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Chapter 1

Introduction

The increasing usage of electronic devices based on charge transport in semiconductors con-

firms the fundamental role played by semiclassical- as well as quantum-transport theories. In

fact, a large number of novel materials and devices are continuously designed and tested us-

ing various charge-transport models, and their applications fall in a lot of different fields, e.g.,

computer, medical, or biological science. apart from its applications, transport theory offers a

unique opportunity to test very basic physical phenomena; typical examples are the discover

of “Quantum Hall Effect” [1] or the surprising results obtained in “quantum interference de-

vices” [2]. In the last two decades, as semiconductor technology has continued to pursue the

down scaling of device dimensions into the submicron (less than 10000 Å) and ultrasubmicron

(less than 1000 Å) regions, many new and interesting questions have emerged concerning the

physics of small dimensions [3], specifically with regard to the need for a quantum development

of transport in solid-state materials. Semiconductor transport in the ultrasubmicron region

approaches the so-called quantum limit; In such a regime it is necessary to face new basic prob-

lems, not present in the semiclassical scenario. For example, the “measurement” and/or the

“open system” problems may play a dominant role in the study of semiconductor-based quan-

tum devices. To better clarify this point, let us recall some basic considerations on semiclassical-

versus quantum-transport theory.
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Whereas classical transport physics is based on the concept of a probability distribution

which is defined over the phase space of the system, the concept of a phase-space distribution

function in the quantum formulation of transport is difficult, since the non-commutation of the

position and momentum operators (the Heisenberg uncertainty principle) precludes the precise

specification of a point in phase space. However, within the formulation of quantum mechanics,

various formalisms based on density matrices, Wigner functions, Feynman path integrals and

Green’s functions have been developed [4]. These embrace the quantum nature of transport;

moreover, in recent years, each technique has been utilized to address key aspects of quan-

tum transport in semiconductors. At present, there is no unifying, user-friendly approach to

quantum transport in semiconductors. Density matrices, and the associated Wigner function

approach, Green’s functions, and Feynman path integrals all have their application and com-

putational strength and weakness, and all their are equivalent representations of the quantum

nature of transport. In the present work the density-matrix and Wigner-function formalisms

will be employed. This choice is due to the fact that the “open system problem” that here

is faced, is better managed using such an approach; Indeed the density-matrix formalism is

extremely useful to show the degree of quantum coherence of the system under investigations

while the Wigner-function picture is the ideal instrument to describe real-space quantum de-

vices. Such a choice will be better understood looking in more detail to the problem of open

systems, i.e., systems with open spatial boundaries.

Open systems

The most interesting products of micro- and nanoelectronics technology are systems that op-

erate far from equilibrium. A closer inspection of a few examples of such systems reveals that

they are generally open, in the sense that they exchange matter with their environment. The

present work is aimed at developing a fully microscopic theory to describe open quantum sys-

tems starting from the so-called Semiconductor Bloch equations, namely the equations that

describe the coherent versus incoherent dynamics of a closed quantum system. In the con-



text of the present work, an open system is a system that exchange locally particles with its

environment. Moreover, we wish to focus upon its far-from-equilibrium behaviuor, and thus

the specific definition of open system will be further restricted to describe a system coupled to

at least two separate particle reservoirs, so that a non-equilibrium state may be created and

maintained. To specify such a system we must regard it as occupying a finite region of space,

and thus the exchange of particles must consist of a current flowing through the system surface

which is taken to be the boundary of the system. Anyway, it is important to point out that

the distinction between closed and open systems depends upon how one chooses to partition

the universe into the system of interest and everything else (such partitioning is implicit in the

analysis of every physical problem). The physics of closed systems is certainly simpler than that

of open systems, because closed systems obey global conservation laws, while open systems,

in general, do not. In the well established techniques of physical theory one often encounters

artifices, usually in the form of periodic boundary conditions, which assure the “closure of the

circuit”. The central point of the present discussion is that it is frequently necessary to subdi-

vide a complex system (which might be reasonably regarded as closed) into smaller components

which, viewed individually, must be regarded as open ones. Thus, the more applied disciplines

of the physical sciences must often deal at some level with the concept of an open system.

There are many techniques [5] for dealing with open systems in field such as fluid dynamics,

neutron transport, and electronics. All these fields are concerned with the transport of (usu-

ally) conserved particles. The transport phenomena are described by transport equations at a

kinetic, hydrodynamic or microscopic level which are either differential or integro-differential

equations. Such equations require boundary conditions, and it is in these boundary conditions

that the openness of a system is described. For the case of electronic and optoelectronic devices

the connection to the external circuit is accomplished by some sort of contact. In solid state

electronics the most frequently used type of contact is the ohmic contact, an interface between

a metallic conductor and a semiconductor which permits electrons to pass freely.

Our aim is to analyse in detail the problem of openness in the present sense with also



the possibility to consider energy-relaxation and dephasing processes within the device active

region. More specifically, our analysis will allow us to point out and overcome some basic

limitations of the conventional Wigner-function formalism (Model 1); this will be accomplished

by introducing a Generalized Weyl-Wigner approach, able to remove such anomalies, thus

recovering typical results of partially phenomenological models. In this context we shall propose

a theoretical scheme where the boundary conditions are described via a source term, i.e., a

term representing the particles entering the simulated region from its spatial boundaries. In

particular, we shall propose two fully equivalent theoretical models able to describe adequately

an open quantum device: the first one (Model 2) is characterized by a non-diagonal source

term (i.e., coherent source) while the second one (Model 3) is characterized by a diagonal

source term. From our analysis we shall conclude that Model 3 is the most appropriate one

to describe transport phenomena in open quantum systems, since from a physical point of

view this amounts to assume a thermal, i.e., diagonal, carrier injection from the device spatial

boundaries. Anyway, our results will show a total agreement between Model 2 and Model 3.



Chapter 2

Semiclassical Transport Theory

2.1 Fundamentals

A condensed-matter system like a crystalline solid is typically characterized by a huge num-

ber of degrees of freedom, of the order of 1022 electronic and cristalline coordinates per cubic

centimeter. The microscopic configuration or microscopic state of the electronic system is de-

scribed in classical terms by specifying momentum and position of each particle at a given time;

This means that for N electrons, we need to specify 3N + 3N coordinates, which corresponds

to a point in the so called phase space Γ, namely a 6N degrees-of-freedom phase-space. In

other words, a point in the Γ-space describes the microscopic state of all the N electrons in the

system.

It is important to notice how different microscopic states (corresponding to different points

in Γ-space) may correspond to the same macroscopic state of the system. For example, the

condition that an electronic gas fills a given volume does not prevent to dispose the particles in

this volume in infinitely different ways, i.e., by means of macroscopic measures, it is not possible

to distinguish between two different microscopic states satisfying the same macroscopic condi-

tions. Therefore, dealing with a gas subject to particular macroscopic constrains, this in general

does not identify a specific microscopic state, but rather an infinite number of macroscopically
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equivalent microscopic states. Such a collection of states is usually referred to as statistical

ensemble. It is important to point out that the members of an ensemble can be regarded as

virtual copies of a system that do not interact one another.

The mathematical instrument which describes the concept of statistical ensemble in classical

mechanics is the distribution function ρ(q, p, t) with q ≡ q1, q2, q3, ..., q3N and p ≡ p1, p2, p3, ..., p3N

so that:

dN = ρ(q, p, t) d3Nqd3Np (2.1)

represents the infinitesimal number of Γ-points within the infinitesimal volume dV = dq3Ndp3N .

It follows that a statistical ensemble is completely described by ρ(q, p, t).

Given the distribution function ρ its time-evolution is dictated by the Hamilton equations:

ṗi = −∂H
∂qi

(2.2)

q̇i =
∂H

∂pi
(2.3)

with i = 1, 2, ..., 3N and where H = H(q1, q2, ..., qN , p1, p2, ..., pN) is the classical Hamiltonian

of the system. Such equations describe the time evolution of a Γ-point, clearly showing its

intrinsic invariance under time reversal.

Generally speaking, by looking at the dynamics of the distribution function ρ(q, p, t), it is

possible to verify that1:

∂ρ

∂t
+

3N∑
i=1

( ∂ρ
∂qi

q̇i +
∂ρ

∂pi
ṗi
)
=
∂ρ

∂t
+ {ρ,H} = 0 (2.4)

This equation is called Liouville equation [6]. It can be also written as:

dρ(p, q, t)

dt
= 0 (2.5)

1Here was used the Poisson bracket formalism.



This means that the density of Γ-points along the classical trajectory is constant in time, i.e.,

its total or hydrodynamic time derivative is equal to zero.

The Liouville equation can be considered as a “generalized equation” in the sense that it

describes a statistical ensemble of identical systems in all possible microscopic configurations.

Starting from the notion of statistical ensemble in Γ-space, it is useful to introduce the

concept of single-particle distribution function f(r,k, t) so that:

dN = f(r,k, t) d3rd3k (2.6)

is the number of particles inside the volume d3rd3k. The new single-particle phase space r,k is

called space µ (it is a six coordinate space). A µ-point represents the state of a single particle.

It is important to stress the differences between the Γ and the µ-space: the former describes

the fully microscopic state of a N -particles system, the latter describes single-particle properties

only within the so-called kinetic picture. The general procedure that allows to move from the

Γ to the µ-space is called reduction procedure.

As a starting point, let us discuss the form of f(r,k, t) at equilibrium. To address this

problem, it is necessary to write down the equation of motion for f(r,k, t). In order to get

a closed equation for the single-particle distribution function, a number of approximations

(discussed below) are needed. The resulting dynamical equation is called Boltzmann equation;

the latter can indeed describe adequately the time evolution of f(r,k, t) within our single-

particle phase-space. In this respect, the Boltzmann equation can be regarded as the Liouville

equation reduced to the µ-space.

Before entering into deep aspects of the Boltzmann equation, it could be useful to face the

apparent contradiction between the intrinsic time reversibility of the Hamilton equations and

the typical irreversibility of the Boltzmann-equation picture. This can be easily understood

considering the fact that within the single-particle picture we describe the interaction of the

generic particle with other degrees of freedom in average (i.e., statistical) terms. This is the

origin of the irreversibility previously mentioned. This feature is formally expressed by the so



called H-theorem [7]. In fact, starting from the single-particle distribution function f(r,p, t)

we can define the quantity:

H(t) ≡ −
∫
drdpf(r,p, t) ln f(r,p, t) (2.7)

which is a measure of the system
dH
dt

≥ 0 (2.8)

Only when f(r,p, t) is the equilibrium distribution function we have dH/dt = 0. It is then

evident the apparent discrepancy between microscopic description (Hamilton equations) and

kinetic picture (H theorem). The solution of such issue is that dH/dt is not necessarily a

continuous function in time, so on a short (i.e., microscopic) time-scale it can also decrease.

Then, by invoking the Poincaré theorem (“A finite energy system in a finite volume, will come

back to the initial state after a long-enough time interval”), one can assert that the apparent

discrepancy is thus removed.

2.2 Boltzmann equation

Semiclassical transport theory is applied to a wide variety of problems within the frame of

nonequilibrium charge transport in semiconductors. The analysis of the electron motion in

such systems should account for two different aspects:

1) deterministic or free (from scattering) evolution;

2) stochastic or scattering dynamics.

In the first case, the carrier dynamics is described in semiclassical terms: it is possible to predict

the position r and the momentum k of a particle subject to external electric and/or magnetic

fields. For the case of charge transport in semiconductors, this requires the knowledge of the

electronic band structure, namely the dispersion relation En(k), n being the band index. The

resulting semiclassical equations of motion are as follows:



dr

dt
= vn(k) =

1

h̄

d

dk
En(k) (2.9)

dk

dt
=

1

h̄
F(r,k) =

q

h̄
[E(r, t) +

1

c
vn(k)xH(r, t)] (2.10)

where the equations represent respectively the carriers group velocity and the applied ex-

ternal force on the carrier.

Let us come to the stochastic or scattering dynamics. The scattering model commonly

employed is the result of a number of different assumptions/approximations. Contrary to the

deterministic evolution previously considered, the description of scattering dynnamics starts

from quantum mechanics.

More specifically, in order to elucidate the limitations of the Boltzmann transport theory

and to describe adequately the fundamental physical processes necessary to understand trans-

port in solids, especially with regard to submicron and ultrasubmicron electronics, the basic

assumptions and issues relevant to the Boltzmann transport equation (BTE) are reviewed.

As anticipated, the transport properties of carriers in bulk crystalline solids are derived

from a probability distribution function f(r,k, t). This function is defined as proportional to

the density of particles in the reduced or single-particle phase space. For a homogeneous solid

in thermodynamic equilibrium, f(r,k, t) is f0[E(k)], where f0 is the Fermi-Dirac distribution

function at temperature T . For nonequilibrium conditions, the distribution function can be

found by solving the Boltzmann transport equation:

∂f

∂t
+ v · ∂f

∂r
+ F · 1

h̄

∂f

∂k
=

(
∂f

∂t

)
coll

(2.11)

where the rhs term represents the change of the distribution function due to scattering events.

As pointed out before, such term is described via time-dependent second-order perturbation

theory of quantum mechanics within the well-known Fermi’s golden-rule approximation. As a



result one obtains:(
∂f

∂t

)
coll

=
∑
k′

{
f(r,k′, t)W (k′,k; r)− f(r,k, t)W (k,k′; r)

}
(2.12)

where W (k,k′; r) is the transition rate from state k to k′ and depends on the details of the

scattering mechanisms [8], e.g., electron-phonon scattering, electron-impurity scattering, etc.

Using the microscopic reversibility of the scattering process, it can be show that for f =

f0(E) we have (∂f/∂t)coll = 0, thus ensuring that, for a homogeneous solid in thermodynamic

equilibrium (i.e., where all terms on the left-hand side of BTE are zero), the solution of the

Boltzmann transport equation reduces to the usual equilibrium distribution function. If we are

dealing with low density electrons/holes (f(r,k, t) << 1), then the terms in brackets in the

collision term can be replaced by unity, thus significantly simplifying the scattering term.

In presenting an elementary derivation of the Boltzmann equation, we consider a group of

carriers in the volume element drdk in phase space (the number of such electrons for a given spin

direction is f(r,k, t)drdk/(2πh)3 ). At a time δt later, with no scattering, these carriers move

to positions r+ δr, k+ δk in a volume dr′dk′. For a short enough time δt, the volume element

in phase space will not change (drdk = dr′dk′) since all the electrons in the original volume

element have essentially the same position and quasimomentum, and therefore the changes in

δr and δk for all electrons are the same to the lowest order. However, if collisions are allowed

at the rate of (∂f/∂t)coll, then the distribution function evolves as:

f(r+ δr,k+ δk, t+ δt) = f(r,k, t) + δt

(
∂f

∂t

)
coll

(2.13)

Expanding such a equation, one obtains:

∂f

∂t
+ v · ∇rf + F · ∇kf =

(
∂f

∂t

)
coll

(2.14)

According to the relation that links p to k, that is p = h̄k, it is easy to see that the equation



just written is exactly the equation (2.11).

The right-hand side of (2.14) can be easily obtained by noting that (∂f/∂t)coll should be merely

the rate at which electrons from all other states k′ are scattered into state k, minus the rate at

which electrons in state k are scattered into other state k′, all of which are evaluated at r and

t. If W (k′,k) is the transition rate from a filled state k′ to an empty state k, then one expects

the transition rate from a state with fractional occupancy f(r,k′, t) to a state of fractional

occupancy f(r,k, t) to be given by the first term in 2.13, with the factor 1 − f(r,k, t) giving

the fraction of states which are empty. This satisfies the exclusion principle that transitions to

filled states are forbidden. Similarly, the second term gives the scattering from states k to k′.

Despite the apparent simplicity of the above derivation, it has significant deficiencies. First,

because of the uncertainty principle, the function f(r,k, t) does not have a precise meaning as

a probability function in both r and k. In fact, if wave packets are formed, the ∆x∆k ∼ 1,

and if the unacertainty in ∆k is to be only a small fraction of k (so to be able to describe

a state with well-defined k), then the spread of the wave packet in space ∆x must be many

electron wavelengths long. This is a particularly serious restriction in semiconductors, where

the thermal de Broglie wavelength can be quite large. Thus, the BTE cannot be expected to

give a correct description of the spatial variation of the distribution if it changes significantly

over several wavelenghts of a typical carrier, as can be expected to occur if the force F has such

a spatial variation.

Second, the picture employed treats the electrons as essentially free particles only, which are

occasionally scattered by phonons, impurities, imperfections, and are not affected between

collisions. However, the electrons interacting with additional potentials will alter their E(k)

function and, hence, their velocity.

Third, the use of an external field F = h̄ dk/dt that is implicit in 2.14, is justified only if F

is essentially constant (i.e., its spatial variation is very slow with respect to the packet wave-

lenght) over the width of the electron wave packet, which can be large for semiconductor, as

indicated above. The violation of the effective-mass assumption also implies that interband



and nonparapolicity effects must be considered if the field is turned on too rapidly, and this

can be important for superlattices having very small band gaps.

Fourth, the assumption that the scattering takes place locally in space and time is incorrect

since the scattering potentials are extended in space and take a finite amount of time to com-

plete. During a scattering process, an electron will have its energy changed because it is being

accelerated by the force F. Thus the assumption that the effects of the field and the effects

of collisions can be treated independently is not entirely accurate; such an assumption can be

expected to break down when the energy change due to the field acting over the collision time

τc is of the order of E, the average energy of an electron.

Fifth, the transition rate is generally calculated by assuming that it originates from an inco-

herent sum of single scattering events. However, if the scatters are dense (i.e., more than one

within a de Broglie wavelength), multiple scattering effects are possible.

Sixth, the electron-electron interaction can become significant for dense systems, such as quan-

tum confining wells.

In conclusion, the validity of the semiclassical approach, and of the BTE, is ascribed to the

fulfillment of the following conditions:

a) the wave packet related to a carrier can be considered of small dimensions in both real and

momentum space, such that a particle can be related to a defined point in phase space (r,k);

That means that during the free flight between two successive collisions, carriers are considered

as classical particles. In order that this approximation can be acceptable, the wave packets

momentum uncertainty ∆k must be less than their average momentum k and, at the same

time, a position uncertainty ∆r much less than the free path l:

∆k << k,∆r << l (2.15)

From the Heisenberg uncertainty principle:



1 ∼ ∆k∆r << k ∗ l ∼ 1

h̄

p2

m
t ∼ 1

h̄
KTt (2.16)

where t is the time between two successive collisions, K is the Boltzmann constant and T the

temperature. From the above relations we obtain:

t >>
h̄

KT
∼ 10−13sec (2.17)

at ordinary temperatures.

b) Collisions are assumed instantaneous in time and pointlike in space; this assumption al-

lows to give a simple form to the collision integral entering the BTE. Since the interactions

between the particles and the scattering agents have finite durations, this assumption is not

correct in general, not even in classical theory. In the case of weak coupling, when scattering

events are sufficiently rare, the duration of a collision may be negligible with respect to the

free-flight time between two successive collisions, and the assumption may be reasonable. In

order to estimate the requirement for such a condition to be fulfilled, the collision duration has

to be estimated. This estimate is somewhat arbitrary, because the concept of collision duration

is ill defined. Anyway it is possible to obtain an expression to evaluate the collision duration

and such results is:

tcoll ∼
h̄

KT
(2.18)

Therefore, the requirement that the collision duration is much shorter than the time between

collisions coincides with the above requirement done in (a).

From the points discussed above, it is clear that the critical parameter for evaluating the appli-

cability of the semiclassical transport theory is the time t between collisions in the semiclassical

theory itself.



Hence, such considerations suggest that it is extremely desirable to derive a transport equation

from more general quantum mechanical considerations, as shown in the next chapter.

2.3 From closed to open systems: semiclassical point of

view

Speaking about a closed system, this means to identify the system of interest as the whole sys-

tem, namely it cannot exchange matter or energy with the environment, since the environment

is not definite or, better, it is inside the system. That implies that the study of close systems

is simpler than that of open systems, indeed the formers obey global conservation laws, while

the latters, in general, do not.

In the analysis of theoretical systems one often has recourse to artifices, as periodic bound-

ary conditions, which assure the closure of the systems at least from the point of view of the

theoretical modelling, if not of the system itself. For example it is useful to reduce the continu-

ous infinite k space into a discrete infinite space, to be able to manage it from a computational

point of view, by introducing the Born-Von Karman conditions, that is periodic boundary

conditions.

Nevertheless that kind of conditions do not assure the closure of the system itself, in fact

to do that it is necessary to understand where to localize the borders of the system of interest

to understand where begins the environment. That kind of action could seem simple but it is

important to emphasize the crucial role kept by it inasmuch as the way to partition the whole

system determines on which effective system one will deal with.

Since the existing theoretical work on open systems consists primarily of the definition of

boundary conditions on transport equations, it is appropriate to examine various approaches

to transport theory to see how they have dealt with this issue. This examination will center

upon electron-transport theory, because we wish to include quantum-coherence effects in the

theory, and these are much more prominent in systems of electrons than in systems of more



massive particles.





Chapter 3

Quantum Transport Theory

3.1 Fundamentals

In the previous chapter we have already pointed out the need of introducing a fullly quantum-

mechanical transport theory for the description of charge dynamics on very short space- and

time-scales, for which the semiclassical description previously introduced comes out to be un-

adequate. Indeed, the classical single-particle distribution function, as such, can not adequately

describe quantum-correlation phenomena in the space- and/or time-domain, due to the neglect

of the Heisenberg uncertainty principle. Aim of the present chapter is to discuss how to extend

the semiclassical scenario previously analized to properly describe interference phenomena in

semiconductor-based quantum devices.

3.1.1 Landauer-Büttiker approach

A fundamental approach able to qualitatively describe the open character of transport in quan-

tum devices is the one proposed by Landauer and Büttiker [11] [12] [13]. Within this approach,

energy-relaxation/dephasing processes do not occur inside the device, but dissipation is ac-

counted for via coupling to two or more ideal charge reservoirs. The conductance of such a

structure is then expressed in terms of the quantum-mechanical transmission coefficients of the

13



confinement potential profile. The ideal reservoirs have properties analogous to those of a black-

body: they absorb without reflection any electron leaving the system and inject into the device

active region an equilibrium thermal distribution. We shall see that such a picture is indeed the

qualitative starting point for constructing more refined open-system models. However, we stress

that this approach does not specify the boundary conditions within a physical boundary-value

problem. The boundary conditions are actually applied to the Schödinger equation —i.e., to

the carrier wavefunction— and correspond to the asymptotic conditions upon which the formal

theory of scattering is based. The traditional approach is to expand the unknown electron wave

function in a set of travelling waves, which correspond to the physical electron states in the

asymptotic regions. This implicitly sets the boundary conditions employed in such an analysis.

Alternatively, for the study of electron transport within a finite region of space, purely numer-

ical techniques for solving Schrödinger’s equation in a closed-system perspective are usually

employed. The resulting set of electron states is then used as a basis on which the physical

phenomenon of interest is described; to this end it is imperative to impose on such basis set

proper boundary conditions compatible with the open-system character of our quantum device.

Let us consider the steady-state regime for a one-dimensional system extending over the

interval 0 ≤ x ≤ l inside which there is a generic potential profile (that represents the quantum

device). In general, one seeks wave functions corresponding to travelling waves incident from

either left or right. These states will include a reflected component which appears at the

same boundary as incident wave, and a transmitted component which appears at the opposite

boundary. For example, for an eigenstate incident from left, we have:

ψ(x) = Aeik0x +Be−ik0x for x ≤ 0 (3.1)

ψ(x) = Y eiklx + Ze−iklx for x ≥ l (3.2)

where Z = 0 (for the hypothesis to have a left-incident wave function). The potential profile

inside the region [0, l] is approximated by a step-like potential; this approximation is as better

as we consider a high number N of step-potentials. For this reason, the region 0 ≤ x ≤ l can



be described by:

ψ(x) = C1e
ik1x +D1e

−ik1x for x ∈ I-step-potential (3.3)

ψ(x) = C2e
ik2x +D2e

−ik2x for x ∈ II-step-potential (3.4)

......

ψ(x) = CNe
ikNx +DNe

−ikNx for x ∈ N-step-potential (3.5)

In this treatment we have 2N+3 unknown quantities, but thanks to the continuity conditions

on the ψ(x) function and on its first derivative dψ(x)/dt (2N + 2 conditions), it is possible to

write down them in terms of A, that finally can be obtained thanks to normalization condition.

Obviously this approach is problematic since it requires to deal simultaneously with a large

number of unknown quantities. To overcome this limitation, the problem can be rewritten in

terms of the scattering matrix S, that is a mathematical instrument that allows to write down

out-going states in terms of in-coming states. By using the usual terminology in a compact

form one obtains:

(
B

Y

)
= S

(
A

Z

)
(3.6)

Still, this treatment is unfortunately not adequate to describe our system, indeed the hy-

pothesis to inject within the device either from left or from right precludes the possibility to

have simultaneously both A and Z term. Therefore, it is better to consider the so called transfer

matrix T that relates the right-quantum-device unknown quantities to the left-quantum-device

quantities. Hence one obtains:

(
Y

Z

)
= Ttot

(
A

B

)
(3.7)

where Ttot is the total transfer matrix. In fact it is important to notice that the transfer-matrix

approach must be used to connect adjacent zones with different potentials, going from right



to left of the whole potential profile (being under the hypothesis to inject from left), and the

product of all the specific transfer matrix gives Ttot. In a compact form we get:

(
CN

DN

)
= Tl

(
Y

Z

)
(3.8)

(
CN−1

DN−1

)
= TN,N−1

(
CN

DN

)
(3.9)

(
CN−2

DN−2

)
= TN−1,N−2

(
CN−1

DN−1

)
(3.10)

......

(
C1

D1

)
= T2,1

(
C2

D2

)
(3.11)

(
A

B

)
= T0

(
C1

D1

)
(3.12)

with Ttot = TlTN,N−1TN−1,N−2...T2,1T0.

Note that the matrix T depends on the wavevector k and carrier effective mass m only.

The Landauer approach previously recalled has successfully described a number of quantum

phenomena [14] [15]. However, it is important to recognize that these phenomena occur only

under a very restricted range of circumstances [16]. The reason for this is not only the fragility

of quantum interference effects as such, but rather the fact that the elementary Schrödinger

picture is not properly adequate to describe quantum-interference effects in the presence of

energy-relaxation and dephasing phenomena. That is as much true as the temperature rises

(indeed a lot of states may participate in the conduction), in particular in situations far from

equilibrium. A satisfactory treatment of far-from-equilibrium phenomena requires hence an

approach at a level of sophistication at least equal to that of the semiclassical kinetic theory.



3.1.2 Quantum kinetic approach

In the first chapter we have introduced the space Γ, namely the 6N phase-space, whose points

represent in classical terms the whole system under investigation. However, such a detailed

system description is usually not adequate, since we are often interested only in a subspace of

the whole system. Thus, a generally accepted approach to the problems of statistical physics is

to begin with the general theory of many-body (Γ space) dynamics and to proceed by deductive

reasoning to a formulation that provides an answer for the problem of interest [17]. The steps

of this deductive chain necessarily involve the introduction of extra assumptions in the form

of suitable approximations. One may loosely categorize the level of approximation in terms of

the independent variables required to specify the state of the system. The most detailed level

is the fundamental many-body theory, which in principle requires a complete set of dynamical

variables for each particle. This can be reduced to the kinetic level by restricting our attention

to one-body properties (µ space). It may be necessary also to remove, i.e., to adiabatically

eliminate, other dynamical variables of the system, such as photon or phonon coordinates,

when the electron gas is the only subsystem of interest. The kinetic theory is expressed in

terms of distribution function defined on a single-particle phase space, requiring one position

and one momentum variable for each spatial dimension (in the quantum case, this corresponds

to a couple of quantum numbers labelling the density operator). Finally, the hydrodynamic level

of approximation is obtained by making some assumption about the form of the distribution

function in momentum space, and integrating key quantities like carrier velocity and kinetic

energy over k-space. Thus the hydrodynamic theory is expressed in terms of macroscopic

quantities that are functions of position only.

Within the kinetic description previously recalled, the effects of degrees of freedom that are

of less interest for a given problem are included implicitly in object such as collision operators

or effective interaction potentials. For the case of electronic devices such auxiliary degrees of

freedom should include electron coordinates outside the device, but within the external circuit.

They also include all the excitations of the device material apart from the single-electron states



(e.g., phonons, plasmons, etc.). Thus, the state of the system is usually described by a one-body

density operator.

In the previous chapter the density function was introduced, in particular as the function

that obeys the Boltzmann equation. As previously discussed, such an equation is appropriate

to describe phenomena in a “semiclassical” world, that is in conditions where quantum effect

are not very prominent. Now, because of the quantum nature of microscopic systems, it is

nevertheless necessary to introduce a new mathematical instrument able to describe adequately

quantum phenomena, namely phase coherence vs. energy-relaxation/dephasing processes. This

instrument is called single-particle density matrix (see appendix A). In general, this can be

written as

ρ(x, x′, t) =
∑
k

pk⟨x|ψk(t)⟩⟨ψk(t)|x′⟩ (3.13)

where k labels a set of states and pk are real-valued probabilities for the system in state ψk(t).

Since we will consider open systems in which the number of particles is not fixed, the usual

convention for the normalization of ρ(t) (Trρ(t) = 1) is not useful. Instead we shall adopt a

normalization convention such that ρ(x, x′, t) gives the actual particle density. More formally,

ρ(x, x′, t) is a one-body reduced density operator which is defined on a single-particle Hilbert

space. The complete density matrix defined on the many-particle Fock space may still be

normalized to unity.

For a system described by a simple single-particle Hamiltonian,

H = − h̄2

2m

∂2

∂x2
+ V (x) (3.14)

the time evolution of the single-particle density matrix is again described by the well-known

Liouville-von Neumann equation:

ih̄
∂ρ

∂t
= [H, ρ] = − h̄2

2m

[
∂2

∂x2
− ∂2

∂x′2

]
ρ+ [V (x)− V (x′)]ρ ≡ Lρ (3.15)

where L is the Liouville superoperator1. The simplest approach to describe the behaviour of

1Anything that generates linear transformation on a density operator.



open systems is to apply the Liouville equation to a finite spatial domain representing the

system of interest an to apply boundary conditions that model the open nature of the system.

The difficulties and ultimate success of this approach depend on the effect that such boundary

conditions have upon the properties (particularly the eigenvalue spectrum) of the Liouville

superoperator.

Quantum kinetic theory appears to be the simplest level at which one may consistently

describe both quantum interference and irreversible phenomena [19]. The only available simple

levels, i.e. requiring few independent variables, are hydrodynamic models and scattering-theory

quantum mechanics.

However, hydrodynamic approaches provide no means to describe quantum effects such as reso-

nance phenomena since they retain no information on the distribution of particles with respect

to energy or momentum. On the other hand. if one attempts to include irreversible processes

within the framework of elementary quantum mechanics (scattering-theory), the probabilis-

tic continuity equation is most often violated. Irreversible processes will generally result in

the time dependence of some physical observable showing an exponential decay. The only time

dependence provided by elementary quantum mechanics is e−iEt/h̄ dependence of the wave func-

tion. Nevertheless an exponential decay (that, as stressed, is related to irreversible processes)

implies that the electron exponentially disappears, violating charge conservation. Moreover,

violations of charge continuity still occur when the irreversible processes are described by the

Fermi golden rule inside the frame of the lowest order theory perturbations. In this scheme,

indeed, the density matrix is valid only in its diagonal or semiclassical limit, i.e., neglecting any

coherence effect. To better clarify this point, let us consider a possible density matrix definition

in x-space

ρ(x, x′, t) =
∑
i

pi(t)ψi(x)ψ
∗
i (x

′) (3.16)

where we assume that the density matrix is diagonal in the basis of the eigenstates ψi of the

Hamiltonian and that the time-evolution is Boltzmann-like. The equation that dictates the



dynamics for pi(t) is

dpi
dt

=
∑
j

[pjWji − piWij] (3.17)

where the Wji are the golden-rule transition rates. Let us consider the transition from a state

i to a state j which have different spatial distribution: |ψi(x)|2 ̸= |ψj(x)|2. Because of the

“only diagonal density matrix description” given by scattering-theory, let us consider the rate

of change of the diagonal density

∂

∂t
ρ(x, x, t) =

∂pi
∂t

|ψi(x)|2 +
∂pj
∂t

|ψj(x)|2 = [pi(t)Wij − pj(t)Wji][|ψi(x)|2 − |ψj(x)|2] (3.18)

However, i (similarly for j) is an eigenstate of H, which means that ⟨i|J |i⟩ is constant. Now, the

rate of change of the density is equal to zero if either of the two bracketed terms in Eq.(3.18) is

zero. In thermal equilibrium the first term is zero in virtue of the detailed-balance principle, but

away from equilibrium it is, in general, nonzero. The second term will be zero if the probability

distributions of the eigenstates i and j are identical. This happens for very special cases only,

most notably for the plane-wave states of a free particle.

Thus the assumption that the density matrix has the form (3.16) for a far-from-equilibrium

systems will lead, in general, to a violation of the continuity equation. To maintain consistency

with the continuity equation, it is imperative to properly include off-diagonal elements of the

density matrix (in the eigenbasis of the Hamiltonian) [19]. Anyway, the expression that we

shall use to represent the density matrix, will be not the Eq.(3.16) but

ρ(x, x′, t) =
∑
i

piψi(x, t)ψ
†
i (x

′, t)

Here the time-evolution is inside the wave function ψ and, as shown in Appendix A, it can be

demonstrate that

∂ρ(x, x, t)

∂t
= 0



In conclusion, we remember that a theory that describes the evolution of the complete

(diagonal plus non-diagonal) single-particle density matrix is by definition a quantum kinetic

theory.

Open boundaries and time-irreversibility

The usual way to describe the effects of dissipative or irreversible processes at the kinetic level

is to add a collision term to the Liouville equation (3.15) to obtain the Boltzmann equation.

This is a valid procedure as long as the dissipative processes are sufficiently weak that the

motion of the particles can be viewed as periods of free flight interrupted by collision events.

Such a term takes its simplest form for interactions between the particles of interest (i.e.,

electrons) and quasiparticles that either are spatially fixed (such as impurities in solids) or

can be modelled as components of a thermal reservoir (such as phonons). In this case, within

the Markov approximation and low-density limit the collision term reduces to a simple linear

superoperator, and we can recover the Boltzmann equation as diagonal part of

∂ρ

∂t
= Lρ+ Cρ (3.19)

where C is the collision superoperator (it is the Boltzmann collision term).

A feature of irreversible systems is the existence of stable stationary states, which can be

either the equilibrium state or a nonequilibrium steady state if the system is driven by external

forces. To describe the reaching of such a steady state the superoperator L + C must have

eigenvalues with negative real parts. In the usually studied case the Liouville superoperator

is anti-Hermitian, which corresponds to purely imaginary eigenvalues. On the contrary the

collision operator C introduces the negative real parts of the eigenvalues. Physically, we expect

that there should be no eigenvalues with positive real parts, because these would correspond to

exponentially growing modes, and the system would be intrinsically non stable. The presence

of eigenvalues with negative real parts together with the absence of eigenvalues with positive

real parts implies that the system is time irreversible. This requests play a very important role

since it determines the sort of boundary conditions that can be used to model open systems.



In fact it can be shown that the time irreversibility enters through the open-system boundary

conditions [5].

Boundary conditions

To describe the behavior of an open system, we shall consider an approach in which the spatial

domain is considered to be finite, corresponding to the extent of the system, and boundary

conditions are applied which permit particles to pass into and out of the system. As previously

stressed, the boundary conditions must be time irreversible in themselves to guarantee the

correct analysis of open systems. A physically appealing way to achieve such irreversibility is

to distinguish between particles moving into the system and those moving out of the system. It

is then reasonable to expect that the distribution of particles flowing into the system depends

only upon the properties of the reservoirs to which the system is connected, and that the

distribution of particles flowing out of the system depends only upon the state of the system.

The behaviour of the reservoirs is thus analogous to that of an optical blackbody. This picture

leads to a fully acceptable model of open system.

To implement the picture just described, we should apply the boundary conditions

f(zleft, k)|k>0 = f left−boundary(k)

f(zright, k)|k<0 = f right−boundary(k) (3.20)

where zleft and zright represent the boundaries of the system under investigation, namely the

open system, and f boundary is the distribution function of the reservoir to the left or to the right

of the device. These boundary conditions are not invariant under time reversal.

3.1.3 Phenomenological approach

An important approach to open systems, that can be adequately included within the frame of

microscopic transport (see next section), is represented by phenomenological boundary condi-

tions. In such a scheme, the injection is completely delocalized inside the device, namely it is



characterized by the absence of spatial coordinates inside the contacts. The reasons of such

assumption are in the hypothesis that the injection involves electron wavepackets larger than

the device itself, thus one can reasonably take a “plane-wave” limit. In other words, the small-

ness of the device leads to the assumption that electrons are injected as completely delocalized

objects.

In order to generalize the Liouville equation to take into account the role played by the bound-

aries, we can add an open-boundary extra-term to the Liouville equation, similarly to the

collision term considered in the previous section:

∂ρ

∂t
=
i

h̄
[ρ,H] +

(
∂ρ

∂t

) ∣∣∣∣∣
res

(3.21)

The explicit form of the reservoir term is [20]

(
∂ραβ
∂t

) ∣∣∣∣∣
res

= −γα[ραβ − f 0
α] δαβ (3.22)

being ρα the diagonal matrix elements of the reduced single-electron density matrix taken over

electron states associated to the injection which it is related with; γα is the inverse of the

device transit time for an electron in stateα; f 0
α =

(
e

Eα−µα
kBT + 1

)−1

is the equilibrium carrier

distribution in the external reservoirs.

The inclusion of diagonal contributions of the reservoir density matrix only is due to the

fact that non-diagonal elements can be neglected in the hypothesis of carrier injection from a

fully thermalized charge reservoir.

3.2 From close to open systems: microscopic approach

After a review of qualitative —i.e., partially phenomenological— approaches used to describe

non-equilibrium carrier dynamics in open systems, let us now face the same problem from a



fully microscopic point of view. In the following we shall demonstrate how it is possible to

develop a theoretical scheme that is in a position to represent efficiently quantum effects in

open-boundary systems.

The equation that governs the time evolution of the density matrix is the usual Liouville

equation

ih̄
∂ρ

∂t
= [H, ρ] (3.23)

Obviously to solve such equation we need the explicit form of the Hamiltonian. The kinetic

approach faced such point by considering the single-particle Hamiltonian form, how explic-

itly written in Eq.(3.15). The approach that we shall follow is different by the previous one,

inasmuch as we are going to consider the whole system Hamiltonian.

3.2.1 Physical system

In order to study the transport properties of semiconductors, let us consider a gas of carriers

in a crystal under the action of an applied electromagnetic field. Such physical system can be

described by the following Hamiltonian:

H = Hc +Hp +Hcc +Hcp +Hpp (3.24)

The first term describes the noninteracting-carrier system in the presence of the external elec-

tromagnetic field, while the second one refers to the free-phonon system. The last three terms

describe many-body contributions: they refer, respectively, to carrier-carrier, carrier-phonon,

and phonon-phonon interactions.

Since we are interested in the electro-optical properties as well as in the ultrafast dynamics

of photoexcited carriers, the electromagnetic field acting on the crystal will be the sum of

two different contributions: the high-frequency laser field responsible for the ultrafast optical

excitation and the additional electromagnetic field acting on the photoexcited carriers on a



longer time-scale. More specifically, we can denote these two contributions as

Hc = HE +Hcl (3.25)

where they describe, respectively, the carrier-static field and carrier-laser interaction.

Then, in first quantization, the Hamiltonian terms Hc can be written as

Hc =
(−ih̄∇r − q

c
A(r, t))2

2m0

+ qφ(r, t) + V l(r) (3.26)

being A(r, t) the vector potential and φ(r, t) the scalar potential corresponding to the external

electromagnetic field, while V l is the periodic potential due to the crystal.

To specify the two contributions HE and Hcl, we can define the potentials as

A(r, t) ≡ A1(r, t) +A2(r, t) (3.27)

and

φ(r, t) ≡ φ1(r, t) + φ2(r, t) (3.28)

where the terms labelled by “one” are associated to Hcl and the terms labelled by “two” are

associated to HE.

To simplify the carrier-laser interaction, we adopt the potential scalar gauge (A1 = 0), so

that

Hcl = qφ1(r, t) (3.29)

where φ1, under the dipole approximation, becomes

φ1(r, t) = −E1(t) · r (3.30)

being

E1(t) = E0(t) cos(wLt) (3.31)

with E0(t) the amplitude of the light (i.e., gaussian) and wL the frequency field.



In order to better represent the dynamics of the density matrix, let us write down the above

expressions within the usual second quantization picture. By using the field operators ψ̂(r) and

ψ̂†(r), one obtains:

Hc =
∫
drψ̂†(r)

[
(−ih̄∇r − q

c
A(r, t))2

2m0

+ qφ(r, t) + V l(r)

]
ψ̂(r) (3.32)

and consequently HE and Hcl.

Coming to the many-body contributions (Hcc, Hcp, Hpp), we should follow the same analysis

seen for the single-particle contributions. Anyway, such a analysis is not necessary since our

primary goal will be to study essentially the open system effects; therefore, we shall describe

the many-body interactions in terms of the well-known t1 − t2 approximation2.

3.2.2 Single particle approximation

In previous chapters we have discussed about the difference between statistical spaces Γ and µ.

From our discussion it the impossibility to treat N particles systems (with N of the order of

1023part/m3). For such a reason it is necessary to be able to reduce the problem to one that can

be actually solved; Thus it was introduced the single particle space µ. For the same reason we

must act on the Liouville equation (3.23). The approach that we shall follow is different from

the one seen in section “kinetic approach”, where the reduction procedure was done directly

on the Hamiltonian, indeed now we shall reduce the density matrix ρ.

To this end, let us move to the second quantization picture. To do that we can write the

field operators by using a basis {ϕn(r)}:

ψ̂(r) =
∑
n

ϕn(r)ĉn

ψ̂†(r) =
∑
n

ϕ∗
n(r)ĉ

†
n (3.33)

2Within such an approximation scheme there exist a parameter t1 describing the time necessary at the charge

population to reach a steady state, and a parameter t2 that simulates the decoherence time.



where ĉn and ĉ†n represent, respectively, the destruction and creation of a carrier in state n.

To properly define/identify the single-particle density matrix ρsp, let us consider a single-

particle operator A(r) and let us write it in second quantization:

Asp =
∫
drψ̂†(r)A(r)ψ̂(r) =

∫
dr
∑
α

ĉ†αϕ
∗
α(r)A(r)

∑
β

ĉβϕβ(r) =
∑
αβ

ĉ†αĉβAαβ (3.34)

From Eq.(??), its mean value (both quantum and statistical) is

⟨Asp⟩ = Tr[ρAsp] = Tr

ρ∑
αβ

ĉ†αĉβAαβ

 =
∑
αβ

Tr
[
ρĉ†αĉβ

]
Aαβ (3.35)

By defining the quantity

ρspβα ≡ Tr[ρĉ†αĉβ] = ⟨ĉ†αĉβ⟩ (3.36)

we get

⟨Asp⟩ = Tr[ρspAsp] (3.37)

Thus it is important to point out the relation

⟨Asp⟩ = Tr[ρAsp] = Tr[ρspAsp]Tr[ρspAsp] (3.38)

The meaning of such equation is very deep inasmuch as it has strong consequence in the

calculation of observables mean value. Indeed it means that to find an expectation value of a

single-particle quantity one does not need the whole density operator but it is enough to know

the density operator of the system under investigation.



Space reduction

In more general terms, let us consider two different systems (1) and (2) and the global system

(1) + (2), whose state space is the tensor product:

E = E(1)⊗ E(2) (3.39)

Let {|un(1)⟩} be a basis for E(1) and {|vp(2)⟩} a basis for E(2); the kets |un(1)⟩|vp(2)⟩ will

constitute a basis for E . The density operator ρ of the global system is an operator which acts

over E . We shall now show how to construct from ρ an operator ρ(1) (or ρ(2)) acting only over

E(1) (or E(2)) which will enable us to make all the physical predictions about measurements

bearing only on system (1) or system (2). This operation will be called a partial trace with

respect to (2) (or (1)).

Let us introduce the operator ρ(1) whose matrix elements are:

⟨un(1)|ρ(1)|u′n(1)⟩ =
∑
p

(⟨un(1)|⟨vp(2)|)ρ(|u′n(1)⟩|vp(2)⟩) (3.40)

By definition, ρ(1) is obtained from ρ by performing a partial trace over (2):

ρ(1) = Tr2ρ (3.41)

Similarly, the operator:

ρ(2) = Tr1ρ (3.42)

has matrix elements

⟨vp(2)|ρ(2)|v′p(2)⟩ =
∑
n

(⟨un(1)|⟨vp(2)|)ρ(|un(1)⟩|v′p(2)⟩) (3.43)

It is clear why these operations are called partial traces. Moreover, we have:

Trρ = Tr1(Tr2ρ) = Tr2(Tr1ρ) (3.44)



ρ(1) and ρ(2) are therefore, like ρ, operators whose trace is equal to 1. In particular, by

recalling the definition (3.36) of single-particle density matrix, one can show that it respects

the peculiarity to have trace equal to one. In fact:

∑
α

ρspαα = ⟨Ψ(r, t)|ĉ†αĉα|Ψ(r, t)⟩

= ⟨Ψ(r, t)|
∫
dr′dr′′δ(r′ − r′′)ψ̂†(r′)ψ̂(r′′)|Ψ(r, t)⟩

= ⟨Ψ(r, t)|
∫
dr′ψ̂†(r′)ψ̂(r′)|Ψ(r, t)⟩

= ⟨Ψ(r, t)|Ψ(r, t)⟩

= 1

Then, it can be verified from their definitions that they are Hermitian.

Now let A(1) be an observable acting over E(1) and Ã(1) ≡ A(1) ⊗ 1I(2), its extension in

E3. We obtain, using the definition of mean value (for simplicity, let us suppose to be in a pure

system):

⟨Ã(1)⟩ = Tr[ρÃ(1)]

=
∑
np

∑
n′p′

(⟨un(1)|⟨vp(2)|)ρ(|u′n(1)⟩|v′p(2)⟩)(⟨u′n(1)|⟨v′p(2)|)A(1)⊗∞(2)(|un(1)⟩|vp(2)⟩)

=
∑
np

∑
n′p′

(⟨un(1)|⟨vp(2)|)ρ(|u′n(1)⟩|v′p(2)⟩)⟨u′n(1)|A(1)|un(1)⟩⟨v′p(2)|vp(2)⟩

=
∑
nn′

[∑
p

(⟨un(1)|⟨vp(2)|)ρ(|u′n(1)⟩|vp(2)⟩)
]
⟨u′n(1)|A(1)|un(1)⟩

=
∑
nn′

⟨un(1)|ρ(1)|u′n(1)⟩⟨u′n(1)|A(1)|un(1)⟩

=
∑
n

⟨un(1)|ρ(1)A(1)|un(1)⟩

= Tr1[ρ(1)A(1)] (3.45)

3Given a linear operator A(1) defined in E(1), we associate to it a linear operator Ã(1) acting on E , which

we call extension of A(1) in E , and which is characterized as follows: when Ã(1) is applied to a tensor product

vector |φ(1)⟩ ⊗ |χ(2)⟩, one obtains, by definition:

Ã(1)[|φ(1)⟩ ⊗ |χ(2)⟩] = [A(1)|φ(1)⟩]⊗ |χ(2)⟩



We see that the partial trace ρ(1) enables us to calculate all the mean values ⟨Ã(1)⟩ as if the

system (1) was isolated and had ρ(1) as density operator.

The above results clearly show that the density operator can play a very crucial role in our

physical predictions. In fact we know that it is impossible to assign a state vector to system (1)

[or (2)] when the state of the global system (1) + (2) is not a product state. We now see that

the density operator is a mathematical instrument much simpler than the state vector. In all

cases (whether the global system is in a product state or not, whether it corresponds to a pure

case or to a statistical mixture), one can always, thanks to the partial trace operation, assign a

density operator to subsystem (1) [or (2)]. This allows to calculate all the physical predictions

about such subsystem.

3.2.3 Semiconductor Bloch Equations (SBE)

Thanks to the definition of the single-particle density matrix

ρspαβ = ⟨ĉ†αĉβ⟩ (3.46)

one can proceed in attempting to obtain the analogous equation, for the single density matrix,

of the Liouville equation seen in (3.23) that, as we know, dictates the time evolution of the

global density matrix.

Within the Schrödinger representation4:

ih̄
∂ρspβα
∂t

= ih̄
∂⟨ĉ†αĉβ⟩
∂t

= ih̄
∂⟨Ψ(r, t)|ĉ†αĉβ|Ψ(r, t)⟩

∂t
=

= ih̄
∫
dr

[
∂

∂t
Ψ∗(r, t)ĉ†αĉβΨ(r, t) + Ψ∗(r, t)ĉ†αĉβ

∂

∂t
Ψ(r, t)+

Ψ∗(r, t)
∂

∂t
ĉ†αĉβΨ(r, t) + Ψ∗(r, t)ĉ†α

∂

∂t
ĉβΨ(r, t)

]
(3.47)

4Obviously the result can be obtained in any representation. For example, the Heisenberg representation

can provide the same result simply by starting from the Heisenberg equation for the field operator ψ̂.



Under the hypothesis that the second quantization operator ĉ does not depend on time, namely

that the basis ϕn is time-independent, the last two terms of the previous expression are equal

to zero, and thus

ih̄
∂ρspβα
∂t

=
∫
dr[−Ψ∗(r, t)Hĉ†αĉβΨ(r, t) + 0] = −⟨Ψ|Hĉ†αcβ|Ψ⟩+ ⟨Ψ|ĉ†αcβH|Ψ⟩ (3.48)

so that the final expression is

ih̄
∂ρspβα
∂t

= ⟨[ĉ†αĉβ, H]⟩ (3.49)

The above equation, describing the time evolution of the single-particle density matrix, is

called Semiconductor Bloch Equation. To explicit it we need the exact form of the system

Hamiltonian. In the section “Physical system” we have already treated the term H (at least

the single-particle terms, since the many-body contributions will be either approximated by

means of the t1− t2 approximation or neglected), thus it is sufficient to substitute it in equation

(3.47) to obtain the desired result. In particular, under specific approximations that involve

the many-body terms (since the single-particle ones can be treated exactly), the dynamics for

ρsp can be described by the next, formally simple, equation

∂ρspα1α2

∂t
=
∑
α′
1α

′
2

Lα1α2,α′
1α

′
2
ρα′

1α
′
2

(3.50)

where the effective Liouville operator

Lα1α2,α′
1α

′
2
=

1

ih̄
(ϵα1 − ϵα2)δα1α2,α′

1α
′
2
+ Γα1α2,α′

1α
′
2

(3.51)

is the sum of two terms: coherent (i.e., scattering-free) single particle evolution (ϵα denoting



the single-particle energy of state α) plus energy-relaxation/dephasing dynamics; The latter

is described in terms of the scattering tensor Γ, whose explicit form, given in [9], involves the

microscopic in- and out-scattering rates for the various interaction mechanisms considered.

Before proceeding in the description of open systems from a microscopic point of view, let

us see a scheme that summarizes the different approaches used in the transport theory. It is

shown in Fig. 3.1.

3.2.4 Open systems

The theoretical description presented so far is typical of a spatially “closed” system, i.e., de-

fined over the whole coordinate space. However, this is not the case of interest for the study

of ultrafast phenomena in mesoscopic quantum devices, where the electro-optical properties of

the carrier subsystem are strongly influenced by the spatial boundaries with the external envi-

ronment. In what follows we shall present a generalization of the density-matrix formulation

discussed so far to systems with open boundaries.

To this aim, let us focus on the conduction electron only, whose single-particle properties

are fully described by the density matrix ρsp introduced previously. As discussed above, its time

evolution depends on the interaction mechanisms considered as well as on the approximation

level used to derive the proper set of kinetic equations.

As we have seen, the equation of motion for the single-density matrix ρsp can be schemati-

cally written as

∂ρspα1α2

∂t
=
∑
α′
1α

′
2

Lα1α2,α′
1α

′
2
ρspα′

1α
′
2

(3.52)

A system with open boundaries requires a real-space description, which can be obtained in

terms of the phase-space formulation of quantum mechanics originally proposed by Wigner

[21]. Generally speaking, this corresponds to introduce the following unitary transformation u,
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Figure 3.1: Schematic representation of the theoretical approaches, both in classical and in

quantum theory, able to describe charge transport.



called Weyl-Wigner transformation5, connecting the single-particle phase-space (α1, α2) to the

desired (inasmuch as it contains the real-space coordinate) space-phase (r,k):

uα1α2(r,k) = Ω
∫
dr′e−ik·r′ϕα1

(
r+

r′

2

)
ϕ∗
α2

(
r− r′

2

)
(3.53)

where ϕ are the electron single-particle wavefunctions. It can be regarded as the Fourier trans-

form of the wavefunction autocorrelation with respect to the relative coordinate r′. By applying

the above Weyl-Wigner transform to the single-particle density matrix ρsp, we get

fW (r,k) =
∑
α1α2

ρspα1α2
uα1α2(r,k) (3.54)

The equation of motion for fW can be obtained by applying the Weyl-Wigner transformation

(3.53) to the kinetic equation (3.52). Thus, we get

d

dt
fW (r,k) =

∑
α1α2

dρspα1α2

dt
uα1α2(r,k)

=
∑
α1α2

∑
α′
1α

′
2

Lα1α2,α′
1α

′
2
ρspα′

1α
′
2

uα1α2(r,k)

=
∑
α1α2

uα1α2(r,k)
∑
α′
1α

′
2

Lα1α2,α′
1α

′
2
ρspα′

1α
′
2

=
∑
α1α2

uα1α2(r,k)
∑
α′
1α

′
2

Lα1α2,α′
1α

′
2

∫
dr′dk′u∗α′

1α
′
2
fW (r′,k′)

=
∫
dr′dk′LW (r,k; r′,k′)fW (r′,k′) (3.55)

where

LW (r,k; r′,k′) =
∑

α1α2,α′
1α

′
2

uα1α2(r,k)Lα1α2,α′
1α

′
2
u∗α′

1α
′
2
(r′,k′) (3.56)

is our Liouville operator in the new phase-space representation.

For a closed system, fW is defined for any value of the real-space coordinate r and its

time evolution is fully determined by its initial condition. In contrast, for a system with open

5See Appendix B



boundaries fW is defined only6 within a given region Ω of interest and its time evolution is

dictated by the initial condition at t0 inside such region, as well as by its values on the boundary

rb of the domain at any time t′ > t0. This boundary-condition scheme is usually referred to as

“U scheme”. The reason is motivated and explained in Fig. 3.2: More specifically, in order to

properly impose the desired spatial boundary conditions, let us write Eq.(3.55) as

d

dt
fW (r,k, t) =

∫
dr′dk′

[
LW (r,k; r′k′)−

∣∣∣∣∣ h̄km
∣∣∣∣∣ δ(k− k′)δ(r− r′)δ(r− rb)

]
fW (r′,k′, t) +∣∣∣∣∣ h̄km

∣∣∣∣∣ δ(r− rb)f
W
b (k)

=
∫
dr′dk′L̃W (r,k; r′,k′)fW (r′,k′, t) + S̃W (r,k) (3.57)

with

S̃W (r,k) = |v(k)|fW
b (k)δ(r− rb) (3.58)

and

L̃W (r,k; r′,k′) = LW (r,k; r′,k′)− |v(k)|δ(r− rb)δ(r− r′)δ(k− k′) (3.59)

where v(k) denotes the carrier group velocity normal to the boundary surface (i.e., we assume

that rb = rleft and rb = rright - in the hypothesis to be in one-dimensional system - respectively

if k > 0 and k < 0) and fW (rb,k, t) ≡ fW
b (k) is the Wigner function describing the distribution

of injected carriers. The equation (3.58) describes the source term, namely carrier injection

from the boundaries into the simulated region.

Let us now discuss about the relation fW (rb,k, t) ≡ fW
b (k). The question is: “In stationary

or steady-state conditions is it true that fW (rb,k) ≡ fW
b (k)?”. The answer is “yes”.

To demonstrate this property, let us consider the equation (3.57). The latter can be rewritten

as:

d

dt
fW (r,k, t) =

∫
dr′dk′LW (r,k; r′,k′)fW (r′,k′, t)+

∣∣∣∣∣ h̄km
∣∣∣∣∣ [fW

b (k)−fW (r,k, t)]δ(r−rb) (3.60)

6In reality fW (r,k), as such, is mathematically defined over the whole phase-space µ; however, we impose

that such function assumes a particular value on the boundaries, since we are not interested in its behaviour

outside.



Figure 3.2: Schematic representation of the device active region sandwiched between its elec-

trical contacts (a) and the corresponding U boundary-condition scheme for a one-dimensional

system (b). The latter implies, in particular, the knowledge of the incoming Wigner function

fW (zb, k), i.e., f
W (zleft, k > 0) and fW (zright, k < 0).



By using the transformation fW (r,k, t) =
∑

αβ uαβ(r,k)ραβ(t), Eq.(3.60) becomes:

∑
αβ

uαβ(r,k)
dρspαβ
dt

=
∫
dr′dk′LW (r,k; r′,k′)

∑
α′β′

uα′β′(r′,k′)ρspα′β′(t)

+|v(k)| [fW
b (k)− fW (r,k, t)] δ(r− rb)

i.e.,

∑
αβ

∫
drdkuαβ(r,k)u

∗
α′′β′′(r,k)

d

dt
ρspαβ(t) =

∑
α′β′

∫
dr′dk′drdk LW (r,k; r′,k′)uα′β′(r′,k′)u∗α′′β′′(r,k)ρ

sp
α′β′(t) +∫

drdku∗α′′β′′(r,k)|v(k)| [fW
b (k)− fW (r,k, t)] δ(r− rb) (3.61)

By considering the property

∫
drdkuαβ(r,k)u

∗
α′′β′′(r,k) = δαα′′δββ′′,

Eq.(3.61) becomes:

d

dt
ρspα′′β′′(t) =

∑
α′β′

Lα′β′,α′′β′′ρspα′β′(t) +
∫
drdk u∗α′′β′′(r,k)|v(k)| [fW

b (k)− fW (r,k, t)] δ(r− rb)

Let us suppose that the basis states {α} diagonalize ρsp, that is ρspαβ = ρspααδαβ; in this case we

obtain:

d

dt
ρspαα(t) =

∑
α′

Lαα,α′α′ρspα′α′ +
∫
drdk u∗αα(r,k)|v(k)| [fW

b (k)− fW (r,k, t)] δ(r− rb)

=
∑
α′

LW
αα,α′α′ρ

sp
α′α′ +

∫
dk u∗αα(rb,k)|v(k)| [fW

b (k)− fW (rb,k, t)]



Finally, by means of Eq.(3.51), the above equation in stationary regime reduces to:

−
∑
α′

Γαα,α′α′ρspα′α′ +
∫
dk u∗αα(rb,k)|v(k)| [fW

b (k)− fW (rb,k)] = 0 (3.62)

Now, in the scattering/dephasing-free case (Γ = 0) Eq. (3.62) becomes:∫
dk u∗αα(rb,k)|v(k)| [fW

b (k)− fW (rb,k)] = 0, ∀α

i.e.,

fW (rb,k) = fW
b (k)

This result tells us that, in the stationary and scattering/dephasing-freecase, the “incoming”

Wigner function on our spatial boundaries is equal to the thermal distribution entering the

source term. Now, the point is what happens for Γ different from zero.

To answer this question, let us consider that the scattering superoperator Γ, as such, preserves

the total number of particles inside the simulated region, i.e., the trace of the density matrix

is not affected by scattering/dephasing. It follows that, by summing on α Eq. (3.62), we get:

0 = −
∑
α

∑
α′

Γαα,α′α′ρspα′α′ +
∑
α

∫
dk u∗αα(rb,k)|v(k)| [fW

b (k)− fW (rb,k)]

=
∫
dk

∑
α

u∗αα(rb,k)|v(k)| [fW
b (k)− fW (rb,k)]

=
∫
dk

∑
α

|v(k)| [fW
b (k)− fW (rb,k)] (3.63)

where we have employed the following relations:

∑
αα′

Γαα,α′α′ρspα′α′ = 0

which follows from the hypothesis that the scattering does not change the number of particles,

and ∑
α

u∗αα(r,k) = 1, ∀ r



Therefore, as for the scattering/dephasing-free case, Eq. (3.63) tells us that:

fW (rb,k) = fW
b (k)

Let us finally consider the case in which, due e.g. to electron-hole recombination processes,

the number of particles within the simulated region is not conserved. In this case, Eq. (3.62)

becomes:

0 = −
∑
α

∑
α′

Γαα,α′α′ρspα′α′ +
∑
α

∫
dk u∗αα(rb,k)|v(k)| [fW

b (k)− fW (rb,k)]

where, contrary to the previous situation,
∑

αα′ Γαα,α′α′ρspα′α′ is different from zero. It is clear

that this new condition implies that the value of the Wigner function on the system boundary

is renormalized by the scattering term Γ. This confirms the idea (Frensley 1990) that the effect

of scattering inside the device is equivalent to that of spatial boundaries, and vice versa.

Given the above Wigner formulation for open systems, we now go back to the density-matrix

description via the following Weyl-Wigner transform

ρspα1α2
=
∫
drdku∗α1α2

(r,k)fW (r,k) (3.64)

By applying the above inverse transformation to Eq.(3.57), we finally obtain:

d

dt
ρspα1α2

=
∑
α′
1α

′
2

L̃α1α2,α′
1α

′
2
ρspα′

1α
′
2
+ S̃α1α2 (3.65)

where

L̃α1α2,α′
1α

′
2
= Lα1α2,α′

1α
′
2
+∆Lα1α2,α′

1α
′
2

(3.66)

is the Liouville operator in Eq.(3.52) renormalized by the quantity

∆Lα1α2,α′
1α

′
2
= −

∫
drbdku

∗
α1α2

(rb,k)|v(k)|uα′
1α

′
2
(rb,k) (3.67)

while

S̃α1α2 =
∫
drdku∗α1α2

(r,k)S̃W (r,k) (3.68)



is the source term in Eq.(3.58) written in the density-matrix representation.

Equation (3.65) is the desired generalization to the case of systems with open boundaries

of the conventional dynamical equation (3.52). In addition to the source term described in

Eq.(3.68), the presence of boundary conditions induces modifications to the Liouville operator

L. In particular, the open character of the system results in a non-Hermitian correction ∆L to

the Liouville operator L, whose effect is equivalent to a purely dissipative process within the

simulated region Ω, as originally pointed out in [5].

Since our aim is to study the carrier dynamics only within the simulated region Ω, given

any physical single-particle quantity A, its average value is given by

⟨A⟩ =
∫
Ω
dr
∫
dkfW (r,k)AW (r,k) (3.69)

where AW denotes the operator A in our Weyl-Wigner representation (see appendix B). How-

ever, this equation involves the whole phase-space µ. Since we want to treat open quantum

devices, i.e., systems with finite spatial dimensions, it is useful to rewrite the previous equation

such to involve the simulated region Ω only. Indeed, it is possible to show that

⟨A⟩ =
∫
Ω
dr
∫
dkf̆W (r,k)AW (r,k) (3.70)

where f̆W is the Wigner function defined only inside the region Ω. To show the equivalence

between Eq.(3.69) and Eq.(3.70), one proceeds as follows. By using the inverse of Eq.(3.64)

and the relation uαβ = u∗βα, Eq. (3.69) becomes:∫
Ω
dr
∫
dkfW (r,k)AW (r,k) =

∫
Ω
dr
∫
dk

∑
α1α2

ρspα1α2
uα1α2(r,k)

∑
α′
1α

′
2

Aα′
2α

′
1
uα′

2α
′
1
(r,k)

=
∑

α1α2,α′
1α

′
2

ρspα1α2
Aα′

2α
′
1

∫
Ω
dr
∫
dkuα1α2(r,k)u

∗
α′
1α

′
2
(r,k)

=
∑

α1α2,α′
1α

′
2

ρspα1α2
Aα′

2α
′
1
Uα1α2,α′

1α
′
2

=
∑
α′
1α

′
2

[∑
α1α2

ρspα1α2
Uα1α2,α′

1α
′
2

]
Aα′

2α
′
1

=
∑
α′
1α

′
2

ρ̆spα′
1α

′
2
Aα′

2α
′
1

= Tr (ρ̆spA) (3.71)



where U can be regarded as a projector operator acting on our simulated region Ω. Its projector

nature can be easily verified by showing that applying the operator U once or twice to a generic

Weyl-Wigner quantity, we get the same result. More specifically,

ρ̆spαβ =
∑
α′β′

Uαβ,α′β′ ρ̆spα′β′ (3.72)

In fact:

∑
α′β′

Uαβ,α′β′ ρ̆spα′β′ =
∑

α′β′,α′′β′′
Uαβ,α′β′Uα′β′,α′′β′′ρspα′′β′′

=
∑

α′β′,α′′β′′

∫
Ω
dr′dk′u∗αβ(r

′,k′)uα′β′(r′,k′)
∫
Ω
dr′′dk′′u∗α′β′(r′′,k′′)uα′′β′′(r′′,k′′)ρspα′′β′′

=
∑
α′′β′′

∫
Ω
dr′dk′dr′′dk′′u∗αβ(r

′,k′)uα′′β′′(r′′,k′′)δ(r′ − r′′)δ(k′ − k′′)ρspα′′β′′

=
∑
α′′β′′

∫
Ω
dr′dk′u∗αβ(r

′,k′)uα′′β′′(r′,k′)ρspα′′β′′

=
∑
α′′β′′

Uαβ,α′′β′′ρspα′′β′′

= ρ̆spαβ (3.73)

We stress that when Ω coincides with all the µ-space, the quantity U becomes a Dirac delta

function, namely the system is projected on itself, that means that the space of interest is the

whole phase-space.

Coming back to the equivalence between Eq.(3.69) and Eq.(3.70), let us consider again the

second one:

⟨A⟩ =
∫
Ω
dr
∫
dkf̆W (r,k)AW (r,k)

=
∫
Ω
dr
∫
dk
∑
αβ

ρ̆spαβuαβ(r,k)
∑
α′β′

Aβ′α′uα′β′(r,k)

=
∑

αβ,α′β′
ρ̆spαβAβ′α′

∫
Ω
dr
∫
dkuαβ(r,k)uα′β′(r,k)

=
∑

αβ,α′β′
ρ̆spαβAβ′α′Uαβ,α′β′

=
∑
α′β′

∑
αβ

ρ̆spαβUαβ,α′β′

Aβ′α′



=
∑
α′β′

ρspα′β′Aβ′α′

= Tr (ρ̆spA) (3.74)

This is exactly the same expression written in Eq. (3.71) and thus the equivalence is shown.

Equation (3.74) tells us that the evaluation of average quantities requires the knowledge of the

operator U .

Obviously such approach applies to any observable A, that means that we can obtain macro-

scopic quantities simply from the knowledge of the Wigner function inside the device.

3.2.5 Failure of the “canonical” Wigner function formalism

Although the above theoretical approach seems appropriate, at least formally, to describe ade-

quately open systems, in what follows we shall see that the Wigner-function formalism analyzed

so far presents serious intrinsic limitations when applied to the study of charge transport in

open quantum devices. To overcome such limitations, we shall introduce a new approach, called

“Generalized Wigner function”. Before discussing such generalized scheme, let us consider a

prototypical example which clearly shows that the canonical Wigner-function approach intro-

duced so far does not work properly. To this end , let us focus on a very simple semiconductor

nanostructure: a single-barrier equidistant from the device contacts (see Fig. 3.3). Here, as

basis states α we adopt the scattering states of the device potential profile; moreover, to better

identify the role played by carrier injection, we shall neglect all other sources of energy relax-

ation/dephasing in the device active region, like carrier-phonon and carrier-carrier scattering:

Γα1α2,α′
1α

′
2
= 0 [see Eq.(3.51)]. Under these assumptions, Eq.(3.65) in steady-state conditions

reduces to:
1

ih̄
(ϵα1 − ϵα2)ρ

sp
α1α2

+
∑
α′
1α

′
2

∆Lα1α2,α′
1α

′
2
ρspα′

1α
′
2
+ S̃α1α2 = 0 (3.75)

To fully identify the non-physical nature of the results obtained within the present Wigner-

function approach, we have compared them to those obtained by a Boltzmann-like phenomeno-

logical model, i.e., a model where the scattering is Boltzmann-like and the open character is
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Figure 3.3: Comparison between the real-space charge distribution obtained from the phe-

nomenological injection model in Eq.(3.76) [n(r) =
∑

α fα|ϕα(r)|2 - dashed curve] and the

microscopic model in Eq.(3.75) [n(r) =
∑

α1α2
ρspα1α2

ϕα1(r)ϕ
∗
α2
(r) - solid curve] for a GaAs-based

single barrier structure (height V0 = 0.5eV and width a = 4nm) equidistant from the electrical

contacts. In this room-temperature simulation, due to a misalignment ∆µ = 0.2eV of the

left and right chemical potential, carriers are primarily injected from left. The corresponding

charge distribution in momentum space is also reported in the inset.



treated via a phenomenological relaxation-time-like term:

d

dt
fα =

∑
α′
(fα′Wα′α − fαWαα′) +

f b
α − fα
τα

(3.76)

where fα represents the single-particle carrier distribution over the electronic states α of the

device, Wαα′ the microscopic scattering rates (due, i.e., to carrier-carrier and carrier-phonon

interaction), f b
α denotes the equilibrium carrier distribution in the contacts and τα can be

regarded as the device transit time for an electron in state α. Thus, the last term describes

carrier injection/loss on a partially phenomenological level and does not depend on the real

position of the device spatial boundaries.

Figure 3.3 refers to a single-barrier potential profile where carriers are primarily injected

from left. Here, the simulated real-space charge distribution obtained from the phenomenolog-

ical injection model in Eq.(3.76) (dashed curve) is compared to that of the microscopic model

in (3.75) (solid curve). As we can see, the two models give completely different results. The

phenomenological model gives basically what we expected: since we have significant carrier

injection from left only and since the potential barrier is relatively high, the carrier distribution

is mainly located on the left side. In contrast, the microscopic model gives an almost symmetric

charge distribution. In order to understand the origin of this unphysical result, let us focus on

the nature of the Wigner-Weyl transform (3.53), rewritten as

uα1α2(r,k) = Ω
∫
dr′e−ik·r′ϕα1

(
r+

r′

2

)
ϕ∗
α2

(
r− r′

2

)

The generic scattering state α on the left comes out to be an almost equally weighted superpo-

sition of +k and −k: ϕα(z) = ake
ikz + bke

−ikz (we have considered the one-dimensional case).

This, in turn, means that the generic plane-wave state k injected from left contact is also an

almost7 equally weighted superposition of the left and right scattering states. This is the reason

why the charge distribution (solid curve in Fig.3.3) is almost symmetric: any electron injected

7In the limit ak → bk (i.e., when the barrier produces a full reflection, namely the transmission coefficient is

equal to zero), the carrier distribution becomes completely symmetric.



from left couples to left as well as to right scattering states. The anomaly of the microscopic

model is even more pronounced if we look at the carrier distribution in momentum space (see in-

set in Fig.3.3). While for the phenomenological model (dashed curve) we get a positive-definite

distribution showing, as expected, the two symmetric wavevector components of the scattering

state, the microscopic result is not positive definite; this tells us that the boundary-condition

scheme considered so far does not provide a “good” Wigner function.

Beside that, another significant physical inconsistency comes out by observing the form of

the source term. Contrary to the phenomenological injection/loss term in (3.76), the micro-

scopic injection is intrinsically non-diagonal, i.e., the injection of a carrier with well-defined

wavevector k [see Eq.(3.58)] is described by a non-diagonal source contribution S̃α1α2 . In other

words, we inject into the device active region a coherent superposition of states α1 and α2, in

clear contrast with the idea of injection from a thermal -i.e. diagonal- charge reservoir. To try

to overcome this problem still within the canonical Wigner representation, i.e., in order to iden-

tify a source term S̃(r,k) corresponding to a diagonal source term within the α-representation,

it is easy to realize that this would require to adopt a non-local (in space) source term. Indeed,

we have:

S̃α1α2 =
∫
drdku∗α1α2

S̃W (r,k) (3.77)

By inverting Eq.(3.77) and imposing a diagonal form of the source term (S̃α1α2 = S̃α1α1δα1α2),

we get:

S̃W (r,k) =
∑
α

S̃ααuαα(r,k) (3.78)

The above source function can never be point-like in space, as requested by our boundary-

condition scheme (see Fig.3.2).

The scenario previously discussed is highly non-physical; it can be ascribed to the boundary-

condition scheme employed so far, which implies injection of planewave electrons, regardless of

the device potential profile. This is an intrinsic limitation of the conventional Wigner-function

representation r,k. It is then clear that, in order to overcome the serious limitations previously

discussed, what we need is a new boundary-condition scheme realizing also diagonal injection



over the scattering states α of the device potential profile. For these reasons we are going to

show how to develop the new scheme, called “Generalized Wigner function approach”.

3.2.6 Generalized Wigner-function approach

The key idea is to extend the Weyl-Wigner transform in (3.53) from the k to a generic basic

set {|β⟩}. Thus, by using the basis functions χβ(r) that, in general, are different from the basis

functions ϕα(r), it is possible to define a new Weyl-Wigner transform (Generalized Transform)

uWG
α1α2,β1β2

(r) = Ω
∫
dr′ϕα1

(
r+

r′

2

)
χ∗
β1

(
r+

r′

2

)
χβ2

(
r− r′

2

)
ϕ∗
α2

(
r− r′

2

)
(3.79)

where Ω denotes again the volume of the simulated region and “G” stays for “Generalized”.

Such equation does not represent a unitary transformation corresponding to a simple basis

change; it amounts to a non-trivial projection operator involving the real space Wigner coor-

dinate r:

uWG
α1α2,β1β2

(r) = ⟨β1|α1⟩|r⟩⟨r|⟨α2|β2⟩ (3.80)

Let us now show where Eq.(3.80) comes from. We define

uWG
α1α2,β1β2

≡ ⟨β1|α1⟩⟨α2|β2⟩

=
∫
dr1dr2⟨β1|r1⟩⟨r1|α1⟩⟨α2|r2⟩⟨r2|β2⟩

=
∫
dr1dr2χ

∗
β1
(r1)ϕα1(r1)ϕ

∗
α2
(r2)χβ2(r2)

=
∫
drdr′ϕα1

(
r+

r′

2

)
χ∗
β1

(
r+

r′

2

)
χβ2

(
r− r′

2

)
ϕ∗
α2

(
r− r′

2

)

=
∫
druWG

α1α2,β1β2
(r) (3.81)

where r′ = r1 − r2 and r = (r1 + r2)/2.

The reasons that lead to consider uWG(r) as a projector, comes from the observation that

by integrating it on the whole real space we obtain a Dirac delta function. Moreover, we shall

show (see below) that by applying the uWG(r) once or twice to a density matrix, we get the



same result. It is important to stress that if we take as basis functions χ ordinary plane waves,

i.e.,

χβ

(
r+

r′

2

)
= e

−ikβ

(
r+ r′

2

)
we obtain exactly the usual Weyl-Wigner transform defined in (3.53). This is why Eq.(3.79) is

called “Generalized Weyl-Wigner transform”.

In analogy to (3.54), the generalized Wigner function8 is given by

fWG
β1β2

(r) =
∑
α1α2

ρspα1α2
uWG
α1α2,β1β2

(r) (3.82)

It can be shown that this equation is well defined inasmuch as, under the hypothesis that the

basis {χ} and {ϕ} coincide, we have

∑
β

fWG
ββ (r, t) = |Ψ(r, t)|2

which agrees with the properties of the usual Weyl-Wigner approach9 [see Eq.(??)]. In fact:

∑
β

fWG
ββ (r) =

∑
β

∑
α1α2

ρspα1α2
uWG
α1α2,ββ

(r)

8Starting from equation (3.82) we can demonstrate that the quantity uWG(r) is a projector, i.e.,∑
α′

1α
′
2

uWG
α1α2,α′

1α
′
2
(r)ρspα′

1α
′
2
=

∑
α′

1α
′
2,α

′′
1 α

′′
2

uWG
α1α2,α′′

1 α
′′
2
(r)uWG

α′′
1 α

′′
2 ,α

′
1α

′
2
(r)ρspα′

1α
′
2

Indeed, under the hypothesis that {χ} ≡ {ϕ}, we have∑
α′

1α
′
2,α

′′
1 α

′′
2

uWG
α1α2,α′′

1 α
′′
2
(r) uWG

α′′
1 α

′′
2 ,α

′
1α

′
2
(r)ρspα′

1α
′
2
=

=
∑
α′

1α
′
2

ρspα′
1α

′
2

∑
α′′

1 α
′′
2

∫
dr′ϕα1

(
r+

r′

2

)
ϕ∗α2

(
r− r′

2

)
ϕ∗α′′

1

(
r+

r′

2

)
ϕα′′

2

(
r− r′

2

)
∫
dr′′ϕα′′

1

(
r+

r′′

2

)
ϕ∗α′′

2

(
r− r′′

2

)
ϕ∗α′

1

(
r+

r′′

2

)
ϕα′

2

(
r− r′′

2

)
=

∑
α′

1α
′
2

ρspα′
1α

′
2

∫
dr′ϕα1

(
r+

r′

2

)
ϕ∗α2

(
r− r′

2

)
ϕ∗α′

1

(
r+

r′

2

)
ϕα′

2

(
r− r′

2

)
=

∑
α′

1α
′
2

ρspα′
1α

′
2
uWG
α1α2,α′

1α
′
2
(r)

9Here, for the sake of simplicity, we have supposed to be in a pure state.



=
∑
α1α2

ρspα1α2

∑
β

∫
dr′ϕα1

(
r+

r′

2

)
ϕ∗
β

(
r+

r′

2

)
ϕβ

(
r− r′

2

)
ϕ∗
α2

(
r− r′

2

)

=
∑
α1α2

ρspα1α2
ϕα1(r)ϕ

∗
α2
(r)

=
∑
α1α2

⟨α1|Ψ⟩⟨Ψ|α2⟩⟨r|α1⟩⟨α2|r⟩

= |Ψ(r, t)|2 (3.83)

By combining Eqs.(3.54) and (3.82), the Generalized Wigner function fWG can be easily ex-

pressed in terms of the standard one as:

fWG
β1β2

(r) =
∫
dr′dk′Kβ1β2(r; r

′,k′)fW (r′,k′) (3.84)

with

Kβ1β2(r; r
′,k′) =

∑
α1α2

uWG
α1α2,β1β2

(r) u∗α1α2
(r′,k′) (3.85)

The new Wigner function can then be regarded as a sort of convolution of the original one with

the kernel K in (3.85). This may recall a well-established procedure used to obtain positive-

definite phase-space quantum distributions, the so called “smoothing procedure “ [10]. Anyway,

that is not true in this case. Indeed, by analyzing the term K (under the usual hypothesis where

{ϕ} ≡ {χ}):

Kβ1β2(r; r
′,k′) =

∑
α1α2

uWG
α1α2,β1β2

(r) u∗α1α2
(r′,k′)

=
∑
α1α2

∫
dr′′ϕα1

(
r+

r′′

2

)
ϕ∗
α2

(
r− r′′

2

)
ϕ∗
β1

(
r+

r′′

2

)
ϕβ2

(
r− r′′

2

)
·

·
∫
dr′′′ϕ∗

α1

(
r′ +

r′′′

2

)
ϕα2

(
r′ − r′′′

2

)
e+ik′r′′′

=
∫
dr′′δ(r, r′)ϕ∗

β1

(
r+

r′′

2

)
ϕβ2

(
r− r′′

2

)
e+ik′r′′ (3.86)

Thus Eq.(3.84) becomes

fWG
β1β2

(r) =
∫
dr′dk′δ(r, r′)fW (r′,k′)

∫
dr′′ϕ∗

β1

(
r+

r′′

2

)
ϕβ2

(
r− r′′

2

)
e+ik′r′′

=
∫
dk′u∗β1β2

(r,k′) fW (r,k′) (3.87)



which tells us that the relation between the usual Wigner function and the generalized one

involves just the transformation u.

As anticipated, K is not a conventional convolution. In fact, contrary to usual smoothing

procedures -like the Husimi one- here the initial and final phase-space do not coincide, i.e,

r,k → r, β1, β2

To better clarify this point, let us consider the average value of a single-particle physical quantity

A. The standard Weyl-Wigner representation leads to

⟨A⟩ = Tr[ρspA] =
∫
drdk fW (r,k)AW (r,k) (3.88)

[see Eq.(??)]. In the new representation the same average value is given by:

⟨A⟩ = Tr[ρspA] =
∫
dr
∑
β1β2

fWG
β1β2

(r)AWG
β1β2

(r) =
∫
dr Tr[fWG(r)AWG(r)]β (3.89)

with

AWG
β1β2

(r) =
∑
α1α2

uWG
α1α2,β1β2

(r)Aα1α2

As we can see, in the new Weyl-Wigner representation the standard integration over the phase-

space r,k is replaced by an integration over the real-space coordinate r plus a trace over the

generic quantum number β.

After having analyzed the un-physical results that came out from the usual Weyl-Wigner

approach, we are ready to propose a new theoretical model (within the frame of the Generalized

Wigner-function approach) able to overcome such problems. In particular, we shall proceed

by introducing two different schemes: the first one overcomes the problem of the ”distribution

symmetry” seen in Fig. 3.3 but still within a non-diagonal injection picture; the second one, in

contrast, solves both problems. We shall refer to them respectively as ”Model 2” and ”Model

3” (by now, we shall refer to the usual Weyl-Wigner approach as ”Model 1”).



3.2.7 Model 2

Starting from the usual Liouville equation (3.52)

∂ρspα1α2

∂t
=
∑
α′
1α

′
2

Lα1α2,α′
1α

′
2
ρspα′

1α
′
2

and by applying the inverse of Eq.(3.82), we obtain a Liouville equation in β1, β2, r, i.e.,

d

dt
fWG
β1β2

(r, t) =
∑
β′
1β

′
2

∫
dr′LWG

β1β2;β′
1β

′
2
(r, r′)fWG

β′
1β

′
2
(r′, t) (3.90)

This equation is analogous to Eq.(3.55) obtained for ”Model 1”, but is acting on a different

phase-space.

By proceeding in a way similar to what has been done for ”Model 1” [see Eq.(3.57)], we can

incorporate the desired spatial boundary conditions into the Eq. (3.90):

d

dt
fWG
β1β2

(r, t) =
∑
β′
1β

′
2

∫
dr′

[
LWG

β1β2,β′
1β

′
2
(r, r′)− |vβ1 | δβ1β2δβ1β′

1
δβ2β′

2
δ(r− rb)δ(r− r′)

]
fWG
β′
1β

′
2
(r′, t)

+|vβ1 | δβ1β2δ(r− rb)f
WG
b(β1)

=
∑
β′
1β

′
2

∫
dr′L̃WG

β1β2,β′
1β

′
2
(r, r′)fWG

β′
1β

′
2
(r′, t) + S̃WG

β1β2
(r) (3.91)

with

S̃WG
β1β2

(r) = |vβ1 | δβ1β2δ(r− rb)f
WG
b(β1)

(3.92)

and

L̃WG
β1β2,β′

1β
′
2
(r, r′) = LWG

β1β2,β′
1β

′
2
(r, r′)− |vβ1| δβ1β2δβ1β′

1
δβ2β′

2
δ(r− rb)δ(r− r′) (3.93)

where vβ1 represents the carrier group velocity normal to the boundary surface10. An interesting

way of writing down Eq.(3.91) is:

d

dt
fWG
β1β2

(r, t) =
∑
β′
1β

′
2

∫
dr′LWG

β1β2,β′
1β

′
2
(r, r′)fWG

β′
1β

′
2
(r′, t)

10Contrary to ”Model 1”, here the velocity depends on the quantum number β instead of k. However, this

does not change the interpretation of the boundary-condition scheme: rb = rleft is related to the injection from

left (analogously for rright); in fact, every quantum number β is related to a specific injection (right or left) and

this is summarized by the expression fWG
b(β1)

. That means that when β corresponds to injection from left, then

rb = rleft (similarly for rright).



−
∑
β′
1β

′
2

∫
dr′|vβ1 | δβ1β2δβ1β′

1
δβ2β′

2
δ(r− r′)δ(r− rb)f

WG
β′
1β

′
2
(r′, t)

+|vβ1 | δβ1β2δ(r− rb)f
WG
b(β1)

=
∑
β′
1β

′
2

∫
dr′LWG

β1β2,β′
1β

′
2
(r, r′)fWG

β′
1β

′
2
(r′, t)

−|vβ1 | δβ1β2δ(r− rb)f
WG
β1β2

(r, t)

+|vβ1 | δβ1β2δ(r− rb)f
WG
b(β1)

=
∑
β′
1β

′
2

∫
dr′LWG

β1β2,β′
1β

′
2
(r, r′)fWG

β′
1β

′
2
(r′, t)

+|vβ1 | δβ1β2δ(r− rb)
[
fWG
b(β1)

− fWG
β1β2

(r, t)
]

(3.94)

Such equation has the same role played for ”Model 1” by Eq.(3.60). It is possible to show that

in steady-state conditions (and in the scattering/dephasing free case) one obtains

fWG
β1β1

(rb(β1)) = fWG
b(β1)

(3.95)

To demonstrate this result it is sufficient to follow exactly the same steps introduced for ”Model

1” [see Eqs. (3.62) and (3.63)].

Going back to the density matrix formalism we get:

d

dt
ρspα1α2

=
∑
β1β2

∫
dr u∗α1α2,β1β2

(r)
d

dt
fWG
β1β2

(r, t)

=
∑
β1β2

∫
dr u∗α1α2,β1β2

(r)

{ ∑
β′
1β

′
2

∫
dr′
[
LWG

β1β2,β′
1β

′
2
(r, r′) +

−|vβ1 | δβ1β2δβ1β′
1
δβ2β′

2
δ(r− rb)δ(r− r′)

]
fWG
β′
1β

′
2
(r′, t) + S̃WG

β1β2
(r)

}

=
∑
β1β2

∫
dr uWG,∗

α1α2,β1β2
(r)

{ ∑
β′
1β

′
2

∫
dr′
[ ∑
α′
1α

′
2,α

′′
1α

′′
2

uWG
α′
1α

′
2,β1β2

(r) Lα′
1α

′
2,α

′′
1α

′′
2
uWG,∗
α′′
1α

′′
2 ,β

′
1β

′
2
(r′)

−|vβ1 | δβ1β2δβ1β′
1
δβ2β′

2
δ(r− rb)δ(r− r′)

] ∑
α′′′
1 α′′′

2

ρspα′′′
1 α′′′

2
uWG
α′′′
1 α′′′

2 ,β′
1β

′
2
(r′)

+|vβ1 | δβ1β2δ(r− rb)f
WG
b(β1)

}

=
∑
β′
1β

′
2

∫
dr′

[ ∑
α′
1α

′
2,α

′′
1α

′′
2

δα1α′
1
δα2α′

2
Lα′

1α
′
2,α

′′
1α

′′
2
uWG,∗
α′′
1α

′′
2 ,β

′
1β

′
2
(r′)



−
∑
β1β2

∫
dr uWG,∗

α1α2,β1β2
(r)|vβ1 | δβ1β2δβ1β′

1
δβ2β′

2
δ(r− rb)δ(r− r′)

] ∑
α′′′
1 α′′′

2

ρspα′′′
1 α′′′

2
uWG
α′′′
1 α′′′

2 ,β′
1β

′
2
(r′)

+
∑
β1β2

∫
dr uWG,∗

α1α2,β1β2
(r)|vβ1 | δβ1β2δ(r− rb)f

WG
b(β1)

=
∑
β′
1β

′
2

∫
dr′

[ ∑
α′′
1α

′′
2

Lα1α2,α′′
1α

′′
2
uWG,∗
α′′
1α

′′
2 ,β

′
1β

′
2
(r′)

−
∑
β1β2

∫
dr uWG,∗

α1α2,β1β2
(r)|vβ1 | δβ1β2δβ1β′

1
δβ2β′

2
δ(r− rb)δ(r− r′)

] ∑
α′′′
1 α′′′

2

ρspα′′′
1 α′′′

2
uWG
α′′′
1 α′′′

2 ,β′
1β

′
2
(r′)

+
∑
β1β2

uWG,∗
α1α2,β1β2

(rb)|vβ1 | δβ1β2 f
WG
b(β1)

=
∑
α′′
1α

′′
2

Lα1α2,α′′
1α

′′
2

∑
α′′′
1 α′′′

2

ρspα′′′
1 α′′′

2
δα′′

1α
′′′
1
δα′′

2α
′′′
2

−
∑

β1β2,β′
1β

′
2

∫
drdr′ uWG,∗

α1α2,β1β2
(r)|vβ1 | δβ1β2δβ1β′

1
δβ2β′

2
δ(r− rb)δ(r− r′)

·
∑

α′′′
1 α′′′

2

ρspα′′′
1 α′′′

2
uWG
α′′′
1 α′′′

2 ,β′
1β

′
2
(r′) +

∑
β1

uWG,∗
α1α2,β1β1

(rb)|vβ1 | fWG
b(β1)

=
∑
α′′
1α

′′
2

Lα1α2,α′′
1α

′′
2
ρspα′′

1α
′′
2
−
∑
β′
1β

′
2

uWG,∗
α1α2,β′

1β
′
2
(rb)|vβ′

1
|δβ′

1β
′
2

∑
α′′′
1 α′′′

2

ρspα′′′
1 α′′′

2
uWG
α′′′
1 α′′′

2 ,β′
1β

′
2
(rb) + S̃α1α2

=
∑
α′′
1α

′′
2

Lα1α2,α′′
1α

′′
2
ρspα′′

1α
′′
2
−

∑
α′′′
1 α′′′

2

ρspα′′′
1 α′′′

2

∑
β′
1

uWG,∗
α1α2,β′

1β
′
1
(rb)u

WG
α′′′
1 α′′′

2 ,β′
1β

′
1
(rb)|vβ′

1
|+ S̃α1α2

=
∑
α′
1α

′
2

(
Lα1α2,α′

1α
′
2
+∆Lα1α2,α′

1α
′
2

)
ρspα′

1α
′
2
+ S̃α1α2 (3.96)

with

S̃α1α2 =
∑
β1

uWG,∗
α1α2,β1β1

(rb(β1))|vβ1 | fWG
b(β1)

(3.97)

and

∆Lα1α2,α′
1α

′
2
= −

∑
β1

|vβ1 | u
WG,∗
α1α2,β1β1

(rb(β1)) u
WG
α′
1α

′
2,β1β1

(rb(β1)) (3.98)

Here, the source term S̃α1α2 has not a diagonal nature so that the model here described, ”Model

2”, is not adequate to describe a thermal/diagonal injection. However, within the present

model the ”symmetry problem” previously encountered (see Fig. 3.3) has been removed; the

new microscopic result is found to be in good agreement with that of the phenomenological

model, as reported in Fig. 3.4.
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Figure 3.4: Comparison between the real-space charge distribution obtained from the phe-

nomenological injection model in Eq.(3.76) [n(r) =
∑

α fα|ϕα(r)|2 - dashed curve] and the

microscopic model in Eq.(3.96)/Eq.(3.103) [n(r) =
∑

α1α2
ρspα1α2

ϕα1(r)ϕ
∗
α2
(r) - solid curve] for

a GaAs-based single barrier structure (height V0 = 0.5eV and width a = 4nm) equidistant

from the electrical contacts. In this room-temperature simulation, due to a misalignment

∆µ = 0.2eV of the left and right chemical potential, carriers are primarily injected from left.

The corresponding charge distribution in momentum space is also reported in the inset.



To solve also the problem of non-diagonality of S̃α1α2 , let us introduce a new scheme, that

we shall call ”Model 3”.

3.2.8 Model 3

This second approach to open systems starts from the same initial equation (3.91) used for

”Model 2”, i.e.,

d

dt
fWG
β1β2

(r, t) =
∑
β′
1β

′
2

∫
dr′L̃WG

β1β2,β′
1β

′
2
(r, r′)fWG

β′
1β

′
2
(r′, t) + S̃WG

β1β2
(r)

with

S̃WG
β1β2

(r) = |vβ1 | δβ1β2δ(r− rb)f
WG
b(β1)

Contrary to ”Model 2”, here we employ the relationship

ρspα1α2
=
∫
drfWG

α1α2
(r) (3.99)

The latter can be easily demonstrated as follows:∫
drfWG

α1α2
(r) =

∫
dr
∑
β1β2

ρspβ1β2
uWG
β1β2,α1α2

(r)

=
∑
β1β2

ρspβ1β2

∫
druWG

β1β2,α1α2
(r)

=
∑
β1β2

ρspβ1β2
⟨α1|β1⟩⟨β2|α2⟩

= ρspα1α2

where we have assumed again {ϕ} ≡ {χ}.

Thus, by means of Eq.(3.99), let us develop the equation of motion for the density matrix:

d

dt
ρspα1α2

=
∫
dr
d

dt
fWG
α1α2

(r)

=
∫
dr

{ ∑
α′
1α

′
2

∫
dr′
[
LWG

α1α2,α′
1α

′
2
(r, r′)− |vα1 | δα1α2δα1α′

1
δα2α′

2
δ(r− r′)δ(r− rb)

]
fWG
α′
1α

′
2
(r′) +

|vα1 | δα1α2δ(r− rb)f
WG
b(α1)

}



=
∫
dr

{ ∑
α′
1α

′
2

∫
dr′
[ ∑
β1β2,β′

1β
′
2

uWG
β1β2,α1α2

(r)Lβ1β2,β′
1β

′
2
uWG,∗
β′
1β

′
2,α

′
1α

′
2
(r′)fWG

α′
1α

′
2
(r′)−

|vα1 | δα1α2δα1α′
1
δα2α′

2
δ(r− r′)δ(r− rb)f

WG
α′
1α

′
2
(r′)

]}
+ |vα1 | δα1α2f

WG
b(α1)

=
∑

α′
1α

′
2,β

′
1β

′
2

∫
dr′Lα1α2,β′

1β
′
2
uWG,∗
β′
1β

′
2,α

′
1α

′
2
(r′)fWG

α′
1α

′
2
(r′)−

∫
drdr′

∑
α′
1α

′
2

|vα1 | δα1α2δα1α′
1
δα2α′

2
δ(r− r′)δ(r− rb)f

WG
α′
1α

′
2
(r′) + |vα1| δα1α2f

WG
b(α1)

=
∑

α′
1α

′
2,β

′
1β

′
2

∫
dr′Lα1α2,β′

1β
′
2
uWG,∗
β′
1β

′
2,α

′
1α

′
2
(r′)

∑
β1β2

ρspβ1β2
uWG
β1β2,α′

1α
′
2
(r′)−

∫
drdr′

∑
α′
1α

′
2

|vα1 | δα1α2δα1α′
1
δα2α′

2
δ(r− r′)δ(r− rb)

∑
β1β2

ρspβ1β2
uWG
β1β2,α′

1α
′
2
(r′) + |vα1 | δα1α2f

WG
b(α1)

=
∑
β1β2

Lα1α2,β1β2ρ
sp
β1β2

−
∑

β1β2,α′
1α

′
2

|vα1 | δα1α2δα1α′
1
δα2α′

2
uWG
β1β2,α′

1α
′
2
(rb(α1))ρ

sp
β1β2

+ |vα1 | δα1α2f
WG
b(α1)

=
∑
β1β2

[
Lα1α2,β1β2 − |vα1 | uWG

β1β2,α′
1α

′
2
(rb(α1)) δα1α2

]
ρspβ1β2

+ |vα1 | δα1α2f
WG
b(α1)

=
∑
β1β2

[
Lα1α2,β1β2 +∆Lα1α2,β1β2

]
ρspβ1β2

+ S̃α1α2 (3.100)

As desired, within this new scheme the source term S̃ is diagonal.

If we now analyze the non-diagonal case of Eq.(3.100), i.e., α1 ̸= α2 we have:

d

dt
ρspα1α2

=
∑
β1β2

Lα1α2,β1β2ρ
sp
β1β2

(3.101)

i.e., if at time t = 0 we have ρspα1α2
= 0, then it remains equal to zero forever; namely, within

”Model 3”, the density matrix ρsp is diagonal.

Our simulated experiments have shown that this last model leads exactly to the same results

obtained for ”Model2”, reported in Fig. 3.4. This is not particularly surprising if one considers

that both models start from the same equation (3.91). Generally speaking, we can conclude

that we deal with a sort of gauge freedom, which tells us that the source term in our effective

density-matrix equation must not necessarily be diagonal.

Similarly to Model 2, it is possible to show that Eq.(3.95) works also for Model 3, namely

fWG
β1β1

(rb(β1)) = fWG
b(β1)



But, in the new model, such a relation has a very important conceptual consequence, i.e., it

tells us that the distribution function in state α is the result of an ”incoherent superposition”

from all the injection channels. In fact:

fWG
b(β1)

= fWG
β1β1

(rb(β1)) =
∑
α1α2

uWG
α1α2,β1β1

(rb(β1))ρ
sp
α1α2

but, as shown, ρsp is diagonal so that the previous equation becomes

fWG
b(β1)

=
∑
α1

uWG
α1α1,β1β1

(rb(β1))ρ
sp
α1α1

which written in compact form becomes

fWG
b(β) =

∑
α

ταβfα (3.102)

Equation (3.102) is semiclassical in nature, i.e., it involves diagonal density-matrix terms only.

However, contrary to the phenomenological injection model in (3.76), here the distribution

function fα comes from an ”incoherent superposition” of all the injection channels, i.e.,

fα =
∑
β

τ−1
αβ fWG

b(β) (3.103)

If the term ταβ = δαβ the phenomenological injection model is recovered. Figure 3.4 shows

again results for the single-barrier potential profile. Here, the simulation based on the phe-

nomenological injection model in Eq.(3.76) (dashed curves) is compared to that of the new

microscopic model in (3.103) (solid curves). As we can see, the highly non physical behaviours

of Fig. 3.3 (solid curve) has been completely removed. Indeed, the momentum distribution in

the inset is always positive-definite and the two models exhibit a very similar behaviour. We

can see relatively small deviations close to the device spatial boundaries, which can be ascribed

to the interlevel injection coupling ταβ (inside the Model 2, τ would have a more complicated

form but with similar meaning), not present in the phenomenological injection model. This

is clearly a fingerprint of our real-space description, where the point-like carrier injection is

located at the device spatial boundaries. However, when the device active region is relatively

far from the contacts these deviations can be safely neglected, and the phenomenological model

provide reliable results.



Chapter 4

Summary and conclusions

A deep analysis of the various approximations entering in charge transport semiclassical theory

reveals that in physical systems it is more and more fundamental to adopt a quantum nature

approach to study transport phenomena. Although the basis ideas of quantum transport theory

are already known since years, so far a clear and definitive approach able to solve the problem

of quantum open system was not yet a reality. Indeed, in this work we have proposed a rigorous

description of quantum-transport phenomena in systems with open boundaries that, we believe,

is able to solve the quantum-open-system problem.

Our analysis has shown that the conventional Wigner-function formalism —when applied

to charge transport in nanostructured open systems— leads to unphysical results; This basic

limitation has been removed by introducing a generalization of the standard Wigner-function

formalism, able to properly describe the incoherent nature of carrier injection. The proposed

theoretical approach allowed us to obtain results in good agreement with that of the phe-

nomenological model, thus guaranteeing the validity and relevance of the proposed theoretical

framework.

A strongly-related aspect faced in our work is the problem of a coherent vs. incoherent source

term. In fact, from our analysis it follows that source terms —describing incoherent carrier

injection into the device active region— should exhibit thermal, i.e., incoherent, properties,
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inasmuch as they represent the environment, namely the external world in thermodynamic

contact with the carrier subsystem under investigation. Anyway, we have clarified that the

classification in terms of “incoherent” (diagonal) and “coherent” (non-diagonal) is somewhat

artificial, since it is basis-dependent. It follows that via a proper basis transformation we may

go from a diagonal to a non-diagonal source term.

By concluding, we believe that our approach could represent a relevant step forward in

properly defining a theoretical model —and a corresponding simulation strategy— able to

treat any generic quantum transport problem in open optoelectronic devices.
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