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Abstract: An approach to design a feedback controller for nonlinear systems directly from
experimental data is presented. Improving over a recently proposed technique, which employs
exclusively a batch of experimental data collected in a preliminary experiment, here the control
law is updated and refined during real-time operation, hence enabling an on-line learning
capability. The theoretical properties of the described approach, in particular closed-loop
stability and tracking accuracy, are discussed. Finally, the experimental results obtained with a
water tank laboratory setup are presented.
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1. INTRODUCTION

Data-driven design techniques aim to derive a controller
for a given dynamical system from experimental data,
circumventing the need for a model based on physical first
principles. In particular, direct data-driven approaches
avoid the explicit derivation of even a black-box model
of the system of interest, since they obtain directly a
feedback controller from experimental data. In the liter-
ature concerned with direct data-driven control design,
two main classes of approaches are found: on-line and
off-line (batch). On-line techniques (see e.g. Hou and Jin
(2013) and Helvoort et al. (2007)) can also be regarded
to as direct adaptive control strategies, since the con-
troller is modified with each new measurement obtained
in closed loop. These techniques have the ability to exploit
the data available during controller operation in order
to improve its performance over time. However, due to
the fact that the controller can change at any time, its
behavior can be hard to predict and guaranteeing stability
of these control schemes is challenging and often requires
restrictive assumptions on the controlled system. In off-
line approaches (see e.g. Sjöberg et al. (2003), Miskovic
et al. (2007), Campi and Savaresi (2006) and Formentin
et al. (2013)), the controller design is carried out using
a batch of measurements collected in an initial experi-
ment. The derived control law is then applied to the plant
and it is not modified during operation. In most of the
off-line techniques, stability and performance aspects are
not explicitly considered in the design phase but rather
evaluated via simulations or experiments before the con-
troller becomes operational. In Novara et al. (2013), an
off-line direct design approach that relies on nonlinear set-
membership identification (see e.g. Milanese and Novara
(2011)) has been proposed, which guarantees finite-gain
stability of the closed loop system when the number of
measurement points contained in the initial batch tends
to infinity. The main disadvantage of off-line algorithms
is that, unlike the on-line schemes, they do not exploit
the additional measurements obtained during controller
operation to improve the closed-loop performance. On the

other hand, the behavior of the off-line designed controllers
is more predictable.

In this paper we present a direct data-driven control design
approach that aims to fuse on-line and off-line techniques,
in order to retain the advantage of being able to improve
the control performance over time while at the same time
having a predictable closed loop behavior during opera-
tion. The proposed strategy enhances the off-line approach
of Novara et al. (2013) by exploiting the theory of learning
by projections (see e.g. Theodoridis et al. (2011) and the
references therein) in order to recursively update the con-
troller. Under reasonable assumptions on the initial batch
of data, the approach guarantees stability of the closed
loop system. Such guarantees are then retained during
on-line learning, thanks to suitable robust constraints on
parameters defining the feedback controller. The proposed
approach is based on convex optimization and hence has
moderate computational requirements. In addition to the
new algorithm and its properties, we present the experi-
mental results obtained with a water tank system, showing
the advantage provided by the proposed learning scheme
as compared to a purely off-line approach.

2. PROBLEM STATEMENT

We consider a discrete time nonlinear dynamical system
with a single input described by the following state update
equation:

xt+1 = g(xt, ut, et), (1)
where t ∈ Z is the discrete time variable, ut ∈ U ⊂ R is
the control input, xt ∈ X ⊂ Rnx is the vector of states
and et ∈ Rne is the vector of disturbance signals that
accounts for both measurement and process disturbances.
U and X are compact, possibly very large, sets bounding
the system’s input and state, respectively. We consider
the following two assumptions on the disturbance et and
function g:
Assumption 1. The value of et is bounded as

et ∈ Bε
.
= {et : ||et|| ≤ ε, ∀t ∈ Z},

for a finite value of ε > 0. �



Assumption 2. The function g is Lipschitz continuous
with respect to u, i.e. for any x̃ ∈ X and ẽ ∈ Bε,
g(x̃, ·, ẽ) ∈ F(γg, U), where

F(γg, U)
.
=

{
g :||g(0)|| <∞,
||g(u1)−g(u2)|| ≤ γg||u1−u2||,∀u1,u2∈U

}
.

�

Note that the notation || · || stands for a suitable vector
norm chosen by the user (typically 2- or∞-norm) and that
the presented results hold for any norm.

It is assumed that the nonlinear function g is unknown,
but a set DN of N noise corrupted input and state
measurements generated by the system (1) in an initial
experiment (either in closed or in open loop) is available:

DN
.
= {ut, ωt}−1

t=−N , ωt
.
= (xt, xt+1).

In this paper, we consider the notion of finite gain stability
(see e.g. Khalil (1996)):

Definition 2.1. A nonlinear system (possibly time vary-
ing) with input ut ∈ U , state xt ∈ X and disturbance
et ∈ Bε as in (1) is finite gain stable from the input u to
the state x if there exist finite and nonnegative constants
λ and β such that:

||x||∞ ≤ λ||u||∞ + β,∀u ∈ U ,∀e ∈ Bε,
where x = (x1, x2, . . .), u = (u1, u2, . . .), e = (e1, e2, . . .),
||x||∞

.
= sup

k
||xk|| and U and Bε are the domains of the

input and disturbance signals, respectively. �

Based on this definition we make the following assumption
about the nonlinear system (1):

Assumption 3. There exists a finite γ > 0 and a Lipschitz
continuous function f ∈ F(γ,Rnx × Rnx) that makes the
closed loop system with inputs rt ∈ Rnx and vt ∈ Rnx :

xt+1 = g (xt, f(xt, rt+1), et) + vt+1,

finite gain stable from the signals r and v to the state x.
According to Definition 2.1, this means that there exist
positive and finite constants λ1, λ2 and β such that

||x||∞ ≤ λ1||r||∞ + λ2||v||∞ + β,∀r ∈ R,∀v ∈ V,∀e ∈ Bε,
(2)

where r = (r1, r2, . . .), v = (v1, v2, . . .), and R and V are
the domains of the signals r and v. �

Assumption 3 states that the system (1) can be finite-gain
stabilized by a Lipschitz continuous control function with
respect to both the signal that is input to the controller
(i.e. a reference signal) and a signal that is additive to
the system state (i.e. an additive disturbance). Note that
vt and et are here separated for convenience, but vt can
actually be seen as a part of the disturbance et appearing
in (1). Assumption 3 is thus very mild, since it basically
requires that some controller exists which stabilizes the
system (1).

We now state the control design problem addressed in this
paper.

Problem 2.1. Based on the available noisy measurements,
the goal is to initially design a feedback controller to
track a desired reference signal rt ∈ R ⊂ X for t > 0,
where R is a compact set and ||rt|| ≤ r,∀t > 0, with
r < ∞ being the maximal magnitude of the reference
signal. Moreover, once the controller is in operation, the
algorithm should be capable of exploiting the incoming
input and state measurements in order to improve the
tracking performance of the controller while keeping the
closed loop system finite gain stable. �

3. ON-LINE DIRECT CONTROL DESIGN
ALGORITHM

The main idea of the proposed control design approach is
to learn from the available data an inverse of the system
dynamics, and to use it as feedback controller. Following
the definitions and notation introduced in Novara et al.
(2013), we define the point-wise inversion error of a given
controller f as:

IE(f, r, x, e)
.
= ||r − g(x, f(r, x), e)||, (3)

and the global inversion error as:

GIE(f)
.
= ||IE(f, ·, ·, ·)||∞, (4)

where ||·||∞ in (4) is the L∞ function norm on X×R×Bε.
Based on this, an optimal controller f∗ is defined as:

f∗ = arg min
S∩FRnx×Rnx

GIE(f), (5)

where S is the set of all functions f that satisfy Assump-
tion 3 and FRnx×Rnx denotes the set of all Lipschitz con-
tinuous functions on Rnx × Rnx . We denote the Lipschitz
constant of the function f∗ by γ∗ and the related constants
λ1, λ2 and β of the closed loop system (obtained if the
controller f∗ would be used) by λ∗1, λ∗2 and β∗ (see (2)).

The optimal inverse function f∗ is not known and it can
not be exactly calculated, therefore it has to be approxi-
mated. Differently from Novara et al. (2013), where a time-
invariant approximation of f∗ is derived from the available
training data DN , we present here an approach in which
the optimal inverse function f∗ is approximated by a time

varying nonlinear function f̂t : Rnx × Rnx → R. This
function is modified on-line based on both the available
training data DN and the incoming closed loop measure-
ments in order to exploit all available information and
obtain a better estimate of the optimal inverse function
f∗ at each time step and hence solve Problem 2.1.

The relation between the control input and state measure-
ments can be written in the following way:

ut = f∗(ωt) + dt,
where dt accounts for the influence of unmeasured dis-
turbances and inversion errors. Since the signals xt, ut
and et are bounded (i.e. they belong to compact sets)
and the function g is Lipschitz continuous, it follows that
the magnitude of the signal dt has to be bounded, i.e.
dt ∈ Bδ ⊂ R,∀t ∈ Z, where Bδ

.
= {d ∈ R : |d| ≤ δ},

with δ being a positive constant. We will consider the
bound δ to be known; in practice it can be estimated
from the available training data (see e.g. Novara et al.
(2013)). Based on this, and following the set membership
identification approach, we can define the set of feasible
inverse functions at time step t as:

FIFSt
.
=

⋂
k=−N,...,t−1

Hk,

Hk
.
= {f ∈ FRnx×Rnx : |uk − f(ωk)| ≤ δ}.

(6)

If Assumptions 1–3 hold, the optimal inverse function f∗

has to belong to FIFSt (i.e. f∗ ∈ FIFSt) for all t. In the
following, we will make use of this fact in order to bound

the approximation error of the feedback controller f̂t ≈ f∗
and guarantee closed loop stability.

We parametrize the approximate controller with kernel
functions, which means that at each time step the function

f̂t is given by:

f̂t(ω) = aTt K(ω,Wt),

where at ∈ RLt is the vector of weights, and K(ω,Wt) =

[κ(ω, ω̃1), . . . , κ(ω, ω̃Lt
)]
T

is a vector formed by stacking
the values of the kernel functions κ(·, ω̃i) : R2nx → R, i =



1, . . . , Lt contained in a dictionary of functions that is
uniquely determined by the set of Lt kernel function
centers Wt = {ω̃1, . . . , ω̃Lt}. The set Wt which determines
the kernel function dictionary and the vector of weights at
are updated at each time step based on the incoming input
and state measurements. In the following subsections, we
first introduce the inequality that we use to bound the

approximation error of the controller f̂t at each time step
and to impose finite gain stability, then we discuss in
detail the mechanisms of introducing new kernel functions
to the dictionary and the algorithm for updating the
vector of weights. Finally, we summarize the proposed
design method and discuss its computational and memory
requirements.

3.1 Inequality to enforce closed loop stability

In order to have finite gain stability of the closed loop,

we require the function f̂t, to satisfy the following robust
inequality at each time step t:

|f̂t(ω+
t )− f∗(ω+

t )| ≤ γ∆||xt||+ σ,

∀f∗ ∈ F(γ∗,Rnx × Rnx) ∩ FIFS0, ∀t,
(7)

where ω+
t = [xt, rt+1]T if t ≥ 0 and ω+

t = [xt, xt+1]T

otherwise, and γ∆, σ ∈ R, γ∆, σ > 0, are design param-
eters. Guidelines on how these tuning parameters should
be selected in order to guarantee finite gain stability of
the closed loop are provided in Section 4. For t ≥ 0, the
inequality (7) requires the absolute difference between the

control input calculated by f̂t at time step t, i.e. ut =

f̂t(ω
+
t ), and the one given by the optimal inverse function

f∗, to be not larger than a term that depends linearly on
the norm of the current state. Since the actual ideal inverse
function f∗ is not known, we require this inequality to
be satisfied robustly for all functions in FIFS0 that have
the Lipschitz constant equal to γ∗. Note that in order to
impose the constraint in (7), the Lipschitz constant γ∗ of
f∗ needs to be known. The value of γ∗ can be estimated in
an off-line procedure from the collected data DN by using
the method presented in Novara et al. (2013).

In order to obtain a computationally tractable version of
inequality (7), we can use the method proposed in Milanese
and Novara (2011) in order to calculate an upper and a
lower bound on the optimal inverse function f∗ ∈ FIFS0

that we denote by f and f respectively:

f(ω) = min
k=−N,...,−1

(uk + δ + γ∗||ω − ωk||∞)

f(ω) = max
k=−N,...,−1

(uk − δ − γ∗||ω − ωk||∞) .
(8)

It then follows that the inequality (7) can be satisfied by
enforcing the following two inequalities:

−γ∆||xt||−σ+f(ω+
t ) ≤ f̂t(ω+

t ) ≤ γ∆||xt||+σ+f(ω+
t ) (9)

Note that instead of all f∗ ∈ F(γ∗,Rnx × Rnx) ∩ FIFS0,
the robust constraint (7) could be enforced for all f∗ ∈
F(γ∗,Rnx × Rnx) ∩ FIFSt, which would be a less con-
servative condition since FIFSt ⊆ FIFS0 (see e.g. (6)).
However, practical enforcement of such a condition would
be quite difficult as the number of points over which the
min and max in (8) need to be evaluated would increase
with each time step.

3.2 Updating the dictionary of kernel functions

Kernel functions are widely used by the machine learning
community for parameterizations in nonlinear approxima-
tion and learning tasks (see e.g. Schölkopf and Smola
(2001)). Any Lipschitz continuous nonlinear function can

be well approximated by a dictionary of functions that are
centered at the points at which the function is evaluated.
Since we aim at having a recursive scheme for updating the

controller f̂t at each time step, we allow for the dictionary
to grow and incorporate new elements as new input and
state measurements arrive. However, in order to prevent
an unlimited growth of the dictionary size over time, we
chose to add an element ω to Wt only if the kernel function
centered at ω is sufficiently different from all the kernel
functions centered at points already in Wt. To this end we
use the coherence factor (see e.g. Richard et al. (2009)) of
the incoming data point ω with respect to the set Wt:

µ(ω,Wt) = max
i=1,...,Lt

|κ(ω, ω̃i)|√
|κ(ω, ω)|

√
|κ(ω̃i, ω̃i)|

. (10)

Note that µ(ω,Wt) ∈ (0, 1], and that the larger the
coherence value in (10), the more similar is the kernel
function centered at ω to some kernel function already in
the dictionary. Therefore, for each incoming measurement
point ω, we compare its coherence factor (10) with a
threshold µ ∈ (0, 1) and only add it to Wt if µ(ω,Wt) ≤ µ.
The threshold µ is a tuning parameter that should be
chosen by the control designer and it determines the
overall size and density of the function centers forming
the dictionary.

An important question that should be addressed is
whether the size of the dictionary obtained by using the
described update rule remains limited over time. To this
end, we recall an important property of the coherence
measure that was demonstrated in Richard et al. (2009).

Lemma 3.1. (Proposition 2 in Richard et al. (2009)) Let
W be a compact set. Then for any µ ∈ (0, 1), the dictionary
obtained by adding a kernel function centered at ωt ∈ W
to it when µ(ωt,Wt) ≤ µ has a finite number of elements
for any sequence {wt}∞t=−N . �

Since the state of the system belongs to a compact set X,
i.e. xt ∈ X,∀t, according to Lemma 3.1, the size of the
dictionary remains bounded over time.

3.3 Updating the vector of weights

In order to describe the algorithm for the iterative update
of the vector at ∈ RLt , we note that the input and the
state measurement uj and ωj and the dictionary at time
step t define the following set in which the vector at should
lie for the function ft to belong to the set Hj defined in

(6), i.e. f̂t ∈ Hj :

Sjt
.
= {a ∈ RLt : |aTK(ωj ,Wt)− uj | ≤ δ}.

The set Sjt is a strip (hyperslab) in RLt . We further define
the projection of a point in RLt onto the strip Sjt as:

Pjt(a)
.
= min
â∈Sjt

||a− â||2. (11)

Note that the solution of the convex optimization problem
(11) can be explicitly derived (see e.g. Theodoridis et al.
(2011)) and it has the following form:

Pjt(a)=a+


uj−δ−aTK(ωj ,Wt)

||K(ωj ,Wt)||22
K(ωj ,Wt) if uj−δ>aTK(ωj ,Wt)

0 if |aTK(ωj ,Wt)−uj |≤δ
uj+δ−aTK(ωj ,Wt)

||K(ωj ,Wt)||22
K(ωj ,Wt) if uj+δ<a

TK(ωj ,Wt).

(12)
In addition, we define the hyperslab to which the vector at
should belong to in order to satisfy the stability constraint
(9) as:



S+
t
.
=

{
a ∈ RLt :−γ∆||xt||−σ+f(ω+

t )≤aTK(ω+
t ,Wt)

aTK(ω+
t ,Wt)≤γ∆||xt||+σ+f(ω+

t )

}
.

Moreover, analogously to the definition of Pjt(a) in (12),
we denote the projection of any point a ∈ RLt onto the
hyperslab S+

t by P+
t (a). Note that this projection can

also be calculated explicitly by using a formula similar
to (12). In the recursive algorithm that we propose, at
is calculated from at−1. However, since the size of the
dictionary can expand from time step t − 1 to time step
t, in general it will hold that at−1 ∈ RLt−1 and at ∈ RLt

with Lt−1 ≤ Lt. Therefore, we define a+
t−1 ∈ RLt as the

extension of the vector at−1 obtained by appending the
appropriate number of zeros to at−1 in order to get a vector
of dimension Lt:

a+
t−1 = [aTt−1, 0, . . . , 0︸ ︷︷ ︸

Lt−Lt−1

]T . (13)

In order to update the vector of weights at each time step,
we use the same idea exploited by the projection learning
algorithms, that by repeatedly projecting a point onto
convex sets it eventually ends up in their intersection. To
this end let us define the set of indexes Jt = {max{−N, t−
q}, . . . , t−1} that will be used to denote the last q collected
state and input measurements, where q ∈ N, q > 0 is a
tuning parameter, and let It = {j ∈ Jt : a+

t−1 /∈ Sjt}
be the set of indexes in Jk that have the property that
the weighting vector a+

t−1 is not in the measurement strip
associated to those indexes. Based on this, we can write
the equation for calculating the weighting vector at from
a+
t−1 as:

at=P+
t

a+
t−1+

∑
j∈It

1

card(It)

(
Pjt(a

+
t−1)−a+

t−1

) , (14)

where card(It) denotes the number of elements in It.

According to (14), the vector of weights at is calculated
by first finding the convex combination of the projections
of the vector a+

t−1 to the hyperslabs defined by the latest
q input and state measurements. This point is then pro-
jected onto the hyperslab S+

t . Hence, the update rule (14)
steers the vector of weights at towards the intersection of
the hyperslabs defined by the incoming input and state
measurements, while always enforcing the satisfaction of
the constraint (9).

In order to state the convergence property of the update
rule (14), we note that from Lemma 3.1 it follows that
there exists some finite time step t < ∞ such that
Lt = L, ∀t ≥ t and that ∀t1, t2 ≥ t it holds that

Sjt1 = Sjt2 ⊂ RL and therefore for t ≥ t, we can denote
Sjt just by Sj . Based on this, we state the main property
of the update rule(14).

Lemma 3.2. (Slight modification of Theorem 4.2 in Slavakis

and Yamada (2013)) Let Ω
.
=
⋂
t≥t0

(
S+
t

⋂( ⋂
j∈It

Sj

))
6= ∅

for some finite t0 ∈ N, t ≤ t0 < ∞. Then the recursive

update rule (14) is guaranteed to bring the point at ∈ RL
closer to the set Ω with each time step t ≥ t0, i.e. min

a∈Ω
||at−

a||2 ≤ min
a∈Ω
||at−1 − a||2,∀t ≥ t0 and in the limit it holds

that:

lim
t→∞

at ∈

 ∞⋃
n=t

⋂
j≥n

Sj

⋂ ∞⋃
n=t

⋂
t≥n

S+
t

 .
�

Lemma 3.2 states that if the set Ω is nonempty, then in the
limit the vector of weights at is guaranteed to belong to
the intersection of all but finitely many hyperslabs S+

t and
Sj , j ∈ It, t ≥ t. Hence there exists some finite time step

t̂ ∈ N, t ≤ t̂ < ∞ such that lim
t→∞

ft ∈
⋂
k≥t̂

Hk. Therefore,

as the number of collected measurement points tends to
infinity, the approximate controller is guaranteed to end
up in the intersection of all, but finitely many sets Hk (see
(6)) defined by the collected measurements.

3.4 Summary of the proposed design algorithm

The described procedures to update the dictionary and the
weighting vector can be merged into an on-line scheme
to design feedback control law on the basis of both the
initial training data DN and the additional measurements
obtained in closed loop. In Algorithm 3.1 we state such an
approach.

Algorithm 3.1. Feedback control algorithm based on the
on-line control design scheme

1) Collect the state measurement xt;
2) FormWt fromWt−1 by adding ωt−1 if µ(ωt−1,Wt−1) ≤

µ and ω+
t if µ(ω+

t ,Wt−1) ≤ µ. Form the vector a+
t−1

according to (13);
3) Calculate at by using (14);
4) If t ≥ 0, calculate ut = aTt K(ω+

t ,Wt) and apply it to
the plant;

5) Set t = t+ 1 and go to 1).

For t ≥ 0 Algorithm 3.1 is both a controller and a design
algorithm and can therefore be seen as an adaptive con-
troller; for t < 0 it only acts as a design algorithm. The pro-
posed scheme has moderate computational requirements
as it does not require solving complex mathematical prob-
lems and since many operations needed for updating the
vector of weights in (14) can be parallelized. In addition,
the number of kernel functions in the dictionary remains
bounded over time, as demonstrated in Section 3.2. How-
ever, in order to evaluate the bounds (8), the training data
DN need to be stored in memory and available during the
controller runtime.

4. PROPERTIES OF THE PROPOSED DIRECT
DESIGN ALGORITHM

In order to state the main property of the proposed algo-
rithm, we make the following assumption on the selection
of the tuning parameter γ∆.

Assumption 4. The tuning parameter γ∆ ∈
(

0, 1
γgλ∗

2

)
. �

Based on this assumption, we define the maximal achiev-
able state amplitude as:

x
.
=

λ∗1
1− γgλ∗2γ∆

r +
γgλ
∗
2

1− γgλ∗2γ∆
σ +

β∗

1− γgλ∗2γ∆
, (15)

and the sets Bx and Bxr as:

Bx
.
= {x ∈ Rnx : ||x|| ≤ x},

Bxr
.
= {ω ∈ Rnx ×R : ω = (x, r),∀x ∈ Bx, r ∈ R} .

(16)

We denote the maximal possible difference between the
upper and the lower bound on the value of the function



f∗ on the set Bxr that is calculated based on the collected
measurements DN by D0:

D0
.
= sup
ω∈Bxr

(
f(ω)− f(ω)

)
. (17)

D0 is called the diameter of information and in the set
membership framework is used to measure the uncertainty
associated with the identification/design process. Based on
these definitions, we make the following assumption.
Assumption 5. The selected value of σ and the training
data DN are such that σ ≥ D0

2 . �

In order to verify whether Assumptions 4 and 5 hold, the
values of γg, λ

∗
1, λ∗2 and β∗ should be known. The Lipschitz

constant γg can be estimated from the available training
data (see e.g. Novara et al. (2013)). The values of λ∗1, λ∗2
and β∗ can not be estimated based on the available data
and they have to be guessed. Since these parameters are
related to the performance of the optimal inverse controller
f∗ that should typically result in small tracking error (i.e.
the state of the corresponding closed loop system should
be close to the desired reference signal), a reasonable guess
for λ∗1 and λ∗2 is a value slightly greater than 1 and for β∗ a
value close to 0. In addition, efficient numerical algorithms
for estimating D0 from the training data DN are available
(see e.g. Milanese and Novara (2007)).

Assumption 4 can be easily satisfied by selecting a suitable
value for γ∆. On the other hand, from (15), (16) and (17)
it follows that the diameter of information D0 depends on
the selected value of σ, which could make the selection of
σ that satisfies Assumption 5 challenging. However, the
value of D0 can only decrease as the size of the training
data DN increases. Therefore, if the measurements gen-
erated in the initial experiment are informative enough,
then for a fixed value of σ, a finite number N of training
data DN should be collected such that the condition of
Assumption 5 is satisfied (see e.g. Milanese and Novara
(2011) for details).

We also make the following technical assumption that
relates the boxes Bx and Bxr and the sets U and X.
Assumption 6. Bx ⊆ X. Moreover, ∀ω ∈ Bxr,∀∆u ∈
[−γ∆x− σ, γ∆x+ σ], f∗(ω) + ∆u ∈ U . �

Assumption 6 requires the compact sets X and U , in which
the state and the input of the plant (1) evolve, to be
sufficiently large such that they include the box Bx and
all possible control inputs evaluated on the basis of state
measurement and reference value pars in Bxr respectively.

We now have all the ingredients to state the theorem on
the finite gain stability of the closed loop.

Theorem 4.1. Let the Assumptions 1–5 hold and let S+
0 6=

∅ and x0 ∈ Bx. Then for a reference signal rt ∈ R, ||rt|| ≤
r,∀t > 0, it holds that S+

t 6= ∅,∀t ≥ 0 and the closed loop
system is finite gain stable from the reference rt to the
state xt when Algorithm 3.1 is used.
Proof 4.1. We will prove the theorem by induction. But
first, we note that the closed loop system obtained by using

the approximate controller f̂t can be represented as:

xt+1 = g
(
xt, f̂t(xt, rt+1), et

)
= g (xt, f

∗(xt, rt+1), et) + vt+1,

vt+1 = g
(
xt, f̂t(xt, rt+1), et

)
− g (xt, f

∗(xt, rt+1), et) .

(18)
From Assumption 3 and the definition of the optimal
inverse controller f∗ in (5), it holds that:

||x||∞ ≤ λ∗1||r||∞ + λ∗2||v||∞ + β∗. (19)
Moreover, we note that from Assumptions 2 and 6, it
follows that:

||vt+1||≤γg|f̂t(xt,rt+1)−f∗(xt,rt+1)|,∀(xt, rt+1)∈Bxr.
(20)

We now employ the inductive argument to show that if
S+

0 6= ∅ and x0 ∈ Bx, then S+
t 6= ∅ and xt ∈ Bx,∀t ≥ 0.

The condition is satisfied for t = 0 by the Theorem
assumption. Let us assume, for the sake of inductive
argument, that S+

k 6= ∅ and xk ∈ Bx,∀k ∈ [0, t− 1]. From
this assumption and the way the weighting vector at is
updated in (14), it follows that ak ∈ S+

k , ∀k ∈ [0, t − 1],
which means that the robust condition (7) is satisfied for
all k ∈ [0, t− 1] and therefore, due to Assumptions 1 and
2, it holds that:

|f̂k(xk, rk+1)− f∗(xk, rk+1)| ≤ γ∆||xk||+ σ, ∀k ∈ [0, t− 1].
(21)

From (20) and (21) it then follows that:

||vk+1|| ≤ γgγ∆||xk||+ γgσ, ∀k ∈ [0, t− 1]. (22)

From Assumption 4, it follows that γgλ
∗
2γ∆ < 1. From this

fact and from (19) and (22) it further follows that:

||xt||∞ ≤
λ∗1

1− γgλ∗2γ∆
||rt||∞+

γgλ
∗
2

1− γgλ∗2γ∆
σ+

β∗

1− γgλ∗2γ∆
,

(23)
where xt = (x1, . . . , xt) and rt = (r1, . . . , rt). From the
fact that ||rt||∞ ≤ r and from (15), it then follows that
||xt|| ≤ x, i.e. xt ∈ Bx. Therefore, ω+

t ∈ Bxr and from (17),
it holds that f(ω+

t )− f(ω+
t ) ≤ D0. From Assumption 5, it

then follows that:

−γ∆||xt|| − σ + f(ω+
t ) ≤ γ∆||xt||+ σ + f(ω+

t ),

which implies that S+
t 6= ∅. Repeating this inductive

argumentation for all t ≥ 0, it follows that S+
t 6= ∅,∀t ≥ 0.

In addition, (23) will hold for all t ≥ 0 which implies
that the closed loop system is finite gain stable from the
reference to the state (see e.g. Definition 2.1). �

A direct consequence of Theorem 4.1 and its proof is that
the tracking error remains bounded ∀t ≥ 0. Namely, from
(3), (18) and (20) it follows that ∀t ≥ 0:

||rt−xt||≤IE(f∗, rt, xt, et)+γg|f̂t(xt−1, rt)−f∗(xt−1, rt)|.
Therefore, it is reasonable to expect the tracking error
to decrease as more data become available and the ap-

proximation accuracy of the function f̂t becomes better.

Moreover, from the fact that the approximation error of f̂t
is kept bounded ∀t > 0, it follows that the tracking error
always remains upper bounded by a function that linearly
depends on the norm of the state:

||rt−xt||≤IE(f∗, rt, xt, et) + γgγ∆||xt−1||+ γgσ, ∀t≥0.
(24)

Therefore, despite the fact that the controller f̂t can
change at each time step during operation, its behavior is
well determined as an upper bound on the tracking error
can be theoretically derived.

Note that a compromise has to be made in the selection
of the tuning parameters γ∆ and σ. Namely, taking small
values for γ∆ and σ leads to a tighter upper bound on
the tracking error in (24). However, taking γ∆ too small
may lead to the set Ω (see e.g. Lemma 3.2) being empty
and taking σ too small may require a very large number
of initial training data in order to satisfy Assumption 5.

5. EXPERIMENTAL RESULTS

The performance of the proposed control design algorithm
was tested experimentally on a water tank system. The



system consists of a round water tank that has a water
inlet at the top and a small opening at its bottom through
which the water leaks out of the tank. Water is injected
into the tank by a pump whose voltage v is the control
input. The pump has a nonlinear characteristic. Water
level in the tank, that we denote by h, is the controlled
variable and can be measured by a pressure sensor located
at the bottom of the tank. Hence, with reference to the
notation used in the previous sections, we have x = h and
u = v. A sketch of the described experimental setup and
a picture of it are shown in Fig. 1.

Water reservoir

v
h

Fig. 1. Exp. setup schematic (left) and photo (right).

A sampling time of 3 seconds was selected for controlling
the system. In order to implement the proposed design
scheme, we generated a 4000 sample long training data
DN . Based on the recorded data, by using the procedure
described in Novara et al. (2013), the noise bound δ and
the Lipschitz constants γg and γ∗ were estimated to be
0.15, 1.25 and 3.6 respectively. We selected the values of
λ∗1 and λ∗2 to be 1.12 and the value of β∗ to be 0, and
based on this we chose the value of γ∆ to be 0.15. In
addition, from the available training data DN , by using
the method proposed in Milanese and Novara (2007), we
calculated the value of D0 in (17) over the set Bxr defined
by x = 18 and r = 9 to be D0 = 5.8. We used the Gauss
kernel functions (see e.g. Schölkopf and Smola (2001)) to
parametrize the controller. All relevant tuning parameters
used by the algorithm are listed in Table 1. Note that the
parameters were selected such that Assumptions 4 and 5
are valid.

Table 1. Tuning parameters.

δ γ∗ γ∆ β µ q
0.15 3.6 0.15 2.9 0.82 20

In order to further illustrate the advantage of using the
proposed on-line scheme, we compared the performance
of the Algorithm 3.1 for the case when the updating of

the controller f̂t is stopped before the controller is put
into operation (at time step t = 0) and the case when
the updating is also done during controller operation.
The reference tracking performance for the two cases is
compared in Fig. 2. Although both controllers exhibit good
tracking performance, the performance of the controller
that is updated on-line improves over time as more data
becomes available. The average tracking error for the
controller that is updated on-line is 0.13 cm compared to
0.35 cm for the controller that is designed on the basis
of initial training data only. This illustrates the main
advantage of the proposed scheme, which is the ability
to exploit the incoming measurements obtained during
controller operation and have a predictable behavior at
the same time.

6. CONCLUSION

In this paper, we have proposed a novel on-line direct
inversion based control design method. The algorithm
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Fig. 2. Measured tank water level (tick lines) and the
desired reference (dashed line) for the case when
there is no on-line update (upper plot) and when the
controller is updated on-line (lower plot)

exploits the results from the set membership theory for
nonlinear systems and the theory of learning by projec-
tions in order to bridge the gap between the existing on-
line and off-line direct control design schemes. Properties
of the proposed algorithm have been analyzed theoretically
and its advantages were demonstrated experimentally on
a water tank system.
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