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ABSTRACT. The variational method is very important in mathematical and theoretical
physics because it allows us to describe the natural systems by physical quantities indepen-
dently from the frame of reference. A global and statistical approach is introduced starting
from irreversible thermodynamics to obtain the principle of maximum entropy generation
for the open systems. The recent research in non equilibrium and far from equilibrium
systems have been proved to be useful for their applications in different disciplines and
many subjects. A general principle to analyse all these phenomena is required in science
and engineering: a variational principle would have this fundamental role. Here, the Gouy-
Stodola theorem is proposed to be this general variational principle, both proving that it
satisfies the above requirements and relating it to a statistical results on entropy production.
The result is a consequence of the Lagrangian approach to the open systems. Here it will be
developed a general approach to obtain the thermodynamic Hamiltonian for the dynamical
study of the open systems. Last the algebraic-geometrical structure for entropy generation
is also introduced.

1. Introduction

The variational methods are very important in mathematics, physics, science and en-
gineering because they allow us to describe the natural systems by physical quantities
independently from the frame of reference used (Hahn and Özisik 2012). Moreover, La-
grangian formulation can be used in a variety of physical phenomena and a structural
analogy between different physical phenomena has been pointed out (Truesdell 1984). The
most important result of the variational principle consists in obtaining both local and global
theories (Arnold 1989): global theory allows us to obtain information directly about the
mean values of the physical quantities, while the local one about their distribution (Lucia
1995, 2013a,b,c; Lucia and Sciubba 2013).

Last, the notions of entropy and its production and generation are the fundamentals
of modern thermodynamics and a lot of variational approaches has been proposed in
thermodynamics (Lucia 2013b; Martyushev and Seleznev 2006). Today, the research in
non equilibrium and far from equilibrium systems has been proved to be useful for their
application in mathematical and theoretical biology, biotechnologies, nanotechnologies,
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A4-2 U. LUCIA

ecology, climate changes, energy optimization, thermo-economy, phase separation, aging
process, system theory and control, pattern formation, cancer pharmacology, DNA medicine,
metabolic engineering, chaotic and dynamical systems, all summarized in non linear,
dissipative and open systems.

A general principle to approach all these phenomena with a unique method of analysis is
required in science and engineering: the variational principle would have this fundamental
role. But, it has been proved that (Lebowitz 2011):

• a useful variational principle out of the use of work cannot be obtained;
• the entropy production for the system and the reservoir can be obtained if and only

if only one heat bath (Lebowitz 2011) exists and its temperature is constant.

The different variational principle have never been related with these fundamental require-
ment for a general principle in thermodynamics of open system, and often they are related
only to closed or isolated systems (Martyushev and Seleznev 2006).

Last, in engineering thermodynamics and thermal physics the open systems are analysed
using entropy generation, but its statistical definition does not exist and this lack does
not allow us to extend this powerful method to all the above discipline, where statistical
approach is required. On the other hand, the statistical models are not so general to be used
in any case with a unique approach; consequently, no of them represents a general principle
of investigation.

In this paper, the Gouy-Stodola theorem (Duhem 1889; Gouy 1889a,b,c) is proposed to
be this general variational principle, both proving that it satisfies the above requirements
and relating it to a statistical results on entropy production and generation. Moreover,
an algebraic-geometric approach is proposed in order to analyse irreversible systems in
thermodynamics and to develop the application of the entropy generation to the study of
these systems by the dynamical system approach.

2. The open systems

In this Section the thermodynamic system is defined. To do so, the definition of ‘system
with perfect accessibility’, which allows us to define both the thermodynamic and the
dynamical systems, must be considered.

An open N particles system is considered. Every i−th element of this system is located
by a position vector xi ∈ R3, it has a velocity ẋi ∈ R3, a mass mi ∈ R and a momentum
p = miẋi, with i ∈ [1,N] and p ∈ R3 (Lucia 2008). The masses mi must satisfy the condition:

N

∑
i=1

mi = m (1)

where m is the total mass which must be a conserved quantity, so it follows:

ρ̇ +ρ∇ · ẋB = 0 (2)

where ρ = dm/dV is the total mass density, with V total volume of the system and ẋB ∈ R3,
defined as ẋB = ∑

N
i=1 pi/m, velocity of the centre of mass. The mass density must satisfy

the following conservation law (Lucia 1995):

ρ̇i +ρi∇ · ẋi = ρΞ (3)
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THE GOUY-STODOLA THEOREM AS A VARIATIONAL PRINCIPLE . . . A4-3

where ρi is the density of the i−th elementary volume Vi, with ∑
N
i=1 Vi = V , and Ξ is the

source, generated by matter transfer, chemical reactions and thermodynamic transformations.
This open system can be mathematical defined as follows.

Definition 1. (Huang 1987) - A dynamical state of N particles can be specified by the 3N
canonical coordinates

{
qi ∈ R3, i ∈ [1,N]

}
and their conjugate momenta

{
pi ∈ R3, i ∈ [1,N]

}
.

The 6N−dimensional space spanned by {(pi,qi) , i ∈ [1,N]} is called the phase space Ω.
A point σi = (pi,qi)i∈[1,N] in the phase space Ω :=

{
σi ∈ R6N : σi = (pi,qi) , i ∈ [1,N]

}
represents a state of the entire N−particle system.

Definition 2. (Lucia 2008) - A system with perfect accessibility ΩPA is a pair (Ω,Π), with
Π a set whose elements π are called process generators, together with two functions:

π ↦→ S (4)(
π

′
,π ′′
)
↦→ π

′′
π
′ (5)

where S is the state transformation induced by π , whose domain D (π) and range R (π)
are non-empty subset of Ω. This assignment of transformation to process generators is
required to satisfy the following conditions of accessibility:

(1) Πσ := {S σ : π ∈ Π,σ ∈ D (π)} = Ω , ∀σ ∈ Ω: the set Πσ is called the set of
the states accessible from σ and, consequently, it is the entire state space, the phase
spase Ω;

(2) if D (π ′′)∩R (π ′) ̸= 0 ⇒ D (π ′′π ′) = S −1
π ′ (D (π ′′)) and Sπ ′′π ′σ = Sπ ′′Sπ ′σ

∀σ ∈ D (π ′′π ′)

Definition 3. (Lucia 2008) - A process in ΩPA is a pair (π,σ), with σ a state and π a
process generator such that σ is in D (π). The set of all processes of ΩPA is denoted by:

Π⋄Ω = {(π,σ) : π ∈ Π,σ ∈ D (π)} (6)

If (π,σ) is a process, then σ is called the initial state for (π,σ) and S σ is called the final
state for (π,σ).

Definition 4. In an open system, there exists a characteristic time of any process, called
lifetime τ , which represents the time of evolution of the system between two stationary
states.

Any observation of the open irreversible system, in order to evaluate its physical quanti-
ties related to stationary states, must be done only at the initial time of the process and at its
lifetime. During this time range the system moves through a set of non-equilibrium states
by fluctuations on its thermodynamic paths.

Definition 5. (Lucia 1995) - A thermodynamic system is a system with perfect accessibility
ΩPA with two actions W (π,σ) ∈ R and H (π,σ) ∈ R, called work done and heat gained by
the system during the process (π,σ), respectively.

The set of all these stationary states of a system ΩPA is called non-equilibrium ensemble
(Lucia 2008).

Definition 6. (Lucia 2008) - A thermodynamic path γ is an oriented piecewise continuously
differentiable curve in ΩPA.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 94, No. 1, A4 (2016) [16 pages]



A4-4 U. LUCIA

Definition 7. (Lucia 2008) - A cycle C is a path whose endpoints coincide.

Definition 8. (Gallavotti 2005) - A smooth map S of a compact manifold M is a map
with the property that around each point σ it can be established a system of coordinates
based on smooth surfaces W s

σ and W u
σ , with s=stable and u=unstable, of complementary

positive dimension which is:

(1) covariant: ∂SW i
σ =W i

S σ
, i = u,s. This means that the tangent planes ∂SW i

σ , i =
u,s to the coordinates surface at σ are mapped over the corresponding planes at
S σ ;

(2) continuous: ∂SW i
σ , with i = u,s, depends continuously on σ ;

(3) transitivity: there is a point in a subsistem of ΩPA of zero Liouville probability,
called attractor, with a dense orbit.

A great number of systems satisfies also the hyperbolic condition: the lenght of a tangent
vector v is amplified by a factor Cλ k for k > 0 under the action of S −k if σ ∈ W s

k with
C > 0 and λ < 1. This means that if an observer moves with the point σ it sees the nearby
points moving around it as if it was a hyperbolic fixed point. But, in a general approach this

The experimental observation allows us to obtain and measure the macroscopic quantities
which are mathematically the consequence of a statistics µE describing the asymptotic
behaviour of almost all initial data in perfect accessibility phase space ΩPA such that, except
for a volume zero set of initial data σ , it will be:

lim
T−→∞

1
T

T−1

∑
j=1

ϕ
(
S j

σ
)
=
∫

Ω

µE (dσ)ϕ (σ) (7)

for all continuous functions ϕ on ΩPA and for every transformation σ ↦→ St (σ). For hyper-
bolic systems the distribution µE is the Sinai-Ruelle-Bowen distribution, SRB-distribution
or SRB-statistics. In particular, here, the statistics is referred to a finite time τ process, as
every real process is, so it is considered a SRB-statistics for a finite time system, which
exists even if it is not so easy to be evaluated.

The notation µE (dσ) expresses the possible fractal nature of the support of the distribu-
tion µE , and implies that the probability of finding the dynamical system in the infinitesimal
volume dσ around σ may not be proportional to dσ (Lucia 2008). Consequently, it may
not be written as µE (σ)dσ , but it needs to be conventionally expressed as µE (dσ). The
fractal nature of the phase space is an issue yet under debate (García-Morales and Pellicer
2006), but there are a lot of evidence on it in the low dimensional systems (Hoover 1998).
Here this possibility is also considered.

Definition 9. (Billingsley 2012) - The triple (ΩPA,F ,µE) is a measure space, the Kol-
mogorov probability space, Γ.

Definition 10. (Lucia 2008) - A dynamical law τd is a group of meausure-preserving
automorphisms S : ΩPA → ΩPA of the probability space Γ.

Definition 11. (Lucia 2008) - A dynamical system Γd = (ΩPA,F ,µE ,τd) consists of a
dynamical law τd on the probability space Γ.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 94, No. 1, A4 (2016) [16 pages]



THE GOUY-STODOLA THEOREM AS A VARIATIONAL PRINCIPLE . . . A4-5

3. The Gouy-Stodola theorem

Irreversibility occurs in all natural processes. In accordance with the second law of
thermodynamics, irreversibility is the phenomenon which prevents from extracting the most
possible work from various sources. Consequently, it prevents from doing the complete
conversion of heat or energy in work; indeed, in all the natural processes a part of work,
Wλ is lost due to irreversibility. This work can be related to the entropy generation. In
this Section the entropy generation and its relation to the work lost due to irreversibility is
developed for the open systems, introducing the Gouy-Stodola Theorem.

Definition 12. (Bejan 2006) The work lost Wλ for irreversibility is defined as:

Wλ =
∫

τ

0
dt Ẇλ (8)

where Ẇλ is the power lost by irreversibility, defined as:

Ẇλ = Ẇmax −Ẇ (9)

with Ẇmax maximum work transfer rate (maximum power transferred), which exists only
in the ideal limit of reversible operation, and Ẇ the effective work transfer rate (effective
power transferred).

Definition 13. (Bejan 2006) The entropy of the whole system, composed by the open system
and the environment is defined as:

S =
∫ (

δQ
T

)
rev

= ∆Se +Sg (10)

where Sg is the entropy generation, defined as:

Sg =
∫

τ

0
dt Ṡg (11)

with Ṡg entropy generation rate defined as:

Ṡg =
∂S
∂ t

+∑
out

Goutsout −∑
in

Ginsin −
N

∑
i=1

Q̇i

Ti
(12)

while ∆Se is defined as the entropy variation that would be obtained exchanging reversibly
the same heat and mass fluxes throughout the system boundaries, G in the mass flow, the
terms out and in means the summation over all the inlet and outlet port, s is the specific
entropy, S is the entropy, Q̇i, i ∈ [1,N] is the heat power exchanged with the i−th heat bath
and Ti its temperature, τ is the lifetime of the process which occurs in the open system.

Then the term due to irreversibility, the entropy generation Sg, measures how far the
system is from the state that will be attained in a reversible way.

Theorem 1 (Gouy-Stodola Theorem). In any open system, the work lost for irreversibility
Wλ and the entropy generation Sg are related each another as:

Wλ = Ta Sg (13)

where Ta is the ambient temperature.
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Proof. Considering the First and Second Law of Thermodynamics for the open systems,
the maximum power transferred is:

Ẇmax = ∑
in

Gin

(
h+

v2

2
+gz+Ta s

)
in
−∑

out
Gout

(
h+

v2

2
+gz+Ta s

)
out

− d
dt
(E −Ta Ṡ)

(14)
while the effective power transferred results:

Ẇ =∑
in

Gin

(
h+

v2

2
+gz+Ta s

)
in
−∑

out
Gout

(
h+

v2

2
+gz+Ta s

)
out

− d
dt
(E−Ta Ṡ)−Ta Ṡg

(15)
where h is the specific enthalpy, v the velocity, g the gravity constant, z the height and E is
the instantaneous system energy integrated over the control volume.

Considering the definition of power lost, Ẇλ , it follows that:

Ẇλ = Ta Ṡg (16)

form which, integrating over the range of lifetime of the process, the Gouy-Stodola theorem
is proven:

Wλ =
∫

τ

0
dt Ẇλ = Ta

∫
τ

0
dt Ṡg = Ta Sg (17)

□

The Gouy-Stodola result on the entropy generation is expressed in a global way, without
any statistical approach and expression. In order to extend the use the Gouy-Stodola theorem
to any approach and context, a statistical expression of entropy generation is required. To
do so the following definition can be introduced:

Definition 14. (Gallavotti 2006) The entropy production Σprod is defined as:

Σprod =
N

∑
i=1

Q̇
kBTi

=
∫

Γ

Σ(σ)µE(dσ) (18)

with N number of heat baths, whose temperature is Ti, i ∈ [1,N] in contact with the system,
Q̇i, i ∈ [1,N] heat power exchanged with each i−th heat bath, kB Boltzmann constant, Σ(σ)
phase space contraction and µE SRB-statistics.

Theorem 2. In a stationary state, the entropy generation and the entropy production are
related one another by the relation:

Sg =−kB

∫
τ

0
dt Σprod (19)

Proof. If the system is in a stationary state (∂S/∂ t = 0) and if:
(1) the system is closed: ∑out Goutsout = 0 and ∑in Ginsin, or
(2) the system is open, but ∑out Goutsout −∑in Ginsin = 0

and considering the relations (12) and (18), then it follows:

Ṡg =−kB Σprod (20)

from which, integrating the statement is obtained. □
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Theorem 3. The thermodynamic Lagrangian is:

L =Wλ (21)

Proof. Considering the entropy density per unit time and temperature ρS, the Lagrangian
density per unit time and temperature ρL , the power density per unit temperature ρπ , and
the dissipation function φ , the following relation has been proven (Lavenda 1978):

ρL = ρS −ρπ −φ (22)

and considering that ρS −ρπ = 2φ , it follows (Lucia 1995) that:

ρL = φ (23)

consequently (Lucia 2008),

L =
∫

t
dt
∫

T
dT
∫

V ρL dV =
∫

t
dt
∫

T
dT
∫

V ρL φ dV =Wλ (24)

□

Theorem 4. At the stationary state, the work λ lost for irreversibility is an extremum.

Proof. Considering the definition of action A it follows that:

A =
∫

τ

0
dt L =

∫
τ

0
dt Wλ (25)

and considering the least action principle it follows:

δA ≤ 0 ⇒ δWλ ≤ 0 (26)

which allow us to state that:
(1) Wλ is minimum if the work lost is evaluated inside the system
(2) Wλ is maximum if the work lost is evaluated outside the system, inside the environ-

ment
in accordance with the thermodynamic sign convention. □

Of course, this extremum is extended also the entropy generation, Sg, using the Gouy-
Stodola Theorem Wλ = Ta Sg.

4. Thermodynamic Hamiltonian and entropy generation

Theorem 5. - The thermodynamic hamiltonian: For an open irreversible system, the
thermodynamic Hamiltonian H is TaSg.

Proof. . From the general relation (Arnold 1989):

Ḣ +
∂L

∂ t
= 0 (27)

it follows that

Ḣ =−∂L

∂ t
= Ta

∂Sg

∂ t
(28)

from which, integrating this last relation in the lifetime t of the process, it is possible to
obtain:

H = Ta Sg (29)
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□

So, for an open system, the thermodynamic Hamiltonian is related only to the entropy
generation. Consequently, this quantity seems to be the basis of the analysis of these systems.
Consequently, the irreversibility seems to be the fundamental phenomenon which drives the
evolution of the states of the open systems.

From the relations (21) and (29) it follows that:

q̇i =
∂H

∂ pi
= 0 (30)

so:
qi = constant (31)

proving that the dissipation not varies the velocity of the points inside the phase space, but
it varies the path, in agreement with the hypothesis of Jaynes (Dewar 2003).

5. The algebraic-geometric structure of entropy generation

In this Section the algebraic-geometric structure of the entropy generation. To do this,
only the results of algebraic-geometric calculus (Hestenes 1986b; Hestenes and Sobczyk
1984) useful for the thermodynamic applications will be summarized without proofs.

The Hamilton’s equations of motion can be expressed in configuration space as the pair
of equations (Hestenes 1986b):

q̇ = ∂pH

ṗ = ∂qH
(32)

Since p and q are independent variables this pair of coupled equations has been reduced
to a single equation in a space of higher dimensions, preserving the essential structure of
Hamilton’s equation in a way which facilitates computation (Hestenes 1986b). To do so,
the following definition has been introduced in Geometric Calculus (Hestenes 1986b):

Definition 15. The configuration space R3N is the space spanned by an orthonormal basis
{ek}k∈[1,3N] with

ei · e j =
1
2
(eie j + e jei) = δi j (33)

so the coordinate and the momentum result:
q = ∑

3N
i=1 qiei

p = ∑
3N
i=1 piei

(34)

The vectors in configuration space generate a real Geometric Algebra R3N = G (R3N)
with geometric product (Hestenes 1986b):

qp = q ·p+q∧p (35)

Definition 16. (Hestenes 1986b) - The momentum space R̃3N is the space spanned by an
orthonormal basis {ẽk}k∈[1,3N] with

ẽi · ẽ j =
1
2
(ẽiẽ j + ẽ j ẽi) = δi j (36)
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so the momentum results:

p̃ =
3N

∑
i=1

piẽi (37)

Definition 17. (Hestenes 1986b) - The phase space, described in Definition 1 can be
obtained as the direct sum:

R6N = R3N ⊕ R̃3N (38)

In this paper the phase space described in Definition (1) will be called only phase
space, while its algebraic-geometric description, obtained by the relation (38) will be called
geometric phase space.

The vectors in geometric phase space generate a real Geometric Algebra R6N = G (R6N)
with the orthogonality relation (Hestenes 1986b):

ei · ẽ j =
1
2
(eiẽ j + ẽ jei) = δi j (39)

The geometric phase space can be represented also by a 2m−dimensional vector manifold
M 2m, with m degrees of freedom (Hestenes 1986b).

Each point in the phase space manifold represents an allowable stationary state of the
open system.

Definition 18. (Hestenes 1986b) - There exists a symplectic bivector J, which describes
the symplectic structure of the geometric phase space, defined as:

J = ∑
k

Jk (40)

with component 2-blades:
Jk = ekẽk = ek ∧ ẽk (41)

The bivector J determines a unique pairing of directions in configuration space with
directions in momentum space, expressed as (Hestenes 1986b):

ẽk = ek · J = ek · Jk = ekJk =−Jkek

ek = J · ẽk = Jk · ẽk = Jkẽk =−ẽkJk

(42)

Each blade Jk pairs a coordinate qk with its corresponding momentum pk.
Each Jk satisfies J2

k =−1. Consequently, it functions as a unit imaginary relating qk to
pk. The bivector J determines a unique complex structure for the geometric phase space
(Hestenes 1986b).

Definition 19. A state of the open thermodynamic system can be described by a single
point x in the geometric phase space, defined as:

x = q̃+ p = p+q · J (43)

Definition 20. (Hestenes 1986b) - The derivative with respect to the geometric phase space
point is given by:

∂ = ∂x = ∂q̃ +∂p = ∂̃p

∂̃ = ∂̃x =−J ·∂x =−∂q + ∂̃p

(44)
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A4-10 U. LUCIA

Definition 21. The Hamiltonian of the open thermodynamic system is a scalar-valued
function H , defined as:

H = H (x) on the geometric phase space

H = H (p,q) on the phase space

H = Ta Sg using global quantities

H (x) = H (p,q) = Ta Sg

(45)

Consequently, the Hamilton’s equations for a phase space trajectory of the system assume
the form:

ẋ = ∂̃H (46)

From the previous relations it follows that the open thermodynamic system evolves from
the initial to the final stationary states of a process following a path in a geometric phase
space described by the equivalent Hamilton’s equation:

ẋ = ta ∂̃Sg (47)

This result is interesting because it represents the link between the global thermodynamic
and the algebraic-geometric description of the evolution between two stationary states of a
process for an open thermodynamic irreversible system.

Hamiltonian H (x) determines a vector field h̃ = h̃(x) on M 2m, given by:

h̃ = ∂̃H = (∂H ) · J (48)

Consequently, the Hamilton’s equations become:

ẋ(t) = h̃
(
x(t)
)

(49)

and they determine integral curves of the vector field. Moreover, it is possible to introduce a
bivector field Ω = HJ such that:

h̃ = (∂H) · J = ∇ · (HJ) = ∇ ·Ω (50)

Consequently, the Hamilton’s equations become:

ẋ = ∇ ·Ω (51)

The last relation can be written as:

ẋ = ∇ ·Ω = ∇ · (HJ) = Ta ∇ · (Sg J) (52)

and Sg plays the role of an integrating factor for the bivector field Ω. Last, from the
Liouvilles Theorem:

∇ · h̃ = ∂ · h̃ = Ta ∇(Sg J) = 0 (53)

it follows that these curves describe an incompressible flow for the entropy generation inside
the geometric phase space, during the evolution between two stationary states of the open
irreversible system.
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6. Discussion

In this section some consideration are developed and an application is suggested.
Carnot general conclusion about heat engines is that there exists a certain limit for the

conversion rate of the heat energy into the kinetic energy and that this limit is inevitable for
any natural system: the cold space is the ultimate dump for heat below which no heat engine
can operate. In 1889, Gouy proved that the lost energy in a process is proportional to the
entropy generation, which resulted the quantity useful to describe the progress of dissipative
and irreversible processes; indeed, an open system develop towards the stationary states
following the thermodynamic path such that the entropy generation reaches its extremum.

So, the use of the entropy generation, as proved independently by Gouy and Stodola, is a
useful quantity because it allows us to evaluate all the energy lost, due to:

• mechanical effects as friction, viscosity, etc.;
• electromagnetic interactions;
• chemical reactions;
• interactions with external heat sources as thermostats, etc..

Consequently, a system, capable of assuming many conformations, will tend to assume
the one, or frequently return to the one, that maximizes the rate of dissipation of the
powering energy gradients: consequently, the principle of entropy growth is not only about
increasing, but increasing as fast as possible. The energy gradients are the motive forces of
the physical processes and the entropy quantifies the system’s evolution toward increasingly
more probable states, while entropy generation describes its irreversibility.

In relation to universe (system and environment) the entropy increases, being it an
isolated system. It represents a general principle of investigation for the stability of the open
systems. The basis of this approach is the interaction between the open systems and their
environments. The consequence of this interaction is the entropy generation variation which
is determined by mass, energy, ions and chemical flows across the boundary of the system
and the processes inside the system. But, the flows represents also the communications
between system and environment. It is easy to develop observations of the environment, so
the analysis of the entropy generation of the system can be evaluated by the environment.

This last consideration represents the difference between this approach, elsewhere named
bioengineering thermodynamics, and the Glansdorff-Prigogine’s one. Indeed, Glansdorff-
Prigogine approach is based on the analysis of the system, while the bioengineering ther-
modynamic approach consider the interaction between the system and its environments.
Indeed, the bases of our approach can be summarized as follows:

• The energy lost by a system is gained by the environment, consequently, the
information lost by the system is gained by the environment: the problem is to
codify this information;

• The environment is completely accessible by any observer, so it is easy to collect
data on the lost energy of any system;

• The flows cause entropy generation variations, consequently we can evaluate the
entropy generation to obtain information to the flows, even when we are unable to
evaluate the flows themselves;

• The entropy generation is a global quantity, so we can obtain global information on
the open system, the useful information on the result on any process in the system.
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So, the entropy generation results only an objective function useful to describe this in-
teraction, under the condition of the Le Chatelier’s principle, for which any change in
concentration, temperature, volume, or pressure generates a readjustment of the system in
opposition to the effects of the applied changes in order to establish a new equilibrium, or
stationary state.

Consequently, it follows that the fundamental imperative of Nature is to consume free
energy in least time. Any readjustment of the state of the system can be obtained only by
generating fluxes of free energy which entail any process where the system evolves from one
state to another. The free energy “fuels” evolutionary processes so that the basic building
blocks of Nature, the quanta of energy, are either absorbed from the surroundings to the
system’s in the form bound energy or emitted from the system to its surroundings as freely
propagating photons.

Transport phenomena (transfer both of mass and of energy) play a fundamental role in
systems out of equilibrium. Here we discuss an application to mass transfer. Mass transfer
can be obtained by the applicaton of directional force on the mass. When a selected portion
of a bistable potential is heated, the relative stability of the two wells differs as a result
of which some proportion of mass is transferred from the heated well to the other: this
phenomenon is known as Landauer’s blowtorch effect (M. Das, D. Das, and Ray 2015).
We must highlight that, in the Landauer’s blowtorch effect, the difference in temperature
between two parts of a body causes a mass transfer. Consequently, the difference in
temperature gives rise to transport of mass. The origin of this phenomenon lies on the extra
kinetic energy gained by the particles at the high temperature region, which supplies the
energy required to cross a potential barrier.

To model this effect, we consider N Brownian particles, each of mass m in a bistable
potential V (x), where x is a position variable. The potential is completely symmetric, which
means that V (−x) = V (x) and it has a maximum in x = xmax = 0 and two minima, one
in x = −xmin and the other in x = xmin. The temperature of the system is T . We heat at
temperature Th only the left part of the potential x ∈ [−x1,−x2], such that −xmin ≤−x1 ≤
−x2 ≤ 0. The maximum represents a potential barrier. Consequently, the heat transfer from
the high to the low bath can be evaluated as:

Q =
∫ −x2

−x1

V (x)dx (54)

Consequently, the entropy variation becomes:

Sg = ∆S =

(
1
Th

− 1
T

)[
V (−x2)−V (−x1)

]
(55)

As a consequence, the two relative population density in the steady state is modified as:

PR

PL
=

PR,eq

PL,eq
exp
{(

1
Th

− 1
T

)[
V (−x2)−V (−x1)

]}
(56)

where P is the integrated probability of residence of the particle in the state L or R, while
L and R means left and right respectively, and eq means equilibrium. So, in this effect the
entropy increases as a consequence of flows of Brownian particles across a barrier, with a
variation of the relative population density inthe two wells (M. Das, D. Das, and Ray 2015).
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Now, considering that:

PR

PL
−

PR,eq

PL,eq
=

PR,eq

PL,eq

(
exp
{(

1
Th

− 1
T

)[
V (−x2)−V (−x1)

]}
−1

)
(57)

the flow of mass results:

ṁ = m
∫ −x2

−x1

n
PR,eq

PL,eq

(
exp
{(

1
Th

− 1
T

)[
V (−x2)−V (−x1)

]}
−1

)
dx (58)

where n is the linear density of particles. Now, if Th − T << T , then the mass flows
becomes:

ṁ = m
PR,eq

PL,eq

[
Th −T

T 2

(
V (−x2)−V (−x1)

)]∫ −x2

−x1

ndx (59)

This approach can be useful also for explaining the macroscopic effect of the diffusion
in a temperature gradient, the non completely understood Soret’s effect. This effect is very
important in civil engineering because it is the basis of the water motion when termal bridge
occurs.

This applications shows how the flows thermodynamics is useful in applications. Indeed,
the microscopic effects allow us to obtain a formal approach to describe the motion of
masses due to energy (temperature) differences. This microscopic approach allows us to
explain the global effect used in macroscopic physics, the bases of the engineering. This
example shows how the bioengineering thermodynamics could be a powerful approach
for application. The formal approach allows us to highlight how a mathematical physical
approach could improve this thermodynamic approach.

7. Conclusions

A general principle to approach the stability of the stationary states of the open systems
is required in science and engineering because it would represent a new approach to the
analysis of these systems, with the result of improving their applications in mathematical and
theoretical biology, biotechnologies, nanotechnologies, ecology, climate changes, energy
optimization, thermo-economy, phase separation, aging process, system theory and control,
pattern formation, cancer pharmacology, DNA medicine, metabolic engineering, chaotic
and dynamical systems, etc..

Here, the Gouy-Stodola theorem has been proved to be the searched variational principle,
which satisfies the two fundamental request:

(1) to be a work principle, because a useful variational principle out of the use of work
has been proved not to be obtained (Lebowitz 2011)

(2) to use only one temperature which remains constant (because the environmental
temperature is always considered constant in the usual applications), because for
the open systems, the entropy production for the system and the reservoir has been
proved to be obtained if and only if only one heat bath (Lebowitz 2011) exists and
its temperature is constant (Lebowitz 2011).
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Consequently, a link between the global thermodynamic and the algebraic-geometric
approach has been introduced in order to develop a general analysis of the open irreversible
systems.

Indeed, in phenomena out of equilibrium irreversibility manifests itself because the
fluctuations of the physical quantities, which bring the system apparently out of stationarity,
occur symmetrically about their average values (Gallavotti 2006). The notions of entropy
and its production in equilibrium and non-equilibrium processes form the basis of modern
thermodynamics and statistical physics (Dewar 2003; Maes and Tasaki 2007).

Entropy has been proved to be a quantity describing the progress of non-equilibrium
dissipative process. Great contribution has been done in this by Clausius, who in 1854-1862
introduced the notion of entropy in physics and by Prigogine who in 1947 proved the
minimum entropy production principle (Lucia 2013b). A Lagrangian approach to this
subject allowed us to obtain the mathematical consequences on the behaviour of the entropy
generation, Sg (Lucia 1995, 2008). The ε-steady state definition allowed us to obtain that for
certain fluctuations the probability of occurrence follows a universal law and the frequency
of occurrence is controlled by a quantity that has been related to the entropy generation
(Lucia 2008). Moreover, this last quantity has a purely mechanical interpretation which is
related to the the ergodic hypothesis which proposed that an isolated system evolves in time
visiting all possible microscopic states. Moreover, considering that the open system is a
system with perfect accessibility represented as a probability space in which is defined a PA-
measure and a statistical approach has been developed (Lucia 2008). To link this statistical
approach to the dynamical one it is needed to obtain the thermodynamic Hamiltonian for
the open systems. It follows that this last quantity is related only to the entropy generation.
Consequently, entropy generation seems to be the basis of the analysis of these systems.

Moreover, the irreversibility seems to be the fundamental phenomenon which drives the
evolution of the states of the open systems, and that irreversibility and dissipation have a
completely non-linear behaviour inside the phase space where the points of the open system’
states move at constant velocity, but on particular path, not equal to the reversible systems,
as proving the hypothesis introduced by Jaynes (Dewar 2003).

Last, the algebraic-geometry is a powerful mathematical approach to physical system
(Hestenes 1986a). Consequently, the use of this approach results interesting also in the
thermodynamic analysis of the open systems. The result obtained in this paper is just a link
between the mathematical and the physical theories. The quantity, which allows one to link
the two approaches, is the entropy generation. This quantity seem to be the fundamental of
the description of the open irreversible systems.

The result obtained consists in the new role for the entropy generation:
(1) operator which allowed us to obtain the evolution of the open irreversible system in

the geometric phase space between two stationary states;
(2) integrating factor in the Hamilton’s equations;
(3) fundamental quantity to foresee the stationary states for the open irreversible states.
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