
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Computation reduction for turbo decoding through window skipping / Martina, M.; Condo, C.; Roch, M.R.; Masera, G.. -
In: ELECTRONICS LETTERS. - ISSN 0013-5194. - STAMPA. - 52:3(2016), pp. 202-204.

Original

Computation reduction for turbo decoding through window skipping

ieee

Publisher:

Published
DOI:10.1049/el.2015.3965

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2636204 since: 2016-02-29T13:39:20Z

IET

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234909361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computation reduction for turbo decoding
through window-skipping

M. Martina, C. Condo, M. Ruo Roch, G. Masera

A simple and effective technique to skip the computation of reliable
portions of a frame (windows) for turbo code decoding is proposed.
The proposed criterion relies on a very simple approximation of cross-
entropy measure by the means of thresholding. This criterion features
negligible complexity and low memory requirements. Simulation results
show that, in the best case, up to the 20% of windows can be skipped
with no error-rate degradation. Such a significant computation reduction
can be exploited to directly reduce the power consumption as well.

Introduction: Turbo codes are among the best-performing forward error
correcting codes. Indeed, they have been adopted in several standards for
wired and wireless communications including the Long-Term-Evolution
(LTE) advanced standard for mobile communications. Since the decoding
algorithm is iterative, high throughput can be achieved with hardware
implementations. In most of the cases, parallel architectures, namely
several processing elements (PEs) working concurrently, are employed.
As a consequence, a large amount of data are concurrently read/written
from/to the memory and processed. This produces huge bandwidth
toward the memory and large switching activity inside the PEs. A first
attempt to reduce the bandwidth during the writing operation has been
proposed in [1], where the authors devise a mechanism to adaptively
send data toward the memory only if the reliability of the information
has increased during the last iteration. Unfortunately, this technique does
not prevent large bandwidth during the reading operation and leads to
some waste computation inside the PEs. Indeed, only when data are
computed one can perform the reliability check and decide if the data will
be sent to the memory of not. This work aims to make one step further,
namely it proposes a technique to skip the computation of portions
of data (windows), which are already reliable, with a sliding-window-
based approach. The proposed technique, applied to the LTE turbo code
decoder, saves up to the 20% of the computation (and bandwidth during
both reading and writing operations) at 1.8 dB of Signal-to-Noise-Ratio
(SNR), with no bit-error-rate (BER) performance loss. As long as one
accepts BER performance degradation, the amount of saved computation
increases as well.

Decoding algorithm: The iterative algorithm used in turbo code
decoding is based on a Maximum-A-Posteriori (MAP) estimation, known
as BCJR algorithm, which is performed in the logarithmic domain on
Logarithmic-Likelihood-Ratios (LLRs), leading to the well-known Log-
MAP algorithm. As convolutional turbo codes are the concatenation
through an interleaver of two constituent convolutional codes, each
iteration at the decoder side is made of two half iterations, one for
each constituent code. Each constituent decoder, referred to as MAP
or Soft-In-Soft-Out (SISO) decoder, works on the trellis representation
of the constituent code. Let k be the k-th trellis step, each SISO
decoder combines a-priori (λapr

k) and intrinsic (λint
k) LLRs to refine

the reliability of each uncoded symbol. This operation is achieved
by computing the extrinsic information λext

k = λapo
k − λint,u

k − λapr
k ,

where λint,u
k is the intrinsic systematic information for the uncoded

symbol u and λapo
k is the a-posteriori information, which is computed

as:
λapo
k =max∗e:u(e)=u {bk(e)} −max∗e:u(e)=ũ {bk(e)} , (1)

where e is one edge in the trellis, u(e) is the systematic information of
e and ũ is one uncoded symbol taken as a reference (usually ũ= 0).
Each bk(e) term in (1) is obtained as bk(e) = αk−1[s

S(e)] + γk(e) +
βk[s

E(e)], where

αk[s] = max∗
e:sE(e)=s

{
αk−1[s

S(e) + γk(e)
}
, (2)

βk[s] = max∗
e:sS(e)=s

{
βk+1[s

E(e) + γk+1(e)
}
, (3)

γk(e) = λint
k (e) + λapr

k (e). (4)

Several approximations have been proposed in the literature for the
implementation of the max∗ operator. However, approximating the max∗

operator with the simple max function (Max-Log-MAP) leads to minor

BER performance loss, provided that a scaling factor (δ) is applied to
λext
k [2]. According with the notation shown in Fig. 1 (a) sS(e) and sE(e)

represent the starting and ending states of e, respectively.

(a) (b)

(c)

α β

data

next iteration (t + 1)

skipped

α β
σ = 1

time

data

current iteration (t)

βk−1 βk

αk−1 αk

e

sS(e)

sE(e)

time

SISO-i

W
inter-SISO intra-SISO

SISO-(i-1)

Fig. 1 Used notation: trellis representation (a), border-metric-inheritance
scheduling (b) and inter/intra-SISO window representation (c).

Due to the recursion shown in (2) and (3), referred to as forward
and backward recursion respectively, long frames would produce a
large latency in the decoding. Thus, sliding-window-based decoding
is routinely employed. A drawback of the sliding-window approach
is the need for initializing border metrics in the backward recursion.
A well-known solution to cope with this problem is the so-called β-
training, where border metrics are estimated through a one-window
training process. An effective alternative technique, referred to as border-
metric-inheritance, has been proposed in [3] to avoid the use of β-
training. Such a technique uses a memory to store border metrics
computed during current iteration. These metrics will be used at the
next iteration as the initialization values for the neighbouring windows.
The corresponding scheduling is shown in Fig. 1 (b), where circle and
diamond represent backward-border-metrics and forward-border-metrics,
respectively. The same scheme can be extended to parallel decoders,
where P SISO modules work concurrently on different portions of the
trellis (see Fig. 1 (c)). Since the border-metric-inheritance technique
causes a slight degradation of the BER performance, it is usually
employed i) for the initialization of the windows in the backward
recursion (backward-border-metric-inheritance), ii) for the initialization
of inter-SISO windows, shown in Fig. 1 (c), where the first forward metric
is inherited from the neighbouring SISO (inter-SISO forward-border-
metric-inheritance). Forward border metrics for intra-SISO windows are
already available from previous-window processing, so inheritance is not
required.

Proposed technique: In [4] a bit level reliability criterion is proposed
as a stopping rule for turbo code decoding. However, as shown in [5],
bit level stopping comes at the expense of increasing the memory and
the logic of each SISO module. This increase is caused by the data
dependency in the BCJR algorithm. Indeed, due to the presence of the
forward and backward recursions the computation of each λext

k depends
both on previous and successive metrics in the trellis. Since skipping steps
in the trellis affects neighbouring LLRs, storing metrics is required to
limit BER performance degradation. In [5] the convergence of each bit is
monitored by studying the cross-entropy between a-priori and extrinsic
information. This concept has been approximated in this current work by

ELECTRONICS LETTERS 12th December 2011 Vol. 00 No. 00

applying a threshold to the magnitude of λapr
k and λext

k in order to decide
whether the computation of a window can be skipped or not. Skipping
of reliable windows reduces the bandwidth toward the memory during
reading operations as well.

Let N and W be the number of trellis steps in the whole frame
and in one window, respectively. Thus, M =N/P and MW =M/P

are the number of trellis steps and the number of windows processed
by each SISO module. Let λapr

i,j,l and λext
i,j,l represent the a-priori and

extrinsic LLRs at trellis step l into window j of SISO i, with 0≤ i < P ,
0≤ j <MW and 0≤ l <W , namely k= i ·M + j ·W + l. For a given
i, j couple the corresponding window is marked as to-be-skipped when
|λapr

i,j,l| ≥ θ and |λext
i,j,l| ≥ θ for every l ∈ [0,W), where θ is a threshold.

Let us assume that the comparison result is ‘1’ when the comparison is
true and ‘0’ when it is false, then the skipping condition can be rewritten
as

σi,j =

W−1∧
l=0

(|λapr
i,j,l| ≥ θ) ∧ (|λext

i,j,l| ≥ θ) (5)

for window j in SISO i, where ∧ is the and operation. Thus, when σi,j is
equal to one the window will be skipped and no further refined. However,
this implies that forward and backward recursion on the neighbouring
windows can not be initialized. This problem can be overcome by
observing that with the border-metric-inheritance technique the effect
of skipping a window is simply not updating the memory where border
metric values are stored. As a consequence, both forward and backward
recursions on the neighbouring windows can be initialized with the “old”
α and β values, respectively. On the contrary, when σi,j is equal to
zero, forward border metrics for intra-SISO windows are available and
forward-border-metric-inheritance is avoided. Let Q be the number of
states of the code and αt+1

i,j+1,0[s], with s= 0, · · ·Q− 1, the first forward
state metrics of intra-SISO window j + 1 in SISO i at iteration t+ 1,
then the proposed technique can be described as follows:

αt+1
i,j+1,0 =

{
αt
i,j,W if σt

i,j = 1

αt+1
i,j,W otherwise

, (6)

where σt
i,j is the skipping condition defined in (5) at iteration t. As it can

be observed, backward-border-metric-inheritance is used independently
of the proposed technique. On the contrary, forward-border-metric-
inheritance for intra-SISO windows is actually needed only when σi,j =

1. As a consequence, such a solution requires further memory to store the
forward-border-metrics. Let us assume that ns bits are used to represent
each state metric, then Q · ns ·MW · P bits are required to store all
the forward-border-metrics. Since σi,j = 1 occurs when the decoder is
converging, the following technique can be used instead: finding ŝ=
maxs{αt

i,j,W [s]} and approximating each αt+1
i,j+1,0[s] as

αt+1
i,j+1,0[s] =

{
0 if s= ŝ

−2ns−1 otherwise , (7)

namely saturating the metrics. This approach requires to store ŝ, thus only
log2(Q) ·MW · P bits are needed. Moreover, as shown in the following
section, this approximation does not lead to any BER performance
degradation.

Experimental results: The proposed window-skipping technique has
been applied to an LTE turbo code (Q= 8) decoder. The decoder uses
the Max-Log-MAP algorithm with a scaling factor δ= 0.75. The intrinsic
and extrinsic information are represented with five and eight bits (ne = 8)
respectively and ns = 12. The number of iterations has been fixed to eight
for N = 6144, P = 8 and W = 32 and border-metric-inheritance is used
for the backward recursion. As a consequence, the memory requirements
are: 24.6 kbits for the state-metric memories [5] and 18.4 kbits for
backward-border-metrics. Moreover, with the proposed technique, only
576 bits are needed for the approximated forward-border-metrics. Fig. 2
and Fig. 3 show the BER performance and the corresponding savings,
which have been achieved for different values of θ= ⌈2ne−1/ϕ⌉. The
value of θ is a fraction of the maximum value reached by |λapr|
and |λext|, which is 2ne−1, over ϕ= 32, 16, 14, 12, leading to θ=
4, 8, 10, 11. As shown in Fig. 2 the proposed window skipping technique
features no BER degradation for θ≥ 10. In particular, with θ= 10 the
percentage of skipped windows increases from 5% at 1.2 dB up to 20%
at 1.8 dB. However, reducing the constraint on the achieved BER further
complexity can be saved. As an example for a target BER of 10−6 the
proposed technique with θ= 8 achieves more than the 23% of skipped
windows. Similar results can be obtained with other codes and bit width.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

original
θ = 4
θ = 8
θ = 10
θ = 11

Fig. 2 BER performance of the proposed window skipping technique for
different values of θ.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

20

25

30

35

SNR [dB]

P
e
r
c
e
n
t
a
g
e

o
f

s
k
i
p
p
e
d

w
i
n
d
o
w
s

original
θ = 4
θ = 8
θ = 10
θ = 11

Fig. 3 Percentage of saved windows of the proposed window skipping
technique for different values of θ.

Conclusions: In this work a window-skipping technique to reduce both
the computation burden and the memory bandwidth in turbo code
decoder architectures has been proposed. The proposed solution features
extremely low memory requirements, being able to skip up to the 20% of
windows with no BER degradation.

M. Martina, M. Ruo Roch and G. Masera (Dipartimento di Elettronica
e Telecomunicazioni - Politecnico di Torino - Italy). Carlo Condo
(Department of Electrical and Computer Engineering, McGill University,
Canada)

E-mail: maurizio.martina@polito.it

References

1 O. Muller, A. Baghdadi, and M. Jezequel, “Bandwidth reduction of
extrinsic information exchange in turbo decoding,” IET Electronics
Letters, vol. 42, no. 19, pp. 1104–1105, Sep 2006.

2 J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,” IEE
Electronics Letters, vol. 36, no. 23, pp. 1937–1939, Nov 2000.

3 A. Abbasfar and K. Yao, “An efficient and practical architecture for high
speed turbo decoders,” in IEEE Vehicular Technology Conference, 2003,
pp. 337–341.

4 D. H. Kim and S. W. Kim, “Bit-level stopping of turbo decoding,” IEEE
Communications Letters, vol. 10, no. 3, pp. 183–185, Mar 2006.

5 W. Shao and L. Brackenbury, “Early stopping turbo decoders: a high-
throughput, low-energy bit-level approach and implementation,” IET
Communications, vol. 4, no. 17, pp. 2115–2124, 2010.

2

