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Comparing DMT Variants in Medium-Reach 100G
Optically Amplified Systems

Dario Pilori, Student Member, OSA, Chris Fludger and Roberto Gaudino, Senior Member, IEEE

Abstract—Several research works are currently addressing
100+ Gbps per wavelength high-capacity DWDM medium reach
systems (80 km on SMF fibers) to cover the metro market
segment. For the purposes of cost reduction, it is interesting to
consider the use of direct detection receivers rather than the more
expensive coherent receivers. However, DWDM transmission in
the C-Band imposes severe limitations in terms of tolerances
to chromatic dispersion, electrical low-pass filtering, Analog-to-
Digital Converter (ADC) and Digital-to-Analog Converter (DAC)
quantization effects and receiver optical signal to noise ratio
(OSNR). In this paper, we analyze the ultimate performance
of several variances of Discrete Multitone (DMT) modulation
(namely Dual-SideBand DMT, Single-SideBand and Vestigial-
SideBand), comparing them in terms of required OSNR as
a function of several system parameters in a medium reach
scenario. We found that for the 80 km target link only single-
sideband DMT seems a viable option, while double-sideband
DMT has exceedingly high OSNR requirements.

Index Terms—Digital Multitone (DMT) Modulation, medium-
reach optical links, 100 Gbps per wavelength transmission.

I. INTRODUCTION

OPTICAL transmission systems are steadily evolving to
100+ Gbps per wavelength solutions in several market

segments, from the inter-data center to the long-haul systems.
While in long-haul the clear winner is the combination of
advanced modulation formats, Digital Signal Processing (DSP)
and coherent detection, the situation is less clear for shorter
links, so that several recent research papers have addressed
solutions that retain less-expensive direct detection receivers
coupling them with advanced modulation formats and DSP
[1]–[4]. Our research focuses on 100+ Gbps on a “medium-
reach” scenario characterized by distances up to 80 km,
using optical pre-amplification in front of direct detection
receiver and operating in the C-Band in order to be compliant
with Dense Wavelength Division Multiplexing (DWDM). This
scenario is typically applicable to next-generation ultra-high
capacity metro network. If one wants to target 100 Gbps (or
more) per λ over these links, traditional On-Off Keying (OOK)
is completely out of question, due to electrical bandwidth
limitations and the exceedingly strong impact of chromatic
dispersion, which cannot be reasonably counteracted by any
form of electronic equalization at the receiver. Additionally,

D. Pilori and R. Gaudino are with Department of Electronics
and Telecommunications (DET), Politecnico di Torino, Italy. E-Mail:
dario.pilori@polito.it, roberto.gaudino@polito.it.

C. Fludger is with Cisco Optical GmbH, Nuremberg 90411, Germany. E-
Mail: cfludger@cisco.com

Copyright (c) 2016 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org

PAM-4 solutions currently under standardization for 100 Gbps
solutions over short link (i.e. up to 2 km) seems also very
sensitive in the previously described medium-reach scenario,
particularly due to chromatic dispersion (unless optical chro-
matic dispersion compensation is used, an option that is
intentionally neglected in this paper).

One of the solutions that have been investigated by several
groups to allow 100 Gbps per λ in this medium-haul scenario
is using several variants of Discrete Multitone (DMT) [2], [5],
[6].

In this paper, we focus on a detailed comparison of the
transmission performance in the previously described medium
reach scenario for three DMT variants, carried out through a
combination of theoretical assessment and numerical simula-
tions. Our main goal is to establish the ultimate performance in
terms of required Optical Signal-to-Noise Ratio (OSNR) at the
receiver and highlight the different types of system penalties.
The three DMT variants that we analyze are:

• Dual Side-Band (DSB) DMT, in which the instanta-
neous power of the transmitted optical signal is power-
modulated by a positive and real-valued DMT signal. The
resulting optical spectrum is double-sided and requires a
total bandwidth that is twice the bandwidth of the real
DMT signal.

• Single Side-Band (SSB) DMT, in which the transmitted
electrical field is modulated in such a way that one of
the two optical sidebands is removed but the signal can
still be directly-detected due to a self-coherent effect
made possible by the presence of a sufficiently strong
unmodulated optical carrier.

• Vestigial Side-Band (VSB) DMT which is a hybrid of
the previous two cases in which a DSB-DMT signal is
optically filtered to remove one of the two sidebands.

The novelty of this paper is in the joint assessment of the
three modulations addressing the different sources of OSNR
penalty. To this end, the paper is organized as follows. In
Sec.II we start by evaluating the OSNR requirements assuming
ideally spectrally flat electrical and optical components for
the three modulation formats. We use in this Section a mix of
analytic formulas and numerical simulations, in order to derive
the receiver sensitivity in terms of OSNR requirement for an
ideal optical back-to-back scenario. In the following Sec.III
we analyze the chromatic dispersion penalty and the need
for bit and power loading algorithms. Finally, in Sec.IV, we
introduce realistic bandwidth limitations for the most critical
electrical components and the very relevant impact of the finite
resolution of ADC and DAC.
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In all three Sections II-IV we also discuss the need for
DSP-based compensation of some unwanted quadratic terms,
a well-known issue for SSB-DMT [1], [5], [7]. One of the new
results of this paper is in pointing out that nonlinear (quadratic)
compensation can also be highly beneficial for DSB and SSB,
where we propose new and relatively simple DSP algorithms.

The main outcome of this paper can be summarized as
follows: for the 100 Gbps per wavelength target, DSB-DMT
has almost the same OSNR performance as SSB-DMT for
relatively short systems (below 10 km) and thus it seems
the most promising candidate among the three different op-
tions, since it has lower complexity in terms of both optical
components requirements and DSP. Anyway, for the target 80
km SMF and C-band (1550 nm) scenario, DSB-DMT has an
unacceptably high penalty due to chromatic dispersion, while
SSB-DMT is very promising since it has low penalty compared
to the back-to-back scenario even at the expense of an increase
in complexity of both optoelectronics and DSP. The VSB-
DMT solution is a compromise between the two options. We
also found that the “power-modulated” DSB and VSB options
have a very strong requirements in terms of DAC and ADC
resolution (i.e in terms of Effective Number of Bits or ENoB
parameter), while SSB is less sensitive to this issue.

II. BACK-TO-BACK PERFORMANCES

A. Methodology

In this Section, the performance of DSB, SSB and VSB
DMT is evaluated in optical back-to-back, with the aim of
assessing the minimum required OSNR for each modulation
format when assuming ideal components and in particular
spectrally flat ADCs, DACs, modulators and photodiodes, and
no quantization effects in ADCs and DACs. The transmitted
block diagrams and the resulting qualitative spectrum for the
three cases are shown in Fig.1.

In this Section, x(t) is an ideal real-valued DMT signal
generated by a Digital Signal Processing (DSP) running at
Rs samples/s and thus creating a flat signal spectrum in the
bandwidth between −Rs/2 and Rs/2 (and zero outside it).
When relevant for the analytic derivation, the DMT signal
x(t) is assumed to be a Gaussian random process with zero
mean and variance (power) σ2

x .
The performance of these methods has been evaluated using

either analytic expressions or time-domain numerical simula-
tions. In the numerical examples of this Section, x(t) is a 16-
QAM DMT signal with Rs = 64 Gs/s, which is a typical value
for today’s top-class ADCs and DACs. For these simulations,
DAC and ADC are assumed to be completely ideal (flat
frequency response inside the bandwidth, no quantization).
FFT size is 512, and the number of modulated subcarriers
is 255.

Considering that each subcarrier carries nbit = 4 informa-
tion bits, the resulting gross bit rate is Rs/2·nbit = 128 Gbit/s,
a value that we select since it should be able to support 100
Gbps net including the required overhead. The optical channel
adds only Amplified Spontaneous Emission (ASE) noise, and
the resulting OSNR is calculated over a bandwidth Bo = 0.1
nm.

As a performance metric, the receiver evaluates the Signal-
to-Noise Ratio (SNR) Es/N0 for each DMT subcarrier by
comparing the received noisy constellations with the ideal
transmitted ones. Afterwards, the receiver calculates the ge-
ometric mean over all subcarriers that, as explained in details
in [8], is the single-channel equivalent SNR for DMT systems.

B. Dual Side-Band

1) Modulation: For DSB DMT, the optical signal is as-
sumed to be modulated using a power modulator (e.g. a
directly modulated laser but with negligible chirp) as shown in
Fig.1, therefore the optical field at the output of the modulator
can be written using the complex envelope notation as:

E(dsb)
TX (t) =

√
Pout(t) =

√
P̄

{
1 +Q

[
x(t)

c′

]}
(1)

Pout(t) is the instantaneous output optical power, P̄ is the
average transmit optical power, and Q is a clipping function
(i.e. a symmetrical hard limiter) that forces the transmitted
power to be positive, defined as:

Q(α) =


α −1 ≤ α ≤ 1

−1 α < −1

1 α > 1

(2)

The parameter c′ in the previous equation allows to set
a specific clipping ratio, defined as the ratio between the
clipping threshold squared and the power of input signal [6]

Rcl =
c′2

σ2
x

(3)

The previous notation means that the DMT signal x(t) is
hard-limited between ±

√
Rcl · σ2

x . The clipping ratio is a very
important parameter for DSB, as explained in several previous
papers such as [6] since a small Rcl clipping ratio will add
high clipping noise, while a large clipping ratio will decrease
the power of the useful signal in (1) thus reducing the effective
tolerance to noise. As it will be shown later, the clipping ratio
has a strong impact on system performance.

2) Clipping ratio and CSPR: It is useful to introduce
the Carrier to Signal Power Ratio (CSPR) on the modulated
optical signal, since it allows a comparison with other DMT
techniques. The Carrier-to-Signal Power Ratio (CSPR) ξ is
defined here as the ratio between the optical power of the
un-modulated Continuous Wave (CW) carrier transmitted (see
previous qualitative spectrum in Fig.1) and the power of the
modulated signal or, in formula:

ξ(dsb) =
E2
{
E(dsb)

TX (t)
}

var
{
E(dsb)

TX (t)
} (4)

where E denotes expectation and var variance. It turns out that
the CSPR for DSB-DMT depends only on the clipping ratio.
Assuming ξ(dsb) � 1 (as it is always the case, see later), (1)
can be expanded using a Taylor’s series expansion, obtaining

E(dsb)
TX (t) ≈

√
P̄

[
1 +

y(t)

2
− y2(t)

8
+
y3(t)

16
− 5y4(t)

128

]
(5)
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Fig. 1. Transmitter block diagram and qualitative spectrum of the three DMT variants addressed in this paper.

where y(t) is defined as

y(t) = Q
[
x(t)

c′

]
(6)

Since in all situations of interest ξ(dsb) � 1 (as we will show
later), y(t) can still be approximated as a Gaussian random
process, with zero mean and variance σ2

y . Substituting (5) into
(4), the CSPR can be approximated as

ξ(dsb) ≈
(
1− 1

8σ
2
y − 15

128σ
4
y

)2
1−

(
1− 1

8σ
2
y − 15

128σ
4
y

)2 (7)

This equation can be solved numerically to obtain the variance
of y needed to achieve a specific CSPR, and from this the
required clipping ratio.

If clipping effects can be neglected, i.e. for high values of
Rcl, the variance of y is inversely proportional to the clipping
ratio

σ2
y ≈

σ2
x

c′2
=

1

Rcl
(8)

which in turn allows a direct relation between the clipping
ratio and the CSPR as shown in Fig.2. The solid blue line
is a numerical evaluation of (4), while the dashed line is the
approximation obtained using (7) (8). In the range of interest
of clipping ratio (typically well above 8-9 dB, as shown later),
the approximation is quite accurate, with a maximum error
lower than 0.5 dB. In fact, for high values of CSPR, which
also mean high clipping parameter (i.e. small clipping on the
useful signal), (7) be further simplified by only considering
lower order terms in the Taylor series expansion in (5)

ξ(dsb) ≈ 4Rcl (9)

In conclusion, we observe that asymptotically the relation
between these two parameters is linear, and in particular
CSPRdB ≈ Rcl,dB + 6 dB. From a system point of view, the
price to be paid in DSB-DMT to minimize clipping effects is
to keep a strong un-modulated CW carrier on the transmitted
optical field.

4 6 8 10 12

Clipping ratio (dB)

8

10

12

14

16

18

C
S

P
R

 (
d
B

)

Simulation

Approximation

Fig. 2. Relation between clipping ratio and CSPR. Solid line: numerical
evaluation of (4), dashed line: approximation of (7) neglecting clipping.

3) Performance with received optical noise: Assuming an
ideal (optical and electrical) channel, i.e. without any band-
width limitation or distortion, the received electric field is the
transmitted electric field with the addition of complex-valued
ASE noise in both polarizations (nX(t) and nY(t)), given by:

E(dsb)
RX (t) =

[
E(dsb)

TX (t) + nX(t)
]
îX + nY(t)̂iY (10)

where îX and îY are unit vectors in polarization space. The
power of noise in both polarizations over an integration
bandwidth Bo (e.g. 0.1 nm) is 2N0Bo, which can be expressed
in terms of OSNR:

OSNR =
P̄

2N0Bo
(11)

4) Direct detection: After direct detection with an ideal
photodiode, neglecting irrelevant conversion constants, the
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electrical signal can be expressed as:

z(dsb)(t) =
∣∣∣E(dsb)

RX (t)
∣∣∣2 = P̄ + P̄ Q

[
x(t)

c′

]
+ |nX(t)|2+

+ |nY(t)|2 + 2nX,I(t)

√
P̄

{
1 +Q

[
x(t)

c′

]}
(12)

where nX,I(t) = <{nX(t)}. Assuming OSNR� 1, the noise-
noise beating terms can be neglected (an assumption that will
be verified a posteriori in the following section) leading to the
following simplified received signal:

z(dsb)
0 (t) ≈ P̄ Q

[
x(t)

c′

]
+ 2nX,I(t)

√
P̄

{
1 +Q

[
x(t)

c′

]}
(13)

where the pedix 0 denotes removal of the irrelevant DC
component.

After sampling (13) with rate Rs, the powers of signal and
noise can be evaluated in order to calculate the electrical SNR.
Neglecting the effect of clipping, the power of the signal can
be approximated as

Ps ≈
P̄ 2σ2

x

c′2
=
P̄ 2

Rcl
(14)

while the power of noise, assuming that is uncorrelated with
the signal, is

Pn = 2N0RsP̄ (15)

This leads to a simple expression that approximates the
relation between the electrical SNR, the OSNR defined in (11)
and the clipping ratio

Es/N0 =
P̄

RclRs2N0
=

OSNR
Rcl

· Bo

Rs
(16)

Using the approximation in (9), it can also be related to the
CSPR ξ(dsb)

Es/N0 ≈ OSNR · 4Bo

Rs
· 1

ξ(dsb) (17)

Regarding noise-noise beating, which was neglected in (13),
its power is

Pnois-nois = (2N0Rs)
2 (18)

Comparing this equation with (15), its power is lower than
signal-noise beating by a factor of OSNR · Bo/Rs. For the
values of interest of OSNR, this term is large, and the impact
of noise-noise beating in the electrical SNR (17) is below 0.03
dB in all the considered cases.

This last equation has a very important system interpre-
tation: the electrical SNR is inversely proportional to the
CSPR (or equivalently to the clipping ratio in the asymptotic
approximation), therefore for instance an increase by 1 dB in
CSPR will decrease by 1 dB the electrical SNR at the receiver.
This can be very simply understood: increasing the CSPR by
1 dB means adding 1 dB to the unmodulated optical carrier,
which is “useless” for the actual detection of data in noise,
at the expenses of the power of the modulated part of the
spectrum.

Fig.3 reports the electrical SNR in a 16-QAM DMT simu-
lation as a function of the CSPR, where the red dashed line is

8 10 12 14 16

CSPR (dB)

11

12

13

14

15

16

17

E
s
/N

0
 (

d
B

)

SSB

DSB

VSB

Theory

BER=10
-3

Fig. 3. Comparison of 16-QAM DMT SSB (blue solid line), DSB (red dashed
line) and VSB (yellow dash-dot line) with an OSNR=30 dB over 0.1 nm.
Results are compared with the theoretical asymptotical SNR (purple dot line)
(17), and the minimum SNR required to obtain a BER=10−3 (black solid
line).

for the DSB case while the other curves will be introduced in
the following sections. The simulation results are compared
with the asymptotic approximation in (17) (dotted purple
line). As illustrated in the Figure, the electrical SNR peaks
at ξ(dsb) = 10.5 dB. For high values of CSPR the curve gets
closer to the approximation (17), since clipping noise becomes
negligible and the approximations performed in the previous
equations become more accurate. On the other end, for low
values of CSPR, the SNR decreases due to clipping noise,
which is not taken into account in (17). In conclusion, for
the ideally spectrally flat conditions assumed in this Section,
the DSB optimal operating point is a careful balance between
clipping noise and loss of modulated signal power, as denoted
by CSPR.

C. Single Side-Band

1) Modulation: To generate a SSB-DMT signal, it is neces-
sary to use a field modulator (e.g. dual-nested Mach-Zehnder
modulator in its linear region) as shown in Fig.1. In order to
obtain the Single Side-Band spectrum, the optical field at the
output of the modulator must be given by:

E(ssb)
TX (t) =

1√
2

[x(t) + jH{x(t)}] + c (19)

where c is the CW carrier amplitude, and H{·} indicates
Hilbert transform, defined as the convolution with a linear filter
with frequency response

Hhilb(f) =


j f > 0

0 f = 0

−j f < 0

(20)

The addition of the Hilbert transform on the imaginary
component eliminates the negative frequency components of
E(ssb)

TX (t), thus creating an SSB signal. Multiplication by 1/
√

2
is introduced so that the power of the modulated part of the
signal is the same as x(t).
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The need to add a carrier c to the signal is necessary to
allow direct detection with a photodiode, but it once again
leads to a transmit electric field with CSPR:

ξ(ssb) =
c2

σ2
x

(21)

In contrast to DSB, the CSPR in SSB is not related to signal
clipping, but it is a parameter that can be freely chosen at
the modulator changing c or σ2

x . The independence between
CSPR and signal clipping gives a significant system advantage
of SSB over DSB, as shown later.

2) Direct detection for SSB: After the addition of ASE
noise (10), the signal is first filtered with an ideal Optical
Band-Pass Filter (OBPF) with bandwidth Rs/2, and then it is
detected with an ideal photodiode (see again Fig.1). Applying
the same approximations used for DSB, i.e. neglecting noise-
noise beating, noise-signal beating and removing DC, the
received signal after the photodiode is

z(ssb)
0 (t) ≈ 1

2

[
x2(t) +H2{x(t)}

]
+ 2c

[
1√
2
x(t) + nX,I(t)

]
(22)

Comparing this equation with DSB (13), it is evident that there
is an additional self-interference term given by:

xSSBI(t) =
1

2

[
x2(t) +H2{x(t)}

]
(23)

This term is called Signal-Signal Beating Interference (SSBI)
and, if not compensated, represents a penalty for the receiver.

It was experimentally shown [1], [5], [7], [9], [10] that
SSBI can be almost completely removed by proper algorithms
in the receiver DSP, with an effectiveness that depends also
on the CSPR value. Under the simplifying assumption of
SSBI perfect cancellation, the electrical SNR can be easily
calculated from (22) as:

Es/N0 =
2σ2

x

RsN0
= OSNR

4Bo

Rs (1 + ξ(ssb))
(24)

This equation is similar to the approximation for DSB in (16).
For high values of CSPR, (16) can be approximated as (17),

and neglecting +1 in the denominator of (24) the two results
become equal. From a system point of view this means that
for sufficiently high CSPR, DSB-DMT has asymptotically the
same performance of SSBI-cancelled SSB-DMT, even if the
DSB signal occupies twice the optical bandwidth compared to
SSB. This effect can be understood by comparing the signals
after photodetection for DSB (13) and SSB (22). While noise
power is doubled in DSB compared to SSB, since it is sampled
over twice the bandwidth, signal power is also doubled, due
to the combination of the two sidebands (which contain the
same information).

In conclusion, in the ideal optical back-to-back case studied
in this section DSB and SSB DMT have the same asymptotical
performance for high CSPR but the actual DSB-DMT is
limited by clipping effects, while SSB-DMT can be limited by
the quality of the SSBI cancellation algorithm, as discussed in
the following Subsection.

7 9 11 13 15 17

CSPR (dB)

12

13

14

15

16

17

E
s
/N

0
 (

d
B

)

w/ SSBI-comp

w/o SSBI-comp

Theory

BER=10
-3

Fig. 4. SNR, geometrically averaged over all the subcarriers, of a SSB-
DMT signal, with (solid blue line) and without (green dash-dot line) SSBI
compensation. The OSNR is 30 dB over 0.1 nm, Rs = 64 Gs/s, constellation
is 16-QAM on all subcarriers. Results are compared with the minimum SNR
required to obtain BER=10−3 (black solid line).

3) SSBI compensation: There are several techniques shown
in literature to compensate SSBI [1], [5], [7], [9]. For this
work, we adopted the method described in [1], which repre-
sents a good compromise between effectiveness and computa-
tional complexity. This scheme estimates SSBI at the receiver
as

x̂SSBI(t) = γ
∣∣∣z(ssb)

0 (t) + jH
{
z(ssb)
0 (t)

}∣∣∣2 (25)

where γ is a positive real-valued coefficient, optimized at
the receiver, and z(ssb)

0 (t) is the received signal after the
photodiode.

Fig.4 compares the SNR Es/N0 of a 16-QAM SSB-DMT
signal, with and without SSBI compensation. The compensa-
tion scheme is able to increases the SNR by ∼ 3.5 dB at the
optimal CSPR. The SSBI compensated system has an SNR
which is very similar to the theoretical asymptotic value for
sufficiently large CSPR values, while for smaller CSPR the
estimation error becomes too large, strongly decreasing the
electrical SNR.

A comparison between SSB with SSBI compensation (blue
solid line) and DSB is shown in Fig.3, which is one of the
main results of the first part of this paper. It is noteworthy that
the shape of the two curves is similar, showing a maximum
SNR for approximately the same CSPR value (about 10.5 dB).
At this optimal CSPR value, SSB has a 1.4 dB advantage over
DSB. For smaller values of CSPR, DSB is limited by clipping
effects while SSB is limited by imperfect SSBI cancellation.
In contrast, SSB transmission without SSBI cancellation is
significantly worse than that of DSB.

D. Vestigial Side-Band

1) Modulation: A Vestigial Side-Band signal is here de-
fined as a DSB-DMT that is optically filtered at the transmitter
in order to (at least partially) suppress one sideband, as shown
in Fig.1. This approach potentially allows the generation of a
signal similar to SSB with a smaller transmitter complexity.
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Assuming here an ideal rectangular optical filter that cuts
one of the two sidebands, the VSB transmit optical field is

E(vsb)
TX (t) =

1√
2

[
E(dsb)

TX (t) + jH
{
E(dsb)

TX (t)
}]

(26)

To a first approximation, the resulting signal is identical to
the SSB-one. However, there is subtle, though significant,
difference: the VSB signal is affected by clipping in the same
way as DSB, since it has been generated with an ideal power-
modulator.

2) Direct detection for VSB: Following the same steps
performed in DSB and SSB, firstly ASE noise (10) is added,
then the signal is filterered with an ideal OBPF, and finally is
detected with an ideal photodiode. With the usual approxima-
tions, the received signal is:

z(vsb)
0 (t) ≈ P̄

2
Q
[
x(t)

c′

]
+ nX,I(t)

√
2P̄

{
1 +Q

[
x(t)

c′

]}
+

+
P̄

2
H2

{√
P̄

{
1 +Q

[
x(t)

c′

]}}
(27)

Comparing this equation with DSB in (13), the first two terms
(signal and ASE noise) are equal, except from scaling factors
that do not affect the SNR. However, there is an additional
term that is similar to SSBI in Single Side-Band (23), that
induces a penalty at the receiver. Provided that this term is
sufficiently compensated by proper DSP algorithms, the SNR
is the same as DSB (16).

3) Non-linearity compensation: Due to the similarity with
the SSB SSBI, the VSB SSBI term cancellation can be
obtained applying a scheme as in Sec.II-C3

x̂SSBI(t) = γH2

{
z(vsb)
0 (t)− 1

4
z20

(vsb)
(t)

}
(28)

The terms inside Hilbert transform are the first two terms of
the Taylor series expansion of the transmitted electric field (5).
The effectiveness of this method is shown in Fig.5, where,
similarly to Fig.4, there is an increase in performance, but
smaller than that SSB. This is due to the joint effect of
clipping, which cannot be compensated, and the approximation
of the Taylor’s series expansion. In Fig.3 VSB (dash-dot
yellow line) is compared to SSB and DSB. The shape is
similar to the other two methods: for high values of CSPR
the performance gets closer to the asymptotic approximation,
while for low values of CSPR the performance is limited by the
joint effect of clipping and non-linear self-interference, which
are not taken into account in the approximation (17). Due to
these two effects, VSB has the worst performance compared
to DSB and SSB.

E. Discussion

In Fig.6 the three methods are compared at different values
of OSNR, and for each value of OSNR the CSPR is optimized
and, when relevant, SSBI cancellation is applied with optimal
parameters. In this figure, we also superimpose a horizontal
line for the SNR value required to obtain a target BER=10−3,
which may be corrected to better than 1015 by a relatively
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30 dB.
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Results are compared with the required SNR to obtain BER=10−3.

low overhead hard-decision FEC. This figure, together with
the previous Fig.3 summarizes the most relevant result of this
Section.

For small values of OSNR, DSB and VSB have similar
performance, while SSB performs better than the other mod-
ulations by ∼ 1 dB. At high values of OSNR, SSB floors due
to SSBI estimation errors, while the performance of DSB and
VSB linearly increase with the OSNR. For very high values
of OSNR, DSB performs better compared to VSB due to the
absence of self-interference terms.

From these back-to-back results we can conclude that, even
without chromatic dispersion or DAC limitations, Single Side-
Band has the highest performance for the OSNR ranges of
interest, followed by DSB and VSB. In all cases, it is interest-
ing to note that even in the very idealized channel conditions
considered in this Section (i.e. in ASE noise only, without any
type of optical or electrical bandwidth limitation) the required
OSNRs@0.1nm to obtain BER=10−3 are significant, and are
higher than 30 dB in all cases. The main explanation for these
values is due to the required CSPR, whose optimal values are
of the order of more than 10 dB, meaning that the “useless”
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optical CW carrier is 10 dB greater than the power of the
modulated part of the spectrum. By slightly simplifying the
analysis and for the DSB case only, we can say that more
than 10 dB are “lost” due to the requirement of a “power-
modulated” DMT signal, i.e. of the generation of an “always
positive” transmitted electrical signal, which is a must for
direct detection. Similar considerations hold also for SSB and
VSB.

Considering system complexity, SSB has the highest trans-
mitter cost/complexity, followed by VSB and DSB. Vestigial
Side-Band in back-to-back has the worse performance and
slightly higher transmitter cost compared to DSB, since it
requires a sharp optical filter. As for the receiver complexity,
both SSB and VSB require some non-linear self-interference
compensation, which is not needed for DSB.

III. IMPACT OF CHROMATIC DISPERSION

In previous Section, the fundamental OSNR requirements
were obtained for the three DMT variants in optical back to
back. The present Section further develops the analysis, intro-
ducing some of the most relevant practical system limitations,
starting with the effect of chromatic dispersion.

A. Effect on DSB

It is well known that for SSB-DMT and VSB-DMT, assum-
ing a perfect sideband suppression, chromatic dispersion has
no effect on the SNR [11] because it only generates a phase
rotation on each subcarrier, which can be easily recovered
through a standard one-tap DMT equalizer on each subcarrier.

The situation is completely different for DSB-DMT, as
detailed in the following steps. The received electric field in
presence of chromatic dispersion is:

E(dsb)
RX (t) =

[
E(dsb)

TX (t)⊗ h(t) + nX(t)
]
îX + nY(t)̂iY (29)

where ⊗ denotes convolution, h(t) is the chromatic dispersion
impulse response and the transmitted electric field is defined
in (1). As h(t) is an all-pass filter, it has no effect on noise.

To analyze the problem, it is useful to expand E(dsb)
TX (t) with

a Taylor’s series expansion (5) up to the 2nd order, obtaining

E(dsb)
TX (t)⊗h(t) ≈

√
P̄

[
1 +

1

2

(
y(t)− y2(t)

4

)
⊗ h(t)

]
(30)

where y(t) is defined in (6). By plugging (30) into (29),
detecting it with an ideal photodiode, and applying the same
approximations as (13), the signal becomes

z(dsb)
0 (t) ≈ P̄

[(
y(t)− 1

4
y2(t)

)
⊗<{h(t)}

+
1

4

∣∣∣∣(y(t)− 1

4
y2(t)

)
⊗ h(t)

∣∣∣∣2
]

+2
√
P̄ nX,I(t)

(31)

Comparing this equation with the result without chromatic
dispersion in (13), it can be seen that there are two main
differences that can impact system performance.

The first is the well-known small-signal transfer function in
a direct detection system [12], which is directly related to the
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Fig. 7. Histograms in logarithmic scale of a DSB DMT signal (solid blue line)
at the transmitter, immediately before power modulation (a), and immediately
after the photodiode (b) (DC is removed). The signals have been scaled to set
their variance to 1. ASE noise is not present, the CSPR is 10 dB, propagation
distance is 80 km of SSMF. Red dashed line is a Gaussian fit of the two
histograms.

<{h(t)} filtering term in the previous equation, that give rise
to the following transfer function:

Hss(ω) = cos

(
ω2 β2

2
d

)
(32)

where ω = 2π(f − f0), f0 is the laser frequency, β2 is
the chromatic dispersion parameter and d is the propagation
distance. For sufficiently high accumulated dispersion, this
transfer function generates deep notches and consequently a
system penalty for DSB-DMT.

A second and less known impact arises from the quadratic
terms appearing in the second half of (31), which have some
similarities to the SSBI terms in SSB (22) and VSB (27). The
power of the quadratic terms, compared to the power of the
signal, is inversely proportional to the CSPR, therefore for
high CSPR they can be neglected, leading to the power-power
transfer function with the small-signal approximation (32).

To check if this approximation applies to the system under
study for the values of interest of CSPR (i.e. those discussed in
previous Section), a numerical simulation of DSB-DMT signal
transmission has been set up. A DSB-DMT signal is power
modulated with 10 dB of CSPR. It is then transmitted over
80 km of linear Standard Single-Mode optical Fiber (SSMF)
(D = 16.7 ps/(nm km), f0 = 193.4 THz), amplified with a
noiseless amplifier and detected with an ideal photodiode.

The histograms of the transmitted (a) and received electrical
signals (b) are shown in Fig.7. As expected, the transmit
signal is almost perfectly Gaussian (as it has to be for a
DMT signal with a high number of subcarriers, 2048 in our
simulations), while the received signal is clearly not Gaussian.
But if the system had been linear, the received signal would
have been Gaussian. This observation clearly proves that there
is a significant nonlinear effect, which is due to the quadratic
terms in (31), which evidently cannot be neglected for the
CSPR values of interest. Quite unexpectedly, it was found
that this nonlinearity creates a significant additional penalty
in DSB-DMT in presence of strong accumulated dispersion.

B. A predistortion proposal for DSB-DMT

The effect of the quadratic terms in DSB with chromatic
dispersion can be reduced by means of transmitter predistor-
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tion. By changing (1) into

Ẽ(dsb)
TX (t) =

√
P̄

{
1 + 2Q

[
x(t)

2c′

]
+Q2

[
x(t)

2c′

]}
(33)

the transmitted electric field simplifies to

Ẽ(dsb)
TX (t) =

√
P̄

{
1 +Q

[
x(t)

2c′

]}
(34)

approximating a field-modulated signal, similar to SSB (19).
This is achieved by adding a quadratic term Q2 [x(t)/2c′] to
the DAC output, before power modulation.

Following the same steps performed in Section II-B, the
signal after photodetection becomes

z̃(dsb)
0 (t) ≈ 2P̄ Q

[
x(t)

2c′

]
⊗<{h(t)}+

+ P̄

∣∣∣∣Q [x(t)

2c′

]
⊗ h(t)

∣∣∣∣2 + 2
√
P̄ nX,I(t) (35)

Compared to (31), there is only one quadratic term left,
which is very similar to SSBI for SSB (23). Therefore, it
can be estimated using a method similar to (25) but even
simpler, since there is no need to evaluate a Hilbert transform.
By combining pre-distortion and receiver compensation, the
channel can be completely linearized, and the only impairment
of chromatic dispersion is the small-signal transfer function
(32), which can be now handled with one of the well-known
bit and power loading algorithms, such as the Levin-Campello
algorithm used in the following Subsection.

C. Simulation setup

In order to evaluate the impact of chromatic dispersion
for the three methods, as well as the effectiveness of the
newly proposed non-linear pre- and post- compensation for
DSB, a numerical DMT simulation has been set up, similar
to the simulation used for the results in Section II but without
neglecting any linear or nonlinear terms.

The FFT size is 1024, and the DAC sampling rate is
Rs = 64 Gs/s. The channel introduces chromatic dispersion
in addition to ASE noise, assuming a linear SSMF with
D = 16.7 ps/(nm km); the central frequency of the signal
is f0 = 193.4 THz (λ0 = 1550 nm). The DAC and ADC
are ideal (i.e. no filtering and no quantization), as well as
the optical modulators. Before the photodiode, an OBPF is
inserted to filter out-of-band noise. As described in Section II,
the bandwidth of these filters is Rs/2 for SSB and VSB, and
Rs for DSB.

The choice of the optical filters (both at transmitter and
receiver) for VSB is crucial, since it represents a trade-off
between filter complexity and sideband suppression. An ideal
rectangular filter, or a 2nd-order SuperGaussian filter with a
3-dB bandwidth of 35-GHz are assumed. The SuperGaussian
filter is a standard shape for 50-GHz grid Wavelength Division
Multiplexing (WDM) filters. On the other end, the shape of the
receiver optical filter for SSB and VSB is not crucial, since its
purpose is the suppression of out-of-band ASE noise, therefore
we used ideal (i.e. rectangular) filters.
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Fig. 8. Required OSNR (over 0.1 nm) to obtain BER = 10−3 for DSB-
DMT as a function of distance of SSMF. Regular DSB (1) (green downward-
pointing triangles), DSB with only predistortion (33) (purple upward-pointing
triangles), DSB with predistortion and receiver non-linearity compensation
(red squares). CSPR is optimized for every point.

All three DMT variants adopted bit and power loading. To
this end, every simulation starts with a calibration phase, where
the electrical SNR is measured on all subcarriers using random
16-QAM training symbols. Then the Levin-Campello bit and
power loading algorithm [13], [14] (in the so called margin
adaptive version, i.e. for a total fixed bit rate) selects the
most suitable gain and modulation format for each subcarrier,
spanning between BPSK and 128-QAM, in order to achieve a
gross bit-rate Rb = 120 Gb/s. After that, a random signal
with this bit and power profile is generated and sent over
the same channel, and the average BER is computed. The
cyclic prefix length is 44 samples. This length has been chosen
to compensate for the pulse spreading caused by chromatic
dispersion.

D. Simulation results

1) DSB non-linearity compensation: In order to test the
effectiveness of the proposed DSB quadratic-terms compensa-
tion method, the required OSNR (over an optical bandwidth
of 0.1 nm) to achieve an average BER of 10−3 was calculated
for a DSB-DMT signal with different amounts of chromatic
dispersion.

The results are shown in Fig.8. At 80 km, the required
OSNR for “regular” DSB is 45.5 dB, which represents a
penalty of 14.1 dB compared to back-to-back. Predistortion
reduces the required OSNR by 3.7 dB, and predistortion
followed by the compensation of the quadratic term at the
receiver will reduce it by another 4.4 dB. It is also interesting
to see that the OSNR penalty due to dispersion grows quickly
in the first 20 km in the considered scenario (i.e. Rb = 120
Gb/s in the C band of SSMF fibers), then it reaches an almost
horizontal plateau where penalty grows only marginally. After
investigating in detail this effect, it was found a simple
explanation. For increasing fiber distance, the penalty grows
quickly when the first notch in the transfer function Hss(f) in
(32) enters in the DSB-DMT band (i.e. it goes below Rs/2)
then it “stabilizes” with a marginal increment in penalty above
20 km. This is mainly due to the change of shape of Hss(f),
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that makes less accurate the approximation that the channel
frequency response is flat inside each subcarrier [8], leading
to an additional penalty.

We also simulate a bit and power loading algorithm assum-
ing that the electrical-to-electrical channel is completely linear
and characterized by the small-signal transfer function Hss(f).
The resulting penalty curve almost completely superimposes
with the bottom curve in Fig.8, demonstrating that the newly
proposed pre- and post- compensation is able to completely
“linearize” the chromatic dispersion direct detection channel.

2) VSB optical filter: As stated previously, the optical filter
for VSB is a crucial component, since it represents a trade-
off between complexity of the filter and sideband suppression.
A non-perfect sideband suppression will introduce penalties
due to chromatic dispersion, since the remaining sideband will
interfere with the other sideband in a way similar to DSB due
to the Hss(f) electrical to electrical transfer function effect.

In Fig.9 it is shown the required OSNR for a VSB system
using either ideal (i.e. rectangular) optical filters and two 2nd-
order SuperGaussian optical filters, with 3-dB bandwidth of
35-GHz and central frequency shifted by 16-GHz with respect
to the laser frequency; this frequency shift has been optimized.
The filters are put both at the transmitter (to suppress one
sideband) and at the receiver (to remove out-of-band noise).
At 80 km, the OSNR penalty is 2.88 dB.

3) Overall comparison SSB-DSB-VSB: The results obtained
in Fig.8 and 9 are collected in Fig.10, where the three methods
are compared with distance. These graphs were obtained at
optimal CSPR which for instance at 80 km is 10.5 dB for
SSB, 13 dB for DSB and 16 dB for VSB. SSB has no penalty
with distance (at least assuming an ideal DAC and modulator,
as it was done so far in this paper), since the sideband is
completely suppressed and chromatic dispersion has almost
no effect. SSB-DMT thus requires an OSNR of 29.6 dB for
all considered distances. As for DSB and VSB, the difference
between the two methods at 80 km is very small (1 dB),
since the effect of chromatic dispersion for DSB is partially
compensated by bit loading, which has no penalty since, again,
it is assumed an ideal DAC without quantization. It is expected

0 20 40 60 80

d (km)

28

30

32

34

36

38

R
e

q
. 

O
S

N
R

0
.1

n
m

SSB

DSB

VSB

Fig. 10. Required OSNR (over 0.1 nm) to obtain BER = 10−3 for SSB (blue
circles), DSB with predistortion and receiver compensation (red squares) and
VSB with a SuperGaussian optical filter (yellow diamonds).

0 20 40 60 80

d (km)

35

40

45

R
e

q
. 

O
S

N
R

0
.1

n
m

 (
d

B
)

SSB

DSB

VSB

Fig. 11. Required OSNR (over 0.1 nm) to obtain BER = 10−3 for SSB
(blue circles), DSB (red squares) and VSB (yellow diamonds), with a realistic
DAC and ADC. The DSP is the same as Fig.10.

that quantization will have a higher impact on DSB than the
other modulation formats, increasing its required OSNR, as it
is analyzed in the following Section IV.

IV. QUANTIZATION AND BANDWIDTH LIMITATIONS

To investigate the effect of DAC and ADC resolution, we
modeled the DAC as a 5-bit quantizer and the ADC with 8
bits, in order to have overall about 5 effective quantization
bits. These values have been selected according to the typical
resolution and bandwidths of current high-speed ADCs and
DACs, which today are usually specified at about 5.5 Effective
Number of Bits (ENoB). Low-pass construction and anti-
aliasing filters were also inserted in our realistic simulations
while, for simplicity, electronic noise was not modeled, since
it is expected to be negligible in an optically amplified system
as the one we are considering. The DAC low-pass filter is a
single-pole filter with 3-dB frequency at 10.3 GHz followed
by an ideal sinc with first zero at Rs. This model has been
chosen to be similar to the frequency response of a reference
DAC running at Rs = 64 Gs/s.

The effect of quantization on the three methods is shown in
Fig.11. The DSP is the same adopted for Fig.10, with the only
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difference of DAC and ADC. At 80 km, SSB has a penalty
of 3.9 dB compared to the ideal DAC case, while VSB and
DSB have a higher penalty (7.5 and 10 dB, respectively). An
intuitive explanation of the higher penalty for DSB compared
to SSB can be easily given: due to the frequency response that
DSB sees when chromatic dispersion is relevant (such as at
80 km), the margin-adaptive bit and power loading algorithm
forces higher cardinality QAM constellations on some of
the DMT subcarriers. In particular, for the cases of interest
at about 80 km, the DSB bit loading requires constellation
up to 128-QAM, and these constellations are much more
sensitive to quantization problems compared to the 16-QAM
constellation that is requested on most of the subcarriers for the
SSB case (which sees a relatively flat electrical-to-electrical
transfer function even for strong dispersion). Enforcing the
quantization requirements to higher number of bits, the penalty
at 80 km decreases as shown in Fig.12, where the required
OSNR at 80 km is plotted for different quantization bits (the
last point to the right end side of the figure is for a situation
without any quantization).

V. CONCLUSION

We addressed in this paper three different DMT variants in
the scenario of medium reach (up to 80 km over SMF fibers
used in the C-band) optically pre-amplified and dispersion
uncompensated systems, finding that SSB seems the only
DMT option that is doable in terms of required OSNR. As
an example, we found that under realistic conditions shown in
Sec.IV, a 100 Gbps (net) SSB-DMT solutions at 80 km and
BER=10−3 would require approximately 34 dB OSNR0.1nm
(see Fig.12) for 5 quantization bits. For an optical preamplifier
with a 5 dB noise figure, a 34 dB received OSNR0.1nm
would translate into a -19 dBm received power requirement so
that, for instance, at 0.2 dB/km optical fiber attenuation this
would translate into a -3 dBm required transmit power per
wavelength, which seems promising even when considering
a realistic system margin. Just as an example, considering a
3 dB system margin, the resulting 0 dBm transmitted power
requirement should not be critical in terms of nonlinear Kerr

impairments in the fiber, considering also the relatively short
transmission distances involved.

We also would like to mention that the SSB-DMT optical
spectral occupation is compliant with a 50 GHz DWDM
spacing, which at 100 Gbps per λ provides an overall net
spectral efficiency of 2 bit/s/Hz in direct detection.
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