
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Inter-controller Traffic in ONOS Clusters for SDN Networks / Muqaddas, ABUBAKAR SIDDIQUE; Bianco, Andrea;
Giaccone, Paolo; Maier, Guido. - ELETTRONICO. - (2016). ((Intervento presentato al convegno IEEE International
Conference on Communications (ICC) tenutosi a Kuala Lumpur (Malaysia) nel May 2016.

Original

Inter-controller Traffic in ONOS Clusters for SDN Networks

Publisher:

Published
DOI:10.1109/ICC.2016.7511034

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2631909 since: 2016-09-17T07:33:15Z

IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234909201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Inter-controller Traffic in ONOS Clusters
for SDN Networks

Abubakar Siddique Muqaddas†, Andrea Bianco†, Paolo Giaccone†, Guido Maier‡
† Dip. di Elettronica e Telecomunicazioni, Politecnico di Torino, Italy

‡Dip. di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Italy
E-mails:{abubakar.muqaddas,andrea.bianco,paolo.giaccone}@polito.it, guido.maier@polimi.it

Abstract—In distributed SDN architectures, the network is
controlled by a cluster of multiple controllers. This distributed ap-
proach permits to meet the scalability and reliability requirements
of large operational networks. Despite that, a logical centralized
view of the network state should be guaranteed, enabling the
simple development of network applications. Achieving a consis-
tent network state requires a consensus protocol, which generates
control traffic among the controllers whose timely delivery is
crucial for network performance.

We focus on the state-of-art ONOS controller, designed to
scale to large networks, based on a cluster of self-coordinating
controllers, and concentrate on the inter-controller control traffic.
Based on real traffic measurements, we develop a model to quan-
tify the traffic exchanged among the controllers, which depends
on the topology of the controlled network. This model is useful
to design and dimension the control network interconnecting the
controllers.

I. INTRODUCTION

The standard centralized approach for SDN is based on a
single controller managing all network devices. Even if this
simplifies the network management and the development of
network applications, it poses severe limitations to network
scalability and reliability. Indeed, a single centralized con-
troller is a single point of failure. Moreover, a single controller
may not be able to handle a large number of devices, because
the communication load and the processing overhead for the
controller increases with device number. Finally, in very large
networks (as in WANs), devices can be physically very far
from the controller and, due to the propagation delays, flow
modifications in network devices can experience large latency.

Distributed SDN controllers face with all the above impair-
ments. Multiple instances of the controller manage the whole
network, which is divided into different domains, each of them
under the control of one controller instance. Distribution of the
controller functions over multiple physical servers improves
the robustness of the control plane, by providing backup
control resources for each network node. Furthermore, large
networks can be handled, because the device control is dis-
tributed among the controllers and the processing load can be
balanced. Finally, being the control servers also geographically
distributed across the network area, they can reduce the device-
to-controller delay, thus improving the controller reactivity as
perceived by the network node.

However, a logical centralized view of the network state
has to be guaranteed also with controller distribution, to
ease the development of advanced network applications. This

transparent behavior for the network operator comes at the
cost of keeping all the shared data structures synchronized
among the controllers through some consensus protocol. For
example, the same network topology must be known at each
controller to take correct routing decisions. However, since
each controller is responsible of a subset of devices, it is of
paramount importance to distribute any topology update in a
timely fashion to avoid routing misbehaviors (e.g. loops), as
highlighted in [1].

In large networks, the control plane distributed among the
controllers is implemented in-band, without the possibility of
relaying on an out-of-band high-performance network as in the
data center scenario [2]. This poses technical challenges in de-
signing the control network, that not only interconnects devices
to controllers, but also supports the communication between
controllers. Due to the complexity of the adopted consensus
protocols, the reactivity of the controllers as perceived by the
devices depends also on the bandwidth and delays experienced
in inter-controller communications.

In our work we focus on the control traffic exchanged
among the controllers, which is often neglected in the lit-
erature. We consider the state-of-art ONOS controller [3],
which is an open-source project developed by ON.Lab [4]
and supported by a large community of network operators
and vendors. Differently from the well-known OpenDaylight
project [5], ONOS has been designed specifically to cope
with reliability and scalability issues arising in large ISP/WAN
networks. It natively supports a distributed version of the
controller, running on a cluster of control servers.

A. Our contributions

We run an experimental testbed mastered by a cluster of
ONOS controllers and evaluate the amount of traffic exchanged
among the controllers. We vary the topology (in terms of nodes
and links) of the network under control to develop a model,

SDN Controller BSDN Controller A

Eastbound/
Westbound APIs

Controller A
Domain

Controller B
Domain

Fig. 1: Distributed SDN architecture with two controllers

fitting the experimental results, able to estimate the required
bandwidth for the inter-controller communications, given an
arbitrary network topology and any partition into different
controller domains. The model is of paramount importance for
the proper design and dimensioning of the network supporting
the control plane in cluster of ONOS controllers.

B. Organization of the paper

Sec. II introduces the general architecture of distributed
SDN controllers and describes the two main consistency mod-
els adopted to synchronize the data structures. In Sec. III we
concentrate on the specific distributed architecture of ONOS
and describe the two main protocols to achieve the consensus
on the data structures. In Sec. IV we present the experimental
evaluation of the inter-controller traffic, and we show the
results for clusters of 2 and 3 ONOS controllers. These values
are used to devise and fit the model to estimate the bandwidth
for any network topology and any domain partition. The main
results will be summarized in two claims, Property 1 and 2.
Finally in Sec. V we draw our conclusions.

II. CONSISTENCY IN DISTRIBUTED SDN CONTROLLERS

To coordinate the behavior of the controllers, some con-
trol traffic, denoted as inter-controller traffic, must be ex-
changed among the controllers, through their so called east-
west interfaces. This traffic includes information related to:
network topology, controller reachability information (through
heartbeat messages), consistency protocols (described in the
following) and flow setup coordination [6]. The east-west
traffic grows always with the size of the network as well as
with the number of controllers.

A. CAP theorem

Consistency of shared data in distributed systems is a
well known and deeply investigated property. This property is
achieved with quite complex protocols and algorithms [7]. The
consistency dilemma is explained thoroughly using the famous
CAP theorem [8] which states the impossibility of enjoying the
following three properties at the same time: Consistency, i.e.
all the data reads access the latest written version of the data;
Availability, i.e. all data are accessible and can be updated;
Partition, i.e. the system is tolerant to node partitions.

Even if the proof of this theorem is complex, a convincing
scenario to understand this property is a storage system with
the data replicated locally in two servers connected through
a communication link. If availability and consistency are
required at the same time (CA case), i.e. each server should
be able to update the local data and access the most recent
version of it, network partitions are not allowed, since the two
servers must be able to communicate always an update to the
other. Similarly, if availability and tolerance to partitions is
required (AP case), i.e. each server should be able to update
the local copy of the data, then consistency cannot be anymore
guaranteed when partitions occur. Finally, if consistency and
tolerance to partitions is required (CP case), i.e. the servers
must access the most recent version of the data also in the
case of partitions, availability cannot be guaranteed since each
server cannot update the local copy in case of partitions.
Depending on the pair of required guarantees (CA, AP or

Controller BController A

 Network Partition

Controller A
Domain

Controller B
Domain

Fig. 2: Network partition in the control plane between two
SDN controllers

CP) in a distributed system, many consistency protocols and
algorithms have been devised.

In a distributed SDN scenario, consistency means that all
the controllers view the same network state, e.g. have the
same local copy of the network topology and of the node/link
availability state. If the controllers have inconsistent view,
the network policies could not run correctly and can lead
to potential routing loops or packet drops in the network.
For example in Figure 2, if the east-west interface between
controllers is down, it results in control network partition.
In this case if there is a change in topology in controller
B’s domain, then it will not be propagated to controller A.
Consequently controller A could take routing decisions based
on the old topology of the network in controller B’s domain
that could lead to unexpected behaviors. In the following
section, we will discuss different consistency models that are
currently adopted in SDN networks.

B. Consistency models in SDN networks

In distributed systems, many consistency models can be
defined. We concentrate here on just two of them, which have
a direct application in SDN networks.

1) Eventual Consistency model: This model provides a
weak form consistency, in sense that data update on a certain
controller will be eventually updated on all the nodes. This
implies that for some time some nodes may read values
different from the actual updated ones; but after some time,
all the nodes will have the updated values, given that they
are able to communicate. This model is employed in systems
which require high availability. The anti-entropy protocol
implemented in ONOS and described in Sec. III-A, supports
this consistency model.

2) Strong Consistency model: This model ensures that each
controller reads always the most updated version of a data.
If certain data are not yet updated to all (or most of) the
controllers, then they are not allowed to be read, thereby giving
availability less priority in favor of consistency. The RAFT
consensus protocol, implemented in ONOS and described in
Sec. III-A, supports this consistency model.

III. DISTRIBUTED ONOS

We now focus on the specific distributed architecture of
ONOS controller, which allows to achieve a large scalability
and availability, since a distributed cluster of controllers can
coordinate to provide resilience and fault-tolerance, which is
required if any of the controllers fails. Each controller in

the cluster is responsible of managing the switches under its
domain, and updating their state on the distributed data stores.
Each network device (i.e. a switch) can connect to multiple
ONOS controllers, for reliability reason, but only one will
be its master with full control on it in terms of read/write
capabilities on the switch forwarding tables. Anytime a cluster
of controllers is setup, each controller interacts with all the
other controllers, thus the controllers are always logically
connected in a full mesh in a peer-to-peer fashion, using a
specific TCP port (9876) for their interaction. The controllers
send and accept keep-alive messages to/from other controllers
to monitor the cluster members.

A. Distributed stores and consistency protocols

The stores implement the distributed databases in ONOS.
The main ones are the following:

• Mastership store which keeps the mapping between each
switch to its master and it is managed by a strongly
consistent protocol, using RAFT consensus algorithm,
described below.
• Network topology store which describes the network

topology in terms of links, switches and hosts; consistency
is achieved using an eventually consistent protocol called
anti-entropy, described below.

All the updates on the distributed stores are tracked using
logical timestamps, which allow to find out the most recent
update in case of conflicts.

Two consistency protocols are implemented in ONOS to
manage the distributed stores, each protocol tailored to a
specific level of consistency to guarantee.

1) Anti-Entropy Protocol: It is used to manage the network
topology store. It is based on a simple gossip algorithm in
which each controller chooses at random another controller
in the cluster every 5 seconds and then sends a message to
compare the actual content of its store with the one available
at the other controller. This synchronization message includes
the information about the elements (switches, links and hosts)
present in the topology, as well as the removed elements,
known as the “tombstones”. In the case of temporary network
partitions, keeping tombstones minimizes the variation in the
internal topology store, and thus the allocation/deallocation of
internal data structures. After the synchronization messages are
exchanged and the stores are updated based on the age of each
entry (i.e. the most recent updates are at higher priority than the
older ones), the two controllers become mutually consistent.
This ensures that all the controllers achieve consensus on the
network topology, according to an eventually consistent model.

2) RAFT Protocol: It is a recently proposed scheme [9]
which provides strong consistency for the mastership store in
ONOS. A RAFT implementation requires a cluster of nodes
each having a database termed as the “log” which is replicated
in all the nodes: each update is appended to this shared data
structure. The consistency is coordinated by a leader node in
the cluster, which is responsible for receiving update requests
from all the other nodes and then relaying log updates to
the other nodes. Once the majority of the followers have
acknowledged the update, this is actually committed to the
log. In the case of network partitions, only the side with the

ONOS
Controller A

ONOS
Controller B

Mininet

Sniffer

ONOS
Controller A

ONOS
Controller B

Mininet

ONOS
Controller C

Sniffer

Fig. 3: Experimental testbed for 2 and 3 ONOS controllers

majority of the nodes will be able to update the log, thus
avoiding contemporary and conflicting updates in two different
network partitions. In ONOS, for scalability issues, multiple
instances of RAFT algorithm run simultaneously, each of them
responsible of the synchronization of a subset of data. This
implies that the stores are actually partitioned into different
parts, each of them managed by a different RAFT instance.

IV. EXPERIMENTAL RESULTS AND MODEL VALIDATION

We present here the approach used for the experimen-
tation, aimed at evaluating the traffic exchanged among the
controllers, based on any network topology and any partition
of the network into controller domains. We consider a time-
variant topology in which the number of active switches and
active edges changes with the time; we expect that the inter-
controller traffic will change due to the required modifications
in the topology store as well as in the mastership store.

A. Methodology

We have considered two main scenarios, the first one
with 2 controllers and the second one with 3 controllers
belonging to the same cluster. The test setup for a 2-controller
scenario is shown in Fig. 3 and is based on a standalone
Ubuntu 14.10 server machine with ONOS 1.2 instances as
distributed controllers installed in Linux Containers (LXC).
The use of LXCs was chosen for its lightness and for the lack
of “background” traffic, which allows to identify easily all the
traffic generated by each instance of the controller. We denote
with A and B the two instances of the controller, running
on the same controller cluster. In the 3-controller scenario,
the configuration is shown in Fig. 3 with the third controller
denoted as C. In ONOS, the controllers are always logically
connected in a full mesh. To emulate the network controlled
through OpenFlow protocol, we adopted Mininet-2.1.0. Let S
be the number of switches in the emulated network and L
be the corresponding number of bidirectional links. Some test
network topologies have been adopted for our investigation to
highlight the individual contribution of each network element
(switch or link). In the isolated topology we have S isolated
switches without links (L = 0). In the linear topology, S
switches are connected linearly (L = S−1). This methodology
allowed us to obtain general results holding for any topology.

For the experiments, each topology is configured in
Mininet; then the controller is connected to Mininet by
specifying the target controller to connect to at each switch
in the Mininet network. In the case when the topology is
removed from the controllers, we issue the ONOS wipe-out
command at each controller instance, which removes all the

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

A→B

Curve Fitted
Lower Conf
Mean
Upper Conf

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

B→A

Curve Fitted
Lower Conf
Mean
Upper Conf

Fig. 4: Isolated topology added to controller A in the scenario
with 2 controllers

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

A→B

Curve Fitted
Lower Conf
Mean
Upper Conf

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

B→A

Curve Fitted
Lower Conf
Mean
Upper Conf

Fig. 5: Linear topology added to controller A in the scenario
with 2 controllers

switches, links and hosts. To repeat an experiment, the topol-
ogy is removed from each controller and the LXC contain-
ers are rebooted so that no tombstones persist in the inter-
controller traffic.

Following the configuration in Fig. 3, we run Wireshark as
a sniffer to capture the inter-controller traffic between any pair
of controllers by capturing all the TCP traffic on the interface
of a controller towards the other controller(s). ONOS uses
port 9876 for the inter-controller communications, thus it is
simple to identify such traffic. The total inter-controller traffic
is sampled every 0.1 s to compute the consumed bandwidth.
The bandwidth samples are averaged through a sliding window
of 10 s. We start to discuss the results obtained for a simple
topology, in order to highlight the transient and steady states
we observed in our experiments. Starting from Sec. IV-B all the
bandwidth results are measured in steady state. We repeated
the experiments 20 times and computed the 95% confidence
intervals.

B. Scenario with 2 controllers

We investigate the traffic exchanged by A and B for
different sizes of the topology under the control of A. Fig. 4
shows the bandwidth from A to B and vice versa, when
an isolated topology is added to controller A. We show
also the confidence intervals and one linear curve fitting
the experimental measurements. Similarly, Fig. 5 shows the
bandwidth when a linear topology is added to controller A.
Both graphs show that the bandwidth is increasing linearly

in both communication directions. This is coherent with the
linear growth of the internal data structures, based on hash
tables. Moreover, the bandwidth for A → B is larger than

TABLE I: Notation for the bandwidth in the scenario with two
controllers

Symbol Meaning
B, (BI , BL) generic unidirectional bandwidth (in isolated or linear topology)

b0 generic zero bandwidth
bs average unidirectional bandwidth per switch
bl average unidirectional bandwidth per intra-domain link
bd average unidirectional bandwidth per inter-domain link

BI
AB , BI

BA bandwidth (A → B, B → A) in isolated topology
BL

AB , BL
BA bandwidth (A → B, B → A) in linear topology

bsAB , bsBA average bandwidth A → B, B → A per switch
blAB , blBA, average bandwidth A → B, B → A per link

B → A. If we consider that the topology store is distributed
with the anti-entropy protocol, we should expect a symmetric
behavior. Instead, the mastership store is managed centrally by
the leader and thus we can expect an asymmetric behavior due
to the central role of the leader.

Due to the internal data structures, whose memory occu-
pancy grows linearly with the number of elements (nodes and
links), we can assume that the exchanged traffic B in each
direction is proportional to the size of the topology store:

B = S × bs + L× bl + b0

where we used the notation in Table I. Now, considering the
two different scenarios in our experiments, we can write the
following system of equations, with the topology added only
to controller A:

BL
AB = S × bsAB + (S − 1)× blAB + b0

BL
BA = S × bsBA + (S − 1)× blBA + b0

BI
AB = S × bsAB + b0

BI
BA = S × bsBA + b0

that can be solved by considering the linear interpolating curve
fitting the experimental data.

Note that we used always the same zero bandwidth value
b0 = 53 kbps (obtained with 2% accuracy at 95% confidence
level) for the both directions, given our measurements. Thus,
we obtained

blAB = 1.45 kbps blBA = 0.94 kbps (1)
bsAB = 1.45 kbps bsBA = 0.48 kbps (2)

So far the considered topologies have been configured
under the same controller domain. In order to extend our
model to any topology, arbitrarily partitioned among the two
controller domains, we need to understand the effect of inter-
domain links, i.e. connecting one switch in one domain with
another in the other domain. We considered the star topology
in Fig. 6, in which we varied the number of switches and
thus of the inter-domain links. Now the observed bandwidth
in one direction should be obtained by summing the following
contributions: BI for 1 switch to model the switch in A
domain; BI for S−1 switches to model the S−1 switch in B
domain; S − 1 times the average bandwidth per inter-domain
link bd. Using the same methodology before, and exploiting
the estimated values obtained so far, we were able to estimate
that the average bandwidth per inter-domain link is

bd = 1.55 kbps (3)

ONOS
Controller A

ONOS
Controller B

Fig. 6: Scenario with network links between two controller
domains

TABLE II: Notation for the network topology in the scenario
with 2 controllers

Symbol Meaning
SA number of switches in controller A domain
SB number of switches in controller B domain
LA number of intra-domain links in controller A domain
LB number of intra-domain links in controller B domain
LAB number of inter-domain links

By combining the results so far and the estimated band-
widths in (1), (2) and (3), we can claim the following:

Property 1: In a scenario with 2 controllers A and B,
managing a generic network topology arbitrarily partitioned
among the two controllers, the exchanged bandwidth can be
evaluated as follows:

BAB = 53 + 1.45× SA + 1.45× LA + 0.48× SB+

0.94× LB + 1.55× LAB [kbps]
BBA = 53 + 1.45× SB + 1.45× LB + 0.48× SA+

0.94× LA + 1.55× LAB [kbps]

where we used the notation in Table II

We were able to validate the above formulas by considering
multiple scenarios, including full mesh topology, ring topology,
irregular topology. All the experimental results were always
compatible with the model prediction of Property 1 within
95% confidence interval.

C. Scenario with 3 controllers

The methodology adopted in the previous scenario is now
extended to the 3 controllers scenario using the configuration
shown in Fig. 3.

We start by adding the topology to controller A. For
symmetry, the bandwidth for A→ B and A→ C is same and
termed as A → B,C; as no topology is added to controllers
B and C, hence B → A, B → C, C → A and C → B are
same and termed as B,C → A. Fig. 7 shows the bandwidth
from A to B and C and vice versa, when an isolated topology
is added to controller A.

Fig. 8 shows the bandwidth when a linear topology is
added. As compared to Fig. 4 and 5, the bandwidth values in
the 3-controller case are lower than the 2-controller case. This
is due to the anti-entropy protocol: periodically, each controller
randomly selects another controller to synchronize the network
topology. Say the synchronization rate for each controller is
λ. Thus the average contribution of this process on each link
is 3λ/6 = λ/2, since 6 possible links are present with 3

controllers. Instead, in the case of 2 controllers, the average
contribution was 2λ/2 = λ. Thus, a reduction of a factor 2
in the bandwidth due to the enti-entropy is expected. In the
figure, the reduction is much lower, due to the low impact of
this consistency protocol with respect to RAFT. Globally, the
bandwidth exchanged B in each direction is still proportional
to the size of the topology store. Considering that the topology
is only added to controller A, then the following system of
equations can be written with the notation in Table III:

BL
A→BC = S × bsA→BC + (S − 1)× blA→BC + b0

BL
BC→A = S × bsBC→A + (S − 1)× blBC→A + b0

BI
A→BC = S × bsA→BC + b0

BI
BC→A = S × bsBC→A + b0

which can be solved by considering the linear interpolating
curve fitting the experimental data. The zero bandwidth be-
tween any two controllers here is b0 = 43 kbps (obtained with
5.5% accuracy at 95% confidence level). Thus, we computed

blA→BC = 0.93 kbps blBC→A = 0.53 kbps (4)
bsA→BC = 1.12 kbps bsBC→A = 0.35 kbps (5)

To extend model to any topology, arbitrarily partitioned
among the two controller domains, the star topology in Fig. 6
was considered albeit with 3 controllers with no switch added
to controller C, in which we varied the number of switches
and thus the inter-domain links. In this scenario, the bandwidth
originating from each controller to the other two controllers
will be different, since different number of switches are added
to each controller. Hence, the three bandwidths in considera-
tion are: A → BC, B → AC and C → AB. Furthermore,

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

A→B,C

Curve Fitted
Lower Conf
Mean
Upper Conf

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

B,C→A

Curve Fitted
Lower Conf
Mean
Upper Conf

Fig. 7: Isolated topology added to controller A in the scenario
with 3 controllers

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

A→B,C

Curve Fitted
Lower Conf
Mean
Upper Conf

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

B
an

d
w

id
th

 [
k
b
p
s]

Number of switches (S)

B,C→A

Curve Fitted
Lower Conf
Mean
Upper Conf

Fig. 8: Linear topology added to controller A in the scenario
with 3 controllers

TABLE III: Notation for the bandwidth in the scenario with 3
controllers

Symbol Meaning
B, (BI , BL) generic unidirectional bandwidth (in isolated or linear topology)

b0 generic zero bandwidth
bs average unidirectional bandwidth per switch
bl average unidirectional bandwidth per intra-domain link
bd average unidirectional bandwidth per inter-domain link

shared also by target controller
be average unidirectional bandwidth per inter-domain link

external to target controller
BI

A→BC bandwidth A → B and A → C in isolated topology
BI

BC→A bandwidth B → A, C → A, B → C and C → B
in isolated topology

BL
A→BC bandwidth A → B and A → C in linear topology

BL
BC→A bandwidth B → A, C → A, B → C and C → B

in linear topology
bsA→BC average bandwidth A → B and A → C per switch
bsBC→A average bandwidth B → A, C → A, B → C and

C → B per switch
blA→BC average bandwidth A → B and A → C per link
blBC→A average bandwidth B → A, C → A, B → C and

C → B per link

the average unidirectional bandwidth per inter-domain link in
this case will be bd for controllers A and B but will be be

for controller C, since the links are external to it but of inter-
domain type. Now the observed bandwidth in one direction
is obtained by summing the following contributions: BI for
1 switch to model the switch in A domain; BI for S − 1
switches to model the S− 1 switch in B domain; S− 1 times
the average bandwidth per inter-domain link bd and S−1 times
the average bandwidth per external inter-domain link be.

Using the same methodology before, and exploiting the
estimated values obtained so far, we were able to estimate that
the average bandwidth per inter-domain link as:

bd = 0.87 kbps be = 0.7 kbps (6)

By combining the results so far and the estimated band-
widths in (4), (4) and (6), we can claim the following, by
referring to Fig. 9:

Property 2: In a scenario with 3 controllers A, B and C,
managing a generic network topology arbitrarily partitioned
among the three controllers, the exchanged bandwidth can be
evaluated as follows:

BA→BC = 43+1.12×SA+0.93×LA+0.35× (SB+SC)

+0.53×(LB+LC)+0.87×(LAB+LAC)+0.7×LBC [kbps]

BB→AC = 43+1.12×SB+0.93×LB+0.35× (SA+SC)

+0.53×(LA+LC)+0.87×(LAB+LBC)+0.7×LAC [kbps]

BC→AB = 43+1.12×SC +0.93×LC +0.35× (SA+SB)

+0.53×(LA+LB)+0.87×(LAC+LBC)+0.7×LAB [kbps]

where we used the notation in Table IV

V. CONCLUSIONS

We considered a distributed SDN architecture in which a
cluster of SDN controllers manages all network devices. We
focused our investigations on the traffic exchanged between

ONOS
Controller C

BA BC BB AC

ONOS
Controller A

ONOS
Controller B

Fig. 9: Experimental testbed for 2 ONOS controllers

TABLE IV: Notation for the network topology in the scenario
with 2 controllers

Symbol Meaning
SA number of switches in controller A domain
SB number of switches in controller B domain
SC number of switches in controller C domain
LA number of intra-domain links in controller A domain
LB number of intra-domain links in controller B domain
LC number of intra-domain links in controller B domain
LAB number of inter domain links between A and B
LAC number of inter domain links between A and C
LBC number of inter domain links between B and C

the controllers, which is mainly due to the required consensus
protocols running among controllers to reach a consistent view
of the network state.

We considered an experimental testbed based on a cluster
of 2 and 3 ONOS controllers and evaluated experimentally the
inter-controller traffic under different network configurations.
This allowed us to develop a model, empirically validated,
to estimate the control traffic among controllers under any
network topology and any partition of the switches in the
controllers’ domains. This permits to analyze how the inter-
controller traffic scales with the size of the network under
control, and can be used for the proper dimensioning of the
control plane supporting the interaction among the controllers.

REFERENCES

[1] A. Panday, C. Scotty, A. Ghodsiy, T. Koponen, and S. Shenker, “CAP
for networks,” in HotSDN. ACM, 2013, pp. 91–96.

[2] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and re-
search challenges of hybrid software defined networks,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 2, pp. 70–75, Apr. 2014.

[3] “ONOS 1.2 Wiki,” https://wiki.onosproject.org/.
[4] “On.Lab website,” http://onlab.us/.
[5] “OpenDaylight website,” https://www.opendaylight.org/.
[6] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,

S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
Jan 2015.

[7] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations,
extensions, and beyond,” Communications of the ACM, vol. 56, no. 5,
pp. 55–63, May 2013.

[8] E. Brewer, “CAP twelve years later: How the “rules” have changed,”
IEEE Computer, vol. 45, no. 2, pp. 2–13, March 2012.

[9] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. USENIX Annual Technical Conference, 2014, pp.
305–320.

