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Modelling the conductor losses of thick
multiconductor coplanar waveguides and striplines:

a conformal mapping approach
Francesco Bertazzi, Vittorio Camarchia Senior Member, IEEE, Michele Goano Member, IEEE,

Marco Pirola Member, IEEE and Giovanni Ghione Fellow, IEEE

Abstract—A conformal mapping approach to model the skin-
effect conductor losses of thick multiconductor coplanar waveg-
uides and multiconductor coplanar strips is proposed. The model
allows for arbitrary strip or slot number and widths and is
accurate for conductor thicknesses up to around 40% of the
minimum strip and slot width. Examples are presented to
demonstrate the accuracy of the approach when compared to
the results from a FEM numerical code.

Index Terms—Conformal mapping, coplanar lines, finite-
element method, skin effect losses, Schwarz-Christoffel mapping

I. INTRODUCTION

MULTICONDUCTOR coplanar lines (MCLs), i.e., mul-
ticonductor coplanar waveguides (MCPWs) and mul-

ticonductor coplanar strips (MCPSs), see Fig. 1, are building
blocks in analog and digital circuits [1], [2]. Relevant examples
are interdigitated MCPW couplers in coplanar Microwave
Monolithic Integrated Circuits (MMICs) [3] and high-speed
MCPS interconnects [4]. The analysis of MCL conductor

Fig. 1. Multiconductor coplanar lines (MCLs): (a) Multiconductor coplanar
waveguide, MCPW; (b) Multiconductor coplanar strips, MCPS. The strip
thickness is τ and the parameters ti, i = 1 . . . 2N + 2, define the line
geometry.

losses can be carried out at an arbitrary frequency through
full-wave and quasi-static electromagnetic (EM) approaches
based on differential formulations, like the Finite Element
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Method (FEM) [5], [6]. The entire domain, including the con-
ductors’ interior, must be discretized and the analysis of open
structures requires large computational boxes to avoid artifacts
from boundary conditions. In the high-frequency, skin-effect
regime, conductor losses can be approximated by integrating
the square of the surface longitudinal current density Jz ,
and taking advantage of the surface impedance concept [7,
(26)]. A perturbative approach is often adopted, evaluating
Jz in the presence of perfect conductors. The surface current
density can be in turn computed through the moment method
(MoM) solution of the quasi-static [7], [8] or full wave integral
formulation of the EM problem [9], [10].

While numerical techniques offer the greatest flexibility in
terms of line geometry and materials, they may become too
CPU intensive or inaccurate when the number of strips is large
or with extreme form factors, as in low-crosstalk MCPSs, see
the geometry in [4, Sec. 3.5.4]. In FEM solvers not adopting
impedance boundary conditions [11] the design of a properly
dense mesh also becomes critical when τ � δ, where δ is the
skin penetration depth. Moreover, such techniques often are
too computationally expensive to be easily used in inverse or
optimization problems.

Conformal mapping (CM) is a computationally efficient tool
to evaluate the longitudinal current density of MCLs, that can
be approximated, in the presence of ideal conductors, by the
static surface charge distribution [12]. An early example of the
CM loss evaluation for a rectangular conductor, together with
a discussion of the accuracy of the surface resistance approach
when conductors with sharp rectangular edges are considered,
is presented in [13]. On the basis of the CM approximation of
the surface current density, closed-form expressions have been
presented for the losses of coplanar waveguides (CPW) and
striplines (CPS) [14], [15], [16], [17] and of symmetrical CPW
couplers [18]. Expressions for the CPW attenuation were also
presented in [19, Sec. 7.4.2], based on Wheeler’s incremental
inductance rule [20], and in [21], where a stopping-distance
formulation is adopted that leads, in the high-frequency limit,
to the result in [14].

The loss analysis of MCLs with N conductors plus a ground
plane, where N > 1 and no symmetries exist that allow for
even and odd mode excitations [18], requires to introduce
a set of N linearly independent mappings, corresponding to
suitable line excitations. This technique, first proposed in [22]
for the evaluation of the capacitance matrix of zero-thickness
multiconductor striplines, was extended in [23] to the case of
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zero-thickness MCPWs and MCPSs. For MCPWs, a suitable
set of N mappings corresponds to boundary conditions where,
in mapping i = 1 . . . N , the ground planes are at zero
potential, strip i is at potential 1, and strips j 6= i have
zero total charge. For MCPSs, a suitable dual set for mapping
i = 1 . . . N is given by strips 1 . . . i being at potential 1,
while all other strips and the rightmost ground plane are at
zero potential.

In the presence of thick strips, however, an intermediate
mapping is needed to transform the thick line into a zero-
thickness one. Such a mapping has a dual purpose, (1) to lead
to a much more accurate approximation of the capacitance ma-
trix in the presence of thick conductors, and (2) to introduce a
square-integrable representation of the surface current density.
The total surface current density can be approximated as a
superposition of N linearly independent excitations associated
to the N mappings; this enables to directly express, through
the surface resistance Rs, the dissipated power density, and
to estimate the per-unit-length (p.u.l.) resistance matrix by
integrating it on the line and ground plane peripheries. A
partial preliminary report on MCL skin-effect losses was
presented in [24].

The analytical approximations discussed are consistent with
the results in [14], [15], [16] in the thin strip limit, but the
present formulation not only applies to an arbitrary number
of conductors, but provides a more accurate estimate of the
p.u.l. resistance, inductance and capacitance (matrices) for
thick lines. The examples shown suggest that the technique
is accurate even for a strip thickness as large as 40% of the
minimum slot and strip width.

The paper is organized as follows: Sec. II reports a summary
of the conformal mapping procedure for the lossless case,
extending the treatment to finite-thickness lines. Sec. III is
devoted to the loss analysis, whose results are reported in
Sec. III-A and Sec. III-B for the MCPW and MCPS, re-
spectively. Sec. IV briefly introduces the characteristic modal
parameters for a MCL supported by a semi-infinite dielectric
substrate. Analytical details on the thick-to-thin strip transfor-
mation are reported in Appendix A. Sec. V is devoted to some
numerical examples, while conclusions are drawn in Sec. VI.
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Fig. 2. Thick-to-thin mapping for the MCPW (upper half space): (a) t−plane;
(b) transformed ζ plane.

II. CONFORMAL MAPPING ANALYSIS

Let us summarize the CM procedure introduced in [23]
focusing the analysis of the line in vacuo, which is the
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Fig. 3. Thick-to-thin mapping for the MCPS (upper half space): (a) t−plane;
(b) transformed ζ plane.

basis for the evaluation of the p.u.l. resistance matrix of
the MCL. As already recalled, the high-frequency current
density distribution of the line corresponds to the static charge
distribution. Since this distribution is not square-integrable in
a line with infinitely thin conductors, we extend, as a first
step, the analysis of zero-thickness MCLs [23] to lines with
conductors having finite thickness τ .

To this aim, an additional Schwarz-Christoffel (SC) map-
ping is introduced. The mapping, defined in (1), transforms
the upper half of the finite thickness structure (t−plane, line
half thickness |t′i − ti| = τ/2) into the upper half of the
zero-thickness structure (ζ-plane), see Fig. 2 and Fig. 3 for
the MCPW and MCPS case, respectively. For both lines the
mapping reads:

dt
dζ

=
2N+2∏
i=1

√
ζ ′i − ζ
ζi − ζ

. (1)

If τ is suitably smaller than the strip and slot widths, (1) can
be approximately integrated on the strip lateral sides, strip tops
and slots (see Appendix A). This enables to define the strip and
slot coordinates in the ζ plane in terms of strip and slot width
corrections. Physically, the extra capacitance introduced by the
thick strips translates into an increase of the strip widths and
decrease of the slot widths in the transformed zero-thickness
structure having the same capacitance.

Consider first a MCPW with N strips; the coordinate index
in the t and ζ planes goes from 1 to 2N + 2. The t−plane
coordinates are defined in terms of the strip widths wMCPW

i

(i = 1 . . . N ) and the slot widths sMCPW
i (i = 1 . . . N + 1) as:

t′2i+1 − t′2i = wMCPW
i , i = 1 . . . N, (2)

t2i − t2i−1 = sMCPW
i , i = 1 . . . N + 1 (3)

t′2i − t2i = t′2i−1 − t2i−1 = j
τ

2
i = 1 . . . N + 1. (4)

The ζ plane coordinates can be now recovered adopting the
strip side length and width corrections reported in (14), (15),
respectively, and the slot width correction in (16):

ζ ′2i+1 − ζ ′2i = wMCPW
i + ∆wMCPW

i , i = 1 . . . N, (5)

ζ2i − ζ2i−1 = sMCPW
i −∆sMCPW

i , i = 1 . . . N + 1 (6)
ζ ′2i − ζ2i ≈ ζ2i−1 − ζ ′2i−1 ≈ ∆ζ i = 1 . . . N + 1, (7)

where the strip side correction ∆ζ results to be approximately
independent on the strip index.
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Similarly, for a MCPS with N strips and a lateral ground
plane (strip N + 1) the t plane coordinates read:

t′2i − t′2i−1 = wMCPS
i , i = 1 . . . N + 1, (8)

t2i+1 − t2i = sMCPS
i , i = 1 . . . N, (9)

t′2i − t2i = t′2i−1 − t2i−1 = j
τ

2
i = 1 . . . N + 1, (10)

while for the ζ plane coordinates we have:

ζ ′2i − ζ ′2i−1 = wMCPS
i + ∆wMCPS

i , i = 1 . . . N + 1 (11)

ζ2i−1 − ζ2i = sMCPS
i −∆sMCPS

i , i = 1 . . . N (12)
ζ ′2i−1 − ζ2i−1 = ζ2i − ζ ′2i ≈ ∆ζ i = 1 . . . N + 1 (13)

where the MCPS strip side length and width corrections
are reported in (14), (17), respectively, and the slot width
correction is in (18).

Expressions for the parameters ∆ζ, ∆wi and ∆si are
discussed in Appendix A; the expressions for ∆wi and ∆si are
novel and more accurate than those previously available in the
literature, cfr. [14, p. 51, (18) and (19)] and [19, Sec. 7.3.3]).
We have for both the MCPW and the MCPS, independent of
the strip (or ground) side considered:

∆ζ ≈ τ

π
(14)

see (61) and (62) in Appendix A. Following the discussion
presented in Appendix A, the MCPW strip and slot corrections
read:

∆wMCPW
i = ∆ζ

(
log

4wMCPW
i

∆ζ
− 1

)
− ∆ζwMCPW

i

2
×

×

2i−1∑
j=1

(−1)j+1

〈t〉MCPW
Strip i − tj

+

2N+2∑
j=2i+2

(−1)j

tj − 〈t〉MCPW
Strip i

 (15)

∆sMCPW
i = ∆ζ

(
log

4sMCPW
i

∆ζ
+ 1

)
+

∆ζsMCPW
i

2
×

×

2i−2∑
j=1

(−1)j+1

〈t〉MCPW
Slot i − tj

+
2N+2∑
j=2i+1

(−1)j

tj − 〈t〉MCPW
Slot i

 (16)

〈t〉MCPW
Strip i =

t2i+1 + t2i
2

, 〈t〉MCPW
Slot i =

t2i + t2i−1
2

.

For the MCPS we similarly have:

∆wMCPS
i = ∆ζ

(
log

4wMCPS
i

∆ζ
− 1

)
+

∆ζwMCPS
i

2
×

×

2i−2∑
j=1

(−1)j

〈t〉MCPS
Strip i − tj

+
2N+2∑
i=2i+1

(−1)j+1

tj − 〈t〉MCPS
Strip i

 (17)

∆sMCPS
i =

(
log

4sMCPS
i

∆ζ
+ 1

)
∆ζ +

∆ζsMCPS
i

2
×

×

2i−1∑
j=1

(−1)j

〈t〉MCPS
Slot i − tj

+
2N+2∑
i=2i+2

(−1)j+1

tj − 〈t〉MCPS
Slot i

 (18)

〈t〉MCPS
Strip i =

t2i + t2i−1
2

, 〈t〉MCPS
Slot i =

t2i+1 + t2i
2

.

Using (14) - (18) the finite-thickness MCPW or MCPS can be
mapped on the corresponding zero-thickness structures in the
ζ plane.

From the zero-thickness structure we evaluate the line
parameters following [23, Sec. 2.1 and 2.2]. Since a system
with N strips plus ground plane supports N independent
excitations, the analysis of the p.u.l. capacitance matrix in
vacuo C0 = 2Cuh0, where Cuh0 is the capacitance matrix
of the upper half of the line, requires a system of N SC
mappings, see [23, Sec. 2.1 and 2.2]. In the next subsections
we will summarize the CM procedure for MCPWs (Sec. II-A)
and MCPSs (Sec. II-B) following the matrix notation of [23]
and only reporting results relevant to loss analysis.
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ζ

ζ

ζ

Fig. 4. Set of SC mappings (a), (b), and (c) for a three-conductor symmetric
MCPW. The ground planes are drawn as black segments, white segments are
magnetic walls, the k−th conductor is dark grey while the other ones are
pale grey. The right-hand side z planes are to scale, assuming Wk = W ,
k = 1 . . . 3. The normalized static charge, i.e., the high-frequency surface
current density distribution, is shown in the left side (above) for each mapping.
All strips but one have zero total charge (current), while the charge (current)
carried by the unfolded strip has opposite sign with respect to the one in the
ground plane.

A. Multiconductor coplanar waveguide (MCPW)

To evaluate the upper half-space in vacuo capacitance of
the MCPW, CMCPW

uh0 , a set of N SC mappings is introduced
transforming the upper-half ζ−plane into the interior of a
rectangle in z−plane; an example with N = 3 is shown in
Fig. 4. In the k−th mapping, the k−th line is on top of the
rectangle, the ground plane, extending to infinity in the t and
ζ−planes, is at the bottom of the rectangle, and all remaining
strips j 6= k are folded on the rectangle sides, parallel to the
top and bottom sides. Defining D(ζ) =

∏2N+2
i=1

√
ζ − ζi, the

k−th mapping reads:

dzk
dζ

= Ak

∏N
i=1,6=k(ζ − ζki)

D(ζ)
=

1

D(ζ)

N∑
i=1

akiζ
i−1. (19)

The parameters ζk1 . . . ζkN or, equivalently, the coefficients
of the polynomial expansion ak1 . . . akN can be determined
imposing that the k−th strip is unfolded in the z-plane while
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the others are folded in point ζki; this corresponds to the
conditions:∫

l

dzk
dζ

dζ =

∫
l

dzk = z2k+1 − z2k = −Wk, l = k (20)∫
l

dzk
dζ

dζ =

∫
l

dzk = z1 − z2N+2 = Wk, l = N + 1 (21)∫
l

dzk
dζ

dζ =

∫
l

dzk = z2l+1 − z2l = 0, l 6= k (22)

where the integral is extended to strip l, and the rectangle
width Wk can be scaled arbitrarily without affecting the value
of the capacitance or resistance p.u.l. matrices. From (19),
conditions (20) and (22) can be written as:

N∑
i=1

akiFik = −Wk,
N∑
i=1

akiFij = 0 (j 6= k), (23)

where:

Fij =

∫ ζ2j+1

ζ2j

ζi−1

D(ζ)
dζ. (24)

On defining the matrices F = [Fij ], a = [aij ], W =
diag{Wk}, the above set can be expressed in compact form
for all mappings (k = 1 . . . N ) as a · F = −W; therefore:

a = −W · F−1, (25)

which defines the coefficients of all sets of CMs. Following
the procedure in [23, Sec. 2.1], we finally obtain the half-space
capacitance matrix of the MCPW as:

CMCPW
uh0 = −ε0U−1 ·G−1 · F, (26)

where the elements of U−1 are U−1ij = δij − δi+1,j , δij is the
Kronecker delta, and

Gij =
1√
−1

∫ ζ2j

ζ2j−1

ζi−1

D(ζ)
dζ. (27)

The hyperelliptic integrals in (24) and (27) can be efficiently
evaluated through Gauss-Chebyshev quadrature formulae as
discussed in [23, Sec. 3]. For N = 1 and for N = 2
(symmetrical lines only) Fij and Gij can be expressed in terms
of complete elliptic integrals.

B. Multiconductor coplanar strips (MCPS)

In the complementary structure (MCPS) we have N + 1
strips, the last one being the ground plane, separated by N
slots. To compute the in vacuo capacitance of the upper half
of the MCPS, CMCPS

uh0 , we adopt the same set of SC mappings
already introduced for the MCPW. In the k−th mapping, the
outer slot (extending to −∞) is at the bottom of the rectangle
in the z−plane, the k−th one lies on top of the rectangle, and
all other slots are folded. The width of the unfolded slot Sk
can be chosen arbitrarily. All strips i ≤ k are on the right-
hand side of the rectangle, while those for i > k are on
the left-hand side. A convenient boundary condition, leading
to a parallel-plate geometry, is as follows: all strips mapped
on the right-hand side of the rectangle in z plane (l ≤ k)
have potential Vk, all strips on the left-hand side (l > k),
including the ground (l = N+1) are grounded. As an example,

the mappings for a three-slot MCPS are shown in Fig. 5. By
imposing the folding and unfolding conditions one can again
derive the polynomial coefficient matrix as a = −S · F−1
where S = diag{Sk}. Integration along strips [23, p. 71, left
column, around (26)] yields for the k−th mapping the strip
widths wkj in the transformed plane. On defining w = [wkj ]
we have:

w = −S · F−1 ·G, (28)

see (24) and (27). Note that Sk, as Wk for the MCPW, can
be scaled arbitrarily. Following the analysis in [23, Sec. 2.1],
we finally obtain the half-space capacitance matrix in vacuo
of the MCPW as:

CMCPS
uh0 = −ε0L−1 · F−1 ·G, (29)

where L−1 = [U−1]T . Note that the ground reference can be
easily moved from strip N + 1 to another one by defining the
so-called augmented, (N + 1) × (N + 1) capacitance matrix
C′. Introducing the potential of strip VN+1, straightforward
circuit analysis yields for the elements of C′:

C ′i,N+1 = −
N∑
j=1

Cij , C ′N+1,j = −
N∑
i=1

Cij ,

C ′N+1,N+1 =

N∑
i=1

N∑
j=1

Cij . (30)

By cancelling column and row n, the capacitance matrix with
the ground at strip n is obtained. The same approach can be
used if a set of strips is grounded to minimize coupling and
crosstalk, as in MCPS interconnects with shield lines [25].
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ζ 2ζ2 ζ 4ζ4 ζ6ζ 6 ζ8ζ 8

ζ 1ζ1 ζ 3ζ3 ζ 5ζ5 ζ 7ζ7

ζ 2ζ2 ζ 4ζ4 ζ6ζ 6 ζ8ζ 8

ζ 1ζ1 ζ 3ζ3 ζ 5ζ5 ζ 7ζ7

ζ 2ζ2 ζ 4ζ4 ζ6ζ 6 ζ8ζ 8

ζ

ζ

ζ

ζ

ζ

ζ

Fig. 5. Set of SC mappings (a), (b), and (c) for a three-conductor symmetric
MCPS. Slots are drawn as white segments, the equipotential strips from 1-st
to k-th strip are pale grey, all other zero-potential strips are dark grey and the
ground plane (strip N + 1) is black. White segments also denote magnetic
walls. The right-hand side z planes are to scale, assuming Sk = S, k =
1 . . . 3. The normalized static charge, i.e., the high-frequency surface current
density distribution, is shown on the left side (above) for each mapping.
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III. EVALUATING THE SKIN-EFFECT CONDUCTOR LOSSES

For both the MCPW and the MCPS, the square-integrable
normalized (dimensionless) surface current density distribution
in the t plane is expressed, for the k−th mapping (see (19)
and (1)), as:

jk(t) =
dzk
dζ

∣∣∣∣dζdt
∣∣∣∣ =

N∑
i=1

akiζ
i−1{

R
I

}
2N+2∏
i=1

√
ζ − ζi

2N+2∏
i=1

√∣∣∣∣ζi − ζζ ′i − ζ

∣∣∣∣
(31)

taking into account that the current density in the k−th strip
in the transformed z plane is uniform due to the parallel-
plate geometry. The real (R) and imaginary (I) parts apply
to the MCPW and MCPS case, respectively. The surface
current density in the upper half-space, Juh(t), induced by an
arbitrary excitation, can be represented as the superposition,
with weights Îk (unit A/m) of the jk resulting from all linearly
independent mappings:

Juh(t) =

N∑
k=1

Îkjk(t). (32)

The total current in the l−th line (l = 1 . . . N , l = N + 1
corresponds to the ground plane) is obtained from integration
as:

Il =

∮
l

N∑
k=1

Îkjk(t) dt = 2

∫
l

Juh(t) dt =

= 2

N∑
k=1

Îk

∫
l

dzk
dζ

∣∣∣∣dζdt
∣∣∣∣ dt = 2

N∑
k=1

Îk

∫
l

dzk (33)

where the integral refers to the strip upper half and the factor
2 takes into account the strip lower half. We will now evaluate
the line current and the dissipated power for the MCPW (Sec.
III-A) and the MCPS (Sec. III-B) case.

A. MCPW conductor losses

For the MCPW, mapping k yields a total nonzero current
in strip l = k only and in the ground planes. Therefore, using
(20), (21) and (22) in (33), the total strip and ground planes
currents in the k−th mapping can be expressed as:

Il = −2ÎkWk, l = k, Il = 0, l 6= k, IN+1 = 2ÎkWk.
(34)

Deriving Îk and using (32), the surface current density result-
ing from the superposition of all mappings is:

Juh(t) = −
N∑
k=1

Ik
2Wk

jk(t). (35)

The total power dissipated p.u.l. on all lines and the ground
plane can now be expressed as follows:

Pdiss = RS

∮
ground
+ lines

J2(t) dt =
1

2
RS

N∑
l,m=1

Il
Wl

Im
Wm
×

×
N+1∑
n=1

∫
n

jl(t)jm(t) dt ≡
N∑

l,m=1

IlR
MCPW
lm Im. (36)

where RS = 1/(σδ) is the surface resistance, σ being the
metal conductivity and δ the skin penetration depth. In (36)
the integral on the n−th line (or on the ground plane for n =
N + 1) refers to the upper half space, and RMCPW

lm is the p.u.l.
resistance matrix element, that can be thus expressed as:

RMCPW
lm =

N+1∑
n=1

RMCPW
lm,n (37)

where RMCPW
lm,n derives from integration on strip n, or on the

ground plane for n = N + 1. Taking into account the t → ζ
and ζ → zk mappings in (31) we have:

RMCPW
lm,n =

RS
2WlWm

∫
n

dzl
dζ

dzm
dζ

∣∣∣∣dζdt
∣∣∣∣ dζ, (38)

where the integral will be referred to as the loss integral
of strip n. The present treatment generalizes the analysis in
[14], [15], [18]; details of the evaluation of the loss integrals
are omitted since the procedure closely follows [15]. The
same result is obtained by integration of the edge-singular
loss integrand of the zero-thickness line using the Lewin-
Vainshtein (LV) high-frequency limit as the stopping distance
[21]. The loss integral expressions can be extended down to
the frequency range where δ ≈ τ by replacing the LV limit
∆LV = τ/(4πeπ) with the stopping distance ∆(f), i.e., by
setting τ/(4π) → eπ∆ [17] in (39), (40), (54) and (55), and
by replacing RS with the generalized resistance Rsm defined
in [21, (8)]. In the high-frequency limit we obtain:

RMCPW
hk,n =

RS
2WhWk

{[
φhk

(
ζ̄2n
)

ξ
(
ζ̄2n
) − φhk

(
ζ̄2n+1

)
ξ
(
ζ̄2n+1

) ] ×
×
[
π + ln

4π

τ
(ζ̄2n+1 − ζ̄2n)

]
+

+
2N+2∑

l=1,l 6=2n,2n+1

φhk
(
ζ̄l
)

ξ
(
ζ̄l
) ln

ζ ′2n+1 − ζ̄l
ζ ′2n − ζ̄l

 , n = 1 . . . N

(39)

RMCPW
hk,N+1 =

RS
2WhWk

{[
φhk

(
ζ̄2N+2

)
ξ
(
ζ̄2N+2

) − φhk
(
ζ̄1
)

ξ
(
ζ̄1
) ] ×

×
[
π + ln

4π

τ

(
ζ̄2N+2 − ζ̄1

)]
+

+
2N+1∑
l=2

φhk
(
ζ̄l
)

ξ
(
ζ̄l
) ln

ζ̄l − ζ ′1
ζ ′2N+2 − ζ̄l

}
, (40)

where:

ζ̄l =
ζi + ζ ′i

2
(41)

ξ(ζ̄l) =
2N+2∏
i=1,i6=l

(
ζ̄l − ζ̄i

)
(42)

φhk(ζ̄l) =

(
N∑
i=1

ahi ζ̄
i−1
l

) N∑
j=1

akj ζ̄
j−1
l

 . (43)

The resistance matrix elements can obtained from (37).
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B. MCPS conductor losses

In the MCPS case the terms l = 1 . . . N in (33) correspond
to lines, while l = N+1 to the rightmost ground plane. Taking
into account that integration of the MCPS k−th mapping
yields: ∫

l

dzk
dζ

dζ =

∫
l

dzk = wkl > 0, l ≤ k (44)∫
l

dzk
dζ

dζ =

∫
l

dzk = wkl < 0, l > k (45)∫
N+1

dzk
dζ

dζ =

∫
N+1

dzk = −
N∑
l=1

wkl, (46)

the line and ground plane currents can be expressed as:

Ik = 2
N∑
l=1

wklÎl, k = 1 . . . N (47)

IN+1 = −2
N∑
k=1

N∑
l=1

wklÎl. (48)

Equation (47) is a linear system with matrix 2wT (28); define
u = (wT )−1, with elements ukl; inverting (47) one has:

Îk =
1

2

N∑
l=1

uklIl (49)

and, from (32), the upper half-plane surface current density
reads:

Juh(t) =

N∑
k=1

N∑
l=1

uklIl
2

jk(t). (50)

The total power dissipated on all lines and the ground plane
can be expressed as a quadratic form of the strip total currents
as follows:

Pdiss = RS

∮
ground
+ lines

J2(t) dt =

= 2RS

N∑
l,m=1

IlIm

N∑
k,h=1

ukl
2

uhm
2

∮
ground
+ lines

jk(t)jh(t) dt =

=
1

2
RS

N∑
l,m=1

IlIm

N∑
k,h=1

ukluhm

N+1∑
n=1

∫
n

jk(t)jh(t)dt =

≡
N∑

l,m=1

IlR
MCPS
lm Im, (51)

where the integral on the n−th line, or on the ground plane for
n = N + 1, refers to the upper half space. Thus the elements
of the p.u.l. resistance matrix of the MCPS are expressed as
in (37) with MCPW→MCPS:

RMCPS
lm =

N+1∑
n=1

RMCPS
lm,n ; (52)

RMCPS
lm derives from integration on strip n or on the ground

plane, n = N + 1. Taking into account the t → ζ mapping
and the ζ → zk mappings we have:

RMCPS
lm,n =

RS
2

N∑
k,h=1

ukluhm

∫
n

dzk
dζ

dzh
dζ

∣∣∣∣dζdt
∣∣∣∣ dζ

≡
N∑

k,h=1

ukluhmR̂
MCPS
kh,n . (53)

Following an approach similar to the MCPW case we obtain:

R̂MCPS
kh,n =

RS
2

{[
φhk

(
ζ̄2n
)

ξ
(
ζ̄2n
) − φhk

(
ζ̄2n−1

)
ξ
(
ζ̄2n−1

) ]×
×
[
π + ln

4π

τ
(ζ̄2n − ζ̄2n−1)

]
+

−
2N+2∑

l=1,l 6=2n−1,2n

φhk
(
ζ̄l
)

ξ
(
ζ̄l
) ln

ζ ′2n − ζ̄l
ζ ′2n−1 − ζ̄l

 (54)

R̂MCPS
kh,N+1 =

RS
2

{[
φhk

(
ζ̄2N+2

)
ξ
(
ζ̄2N+2

) − φhk
(
ζ̄2N+1

)
ξ
(
ζ̄2N+1

) ]×
×
[
π + ln

4π

τ

(
ζ̄2N+2 − ζ̄2N+1

)]
+

−
2N∑
l=1

φhk
(
ζ̄l
)

ξ
(
ζ̄l
) ln

ζ ′2N+2 − ζ̄l
ζ ′2N+1 − ζ̄l

}
, (55)

where ζ̄, ξ and φ are again defined in (41), (42) and
(43), respectively. On defining the matrices RMCPS

n = [RMCPS
lm,n ],

R̂MCPS
n = [R̂MCPS

lm,n ], RMCPS= [RMCPS
lm ] =

∑
nR

MCPS
n and

R̂MCPS= [R̂MCPS
lm ] =

∑
n R̂

MCPS
n , we have from (52) and (53)

that the resistance matrix of the MCPS can be evaluated as:

RMCPS= uT · R̂MCPS·u, (56)

where u = (wT )−1. Notice that the reference ground can be
moved from strip N+1 to an arbitrary strip n by transforming
the resistance matrix RMCPS into the corresponding conduc-
tance matrix Gm and deriving the augmented conductance
matrix G′m, following the same rule as for the capacitance
matrix, see (30). From G′m the conductance matrix with
ground at strip n is recovered by canceling row and column
n; inversion finally yields the desired RMCPS with ground at
strip n. The same approach holds for a MCPS with a set of
grounded shield lines.

IV. CHARACTERISTIC p.u.l. PARAMETERS, MODAL
IMPEDANCES AND COMPLEX PROPAGATION CONSTANTS

We refer to a MCL on an infinitely thick dielectric sub-
strate with relative permittivity εr and conductivity σsub.
Given the in vacuo capacitance matrix of the upper half
space Cuh0 we have C ≈ (1 + εr)Cuh0 for the capacitance
matrix, L = (2Cuh0)−1/c20 + R(ω)/ω for the inductance
matrix accounting for the skin-effect internal inductance, and
G ≈ (σsub/ε0)Cuh0 for the conductance matrix associated to
parallel substrate losses, where c0 is the velocity of light in
vacuo. Notice that the assumptions C = (1 + εr)Cuh0 and
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G = (σsub/ε0)Cuh0 only approximately hold for very thick
lines, where the dielectric does not exactly fill one half space;
thus the approximation signs. From the above matrices and
R, the p.u.l. impedance Z and admittance Y matrices can
be evaluated as Z = R + jωL and Y = G + jωC. The
modal complex propagation constants can be finally derived
as the square roots of the eigenvalues of the product ZY .
The modal characteristic impedances according to the so-
called power-current (PI), voltage-current (VI) and power-
voltage (PV) definitions can be finally recovered through the
eigenvector matrices of ZY and YZ [26].

V. EXAMPLES

A few examples are discussed to test the consistency of
the present approach with previously published quasi-static
formulae and its accuracy vs. quasi-static and full-wave EM
formulations. We will also use as a reference solution the
numerical SC solver discussed in [27], [28] and used in [29]
to evaluate the impedance and skin-effect losses of CPWs
with arbitrarily shaped electrodes. In the examples shown the
imaginary part of the characteristic impedance is negligible vs.
the real part, simply denoted as “characteristic impedance”. In
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Fig. 6. Conductor normalized attenuation α/Rs of a symmetric CPW (N =
1) in vacuo as a function of line thickness with different values of the line
width w and slot width s: numerical conformal mapping (diamonds) from
[29]; present approach (black solid lines), formulae from [14] (blue dashed
lines).

all computations shown the number of integration samples in
the quadrature formulae [23, Sec. 3] is 20. Fig. 6 compares the
normalized attenuation of a symmetric CPW in vacuo (MCPW
with N = 1) from the Owyang and Wu formula [14] with
the present approach and the exact numerical CM solution
from [29]. The present solution is in excellent agreement with
the numerical CM also for line thickness as large as 40% of
the strip or slot width, and provides a better approximation
than the formulae in [14]. Fig. 7 compares the characteristic
impedance of the same symmetric CPW in vacuo evaluated
in the present approach and as in [29]; the agreement is again
very good also for line thickness as large as 40% of the strip
or slot width. Notice that in the approach of [14] the thick
strip correction of the impedance is not considered.

Fig. 8 compares, for the attenuation of a CPS (MCPS with
N = 1), the analytical expressions in [15] with the present
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Fig. 7. Characteristic impedance of a symmetric CPW (N = 1) in vacuo
as a function of line thickness with different values of the line width w and
slot width s: numerical conformal mapping (diamonds) from [29]; present
approach (black solid lines).

approach and the exact numerical CM solution from [29]. As
in the following examples, the frequency is f = 10 GHz and
the metal conductivity σ = 4.1×107 S/m. The present solution
virtually coincides with the numerical CM and provides a
better approximation than the formulae in [18], above all for
low line spacing, as expected.

Comparisons concerning the modal attenuations and charac-
teristic impedances, respectively, between the present approach
and a full-wave and quasi-static FEM solution are presented in
Fig. 9 and Fig. 10 for a five-conductor MCPW in vacuo. The
present closed-form approach clearly yields an accurate esti-
mate of both the attenuation and the modal impedances. Notice
that the skin penetration depth at the operating frequency is
δ = 786 nm; as well known the skin-effect approximation is
in this case expected to be increasingly inaccurate for strip
thickness τ < nδ with n ≈ 4.

To the authors’ best knowledge, no experimental data on
the attenuation of multiconductor coplanar lines are available;
however, an indirect comparison can be made from the data
on the attenuation of finite-ground coplanar waveguides on a
lossy Si substrate reported in [30]. Fig. 11 shows a comparison
between the measured and simulated total attenuation as a
function of frequency for two sets of lines, with strip and
slot widths of 25 and 50 µm, respectively, and varying finite
ground widths (only the extreme values are simulated). The
substrate losses were taken into account, and a satisfactory fit
with measurements was obtained with an average conductivity
of the composite metallization σ = 3×107 S/cm. The accuracy
of the simulation degrades at lower frequencies where the
strip thickness becomes comparable to the skin penetration
depth. The parameters of the finite-ground CPW were obtained
from those of a MCPS with two conductors plus ground, by
grounding the leftmost strip.

Fig. 12 and Fig. 13 compare the attenuation and effective
refractive index of a five-conductor (plus ground) MCPS in
vacuo with the results of quasi-static FEM as a function of
frequency. Notice that the effective refractive index variation
vs. the in vacuo value, entirely related to conductor losses,
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is accurately reproduced by the analytical model. The modal
patterns shown in the figure insets are qualitative only, due to
the asymmetry of the structure.
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Fig. 8. Conductor attenuation of an asymmetric CPS (N = 1) in vacuo as
a function of line spacing s (with wL = 50 µm) or width wL (with s = 50
µm): present approach (black solid lines), formulae from [15] (blue dashed
lines), numerical conformal mapping (diamonds) from [29]. The ground width
is wG = 100µm and the conductor thickness is τ = 5µm.
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conductor MCPW as a function of the line thickness: comparison between
the present approach (black solid lines), quasi-static FEM (circles) [6] and
full-wave FEM (diamonds) [5]. The line and slot widths are 50µm.

VI. CONCLUSIONS

We have presented computationally efficient, accurate
closed-form expressions for the conductor losses and the
modal impedances of thick multiconductor coplanar lines.
With respect to already available expressions for single and
coupled lines, the present approach provides an estimate of
the line characteristic parameters that is accurate even for
line thicknesses of the order of 40% of the minimum slot
or strip width. The results compare favorably with numerical
CM implementations and with quasi-static and full-wave FEM
simulations.
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Fig. 10. Modal in vacuo characteristic impedances of a uniform symmetric
five-conductor MCPW as a function of the line thickness: comparison between
the present approach (black solid lines), quasi-static FEM (circles) [6] and
full-wave FEM (diamonds) [5]. The line and slot widths are 50µm.
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Fig. 11. Attenuation of a finite-ground CPW as a function of frequency for
different values of the strip, slot and finite-extent ground plane width. The
metal thickness is 3 µm, the substrate is Si with resistivity 2500 Ω·cm and
εr = 11.8. The measured curves from [30, Fig. 3 (a), (b)] are for ground
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simulations with blue and red continuous lines). The measured and simulated
attenuation decreases with increasing wG.

APPENDIX

A. Strip side, strip and slot width corrections due to finite
conductor thickness

The t→ ζ transformation (1) cannot be inverted explicitly;
however, if τ � w, s, we can approximately invert the
transformation for each strip side, strip top and each slot,
accounting for the effect of nearby strips and slots.

Let us consider first the correction ∆ζ related to the thick
conductor (strip or ground plane) side. Consider first the
MCPW case; we have (i = 1 . . . N + 1):∫ t′2i−1

t2i−1

dt = j
τ

2
=

∫ ζ2i−1

ζ′2i−1

dt
dζ

dζ =

=

∫ ζ2i−1

ζ′2i−1

2N+2∏
j=1

√
ζ ′j − ζ
ζj − ζ

dζ = (57)
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=

∫ ζ2i−1

ζ′2i−1

2i−2∏
j=1

√
ζ ′j − ζ
ζj − ζ

√
ζ − ζ ′2i−1
ζ2i−1 − ζ

2N+2∏
j=2i

√
ζ − ζ ′j
ζ − ζj

dζ ≈

≈ j
∫ ζ2i−1

ζ′2i−1

√
ζ − ζ ′2i−1
ζ2i−1 − ζ

dζ = j
π

2

(
ζ2i−1 − ζ ′2i−1

)
= j

π

2
∆ζ

(58)

i.e.:

ζ2i−1 − ζ ′2i−1 ≈ ∆ζ =
τ

π
(59)

because:

2N+2∏
i=1,j 6=2i

√
ζ ′j − ζ
ζj − ζ

≈ 1, ζ2i < ζ < ζ ′2i. (60)

Similar results are obtained for the MCPW strip sides of
even index and for the MCPS. It follows that each strip edge
(including the ground planes) should be extended in plane ζ

by an amount that, in the first approximation, does not depend
on the strip or ground plane width:

∆ζ =ζ ′2i − ζ2i = ζ2i−1 − ζ ′2i−1 =

≈ τ

π
, i = 1 . . . N + 1 (MCPW) (61)

∆ζ =ζ ′2i−1 − ζ2i−1 = ζ2i − ζ ′2i =

≈ τ

π
, i = 1 . . . N + 1 (MCPS). (62)

Le us consider integrating transformation (1) on the strip
tops. For simplicity, let us confine the detailed treatment to
the MCPW strips and slots. We have:

t′2j+1 − t′2j = wj =

=

∫ ζ′2j+1

ζ′2j

dt
dζ

dζ i = 1 . . . N (63)

t2j − t2j−1 = sj =

∫ ζ2j

ζ2j−1

dt
dζ

dζ i = 1 . . . N + 1. (64)

The strip integral (63) can be approximated as follows:

t′2j+1 − t′2j = wj =

=

∫ ζ′2j+1

ζ′2j

2j−1∏
i=1

√
ζ − ζ ′i
ζ − ζi

2N+2∏
i=2j+2

√
ζ ′i − ζ
ζi − ζ

× (65)

×

√ζ − ζ ′2j
ζ − ζ2j

√
ζ ′2j+1 − ζ
ζ2j+1 − ζ

 dζ ≈

≈
2j−1∏
i=1

1 +
(−1)i+1 ∆ζ

2
〈ζ〉j − ζi

 2N+2∏
i=2j+2

1 +
(−1)i

∆ζ

2
ζi − 〈ζ〉j

×
×
∫ ζ′2j+1

ζ′2j

√
ζ − ζ ′2j
ζ − ζ2j

√
ζ ′2j+1 − ζ
ζ2j+1 − ζ

dζ ≈

≈

1 +

2j−1∑
i=1

(−1)i+1 ∆ζ

2

〈t〉MCPW
Strip j − ti

+
2N+2∑
i=2j+2

(−1)i
∆ζ

2

ti − 〈t〉MCPW
Strip j

×
×
∫ ζ′2j+1

ζ′2j

√
ζ − ζ ′2j
ζ − ζ2j

√
ζ ′2j+1 − ζ
ζ2j+1 − ζ

dζ (66)

where 〈ζ〉j is the average coordinate of strip j in ζ plane, that
is approximated, to make the expression explicit, as 〈ζ〉j ≈
〈t〉MCPW

Strip j , where:

〈t〉MCPW
Strip j =

t2j+1 + t2j
2

. (67)

The integral in (66) can be solved exactly in terms of complete
elliptic integrals of the first and second kind [31, p. 308, (10)]
and further approximated through the formulae in [31, Sec.
8.113, (3) and Sec. 8.114, (3)] under the assumption τ � wj ,
leading to the result:∫ ζ′2j+1

ζ′2j

√
ζ − ζ ′2j
ζ − ζ2j

√
ζ ′2j+1 − ζ
ζ2j+1 − ζ

dζ ≈

≈ wj + ∆wj −∆ζ

(
log

4wj
∆ζ
− 1

)
. (68)
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Combining (68) with (66) and under the assumption of small
∆ζ we finally obtain (15).

Similarly, the slot integral (64) can be approximated as
follows:

t2j − t2j−1 = sj =

=

∫ ζ2j

ζ2j−1

dt
dζ

dζ =

∫ ζ2j

ζ2j−1

2j−2∏
i=1

√
ζ − ζ ′i
ζ − ζi

×

×

√ζ − ζ ′2j−1
ζ − ζ2j−1

√
ζ ′2j − ζ
ζ2j − ζ

 2N+2∏
i=2j+1

√
ζ ′i − ζ
ζi − ζ

dζ =

≈
2j−2∏
i=1

(
1 +

1

2

(−1)i+1∆ζ

〈ζ〉j − ζi

)
2N+2∏
i=2j+1

(
1 +

1

2

(−1)i∆ζ

ζi − 〈ζ〉j

)
×

×
∫ ζ2j

ζ2j−1

√
ζ − ζ ′2j−1
ζ − ζ2j−1

√
ζ ′2j − ζ
ζ2j − ζ

dζ ≈

≈
2j−2∏
i=1

1 +
(−1)i+1 ∆ζ

2

〈t〉MCPW
Slot j − ti

 2N+2∏
i=2j+1

1 +
(−1)i

∆ζ

2

ti − 〈t〉MCPW
Slot j

×
×
∫ ζ2j

ζ2j−1

√
ζ − ζ ′2j−1
ζ − ζ2j−1

√
ζ ′2j − ζ
ζ2j − ζ

dζ ≈

≈

1 +

2j−2∑
i=1

(−1)i+1 ∆ζ

2

〈t〉MCPW
Slot j − ti

+
2N+2∑
i=2j+1

(−1)i
∆ζ

2

ti − 〈t〉MCPW
Slot j

×
×
∫ ζ2j

ζ2j−1

√
ζ − ζ ′2j−1
ζ − ζ2j−1

√
ζ ′2j − ζ
ζ2j − ζ

dζ (69)

where:
〈t〉MCPW

Slot j =
t2j + t2j−1

2
. (70)

The integral in (69) can be solved exactly in terms of complete
elliptic integrals of the second kind [31, p. 308, (14)] and
further approximated through the formulae in [31, Sec. 8.114,
(3)] assuming τ � wj ; this leads to the result:∫ ζ2j

ζ2j−1

√
ζ − ζ ′2j−1
ζ − ζ2j−1

√
ζ ′2j − ζ
ζ2j − ζ

dζ ≈

≈ sj −∆sj + ∆ζ

(
log

4sj
∆ζ

+ 1

)
. (71)

Combining (71) with (69) and in the assumption of small ∆ζ
we obtain (16).

The treatment of the MCPS strip and slot corrections is
similar, leading to the results reported in (17) and (18). Notice
that no strip or slot corrections are applied when the strip or
slot has infinite extent.
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