤ x ≤ λk−1/c other-

wise; for this kind of application we considered only non-

positive values of k in order to use only unbounded (from

above) curves. The condition k = 0 is the limiting case for

which F (x) becomes the two-parameter Weibull distribution.

Another limiting case appears for k→−∞ (with c→∞ si-

multaneously) and lead to the Pareto distribution:

FP (x)= 1−
(x0

x

)γ
x > x0

= 0 otherwise, (9)

where −c/k = γ and x0 = λ(−k)−1/c.

The Burr function results quite “flexible”, and thus suit-

able to fit many different shapes of empirical data, thanks

to the wide range of skewness and kurtosis values it covers;

nevertheless it has only three parameters, thus avoiding over-

fitting problems. On the other hand, despite the simple ana-

lytical form of the Burr XII, the estimation of the two shape
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parameters is not straightforward as it requires the joint in-

version of two nonlinear equations (not shown here). For de-

tails about the estimation of the parameters with the method

of L-moments as well for other characteristics of the distri-

bution the reader is referred to Ganora and Laio (2015) and

references therein.

To proceed with the model selection, a comparison be-

tween the different distributions is in order. This compari-

son has been performed by fitting the analytical curves to

365 quantiles corresponding to the non-exceedance proba-

bilities Fi = i/366 with i = 1. . .365. For each distribution,

the difference between the empirical and the estimated quan-

tiles has been calculated (on both untransformed and log-

transformed discharge values). The RMSE provided a error

statistic for each considered station.

Results show that LN3 and GPA have generally good fit-

ting performances; GLO and B12 have slightly larger errors,

but comparable with LN3 and GPA, while the GAM does not

provide reliable results. However, the LN3 provides negative

values in 21 % of the stations, the GLO in 51 % and the GPA

in 11 %. The average duration (in days per year) affected by

negative quantiles is 10, 14 and 19 days for the LN3, GLO

and GPA respectively (the average is computed considering

only the stations with at least one negative value). In the con-

text of the data set analysed here the Burr distribution results

the best choice, as it provides adequate fitting capabilities

without the need of further optimization to avoid negative or

inconsistent quantile predictions. An example of fitting is re-

ported in Fig. 4a where the studied analytical functions have

been superimposed on the empirical FDC.

Panel b of Fig. 4 shows the same record, but compared to

the analytical FDCs computed from the regionalL-moments.

An overestimation of the mid-right part of the FDC is evi-

dent, while the left side of the curve seems properly recog-

nized. In this case, although the shift could be due to an in-

accurate estimation of the L-moments, it can also be caused

by the presence of unknown (or underestimated) water in-

takes upstream the gauging station. Under this perspective,

the regional model can be also used as a diagnostic tool to

identify basins in which an improvement of the knowledge

on the actual water use is recommended. This kind of analy-

sis is currently under development.

6 Conclusions

A regional model for the estimation of the mean annual flow

duration curve (FDC) has been presented in the paper. The

model is made of three regression-based equations to esti-

mate the L-moments (i.e., the mean, the L-CV and the L-

skewness) of the FDC at any ungauged basin, which can be

subsequently used to fit the whole curve. In particular, con-

cerning the mean annual flow, the river network structure is

explicitly accounted for: at any confluence, the mean annual

flow in the downstream section is the sum of the mean values

in the two upstream river reaches, thus ensuring the congru-

ence of the prediction.

Moreover, the method allows the use in the calibration

phase of records affected by water derivations, even if the

actual derived flow is not known or hardly retrievable. This

is possible thanks to a parsimonious corrections method that

provide “naturalized” L-moments considering only simple

“geometrical” information about the water intake and does

not require the reconstruction of the whole natural time se-

ries.

Finally, among different analytical representations of the

FDC, the three-parameter Burr XII distribution has been

proved to be the most suitable for the case study. In fact,

while it provides good fitting performances, it does not allow

the estimation of negative discharge values, which frequently

appear by applying other analytical forms. This is advanta-

geous as it is not necessary to optimize the parameters of a

distribution to force the predicted quantiles to positive values

only, thus making the model suitable for large-scale unsuper-

vised applications.

Due to its flexibility, the present modeling framework is

easily adaptable to further extensions like, for instance, the

inclusion of observations from new gauging stations (by

combining local and regional L-moments), while its use as

a diagnostic tools to investigate the actual effect of existing

water derivations is already in progress.
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Appendix A

The correction method developed by Ganora et al. (2013) is

based on the hypothesis that the upstream FDC L-moments

can be obtained by correcting the observed ones through

Eq. (4) in a parsimonious way, i.e. using just simple informa-

tion about the intake system. This is necessary when scarce

information are available about the plant, while more sophis-

ticated models could be adopted where the available infor-

mation is more detailed.

The method assumes the intake flow is exactly correspond-

ing to the actual available flow below the threshold 1Q. In

this work we also consider the plant is always in exercise,

even though the original method allows to account for a num-

ber of days of stop during the year. Correction coefficients

are obtained by studying the effect of water withdrawal on

a virtual FDC defined by an exponential distribution; in this

way the problem can be treated analytically and solutions are

based o a single parameter.

Applicability of correction factors has been tested with

real data (i.e. also with non-exponential FDC) showing that

µ and τ can be very efficiently reconstructed while, as ex-

pected, corrections for τ3 provide larger errors, but still use-

ful for the scope of the analysis.

To allow the implementation of Eq. (4), from Ganora et

al. (2013), we define:

d∗ = Exp[W [K]] where W [K] is the Lambert W -function,

i.e. the inverse of equation K =WeW ;

ψ [K]=K/W [K];

L2 = ψ[K] · S2

[
d∗
]
+ k ·

(
d∗2− d∗

)
;

L3 = ψ[K] · S3

[
d∗
]
+ k · (−2d∗3+ 3d∗2− d∗);

S2

[
d∗
]
=

1

2
d∗
(
2− d∗+ 2

(
d∗− 1

)
·Ln[d∗]

)
;

S3

[
d∗
]
=

1

6
d∗
(
6+ d∗

(
4d∗− 9

)
− 6(d∗− 1)(2d∗− 1)

·Ln[d∗]
)
.
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