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Abstract

The deconvolution problem has been drawing the attention of mathematicians, physi-
cists and engineers since the early sixties.

Ubiquitous in the applications, it consists in recovering the unknown input of a
convolution system from noisy measurements of the output. It is a typical instance of
inverse, ill-posed problem: the existence and uniqueness of the solution are not assured
and even small perturbations in the data may cause large deviations in the solution.
In the last fifty years, a large amount of estimation techniques have been proposed by
different research communities to tackle deconvolution, each technique being related
to a peculiar engineering application or mathematical set. In many occurrences, the
unknown input presents some known features, which can be exploited to develop ad
hoc algorithms. For example, prior information about regularity and smoothness of
the input function are often considered, as well as the knowledge of a probabilistic
distribution on the input source: the estimation techniques arising in different scenarios
are strongly diverse.

Less effort has been dedicated to the case where the input is known to be affected by
discontinuities and switches, which is becoming an important issue in modern technolo-
gies. In fact, quantized signals, that is, piecewise constant functions that can assume
only a finite number of values, are nowadays widespread in the applications, given the
ongoing process of digitization concerning most of information and communication sys-
tems. Moreover, hybrid systems are often encountered, which are characterized by the
introduction of quantized signals into physical, analog communication channels.

Motivated by such consideration, this dissertation is devoted to the study of the
deconvolution of continuous systems with quantized input; in particular, our attention
will be focused on linear systems. Given the discrete nature of the input, we will
show that the whole problem can be interpreted as a paradigmatic digital transmission
problem and we will undertake an Information-theoretic approach to tackle it.

The aim of this dissertation is to develop suitable deconvolution algorithms for
quantized-input linear systems, which will be derived from known decoding proce-
dures, and to test them in different scenarios. Much consideration will be given to the
theoretical analysis of these algorithms, whose performance will be rigorously described
in mathematical terms.
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Chapter 1

Introduction

The deconvolution problem is concerned with recovering the unknown input of a con-
volution system given measurements of the output.

Such an issue is ubiquitous in many scientific and technological domains, ranging
from image restoration, astrophysics and geophysics to biological and biomedical sys-
tems and control of industrial processes. In these fields, the reconstruction of an object
given an image of it, namely an indirect or inaccurate observation, is often undertaken
and due to the physical impossibility of directly accessing the desired information. If
the relation between object and image, i.e., between input and output, can be modeled
as a convolution integral, then the problem is called deconvolution. This is the case,
for instance, of linear differential systems.

Motivated by the many applications, the analysis of the deconvolution problem
presents also interesting mathematical challenges for its nature of inverse, ill-posed
problem, which have been attracting the attention of mathematicians since the early
sixties. This dual theoretical and practical rationale has stimulated interdisciplinary
research on this topic; significant, wide-ranging contributions have been made in the
least thirty years and various resolutive techniques have been proposed. However,
no universal solution is possible for deconvolution in its most general formulation:
the practical aim and the mathematical structure (namely, the kind of system, its
dimensions, its parameters) for each particular instance may lead to very different
resolutive scenarios.

In that sense, deconvolution is destined to remain an open issue.

The mathematical formulation of the deconvolution problem (which will be mostly
discussed in Chapter 2) is generally the following: given a convolution system

x(t) =

∫ t

0
K(t− s)u(s)ds t ∈ [0, T ] (1.1)

where T is a (possibly infinite) time horizon, the aim is to recover the unknown in-
put function u(t) given measurements of the output x(t) and the knowledge of the

1



1.1 Thesis contributions

c

↓
n(t)

↓

u(t)→ CONVOLUTION∫ t
0
K(t−s)u(s)ds+betax0

→ x(t)→ · → y(t) → + → r(t) → DECONVOLUTION
û(t)=D

(
r(s), s∈[0,t]

) → û(t)

Figure 1.1: Deconvolution aims to recover the unknown input u(t) of a system given
the noisy output r(t). If this operation is not required to performed on-line, the de-
convolution algorithm D may process the whole function r(t), t ∈ [0, T ], to provide its
estimation û(t).

convolution kernel K(t) 1. Typically, measurements are impaired by inaccuracies or
incompleteness, which makes the issue more complicated.

1.1 Thesis contributions

An important example of convolution is provided by time-invariant, input/output linear
systems: 

x′(t) = Ax(t) + Bu(t) t ∈ [0, T ]
y(t) = Cx(t)
x(0) = x0

(1.2)

where u : R → Rp, x : R → Rq, y : R → Rr and A, B and C are consistent matrices,
vectors or scalar constant values. The input/output relation is given by:

y(t) = C

∫ t

0
e(t−s)ABu(s)ds+ CetABx0 (1.3)

which is a convolution integral with kernel K(t) = etA.
Let us suppose the output y(t) to be affected by an additive noise n(t) so that

r(t) = y(t) + n(t)

is the measured function; thus, deconvolution aims at evaluating the unknown input
u(t) by processing the available data r(t). The final result is an estimation û(t) (see
Figure 1.1).

The deconvolution of time-invariant, input/output linear systems is the main fo-
cus of this dissertation. A large amount of research has been devoted to this subject
since the 1960s and classical results are generally concerned with systems whose input
functions satisfy some conditions of regularity or smoothness. Moreover, most of decon-
volution algorithms work off-line, that is, in the hypothesis that t represents the time,
deconvolution is performed at the end of the transmission, say after the final time T
(clearly, here T is supposed to be finite); in this case, a deconvolution algorithm D can

1Notice that this is a causal version of convolution, that is, the output x at time t depends only
on the present and on the past, which will be the case considered in this work. More in general, the
integration extremes might vary all over the real line

2



1.1 Thesis contributions

use the whole function r(t), t ∈ [0, T ] to recover u(t), but this cannot be implemented
when a response about u(t) is needed in real-time or when T is not finite.

Our contribution, instead, is to analyze

• quantized-input systems: the unknown object is a stepwise constant function
assuming values in a finite set range;

• on-line deconvolution: û(t) is provided exactly at time t (or after a fixed delay);
this forces the algorithm to be causal, i.e., it processes only past and present
information: û(t) = D(r(s), s ∈ [0, t]).

The first point is motivated by modern applications, in which signals digitization is
increasingly being adopted, and by the need of processing signals with abrupt changes.
For example, the input of our system may be the output of a digital device or a signal
carrying information about the status of an industrial process. In the simplest case,
such status may be only “on” or “off”, so that the corresponding signal is binary, that
is, may assume only two different values.

More in general, the binary case is relevant since it models a lot of real-world
applications, from digital communications, where information is often encoded into
sequences of bits, to the fault control of industrial, mechanical and transport processes,
which basically aims to state whether a device works or not. On the other hand, it is
the reference paradigm of all the quantized signals under the theoretical point of view.
For that motivation, the analysis proposed in this dissertation is completed addressed
to the binary case.

Concerning the second point, as already said, the dynamical model (1.1) is causal,
that is the convolution on u at time t is performed on its present and past values. This
suggests the idea that deconvolution can be done on-line: the input is estimated time
after time, without waiting for final time T . More precisely, at any time t, a causal
algorithm processes r(s), s ∈ [0.t], and provides û(t) (with a possible delay).

Causality is not taken into account by classical deconvolution techniques, which
generally work off-line and do not envisage a dynamical state representation of the
problem. Nevertheless, in the applications, convolution systems are often associated
with processes evolving in time and, in this framework, on-line deconvolution turns out
to be necessary whenever a quick response is required or when the time horizon T is
large. For instance, let us consider those industrial processes or communication sys-
tems that in principle could never stop working: for them, deconvolution (which could
implemented, for example, for control purpose) cannot be performed “at the end”.

Classical deconvolution algorithms, which are efficient for smooth input functions
and generally work off-line, are not fit for the causal, quantized framework. New
methodologies have then to be developed, taking into account the prior information
about the discrete nature of the unknown quantity and the call of on-line resolution.

The aim of this thesis is to tackle this challenge. Our basic intuition is that In-
formation and Coding/Decoding Theory can provide the suitable tools to achieve the
goal, since it naturally deals with digital transmission and recovery of discrete input

3



1.1 Thesis contributions

c

↓
nk

↓

uk−1 → ENCODING
xk=E(u0,...,uk−1)

→ xk → · → yk → + → rk → DECODING
ûk−1=D(r1,...,rk)

→ ûk−1

Figure 1.2: Causal digital transmission paradigm at generic time k ∈ N

messages, arising from a known input’s alphabet, say a (finite) set of symbols. More-
over, even if classical decoding algorithms, such as the BCJR [10], work off-line, many
on-line alternatives can be easily developed.

It is not our purpose to review here the fundamentals of Information Theory and
Coding/Decoding techniques: the reader which is not familiar with basic digital com-
munication can retrieve them, e.g., in [17],[126]. Here, we just recall the pattern of a
typical digital transmission: a discrete sequence of symbols, said input message, has to
be transmitted to a receiver, throughout a channel, say the physical medium that carries
the message and which is generally affected by some noise. In order to make the com-
munication reliable, before the transmission the input message is encoded, that is, some
redundancy is added on it in order to preserve the information it carries even in case
of undesired alterations or partial erasure in the channel passage. Finally, the receiver
has to decode the message, i.e., he/it attempts to reconstruct the transmitted informa-
tion on the basis of the received noisy message and given the knowledge of the used
encoding rule. The Figure 1.1 represents a causal version of this model, in which the
encoding function E at time k acts on the past and present input symbols u0, . . . .uk−1

to produce the symbol xk; moreover, the estimation of uk−1 is performed on the basis
of the actual lecture rk and possibly using also the previous lectures r1, . . . , rk−1 when
information storage is possible.

Coming back to deconvolution, our key idea is to treat the deconvolution of quantized-
input linear systems as a decoding problem.

More in detail, the (causal) model represented in Figure 1.1 can be converted in the
discrete one shown in Figure 1.1 whenever u(t) is determined by a sequence of symbols
(u0, u1, u2, . . . ). In this case, our deconvolution system corresponds to a generic digital
communication model in the sense that the following aspects are equivalent:

• quantized input ⇔ digital message input;

• convolution of the input ⇔ encoding of the input;

• noisy measurements ⇔ transmission over a noisy channel;

• deconvolution ⇔ decoding.

Just one difference has to be remarked in this scheme: while encoding is generally
introduced to improve the transmission reliability, convolution is just an operation on
the input imposed by the physics of the system and it may even worsen the communi-
cation. In other terms, we state that convolution and encoding are equivalent as they

4



1.2 Summary of the thesis

both perform some operation on the input, with no further considerations about their
motivations and consequences.

Since quantized deconvolution techniques are not available, while many efficient
decoding algorithms have been developed in the last fifty years, our suggestion is to
use the latter in order to perform deconvolution. This will be the main task in this
dissertation, which involves the adaptation of the classical decoding methodologies to
our purpose.

We will derive and test different algorithms; in order to evaluate their performance,
we will provide both simulations and rigorous theoretical results.

1.2 Summary of the thesis

1.2.1 Chapter 2

Chapter 2 is devoted to a general introduction on the deconvolution problem.
First, we illustrate some applicative examples arising from both classical and hybrid

linear systems’ literature, the second framework being closer to our purpose.
Afterwards, we propose an overview on the family of inverse problems, of which

deconvolution constitutes a paradigmatic branch. We introduce the notion of inversion
and the problematics related to it (such as ill-posedness and ill-conditioning) and we
briefly describe the main resolutive methodologies, with particular attention to the
distinction between deterministic and probabilistic approaches.

1.2.2 Chapter 3

In Chapter 3, we introduce the subject of the dissertation, namely, the deconvolution
of linear systems with quantized input, in a general framework.

We describe the reference model and we recast it in an Information-theoretic per-
spective. The underlying idea is that decoding techniques, which are naturally devel-
oped for digital transmissions, are more suitable than classical deconvolution algorithms
to work with quantized signals.

Afterwards, we give a suitable probabilistic setting and we define the performance
goal in term of a minimization of a mean square cost. Finally, we introduce the
deconvolution-decoding algorithms we intend to use, discussing their origins and main
features.

1.2.3 Chapter 4

Chapter 4 is devoted to the differentiation problem, i.e., to the deconvolution of the
system (1.2) in one dimension and with parameters a = 0, b = 1 and c = 1. This is the
basic instance, however it presents the basic difficulties of the problem.

We test the previously introduced decoding algorithms to this case and we analyze
their performance using the theories of Markov Processes and Markov Process in Ran-
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1.2 Summary of the thesis

dom Environments. Particular attention is drawn to the asymptotic case, i.e., when
time tends to infinity. The main result is an ergodic theorem that theoretically assesses
the performance of the algorithms in terms of the mean square cost.

This chapter is partially based on the papers:

• F. Fagnani, S. M. Fosson, “An information theoretic approach to hybrid decon-
volution problems”, in Proceedings of 17th IFAC World Congress (Seoul, Korea),
pp. 10112–10117, July 6-11, 2008.

• F. Fagnani, S. M. Fosson, “Deconvolution of linear systems with quantized input:
a coding theoretic viewpoint”, submitted to Mathematics of Control, Signals, and
Systems, 2009, available at http://arxiv.org/abs/1001.3550.

1.2.4 Chapter 5

In Chapter 5 we present a generalization of the differentiation problem to one-dimensional,
input/output linear systems. The approach is the same presented in Chapter 4, but
the mathematical background is different since the state function assumes values

• in N in the differentiation case;

• in a not denumerable set (which can be in turn a compact interval or a Cantor
set) in the generic case.

This implies, for example, that not all the algorithms presented in Chapter 4 can be
efficiently implemented for generic linear systems among the algorithms, as complexity
problems arise in the not denumerable framework. Moreover, extending the theoretical
analysis proposed in Chapter 4 implies the study of Markov Processes in continuous
state spaces; in particular, when such space is of Cantor space no standard argumen-
tation can be used to study the asymptotic behavior of the related process. Iterated
Random Functions will be then introduced for this purpose.

Finally, in this chapter we propose an analytical comparison between our algorithm
and a Kalman Filter based technique. In particular, we exploit again the Iterated
Random Functions to analyze the Kalman Filter and we evaluate performance and
complexity of both methods.

This chapter is partially based on the papers:

• S. M. Fosson, P. Tilli, “Deconvolution of quantized-input linear systems: Analysis
via Markov Processes of a low-complexity algorithm”, in Proceedings of Interna-
tional Symposium MTNS 2010 (Budapest, Hungary), pp. 59–66, July 5-9, 2010.

• S. M. Fosson, “Analysis of a Deconvolution Algorithm for Quantized-Input Lin-
ear Systems through Iterated Random Functions”, in Proceedings of 18th IFAC
World Congress (Milano, Italy), pp. 11302–11307, Aug. 29 - Sept. 2, 2011.
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1.2 Summary of the thesis

1.2.5 Chapter 6

In Chapter 6, a Fault Tolerant Control application is studied. The system is multi-
dimensional and the goal is to detect faults or failures in a process. In this model,
we introduce also an active feedback with the aim of adjusting the system whenever a
fault is detected: this takes a different viewpoint on the problem. Since the system is
linear, the detection task actually is a deconvolution problem. We consider a particular
example arising from flight control literature and we propose some optimal criteria for
the design of a Fault Tolerant Control system.

This chapter is partially based on the paper:

• S. M. Fosson, “A Decoding Approach to Fault Tolerant Control of Linear Sys-
tems with Quantized Disturbance Input”, submitted to International Journal of
Control, 2010, available at http://arxiv.org/abs/1011.2989.
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Chapter 2

Overview on Deconvolution and
Inverse Problems

The deconvolution problem consists in recovering the unknown input of a convolution
system from the observation of the output.

Let us consider a (possibly infinite) time horizon T and a signal u(t), t ∈ [0, T ],
convolved with a convolution kernel K(t), producing x(t):

x(t) =

∫ t

0
K(t− s)u(s)ds t ∈ [0, T ]. (2.1)

The functions K and u are assumed to be so that the above integral makes sense.
Deconvolution aims to determine the input u(t) under the hypothesis that K(t) is known
and that x(t) can be observed (but with possible inaccuracies and/or sampling).

Such an issue occurs in various scientific, technological and industrial applications
since convolution systems arise, e.g., in signal and image processing, astronomy, geo-
physics, seismology, and biomedical engineering. The pervasiveness of the problem has
been strongly motivating the research since the early sixties and a large amount of
literature has been produced by diverse scientific communities.

Since the early studies, deconvolution has been attracting the interest of pure and
applied mathematicians given its nature of inverse problem. In general, an inverse
problem consists in determining an unknown, not directly measurable quantity by ob-
serving its response to a probing signal; in other terms, one aims to recover an unknown
quantity from the analysis of data connected with it by some physical laws. If the laws
are known, one could reasonably expect to find the solution just by inverting them, but
this is not the case whenever inaccuracies (even if small) affect the data. In fact, inverse
problems typically are ill-posed, i.e., small errors in the data may cause large errors in
the solution (see Section 2.3.1 for the exact definition given by Hadamard). Moreover,
if the problem is discretized, namely it consists in a matrix linear system or is reduced
to it for computational purpose, ill-conditioning may occur, which is again an error
amplification phenomenon, but due in this case to numerical issues (see Section 2.3.3).
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2.1 A few classical applications

In particular, a problem that originally is well-posed may become ill-conditioned after
discretization.

Ill-posedness and ill-conditioning underlie the main mathematical difficulty in in-
verse problems (and in particular in deconvolution), because they generally prevent the
exact reconstruction of the solution. This is why such problems are typically faced with
estimation techniques: one tries to approximate the solution on the basis of given mea-
surements and minimizing a suitable distance functional between estimated and right
solutions. Naturally, there is no universally convenient estimation technique, given the
extent of the inverse problems’ family. For instance, let us consider deconvolution: in
order to establish a good estimation of the input we have to take account of the di-
mensions of the problem, the kind of convolution kernel and also the applicative goal
of the system, that is, which is the fundamental information we need to know about
the input. For example, in a control system the goal might be to determine if the
input function overpasses a given threshold and the error functional should reflect this
fact. Moreover, in many situations, the input function represents a physical signal and
is known to have some properties, e.g., of boundedness or smoothness, which narrows
the range of likely solutions: this must be considered in the development of an ad hoc
estimation algorithm.

The techniques used for different models are very peculiar and this is why the
literature about deconvolution is so wide and includes many disparate approaches.

This dissertation deals with the deconvolution of input/output linear systems with
quantized input: the goal is to estimate the input by observing a noisy, sampled version
of the output, under the hypothesis that the input is a step function that assumes only
a finite number of constant values.

Before introducing our case study, we provide a general introduction to the decon-
volution problem and we collect some bibliographical references. Given the extent of
the problem, a comprehensive survey is not feasible. Here, we first present a few clas-
sical case studies and applications from inverse and deconvolution literature (Section
2.1) and then some specific examples, belonging to the family of the quantized input
linear systems, that motivate our work (Section 2.2).

Afterwards, Section 2.3 will be devoted to a general discussion about inverse prob-
lems, aimed to illustrate the mathematical difficulties that deconvolution presents. In
Sections 2.4 and 2.5 the most important approaches to deconvolution and inverse prob-
lems will be shown and finally some references are collected by topic in Section 2.6.

2.1 A few classical applications

In this section, a few instances of inverse and deconvolution problems are surveyed,
coming from classical literature, which was oriented to continuous systems with inputs
characterized by some regularity condition.
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2.1 A few classical applications

2.1.1 Image Processing

An image can be defined as a signal “carrying information about a physical object
which is not directly observable”[18, Chapter 3]. In other terms, an image is a degraded
representation of an object, where degradation is basically due to blurring in the image
formation, that is, to disturbances such as relative motion between the camera and
the object being captured, diffraction, aberration, atmospheric perturbations, and to
noise, e.g., measurement inaccuracy, which is intrinsic to the image detection process.
In this context, we call image deconvolution a post-processing of the detection of an
image, aimed to reduce its degradation.

From a mathematical viewpoint, an image can be described by a function with
domain in Rn where n = 2 or n = 3 respectively for the two-dimensional and three-
dimensional cases. Let f(x), x ∈ Rn, be the intensity at x of an object and g(x) the
image produced by an optical instrument. In most situations, the imaging system can
be approximated by a linear operator A, that is g = Af : moreover, in the case of space
invariance, A is a convolution operator, say

(Af)(x) =

∫
Rn
h(x− y)f(y)dy (2.2)

where h(x) is the so-called Point Spread Function (PSF) and models the blurring.
Finally the detected image is the function

j(x) = g(x) + n(x) (2.3)

where n(x) is an additive noise. The image deconvolution consists of estimating f(x)
given the noisy, blurred image j(x).

This generic model can be retrieved in different fields, such as astronomy, microscopy
and medical imaging.

2.1.2 Astronomy

Image deconvolution is fundamental in astronomy, where the reconstruction of scien-
tific content from observations is widely faced. Typically, astronomical photograph is
strongly affected by the large distance between camera and object and to the conditions
in which images are recorded, such as turbulence and exposure time.

A leading example is the image deconvolution for telescopes. The mathematical
model is basically the one given by (2.2, 2.3), the parameters of which depend on the
characteristics of the telescope and the atmospheric conditions. It is important to notice
that in the deconvolution problem, the PSF, say, the convolution kernel, is supposed
to be known, but in the case of telescopes this is not true. The PSF can however
be deduced from experimental data: for example, the telescope may be pointed to
a reference object to reconstruct it; in many cases, this task is achieved with good
precision, but inaccuracies in the PSF cannot be totally avoided.

Applications of deconvolution to telescopes have been studied for the Hubble Space
Telescope (HST, see [140], http://hubblesite.org/) and more recently for the Large
Binocular Telescope (LBT, see [19], http://medusa.as.arizona.edu/lbto/).
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2.1 A few classical applications

The deconvolution problem in case of unknown (or partially known) kernel, not
discussed in this dissertation, has been widely studied in the last years and is referred
to as blind (or myopic) deconvolution (see, e.g., [141]).

2.1.3 Seismology

Reflection seismology concerns the exploration of the Earth’s internal structure by
analyzing the reflectivity of subsurface layers and has been widely used in the last fifty
years for mining and petroleum industrial purposes. Generally, this kind of exploration
is performed recording the effects of an impulsive source, such as an explosion. The
recorded data, say the seismic trace, is the result of the superposition of seismic wavelet
replica (produced by the source) reflected from the interfaces of subsurface layers. More
precisely, the model, early proposed in [128] is the following

z(k) =

k∑
i=1

µ(i)w(k − i) + n(k) (2.4)

where µ is the reflectivity function, w is the wavelet and n is an observational noise: this
is an example of discrete convolution system. The goal is to estimate the reflectivity
from the seismic trace z.

We remark that seismology is an early application of deconvolution, the first works
being dated in the last fifties [128]. Later significant works are [7, 83, 117]. More
recently, in [30] the problems of microseismic deconvolution have been discussed.

2.1.4 Tomographic Reconstruction

Deconvolution is involved in many biological and medical systems. In particular in the
field of medical imaging, which studies how to create images of parts of the human body,
the problem of recovering information from an image (for instance a radiography, a
tomography, an electrocardiography) often arises. Actually, medical imaging is oriented
to the direct problem, that is, to the procedure and the instrumentation to create image,
while deconvolution is connected to the inverse problem of determining the biological
quantity of interest (e.g., the activity of the heart, of the brain) just by observing the
image (see Section 2.3 for a definition of direct and inverse problems).

In the last decades, tomography, that is, the study of three-dimensional objects
through two-dimensional cross-sections or slices, has been widely studied and formalized
from a mathematical viewpoint. The mathematical description of tomography can be
formulated in terms of deconvolution, even if the relation between input and output is
actually given by a line integral. Moreover, tomography is connected with projections
and the model that one obtains is a Radon transform.

Different tomographic techniques have been developed. The first one dates 1971;
introduced by Hounsfield, it is referred to as X-ray or computed tomography; it is based
on the penetration of a certain part of the human body with X-rays from different
directions, which can provide information about anatomical aspects.
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2.1 A few classical applications

A different tomographic technique is instead based on the injection or inhalation of
radionuclide-labelled agents said radiopharmaceuticals; their distribution in the human
body depends on physiological activities, such as blood flow and metabolism and can be
detected by the γ-rays produced by the decay of radionuclides. Such technique, named
emission computed tomography (ECT), is useful to infer the functions of the biological
tissues of the organs and may be applied with different modalities (fro example, PET
and SPECT, see [18, Section 8.3]).

Notice that tomography is used not only in the medical diagnosis, but also in many
other fields, e.g., manufacturing industry, production quality control and security (for
example, in the luggage check).

Computed tomography can be described by the following mathematical model. The
object of interest is the linear attenuation function f(x) which assesses the density of
the body at point x and also represents the X-rays absorption by some tissue. X-
rays are then used to determine f : a source generates a pencil beam of X-rays which
propagates through the human body along a straight line L up to a detector. Let us
call I(x) the intensity of the beam at point x of L: then, the loss of intensity of the
corresponding element dl of L is given by dI() = −f(x)dl which is equivalent to

log

(
I

I0

)
= −

∫
L
f(x)dl (2.5)

where I0 and I respectively are the intensity of the beam outgoing from the source and
the intensity measured by the detector. Emissions and measurements are repeated by
moving the source and the detector simultaneously and in the same direction, say θ1;
afterwards, the projection angle is changed and again source and detector are moved
in the same, new direction θ2. By repeating the procedure for a sufficient number of
different angles, one obtains all the sufficient projections of f(x). In particular, the
projection of f(x) along a direction θ is given by

Pf(θ, s) =

∫
L
f(x)dl =

∫
R

f(sθ + tθ⊥)dt. (2.6)

X-ray tomographic reconstruction consists in estimating f(x) from the projections
Pf(θ, s) (which are usually noisy), where θ may assume different values according
to the projections that are required to recover the image.

Notice that this is not properly a deconvolution problem, since the integral in (2.6)
is not a convolution operator, but a projection operator known as Radon transform:
however, it has been presented here since the similarity to deconvolution is evident.

For more details on tomography, see [52], [18, Section 8.2] and [36, Chapter 12].

2.1.5 Biomedical Engineering

Deconvolution is important not only in medical imaging, but also in other biomedical
analysis. For example, it is involved in the study of the insulin secretion rate (ISR,
[137, 116, 115]), which is a quantity used to assess the glucose regulation in humans.
A concrete application of its study is then the diagnosis and therapy of diabetes.
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2.2 Applications of linear hybrid systems

ISR is not directly measurable in vivo. Insulin is secreted by the pancreas, usually
in response to raised plasma glucose concentration, and then reaches the plasma; in the
passage, a certain, not known percentage of it is extracted by the liver and this makes
impossible to assess it. However, an equivalent amount of C-peptide (CP) is co-secreted
with insulin and is not extracted by liver before reaching plasma. The ISR can then be
retrieved by CP and in fact injection of glucose and measurement of CP is a common
procedure (named intravenous glucose tolerance test, IVGTT) used to estimate ISR.

In particular, the mathematical law that connects ISR and CP is a convolution
integral of kind:

CP(t) =

∫ t

−∞
K(t− s)ISR(s)ds (2.7)

where kernel K is the impulse response to the system [116] and CP and ISR are ex-
pressed as functions of time,

Hence the reconstruction of ISR is a deconvolution problem.

2.2 Applications of linear hybrid systems

Input/output linear systems have been representing a conspicuous class of deconvolu-
tion systems since the early studies, as many natural and technological processes are
linear or can be linearized, that is, suitably approximated by linear equations. Consider

x′(t) = Ax(t) + Bu(t) t ∈ [0, T ]
y(t) = Cx(t)
x(0) = 0

(2.8)

where u(t) ∈ Rm, x(t) ∈ Rn and y(t) ∈ Rp respectively are the input, the state function
and the output; A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are constant matrices; T is a
possibly infinite time horizon. Recovering the input u(t) from y(t) is a deconvolution
operation, in fact

y(t) = C

∫ t

0
e(t−s)ABu(s)ds. (2.9)

Moreover, in many situations the time is discrete or discretized, for example for nu-
merical implementation purposes. Fixed a suitable discretization step τ > 0, let

u(t) =
∑
k∈N

uk1[kτ,(k+1)τ [(t), uk ∈ Rm (2.10)

that is, the input is a piecewise constant function determined by a sequence of vectors
of Rm. In such case, the dynamical equation (2.9) becomes

y(kτ) = A−1(eτA − I)e(k−1)τA
k−1∑
h=0

Buhe
−hτA
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2.2 Applications of linear hybrid systems

such that we can write the following recursion (see Chapter 5 for details):

xk = Qxk−1 + Wuk−1

where xk = x(kτ), Q = eτA and W = A−1(eτA−I). A subcase of (2.10) is the quantized
input case, namely the input can assume values in a finite set U :

u(t) =
∑
k∈N

uk1[kτ,(k+1)τ [(t), uk ∈ U . (2.11)

This will be the main subject of this dissertation, the interest of which arises from
the spreading of digital technologies in many scientific and engineering fields. A digital
device typically produces or processes a quantized signal; in our context, we may assume
the input to be generated by a digital device and then to be naturally quantized or to
be a continuous function quantized for successive processing purpose.

Notice that we consider the input to be quantized, while the linear system (2.9) is
analogical, that is, continuous. This is a common occurrence in many modern tech-
nologies, where the integration of digital and analogical components is required. Such
systems are generally known as hybrid systems are have been largely studied in the last
decades.

In concrete applications, noise typically affects the measurements. The model
should then envisage an observational noise nk, so that the available output actually is
the sequence

rk = Cxk + nk, k ∈ N.

In some cases (but not in this dissertation) also a process noise mk is considered, so
that xk = Qxk−1 + Wuk−1 +mk.

The deconvolution (2.9) with (2.11) in general cannot be accomplished by classical
algorithms, which typically require some regularity on the solution. Here, in fact, the
input is not continuous and present abrupt changes.

It is well-known that in the presence of white noises nk and mk (by white noise
we mean a zero-mean random process whose autocorrelation matrix is a multiple of
the identity matrix), the states xk of (2.9) with (2.10) can be efficiently estimated by
the Kalman Filter, which provides the best estimate among the linear estimates in the
sense of minimization of the mean square error (see Section 2.5.8). In particular, if the
noises are Gaussian, the Kalman Filter is the best estimate, not only among the linear
ones.

The Kalman Filter is largely adopted to study systems excited by discrete, abruptly
changing signals. In particular, the optimal estimates of the states provided by Kalman
Filter can then be used to estimate the uk’s (we will discuss this point in Chapter 5),
but optimality on the input estimation is not given, which motivates us to study other
approaches.

In order to motivate our work, we now present some important applications where
the deconvolution of linear systems with quantized input is required.
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2.2 Applications of linear hybrid systems

2.2.1 Fault Detection

Almost all technological, industrial and transport processes are affected by faults. Let
us consider an airplane: its flight is a process that involves the functioning of a large
number of physical devices, which are used to accomplish the various tasks required
to safe travel. However, such devices may undergo breakdowns and this may cause
serious problems in the flight management. A trivial example of that should be the
malfunctioning of the sensor that measures the distance between aircraft and earth: if
its measurements are wrong and if the pilot does not detect the presence of an error,
very dangerous consequences may be provoked.

It is now clear the importance of fault detection, that is, the capability of revealing
abnormal behaviors of a device. In many situations, process models are dynamic linear
systems of kind (2.8) in which the input envisages a fault component; more precisely,
in the input are present the contributions of a known control function f(t) and an
unknown function representing the status (faulty or not faulty) of the process z(t).
The combination of f(t) and z(t) in the input depends on the context (see for instance
[71, Chapter 5] for a discussion on this issue); for example we could have a product:

x′(t) = Ax(t) + Bz(t)f(t) t ∈ [0, T ]
y(t) = Cx(t)
x(0) = x0

(2.12)

Assuming z(t) ∈ R, z(t) = 1 may represent the fault-free status, the system being com-
pletely driven by f(t), while z(t) ∈ (0, 1) may reflect a diminution of the effectiveness
of the system, the effect of f(t) being attenuated (see, e.g., [47]).

Fault detection in systems of kind (2.12) corresponds to the estimation of z(t) given
a noisy version of y(t): in other terms, it is a deconvolution problem.

In many cases, it is not a classical deconvolution problem in the sense that z(t) is
affected by abrupt changes whenever the fault manifests suddenly. Moreover, quanti-
zation of z(t) is often assumed, for instance if the fault occurs on a digital device. In
the simplest case, a switch between two levels can be considered: let us imagine, for
instance, that the device of interest normally assumes a constant value, while in case
of fault, it switches off. Furthermore, in other cases, quantization can be assumed for
numerical purposes. In both frameworks, we reduce to the hybrid setting described at
the beginning of this section.

This fault detection issue will be studied in Chapter 6, with the purpose of designing
a fault tolerant control system for a flight instance: we will discuss how to integrate a
suitable fault detection with the introduction of a compensation input, with the aim of
attenuating the bad effect of the fault.

2.2.2 Maneuvering Targets Tracking

The tracking problem is a military application of deconvolution of linear systems with
quantized input. Suppose that one aims to track a manned maneuverable vehicle, for
example an aircraft: the dynamics is given by a linear system whose state may represent
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2.2 Applications of linear hybrid systems

the position and the velocity of the target vehicle, while the input may represent the
value of a pilot-induced maneuver, e.g., an acceleration. The input estimation is then
required for tracking.

Typically, the unknown maneuver is modeled as a stepwise constant function assum-
ing values in a finite set. In particular, early results on tracking maneuvering targets
consider just two levels: 0 and u 6= 0, respectively representing the no-maneuver and
maneuver states [134]. The goal is then to detect if a maneuver has been done and
in such case to estimate its unknown constant value u. More complex instances are
studied by the so-called generalized input estimation [88] which assumes the maneuver
to be a linear combination of known basic time functions.

When the basic time functions are stepwise constant, we obtain tracking models of
kind (see [25]): {

xk+1 = Qxk + Wuk +mk uk ∈ U
yk = Cxk + nk

with where xk ∈ Rn and yk ∈ Rp, A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n and U is a
known finite set. Given such formulation, the problem can be faced, e.g., using a bank
of |U| Kalman Filters, see [90, 25].

For more details, a long survey about maneuvering targets tracking has been re-
cently written and divided into different papers (see http://ece.engr.uno.edu/isl/MTTSurveys.htm);
[89] is the first part of this work.

2.2.3 Quantized Control Systems

The problem of stabilizing a time-invariant linear system with a finite number of control
values is very actual. In many contexts, in fact, quantization is necessary for example
to send information on communication channels with particular physical or technolog-
ical constraints. Quantized Control Systems (QCS for short) are then all those linear
systems on which control is performed through a quantized control input.

The basic model considered in Quantized Control is the following:{
xk+1 = Qxk + Wuk uk ∈ U
yk = Cxk

where U is a finite set and typically u is a feedback control obtained by quantization
of some function of the output.

The recent literature on QCS faces problems such as the derivation of a quantization
protocol that allows to maintain stability [44] and stabilization and reachability proper-
ties of quantized systems [22, 114, 50]; in these frameworks, the control input is known.
Suppose instead, that one cannot access the control process, but needs to recover the
control input sequence, just looking at the output of the system and knowing which
quantization has been performed on the input: this is an example of deconvolution
problem of linear systems with quantized input.
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2.2 Applications of linear hybrid systems

2.2.4 Mode estimation for switching systems

Nowadays, many industrial and control procedures can be described in terms of linear
systems switching among different modes, that is, given a finite set of different time-
invariant dynamical linear systems, in turn the process follows one of them, the switch
among systems being governed by a logical device. In other terms, at any switch
corresponds a change in the parameters of the system.

This is a typical example of hybrid problem, where the basic dynamics is continuous,
but the decision on which is the “current dynamics ”is due to some digital element.
The whole process is then affected by discontinuities and abrupt changes. A certain
amount of work has been produced on this subject in the last years, the interest on
it being motivated by the increasing introduction of digital checks and commands in
continuous processes, in particular in control applications; see, e.g, [26, 39, 43, 23, 9],
and the references therein for an overview on the problem.

Switching systems can be written as linear systems depending on a switching pa-
rameter. Slightly different models have been proposed in literature. For example, in
[9], the model is the following:{

xk+1 = Q(λk)xk + W(λk)uk +mk

yk = C(λk)xk + nk

where uk, xk, yk, mk and nk are real vectors (mk and nk respectively represent a process
noise and a measurement noise), while λk ∈ {1, 2, . . . , L} is the discrete state or mode
of the system, that is the parameter that decides the parameters of the system.

Consider the following simple one-dimensional case{
xk+1 = qxk + w(λk)uk
yk = cxk + nk

with λk ∈ {0, 1} and w(λk) = λk and suppose that the control input uk is constant
and equal to 1: the mode estimation in such case can be interpreted as a deconvolution
problem; in particular, this is the model we will study in Chapter 5.

An important class of switching systems is given by jump linear systems [23] in which
the switch is ruled by some Markov process. In such cases, we may face a deconvolution
problem with stochastic input, which will be a main focus in this dissertation. Another
possible instance is a linear system in which the noise is random, for example Gaussian,
but its distribution parameters change in time according to Markov law [4].

Methods for mode estimation in switching systems typically arise from control and
fault detection areas and in many cases an active approach in exploited, that is, the sys-
tem is excited by a suitable control input; for what concern jump systems, probabilistic
methods are used, such as the Bayes Methods, Maximum a Posteriori estimation and
Kalman Filters.

17



2.3 Inverse problems

2.3 Inverse problems

In 1976, Joseph B. Keller [81] called “two problems inverses of one another if the
formulation of each involves all or part of the solution of the other. Often, for historical
reasons, one of the two problems has been studied extensively for some time, while the
other is new and not so well understood. In such cases, the former is called the direct
problem, while the latter is called the inverse problem”. This is probably the most
general and frequently quoted definition, however slightly different interpretations are
common. For example, from a physics-oriented viewpoint, one may define the direct
problem as the one that follows the “natural direction” [36, Introduction] of cause-
effect; in this setting, a direct mechanical problem is to compute the trajectory of an
object given the forces acting on it, while the inverse problem is to retrieve the forces by
observing the trajectory. Similarly, let us consider the heat equation with boundary and
initial conditions: deducing the temperature at a given final time is a direct problem,
while measuring the final temperature distribution and trying to determine it at earlier
times is an inverse problem. An other example arises from scattering theory: the direct
problem is the computation of the scattered waves from the knowledge of the source
and obstacles, while the determination of the obstacles from source and waves is the
inverse perspective. Many other physical examples can be found in the literature, see,
e.g., [82, Section 1.1] and the survey paper [78].

By Keller’s definition, some information about the solution of the direct problem is
necessary to face an inverse problem. Clearly, a perfect knowledge of that solution would
be the ideal condition, but in the practice this is never achieved because of measurement.
The starting point for an inverse study is indeed the observation of the experimental
data obtained by the direct process, on the basis of which, along with prior information
on the process itself, one tries to recover the input. Observations are never completely
reliable: usually, systematic errors occur due to the measurement instrumentation;
moreover, instrumentation may capture only some data (for instance, samples at fixed
time instants). In other terms, two aspects must be taken into consideration: first,
the quantity that one aims to study is not directly observable, but can be inferred
only through the observation of an image produced by the direct process; second, the
measurements do not provide a perfect knowledge of the image, since some inaccuracies
cannot be avoided. Inverse problems usually are affected by both aspects, but even
issues characterized by of just one of them (either direct inaccurate measurement or
indirect accurate measurement) may be incorporated in the family of inverse problems.

In mathematical terms, the most general formulation of an inverse problem is the
following: given two spaces X and Y (the nature of those spaces will be discussed later)
and an operator Φ : X → Y, let

Φ(x) = y x ∈ X , y ∈ Y. (2.13)

The direct problem is to compute y given x and the direct operator Φ; the inverse
problem, instead, consists in recovering x given a measurement r = r(y) ∈ Y of the
direct solution y and by inverting the operator Φ. More precisely, the aim is to construct
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2.3 Inverse problems

an operator Ψ : Y → X such that

Ψ(r) = x. (2.14)

The problem is that, in general, the operator Ψ cannot be constructed for many
motivations, which we depict through a few toy examples.

Example 1 (Sum) Let X = R2, Y = R and let Φ be the linear transformation that
computes the sum: Φ(x) = x1 +x2 where x = (x1, x2). We can imagine the operator Φ
as a system which takes two numbers as input and computes their sum as output. In
this case, it is clear that even if we exactly measure the output y we cannot retrieve the
input x = (x1, x2), in the sense that infinite values of x are possible. In other terms,
the operator Φ is not invertible.

Example 2 (Product-Division) Let X = Y = Cb(R) be the space of all the con-
tinuous and bounded functions on R and φ(x) = εx where ε > 0 is very small. The
inversion is clearly possible: if we know y = Φ(x), x = Ψ(y) = y

ε . Nevertheless, let us
suppose that a small constant error affects the measurements, say r = y +

√
ε: then,

Ψ(r) = x + 1√
ε
>> x. We conclude that inversion is possible, but unstable with re-

spect to measurement errors, say small errors in the data may cause large errors in the
inverse problem solution.

Example 3 (Integration-Differentiation) Another unstable example is provided by
the couple integration-differentiation. Consider the integration as direct operation: let
X = Y = C1[0, 1] and Φ(x) =

∫ t
0 x(s)ds. Integration is known to be a smoothing

operation, which inevitably causes a “loss of information” about the object to which
it is applied. In fact, if

∫ t
0 x(s)ds = y(t), then x(t) = y′(t), but if the measurement

is affected by an oscillatory noise of small amplitude and high frequency, say r(t) =
y(t) + ε sin( 1

ε2
t), the inversion produces the solution Ψ(r) = r′(t) = x(t) + 1

ε cos( 1
ε2
t)

which largely oscillates around the correct solution.

Example 4 (Laplace equation) Another classical example of instability is provided
by Laplace equation ([65]):

∂2u

∂x2
+
∂2u

∂y2
= 0 (2.15)

with the following Cauchy conditions:

u(x, 0) =
1

n
cos(nx),

∂u

∂y
(x, 0) = 0. (2.16)

Given those data, our aim is to compute u(x, y). The (unique) solution of (2.15-2.16)
is

u(x, y) =
1

n
cos(nx) cosh(ny). (2.17)

Now, if n → ∞, u(x, 0) → 0 while for y 6= 0, u(x, y) → ∞. In other terms, a large n
produces a tiny oscillation in the data at y = 0, but causes a huge oscillation at any
finite distance from y = 0.
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Example 5 (Fredholm integral equation of the first kind) Let us consider the
Fredholm integral equation of the first kind [21, 78]

y(s) = (Lx)(s) =

∫ b

a
K(s, r)x(r)dr x(r) ∈ C[a, b], y(s) ∈ C[c, d] (2.18)

(notice that if K(s, r) = K(s − r), (2.18) is a convolution integral) with kernel K
continuous and differentiable with respect to both s and r. Such problem is ill-posed
because solutions may not exist for some functions: for example, if y(s) is continuous
but not differentiable on [c, d], then the equation cannot have a continuous solution
x(r).

A complete list of well-known ill-posed inverse differential problems can be retrieved in
[78] and [82].

These examples have highlighted some typical inversion and stability issues, which
are common among the inverse problems. A formalization of these concepts is provided
by the Hadamard definition of ill-posedness, which is now recalled.

2.3.1 Ill-posedness

In 1902, Hadamard stated the conditions for a mathematical problem to be well-posed
[64]:

1. Existence of a solution: for each item of data y in a given topological space Y,
there exists a solution x in a given topological space X .

2. Uniqueness of the solution: the solution is unique in X .

3. Continuity with respect to the data: x depends on y with continuity.

A problem is ill-posed when at least one of these three conditions is not fulfilled.
For what concerns inverse problems, it is easy to see that the Existence and Unique-

ness conditions, respectively, are equivalent to surjectivity and injectivity of the direct
operator. Continuity, instead, guarantees in particular that is y is affected by a small
error δy, then also the error δx induced on the solution x is small. Notice also that the
Continuity condition depends on the topology of the considered spaces; in the next, we
will mainly consider the cases of Hilbert spaces.

Ill-posed problems are very frequent in mathematics and engineering. Moreover,
the most of inverse problems are ill-posed, even if the corresponding direct problems
are well-posed. Let us see some examples.

Example 6 (Continuation of Example 1) The direct operator Φ is not injective.
Therefore, the Uniqueness condition is not fulfilled by the inverse problem, which turns
out to be ill-posed.

Example 7 (Continuation of Examples 2-3) For both examples, we have that ||r−
y||∞ ≤ ε, while the distance between Ψ(x(t)) and Ψ(r(t)) may be of order 1

ε , at least
for some t ∈ R. In conclusion, continuity does not hold.
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For simplicity of exposition, from now onwards we will assume that

X , Y are Hilbert spaces

L : X → Y is a linear, continuous operator.
(2.19)

In the setting (2.19), let us try to invert L, namely to solve

Lx = y. (2.20)

Let us study its well-posedness, that is, the existence of a continuous operator

M : Y → X s.t M ◦ L = I (2.21)

where I is the identity operator. The continuity of M should guarantee that small
perturbations on y produce only small perturbations on the solution My = x. First,
the existence of the solution x is assured only if L is surjective; second, L must be
injective, otherwise Lx = y could have more than one solution. Moreover, continuity is
assured only if Im(L) is closed, as a consequence of the Open Mapping Theorem (see,
e.g., [130]).

This shows that many difficulties may arise in direct inversion due to ill-posedness.
In order to tackle this issue, the most classical methods are generalized inversion and
regularization methods, which are exposed in the next.

2.3.2 Least Squares and Generalized Inverses

In the previous section, we have highlighted the difficulties arising from ill-posed prob-
lems, which in general cannot be solved by a direct mathematical operation; even when
it is possible to find out a solution, this one may be completely affected by noise, so
not physically reliable.

The most classical method to tackle ill-posedness is provided by Least Squares and
Generalized Inversion. We briefly expose them in the setting (2.19).

Our aim is to solve the equation Lx = y. The Least Squares method (or pseu-
dosolution) consists in computing the solution of the following variational problem:

argmin
x∈X

||Lx− y||Y . (2.22)

In Hilbert spaces, this problem is equivalent to solve the Euler equation [21]:

L∗Lx = L∗y (2.23)

where L∗ is the adjoint operator of L.
Notice that uniqueness is not assured if L is not injective. However, uniqueness

can be re-established considering the solution of the equation (2.23) that has minimal
norm: this is called a Generalized solution of the ill-posed problem and is indicated by
xG:

xG = argmin
x∈S

||x||X where S =

{
x̂ ∈ X : x̂ = argmin

x∈X
||Lx− y||Y

}
. (2.24)
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In other terms, the Generalized solution is the Least Squares solution with minimal
norm, which is unique since the set of solutions of (2.23) is convex and closed (see [36,
Section 1.4]).

The existence of xG is guaranteed only under some conditions: (2.22) corresponds
to compute the projection of y on the closure of Im(L), hence the generalized solution
exists only if such projection lies in Im(L), which holds if and only if

y = Im(L) + Im(L)⊥.

Thus, no problems arise if Im(L) is closed: in this case the generalized solution exists
and also the linear operator

LG : Y → X
LGy = xG

is continuous. Nevertheless, if Im(L) is not closed, then the Generalized solution exists
if y = Im(L) + Im(L)⊥ (which is a dense subspace of Y), but the continuity of LG is
not provided.

To sum up the above, the uniqueness issue can be worked out using Generalized
inverses solution, whose existence is guaranteed if the range of L is closed along with
the continuity of LG. On the other hand, if the range of L is not closed (for instance,
when L is compact on a space of infinite dimension), LG, if it exists, in general is not
continuous. The closure of Im(L) is then a crucial point up to now.

Let us see some examples.

Example 8 (Continuation of Example 1) In the Sum example, the Least Squares
solution is given by argminx∈R2(x1 +x2−y)2, which is not unique, since minx∈R2(x1 +
x2 − y)2 = 0 for every x ∈ R2 such that x1 + x2 = y. Among them, the Generalized
solution is the one with minimal norm, say xG = argminx:x1+x2=y x

2
1 +x2

2 which can be

easily solved by Lagrange multipliers method, the solution being xG = y
2 (1, 1). Notice

that xG is perpendicular to the kernel of the Sum operator generated by (1,−1).

Example 9 (Continuation of Example 3) Let us consider the integration/differentiation
problem supposing that X = C[0, 1], with norm ||x|| = maxt∈[0,1] |x(t)|. Then Im(L) =
{f(t) ∈ C1[0, 1] : f(0) = 0}. It is easy to check that Im(L) is not closed. For instance
let us consider the sequence of functions fn(t) = |x − 1/2|1+1/n − 1/21+1/n. For any
n ∈ N, fn(t) ∈ Im(L), but the sequence uniformly converges to |x − 1/2| − 1/2 which
has no derivative in t = 1/2

The method of Generalized Inverses seems to be first introduced by Fredholm in
1903 [55], which gave a Generalized solution of an integral problem. The reader is
referred to [99],[16] and to the references therein for a more general and comprehensive
treatment on the subject; furthermore, an extensive on-line bibliography can be con-
sulted at the web page of the International Linear Algebra Society: http://www.math.technion.ac.il/iic/research.html.
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2.3.3 Ill-conditioning

Well-posedness is not sufficient to guarantee the stability of a system, since also nu-
merical instability may affect the problem. Numerical instability is connected with
discretization: in most situations, even if the problem is formulated in a continuous
space, the experimental data are given by measurements performed at a finite number
of points in the domain of definition and in time. In fact, the observable quantities
may not always be accessible or the instrumentation to perform measurements may be
digital, hence the data are gathered in the form of vectors and matrices.

Let us consider the discretized version of Lx = y, that is, suppose the operator L to
be suitably approximated by a matrix L. The system to invert is now: y = Lx where x
and y are consistent vectors. By Generalized Inversion, we can define LG as xG = LGy.
Suppose now that an error δy occurs on the data and let δxG be the induced error on
the Generalized solution: then, δxG = LGδy and also ||δxG|| ≤ ||LG|| ||δy|| which
combined with ||y|| ≤ ||L|| ||xG|| produce the following inequality:

||δxG||
||xG||

≤ ||L||||LG|| ||δy||
||y||

(2.25)

which represents a bound for the induced error rate in function to the data error rate.
The quantity ||L||||LG|| is named condition number and a problem with condition
number considerably larger than one is said to be ill-conditioned.

Notice that ill-conditioning generally does not depend on the accuracy of the dis-
cretization (see [18, Section 4.4]): in fact, if the problem is ill-posed it may happen that
the finer the discretization, the larger the condition number.

Example 10 (Continuation of Example 3) . Let us set in C1([0, 1]) and discretize
the integral problem by associating to each function in C1([0, 1]) a vector in RN con-
structed by sampling the function at k

N , k = 1, . . . , N , that is, x = (x1, . . . , xN ), xi =

x( i
N ), i = 1, . . . N represents x(t). Moreover, the discretized version of y(t) =

∫ t
0 x(s)ds

is given by yi = 1
N

∑i
j=1 xi or, in matrices terms, y = Lx where

L =
1

N



1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 1 1 0 · · · 0
...

. . .
...

...
. . .

...
1 1 1 1 1 1
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Since

LG = L−1 = N



1 0 0 0 · · · 0
−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
0 0 0 0 −1 1


and considering the matrix norm || ||1 (||A||1 = maxi=1,...,N

∑N
j=1 |Ai,j |) we have ||L||1 =

1 and ||L−1||1 = 2N . Hence the condition number is 2N : the more the discretization
is refined, the more the inverse problem is ill-conditioned.

Notice that it may occur that a well-posed problem is ill-conditioned after discretization.
Generalized Inversion presents the same instability features for ill-posed and ill-

conditioned problems. Regularization methods, introduced in the next section, can be
considered as an improvement of Least Squares and Generalized Inversion in the sens
of the robustness with respect to inaccuracies.

2.4 Regularization Methods

This section and the following one are aimed to review the most important methodolo-
gies introduced in the last fifty years to resolve inverse problems. The main techniques
can be mainly divided into two branches: the deterministic and the probabilistic meth-
ods.

The deterministic methods are generally based on regularization, which represents
an improvement with respect to Least Squares and Generalized Inverses solutions, that
have been shown to be inadequate in many common occurrences (see Section 2.3.2).

Afterwards, probabilistic methods are described. Based on the consideration that a
certain amount of uncertainty affects inverse systems, primarily due to the observational
noise which usually can be modeled as a random variable, the stochastic methods are
a more recent and intrinsically alternative branch with respect to regularization (even
if in some cases analogies between regularization and probabilistic methods will be
highlighted, in particular in Gaussian frameworks).

These are the two main branches that have been developed until nowadays: al-
most all inverse problems’ methods refer to either of them. Naturally, some important
subbranches can be individuated and are illustrated in the next.

2.4.1 Tikhonov regularization

Regularization methods are now introduced by illustrating the original idea of Tikhonov.
Let us consider again the setting introduced in Section 2.3.2 and the system

Lx = y x ∈ X , y ∈ Y.
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It has been shown that Generalized Inversion consists in solving two minimization
problems, say

S = {x̂ ∈ X : x̂ = arg min
x∈X
||Lx− y||Y}

and
xG = arg min

x∈S
||x||X .

The seminal idea of Tikhonov [148] [149] can be viewed as the merging of these two
problems into the following one:

xTα = arg min
x∈X

(
||Lx− y||2Y + α||x||2X

)
(2.26)

The solution depends on the parameter α: it can be proved that xTα is unique and
corresponds to

xTα(r) = (L∗L+ α2I)−1L∗y. (2.27)

It is easy to prove that in Hilbert spaces

lim
α→0

(L∗L+ αI)−1L∗ = LG (2.28)

under the hypothesis of existence of LG, say y = Im(L) + Im(L)⊥

The role played by the parameter α can be qualitatively explained as follows. Solv-
ing the least squares problem (2.22) corresponds to minimizing the residual between the
measured data y and Lx, which implies some fidelity to the observed data y; in other
terms, the observational noise is known (or is believed) to cause small perturbations.
Nevertheless, this is not always so and if the noise has large amplitude such procedure
may yield to mathematically correct, but physically non-admissible solutions. This
consideration suggests to collect some information about the physics of the problem in
order to individuate a set of admissible solutions and try to solve the problem therein.

The Tikhonov method is a first example of regularization method. More in general,

Definition 1 A family of operators

{Rα : Y → X , α ∈ A} (2.29)

is said to be a regularizer of the equation Lx = y if for any α ∈ A, Rα is continuous
and for any y ∈ Y,

lim
α→0

Rα(y) = LGy. (2.30)

Notice that such definition requires the existence of the Generalized solution. The
Tikhonov operator (L∗L + αI)−1L∗ clearly is a regularizer. Moreover, the Tikhonov
method can be extended to many other regularization methods by substituting the
quadratic conditions with other functionals, that is:

xRα (y) = arg min
x∈X
F(Lx− y) + αG(x), α ∈ (0,+∞) (2.31)
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where F and G respectively represent a condition on the residual Lx− y given by the
measured data and some property imposed on the possible solutions x. xRα defines a
regularization solution if limα→0 x

R
α (y) = LGy.

The formulation (2.31) being definitely general, the problem has to be suitably
defined according to the context. The choice on F , G and α is arbitrary, but quantified
on the basis of some crucial considerations. For example, as far as α is concerned, it
can be intuitively understood that the more α is close to zero, the more reliability is
assigned to the observations and vice verse a large α is equivalent to maximal adherence
to the prior information.

Clearly, this is not enough to decide the best α, whose assessment is object of many
discussions (see Section 2.4.2. On the other hand, the question of the choice on F
and Gs is more qualitative: for instance, in the example (2.26), F is the discrepancy
between the measured output y and the output obtained by applying L on x, while G
is the energy of the signal x.

Example 11 (Continuation of Example 3) Let us consider again the discretized
equation Lx = y. A Tikhonov solution of this equation is

xT = (LTL + αI)−1LTy. (2.32)

Let us study the conditioning:

||δxT ||
||xT ||

≤ ||L||||(LTL + αI)−1LT || ||δy||
||y||

. (2.33)

Considering the matrix norm || ||1, we have ||L||1 = ||LT || = 1. Moreover,

LTL =
1

N2


N − 1 N − 2 N − 3 · · · · · · 1
N − 2 N − 3 · · · · · · 1 1

...
...

1 1 1 1 1 1


Notice that if N is very large, LTL tends to the null matrix and ||(LTL+αI)−1LT ||1 →
|α−1|. In such case, the condition number ||L|| ||(LTL + αI)−1LT || tends to |α−1|. If
α is a fixed positive constant, this represents a significant improvement with respect to
Generalized Inversion, where the condition number was 2N , hence increasing as far as
the discretization was refined.

Now, let us suppose to know that ||Lx − y||2 ≤ σ2, namely the maximal energy of
the noise is σ2. Then, as a consequence of [45, Theorem 5.2], α = σ is a good choice
for the Tikhonov parameter. In such case, the condition number is σ−1.

This example shows that Tikhonov regularization is more suitable than Generalized
Inversion to treat ill-conditioning and when a considerable disturbance occurs.
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Example 12 Another observation can be done in the simple case N = 1 ( L = 1)
which is not dramatically ill-posed. Let us suppose the maximal energy error to be σ2,
i.e. |x − y| ≤ σ where x and y are scalar real values. By direct inversion, we have
xG = L−1y = y, hence the distance between correct solution and inverse solution is at
most σ. If we apply a Tikhonov regularization with α = σ, xTα = 1

1+σy bounds the error
in case of large noise. In fact, if x is the correct solution and assuming y = x + σ,
| 1
1+σy − x| = |

1
1+σ (x+ σ)− x| = σ

1+σ |1− x|, which is bounded with respect to the noise
energy.

In conclusion, regularization methods are based on the idea that some prior infor-
mation about the regularity of the solution is known and can be efficiently used to
reduce the noise effects. On the other hand, regularization does not solve the problems
of continuity of the Generalized Inverse.

2.4.2 Choice of the regularization parameter α

Several methods have been proposed in the literature to choose an opportune value for
the regularization parameter α. This is a critical point which has no universal solution:
the best α for an inverse problem may be determined by the physical meaning of the
model and by its applicative scope. Some of the most used methods are the Discrepancy
Principle [96], L-curve method [67], Cross Validation [157].

2.4.3 Early regularization: a few historical notes

The term regularization was introduced by Tikhonov, which may be considered the
original author of the regularization methods; its seminal work [148] was published in
1963 in the USSR. In the same period, another Russian mathematician, Ivanov, and
Phillips in the USA worked on the similar arguments.

Ivanov was studying ill-posed problems since 1961 and in 1962 [73, 72], he introduced
the notion of quasi-solution which can be briefly presented as follows. Given the usual
system Lx = y, let the operator L to be invertible, linear and continuous. Fixed a
certain y, let suppose that the solution x = L−1y belongs to a compact set C ⊂ X .

In this setting, quasi-solutions can be used to approximate solutions of Lx = y.
Given compact C ⊂ X , x0 is said to be a quasi-solution of Lx = y if x0 minimizes

the residual norm ||Lx− y|| on C:

min{||Lx− y|| : x ∈ C} = ||Lx0 − y||. (2.34)

The existence of a quasi-solution is not ensured, but Ivanov proved that if the solution
of Lx = y exists in C, then it corresponds to the quasi-solution. Moreover, he proved
stability with respect to bounded perturbations on the data and on the operator L.

In the same year, Phillips [113] proposed an approach for nonsingular linear integral
equations of the first kind, with noisy data. First, he fixed two hypotheses: the noise
is upper-bounded by a given constant k, say ||Lx− y||Y ≤ k, and the correct solution
is known to be a “reasonably smooth function”. Now, given a family of estimated
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solutions, “with this [smoothness] assumption the best approximation we can choose is
probably the function which is the smoothest in some sense”. Of the various smoothness
conditions, in [113] Phillips chose to minimize the norm of the second derivative of the
solution.

In general, the solution of this method (known also as method of residual) can be
expressed as:

xP = arg min{G(x) : ||Lx− y||Y ≤ k}.

To conclude this brief overview about early regularization algorithms, it should
be noticed that the three methods discussed above (Tikhonov, Ivanov and Phillips)
are strongly interrelated. In fact, even if arising from different contexts and requiring
different conditions, their general structure as variational problems is very similar, as
it can be appreciated in the following comparing scheme:

Tikhonov xT = arg min{F(Lx− y) + αG(x)}
Ivanov xI = arg min{F(Lx− y) : G(x) ≤ h}
Phillips xP = arg min{G(x) : F(Lx− y) ≤ k}

(2.35)

where the operators F and G usually are the the norms or square norms in the corre-
sponding spaces.

2.4.4 Iterative methods

Regularizers can be constructed also by means of iterative schemes, typically arising
from the solution of linear algebraic problems. Classical iterative methods are the fixed
point iteration scheme, the Landweber’s method [45, Section 6.1], the Steepest Descent
and the Conjugate Gradient method [18, Section 6.4]. A useful review of the main
iterated techniques for linear algebraic systems in [28, Appendix C].

In the last decade, a novel iterative approach for deconvolution has been introduced
by Fagnani and Pandolfi [48, 49, 47], which works under less restrictive conditions with
respect to classical recursive methods.

The considered problem is the estimation of the input u of a linear, finite dimen-
sional system {

x′(t) = Ax(t) +Bu(t) t ∈ [0, T ]
y(t) = Cx(t) u(t) ∈ Rm, x(t) ∈ Rq, y(t) ∈ Rp, (2.36)

so that the input-output relation can be expressed as

y(t) =

∫ t

0
H(t− s)u(s)ds H(t− s) = CeA(t−s)B. (2.37)

The aim is to recover u from the observation of a noisy version of the output y.

The technique proposed for this causal problem originates from the algorithm pro-
posed in [84, Section 1.3] and is based on two main features: first, a model system is
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associated with the real system (2.36) with the goal of testing the candidate approxi-
mations of u; second, a Tikhonov penalization is introduced to adjust the algorithm.

More in detail, let 
w′(t) = Aw(t) +Bv(t) t ∈ [0, T ]

z(t) = Cw(t)
(2.38)

be the model system, which depicts (2.36) and let us suppose that the measurements
of y are noisy and taken only at time instants τk = kT

N , N ∈ N, k = 1, . . . , N , so that
the available samples are rk = r(τk) = y(τk) + nk, k = 1, . . . , N where nk is a bounded
disturbance, say ||nk|| < h. Now, the function v is recursively built up according to the
following rule:

vk = v|[τk−1,τk) = argmin

{
||z(τk)− rk||2 + α

∫ τk

τk−1

||v(s)||2ds

}
(2.39)

where α is the regularization parameter. Such v is then stepwise constant and is used
to approximate the object of interest u. The analogy with Tikhonov regularization is
evident, the only main difference being the recursivity.

Consistency, robustness and convergence of this method along with the admissible
kernels and the case T → ∞ have been discussed in [48, 49]. In [49] it is also shown

that for small α, one can approximate vk with
z(τk−1)−rk−1

α , which makes the algorithm
very simple and low-complexity.

An interesting application of this iterative method to problems of disturbance re-
duction can be retrieved in [47].

2.5 Probabilistic Methods

In the previous section, the main regularization methods have been illustrated for in-
verse, ill-posed problems. A possible probabilistic nature of such problems has been
not yet mentioned, but it is natural if we model the observational noise as a random
variable. This is actually the starting point of the probabilistic analysis of the inverse
problems: the noise function, in general, is not known and does not have a determin-
istic behavior. In some instances, it may be sufficient to know an upper bound of its
amplitude, but when more information about its behavior is required to find the solu-
tion, one could try to model it according to an appropriate probabilistic distribution.
In many cases, this turns out to be a very efficient approach.

Notice that the introduction of a random noise in the model is sufficient to give a
probabilistic structure to the whole problem (the available data and the estimate of the
input are now random variables, too). In many applications, also the unknown object
is known to be ruled by some stochastic law, so that another source of uncertainty is
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present; this is a further prior information (if the law is given) that can be used to
obtain the solution.

In some sense, the knowledge of the noise’s distribution replaces the requirement of
its boundedness and the knowledge if its maximal amplitude, while a given probabilistic
law on the input may replace the smoothness conditions that very often are needed by
regularization methods to give likely solutions.

In this section, the main probabilistic methodologies for inverse problems are il-
lustrated. Notice that in this framework, inversion can be considered as a problem
of inference, that is, an estimate of the solution is provided by gathering sufficient
statistics from the available information (in spite of incompleteness and inaccuracies).
Before introducing the methods, a short discussion about the noise law is provided.

2.5.1 How to model the noise

In most cases, and also in this dissertation, the noise on the data is supposed to be
additive and modeled as a Gaussian (normal) random variable, with zero mean and
covariance σ2I, independent from the other quantities participating in the system.
This is what we call white noise and we indicate by N (0, σ2I).

The additivity may be easily justified: usually, measurements’ instrumentation do
not amplify or compress the observed signal, their effect being more similar to a small
shift. The zero-mean, Gaussian distribution, instead, may be motivated by three main
issues. First, it is well known that the Central Limit Theorem states that the distribu-
tion of the sum of a sufficiently large number of mutually independent random variables
(with finite sum and variance) is well-approximated by a Gaussian distribution. Since
the noise is usually the accumulation of many small random contributions, the Gaus-
sian model is the most likely or, at least, a good trade-off between reality and modeling
requirements. Second, the noise typically is not caused by systematic error and this is
well represented by a random variable with zero mean. Third, large noise oscillations
are less probable than small ones (again in the case of no systematic error) and this is
provided by the normal distribution with fixed variance.

2.5.2 Maximum Likelihood methods

The Maximum Likelihood (ML) principle, introduced by Fisher in the 1920s, can be
intuitively explained as follows. Let us consider an unknown quantity x and some noisy
measurement y = Lx+n. If the noise n obeys to a probabilistic distribution, the data y
can be considered as realization of a random variable, that will be indicated by Y . Now,
a ML estimate x̂ML of x given y can be obtained by answering the following question:
which is the x that maximizes the probability of having obtained the observed Y ? In
other terms, ML consists of solving the following maximization problem:

x̂ML = arg max
x∈X

f(Y = y|x) (2.40)

where f(Y = y|x) is the probability density function of Y given the parameter x.
Notice that, up to now, no probabilistic distribution is assigned to x, which can be a
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deterministic object or a random function with unknown distribution.
This method is more reliable if y collects a sufficiently large number of measure-

ments.

Let us consider the case in which uncertainty in the model is introduced by a white
noise n, which is realization of a Gaussian random variable N . In this case, f(Y = y|x)
just depends on the distribution of N since f(Y = y|x) = f(N = n = y − Lx)y|x). If
N is Gaussian, the probability law is given by

f(Y = y|x) = f(N = n = y − Lx|x) =
1√

2πσ2
exp

(
||n||2

2σ2

)
(2.41)

hence
x̂ = arg max

x∈X
f(Y = y|x) = arg min

x∈X
||n||2 = arg min

x∈X
||y − Lx||2 (2.42)

which actually is a Least Squares solution. In conclusion, ML corresponds to Least
Squares method in case of white noise and as a consequence it is affected by the same
negative effects: non-uniqueness of the solution and numerical instability.

Maximum likelihood takes its name by the likelihood function, which is defined as
L(θ|y) = fY (y|θ) where θ collects the parameters of the distribution. In other terms,
likelihood is the p.d.f., but the difference lies in the role of the independent variables:
likelihood is a function of θ (and y is a parameter), while f is a function of y.

Hence the maximization problem (2.42) corresponds to the maximization of the
likelihood.

The interested reader could find a discussion about ML method in the case of
Poisson noise in [18, Section 7.3]. This is important in image restoration, where often
the data is the number of detected photons, the counting of which is rule by Poisson
statistics.

2.5.3 Expectation-Maximization Algorithm

The Expectation-Maximization (EM) Algorithm is an iterative procedure commonly
used in statistics to compute the ML estimate in presence of missing or hidden data;
it was introduced by Dempster in 1977 [37].

Let us consider two random variables: Y , whose realizations can be observed, and
Z, which represents the hidden data; the aim is to compute the maximum likelihood
estimate of a set of unknown parameters θ.

Each iteration of the EM Algorithm is composed by two parts: the Expectation
(E) step, which consists in computing the expectation of a likelihood function of the
complete data (Y,Z) given an estimate θn of θ, and the Maximization (M) step in which
such expectation is maximized and provides a new estimate θn+1.

More precisely, let
L(θn|Y ) = log fY |θn(y|θn) (2.43)
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be the likelihood function of Y given θ, f being the probability density function (or a
probability in the discrete case). By simple computations,

L(θn|Y ) =

∫
log fY |θn(y|θn) fZ|Y,θn(z|y, θn)dz

=

∫
log

fZ,Y |θn(z, y|θn)

fZ|θn(z|θn)
fZ|Y,θn(z|y, θn)dz

= Q(θn|θn) +R(θn|θn)

(2.44)

where

Q(θ|θn) = EZ [L(θ|Z, Y )|Y, θn], L(θ|Z, Y ) = log fZ,Y |θ(z, y|θ)
R(θ|θn) = −EZ [log fZ|Y,θ(z|y, θ)|Y, θn].

(2.45)

Using Jensen inequality, it can be proved that

L(θ|Y ) ≥ Q(θ|θn) +R(θn|θn)

therefore a better estimate of L can be obtained by increasing Q at each iteration
step. The EM procedure is then as follows: given an initial estimation θ0, at each step
n = 0, 1, 2, . . . ,

• E-step: compute qn(ξ) = Q(ξ|θn) = EZ [L(ξ|Z, Y )|Y, θn];

• M-step: compute θn+1 = argmaxξ Q(ξ|θn).

It follows that Q(θn+1|θn) ≥ Q(θn|θn), hence

L(θn+1|Y ) ≥ Q(θn+1|θn) +R(θn|θn)

≥ Q(θn|θn) +R(θn|θn) = L(θn|Y ).

The convergence of the EM Algorithm is studied, e.g,, in [92, Chapters 3-4].
The EM algorithm is commonly used in many applications in particular for tomog-

raphy [132, 153] and image restoration [154], and many applicative variants have been
recently studied, see, e.g., [123, 122, 53, 168]

2.5.4 Bayesian Methods and Maximum A Posteriori estimation

The Bayesian approach takes its name from the well-known Bayes’ rule. Given two
continuous random variables X taking values in X and Y taking values in Y, the
probability density function of X condition to Y , fX|Y (x|y) can be computed as

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y)
=

fY |X(y|x)fX(x)∫
x′∈X fY |X(y|x′)fX(x′)

(2.46)

Let us consider again the system Lx = y and let us suppose that also the input x
is generated according to some probabilistic distribution, i.e., it is a realization of a
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random variable X; then, we can rewrite the system in terms of a stochastic equation
LX = Y . If the probability density function fX(x) of X is known, it constitutes an
important prior information about the object of inference; the aim of Bayesian approach
is exactly to take it in consideration and exploit it to reduce the uncertainty on x.

In this context, a Maximum A Posteriori (MAP) estimation can be performed. The
MAP method answers the question: which is the value of x that maximizes the a
posteriori p.d.f. of X, say the probability of X given the (noisy) measurements y?

In mathematical terms,

x̂MAP = arg max
x∈X

fX|Y (x|y). (2.47)

Using the Bayes rule, this corresponds to

x̂MAP = arg max
x∈X

fY |X(y|x)fX(x) (2.48)

which suggests that MAP is equivalent to ML when X has a uniform prior distribution;
in other terms, MAP merges ML method and prior probabilistic information on the
unknown quantity.

We finally notice that as well as ML is equivalent to Least Squares method in the
presence of zero-mean, Gaussian noise, MAP corresponds to a regularization method to
solve the problem LX +N = Y where both noise N and unknown X are independent,
zero-mean, Gaussian random variables, namely N ∼ N (0, σ2

N ) and X ∼ N (0, σ2
X) (or

N ∼ N (0, σ2
NI) and X ∼ N (0, σ2

XI) if we consider vector quantities). In fact,

max
x

fX|Y (x|y) = max
x

fY |X(y|x)fX(x)

= max
x

1

σN
√

2π
exp

(
−||Y − LX||

2

2σ2
N

)
1

σX
√

2π
exp

(
−||X||

2

2σ2
X

)
= min

x
||Y − LX||2 + ||X||2

(2.49)

which is exactly a formulation of the Tikhonov regularization method (2.26).

2.5.5 Wiener Filter

It has already been noticed that ML with Gaussian noise is equivalent to Least Squares
approach. Similarly, if both noise N = Y − LX and X Gaussian and mutually inde-
pendent, say N ∼ N (0, σ2

N ) and X ∼ N (0, σ2
X)

x̂MAP = arg max
x∈X

fY |X(y|x)fX(x) = arg max
x∈X

exp

(
−||n||

2

2σ2
N

)
exp

(
−||x||

2

2σ2
X

)
= arg min

x∈X

||n||2

2σ2
N

+
||x||2

2σ2
X

= arg min
x∈X
||n||2 +

σ2
N

σ2
X

||x||2

(2.50)
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which corresponds to Tikhonov’s regularization with quadratic terms and α =
σ2
N

σ2
X

In

particular, applying (2.27),

x̂MAP =

(
L∗L+

σ2
N

σ2
X

I

)−1

L∗y = (σ2
XL
∗L+ σ2

NI)−1σ2
XL
∗y. (2.51)

Notice that the quantity
σ2
N

σ2
X

is exactly the inverse of the signal-to-noise ratio (SNR),

say the ratio between the power of the signal and the power of the noise that corrupts
it. The operator

G =

(
L∗L+

1

SNR
I

)−1

L∗ = (σ2
XL
∗L+ σ2

NI)−1σ2
XL
∗ (2.52)

is commonly known as Wiener filter and has been studied in the 1940s [161].
The Wiener filter is optimal, in the sense that it minimizes the mean square error

E[|X̂MAP −X|2] = E[|G(LX+N)−X|2], in the case of Gaussian X; this can be easily
proved by computing the derivative.

A slightly modification of the Wiener filter may be obtained introducing a regular-
ization parameter α:

Gα = (σ2
XL
∗L+ ασ2

NI)−1σ2
XL
∗. (2.53)

Adjusting α, different effects can be obtained: for instance, if α = 0, then the esti-
mate is unbiased but noisy (actually the noise power is not taken in account), while if
α→∞, the noise is somehow suppressed, but the estimate is definitely unlikely.

A generalization of (2.51) to the case of not independent X , say X is random vector
with non-diagonal covariance matrix as assumed here, can be retrieved in [36, Section
3.8.3] or [18, Section 7.5]

2.5.6 Fourier Transform and Wavelet Deconvolution

In some situations, the deconvolution problem can be formulated in terms of Fourier
Transforms. Given the convolution integral (on an infinite range)

x(t) = (K ∗ u)(t) =

∫ +∞

−∞
K(t− s)u(s)ds (2.54)

and adding a noise s.t. y(t) = x(t) + n(t), the problem can be treated in the frequency
domain, where convolution is transformed into a product:

F(y)(ω) = F(K)(ω)F(u)(ω) + F(n)(ω) (2.55)

where F indicates the Fourier transform. Since

F(u)(ω) = F(K)(ω)−1F(y)(ω) + F(K)(ω)−1F(n)(ω) (2.56)
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the Fourier transform of u could be naively estimated by F̂(§)(ω) = F(K)(ω)−1F(y)(ω).
This would be a correct solution if no noise occurred ( and naturally under the hypothe-
sis that the involved functions admit Fourier transform and that F(K)(ω) is invertible)
while if a Gaussian noise was introduced, this would be an unbiased estimator.

This solution however is not precise whenever F(K)(ω) is very small, since this
amplifies the noise in (2.56). So, even if the noise was small, its effect might be consid-
erable.

The Fourier approach can be improved by introducing some regularization, for
instance through a Wiener filter. Supposing that X ∼ N (0, σ2

X) and N ∼ N (0, σ2
N ),

the following estimator can be derived:

F̂(x)(ω) = Gα(ω)F(y)(ω) Gα(ω) =
|F(K)|σ2

X

|F(K)|2σ2
X + ασ2

N

. (2.57)

For α = 1, this is exactly the Wiener filter, which is optimal since it minimizes the
mean square error. However, this method is not efficient whenever the signal X is not
stationary: for instance, if X was representing an image with edges and ridges to be
detected, Gα might smear them and make them non detectable.

Non-stationarities can be instead captured using wavelets’ bases, which allow to
analyze data at different scales. The wavelet approach to deconvolution has been widely
studied in the last decades; we refer the interested reader to, e.g, [40, 1, 102, 103].

2.5.7 Bayesian Least Mean Squares estimation

In this section, a probabilistic version of the Least Squares method, introduced in
Section 2.3.2, is illustrated.

In Section 2.3.2 the Least Squares method has been introduced. as a deterministic
method to approximate the solution of an inverse problem Lx = z by computing the
x that minimizes the discrepancy term ||Lx− y||2, y being the available, noisy version
of the output z. In a probabilistic framework, say when x and y are realizations of
random variables X, Y (here supposed to be random vectors) it is natural to redefine
such principle in terms of average: given measurements y of the noisy output Y , the
minimization problem to solve is

min
x∈X

E[||X − x||2|Y = y]. (2.58)

This solution, known as Least Mean Squares Estimate (or also Bayesian or minimum
mean-square-error or Minimum Variance estimate; LMSE for short), is the basis of
the Bayesian approach to Estimation Theory. Estimation theory aims to study how
to extract information about a random experiment from the (noisy) observation of the
experiment outcomes. Classical Estimation Theory concerns problems in which the
unknown quantity is a deterministic parameter (for example, the parameter of a distri-
bution, the mean of a random variable), while in the Bayesian approach a distribution
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is assigned to it.

From a mathematical viewpoint, given two mutually dependent random variables,
the aim is to guess some features of the first random variable (its realizations or its
distribution parameters) given some realizations of the second one.

The LMSE has been easily derived, see, e.g., [124, Proposition 1] and is given by:

X̂ = E[X|y] (2.59)

and the corresponding estimate, given an observed realization y of Y , is

x̂ = X̂(y) = E[X|Y = y]. (2.60)

The LMSE is unbiased. that is, E[X − X̂|Y ] = E[X|Y ]− E[E[X|Y ]|Y ] = 0 hence

E[X] = E[X̂]. (2.61)

It is interesting to notice that the LMSE has the following particular straightforward
formulation when the random vectors X and Y are Gaussian:

X̂ = mX + ΣXY Σ−1
Y Y (Y −mY ) (2.62)

where mX and mY are the respectively means and ΣXY and ΣY Y the covariance ma-
trices of (X,Y ) and of Y .

In many cases, the computation of the LMSE is not so straightforward as in the
Gaussian case. It can then be useful to restrict the family of possible estimators for
the sake of the calculus and despite of optimality. For example, we can focus on
linear estimators namely of kind AY + b, A and b being constant values of consistent
dimensions. When X and Y are zero-mean random variables, it can be proved that
[124, Proposition 3]:

min
x=Ay+b

E[||X − x||2|Y = y] = ΣXY Σ−1
Y Y y. (2.63)

We will indicate the Linear Least Mean Squares estimator (LLMSE) by E∗(X|Y ) =
ΣXY Σ−1

Y Y Y. using the notion of [124] (notice that the symbol E∗ is not a mean). It
turns out that E∗(X|Y ) corresponds to (2.62) when X and Y are zero-mean, Gaussian
variables.

2.5.8 The Kalman Filter

The Kalman Filter is a recursive algorithm that calculates the Linear Least Mean
Squares estimate in problems that admit a linear, dynamical state-representation.

Let us imagine that X is a vector whose components X1, X2, . . . , Xn are (or can be
considered as) the values of a random process at different time instants and suppose
to gather synchronized measurements y1, y2 . . . , yn. In this framework, one could aim
to perform an on-line estimation, namely to give an estimation of Xt at time t ≤ n
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based on the present available data y1, . . . , yt. This is a common problem in many
applications, for example when sudden estimation is required (e.g., in fault detection)
and more in general when X is a high-dimensional vector.

The Kalman Filter, which dates back to 1960, answers to this question. Its was
introduced in [79] for discrete problems, while the continuous version was presented a
year later [80]. Here, we review the discrete version, following the exposition of [29,
Section 7.2].

Let us consider the following dynamical system given: k ∈ N,{
Xk+1 = AkXk + BkUk stochastic difference equation
Yk = CkXk +Nk measurement equation

(2.64)

where Uk, Xk and YK are n-dimensional random vectors and Ak, Bk and Ck are de-
terministic matrices with consistent dimensions. The aim is to compute the best linear
estimate of Xk given Y0, . . . , Yk by an iterative method, computing at each step k the
mean and the covariance matrix of the a posteriori distribution of Xk.

First, let us recall that given any X and a sequence of measures Y0, . . . , Yk, the
LLMSE of X conditioned to Y0, . . . , Yk can be recursively computed as follows (see
[124, Proposition 4]): letting E∗[X|Y0, . . . , Yk] be such LLMSE 1, then

E∗[X|Y0, . . . , Yk] =

= E∗[X|Y0, . . . , Yk−1] + E∗
[
X − E∗[X|Y0, . . . , Yk−1]|YkE∗[Yk|Y0, . . . , Yk−1]

]
.

(2.65)

Now, let

E[Uk] = E[Nk] = 0 for any k = 0, 1, 2, . . . ;

Cov[Uk, Uh] = E[UkU
T
h ] = ΣU,kδk,h;

Cov[Nk, Nh] = E[UkU
T
h ] = ΣN,kδk,h;

Cov[Nk, Uh] = Cov[Nk, Xh] = 0 for all k, h ∈ N;

X̂k|j = E∗[Xk|Y0, Y1, . . . , Yk];

Pk|j = Cov[X̂k|j −Xk, X̂k|j −Xk];

Kk = Pk|k−1CT
k

[
CkPk|k−1CT

k + σ2
N,k

]−1
(Kalman gain matrix);

X̂k|j is called filtered, predicted or smoothed estimate of Xk respectively if k = h, k > h
or k < h. Now, the following result can be proved:

Theorem 1 ([79],[29, Theorem 7.2.2])
For any k = 0, 1, 2 . . . , X̂k|k can be recursively computed as follows:

X̂k+1|k+1 = AkX̂k|k +Kk+1

[
Yk+1 − Ck+1AkX̂k|k

]
Pk|k = [I −KkCk]Pk|k−1 (covariance update);

Pk+1|k = AkPk|kA
T
k + BkΣU,kB

T
k (covariance extrapolation).

(2.66)

1E∗[X|Y0, . . . , Yk] is not a mean operator, it is just an easy to remember notation for LLMSE, in
antithesis to the LMSE E[X|Y0, . . . , Yk]
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The initialization of the recursion depends on the framework. In many cases (and this
will be the assumption in the next of this work, see Chapter 4), the initial value of X
is fixed, say X(0) = x0, then X̂0|0 = x0 and P0|0 = 0.

The Kalman Filter is low-complexity and straightforward to implement, which
makes its use widespread for state estimation in linear systems. Its first applications be-
ing concerned with spacecraft navigation (it was used to estimate the trajectories of the
spacecrafts in the Apollo Program, [61, 91]), has been applied to all forms (aerospace,
land, marine) of navigation problems, target tracking, industrial control, economics and
many other areas. Sometimes, it is also implemented as part of more structured algo-
rithms, e.g., the Mendel-Kormylo Minimum Variance Deconvolution procedure [93, 83].

In the literature, many works can be retrieved that compare the scheme and the per-
formance of Kalman Filter to other probabilistic methods, such as Wiener Filter [135]
or early Gauss least squares [136], which highlight that if on one hand the achievement
of the Kalman Filter is unquestionable, on the other one some of its good features, in
terms of reliability and structure, can be retrieved in the past estimation methodologies.

In Chapter 4, the Least Mean Squares estimation and the Kalman Filter will be
retrieved and compared with the novel methods introduced in this dissertation.

2.5.9 Maximum Entropy Principle

The concept of entropy was introduced in Information Theory in 1948 by Shannon
[131], but was in use earlier in statistical mechanics; it attempts to measure the un-
certainty, or disorder, associated with a certain probabilistic system. The definition
in the discrete case is the following: given a random vector X = (X1, . . . , Xn) with
probability distribution Pi = P (Xi), i = 1, 2, . . . , n, its entropy is the function

H(X) = −
n∑
i=1

Pi logPi. (2.67)

Analogous definition can be given for continuous random variables.

Let us consider a random variable X whose distribution is not known, but possibly
subject to some given constraints; moreover, some realizations of it may be observable.
According to the Maximum Entropy Principle, stated by Jaynes in 1957 [75], the best
way to estimate the unknown distribution is to choose the distribution that satisfies the
constraints and maximizes the entropy. This guarantees to retain all the uncertainty
not removed from the observations’ measurements and then to avoid artefacts. In other
terms, the chosen distribution is “maximally non-committal with regard to the missing
information” [42].

Both entropy and Maximum Entropy Principle can be considered more philosophi-
cal than mathematical notions. Their assessment has been subjected to many debates
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and criticisms in the last sixty years, even if their efficacy is generally recognized in
Information and Probabilistic Theory. Shannon’s entropy has been constructed fixing
some properties and then finding the function, up to a multiplicative factor [131, The-
orem 2 -Section 1.6]; changing the basic assumptions, different definitions can be given
(see, e.g., [107]).

On the other hand, the Maximum Entropy Principle, which is widely used in many
scientific areas and in particular in image processing [160, 63, 62], actually has not been
proved as a theorem and discussions on its validity are still open (see, e.g., [29, Chapter
3]).

The concept of entropy is also involved in the definition of the so-called Kullback-
Leibler (KL) information (or divergence or pseudo-distance, [85]), which is a relative
entropy, say a “distance” between probabilities Pi and Qi:

KL(P,Q) =

N∑
i=1

Pi log
Pi
Qi
. (2.68)

The definition can clearly be extended to measures in the continuous case. The KL
information is often used in image reconstruction, where P and Q may be not proba-
bilities, but non-negative quantities [150, 27]. An example is given by emission tomog-
raphy: the KL pseudo-distance is computed between the counts of emissions performed
by a detector and the expected number of counts and since the emissions are ruled by a
Poisson distribution, it has been shown that maximum likelihood solution corresponds
to the minimization of the KL [27].

Furthermore, KL information (or equivalent entropy) is often used as penalty term
G in regularization methods, based on the minimization of functionals of kind F(Lx−
y) + G(x) (see (2.35). In some cases, deterministic regularization is approached from
a Bayesian viewpoint using Gaussian distribution as prior probabilistic information on
the solution (see, e.g., [57, 87] and the references therein).

2.6 Topical Bibliography

We conclude this introductory chapter by providing some references about deconvo-
lution and inverse problems for the interested reader. The references are collected in
Table 2.6 according to the applications they address and the solution approaches they
use.
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Image Restoration Tomography Biological and
Biomedical systems

LS [35, 137, 20]
REG [151, 97, 11] [137, 116, 115, 119, 77]
ITER [97]
ML [11] [116, 115]
B-MAP [127, 11] [35, 137, 116, 115, 20]
EM [127, 138, 154, 53, 11] [132, 153, 60, 123, 168]
WF [35]
KF [11] [115]
ME [56, 160, 63, 106, 87] [62]
WV [11, 138, 53, 139] [168]
LMS [150] [137]

Geophysics and Seismology Astronomy and Aerospace

LS [128, 112] [141]
REG [164] [95, 140, 141]
ITER [141]
ML [83] [140, 141]
B-MAP [133] [95, 140, 141]
EM [138, 95, 140, 141, 19]
WF [125, 112, 15, 6, 7]
KF [15, 7, 133, 118, 83, 120] [61], [91]
ME [108, 95, 140, 141]
WV [138, 139, 141]
LMS [93, 120]

Quantized Input: Fault Detection, Algorithms and Theory
Targets Tracking, Switching Systems

LS [136]
REG [47] [113, 73, 148, 157]
ITER [47] [48, 49, 47]
ML [162, 163, 13, 12, 104] [5]
B-MAP [31, 12] [34]
EM [37, 127]
WF [161, 135]
KF [162, 163, 13, 46, 12, 66, 142] [79, 80, 135, 136, 124]

[90, 134, 25], [23]
ME [85, 75]
WV [40, 59, 1, 158, 102, 58, 51, 103]
LMS [124]

Table 2.1: Some references on different instances of deconvolution. LS = Least Squares,
REG = Regularization Methods; ITER = Iterative Methods; ML = Maximum Like-
lihood; B-MAP = Bayes Methods, Maximum a Posteriori; EM = Expectation Maxi-
mization; WF = Wiener Filter; KF = Kalman Filter; ME = Maximum Entropy; WV
= Wavelet Methods; LMS = Least Mean Squares.
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Chapter 3

Problem statement and
Algorithms

After having introduced the deconvolution problem (Chapter 2), let us now describe
the instance we will study in this dissertation. The aim of this chapter is to

• present the mathematical model;

• explain the approach we will undertake;

• expose the algorithms we will use.

After that, in Chapters 4 and 5 we will discuss the implementation of the afore-
mentioned algorithms, both with simulations and theoretical analysis.

3.1 The model

Let us consider the following input/output linear system
x′(t) = Ax(t) + Bu(t) t ∈ [0, T ]
y(t) = Cx(t)
x(0) = 0

(3.1)

where u(t) ∈ Rq, x(t) ∈ Rn, y(t) ∈ Rm, A, B and C are constant matrices with
consistent dimensions, and [0, T ] is a (possibly infinite) time horizon. u(t) is the input
and is supposed to be unknown, x(t) is the state function, y(t) is the output.

Our aim is to reconstruct u(t) from y(t), that is, to reverse the input-output con-
volution integral:

y(t) = Cx(t) = C

∫ t

0
e(t−s)ABu(s)ds. (3.2)

This is what we name deconvolution of linear systems. In the next, we will stick to this
problem under the following assumptions.
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3.2 Information-theoretic approach

Assumption 1 The available output signal is a sampled, noisy version of y(t):

yk = Cxk + nk

where xk = x(τk) and yk = y(τk), τ > 0 being the constant sampling time, and nk is
an additive observational noise.

Assumption 2 K = T/τ ∈ N.

Assumption 3 The nk’s are realizations of independent, identically distributed Gaus-
sian random variables Nk’s of 0 mean and covariance matrix σ2I.

Assumption 4 The input u(t) is piecewise constant and quantized, that is, we fix a
finite alphabet U ⊂ Rq such that

u(t) =

K−1∑
k=0

uk1[kτ,(k+1)τ [(t) uk ∈ U . (3.3)

Notice that for simplicity we are assuming a perfect synchronization between input and
output: the sampling time τ is the same.

Assumption 5 The uk’s are realizations of i.i.d. random variables.

3.2 Information-theoretic approach

Under Assumption 4, u(t), t ∈ [0, T [, is completely determined by the sequence of
samples uk ∈ U , k = 0, . . . ,K − 1. As a consequence, the state function x(t) is
identified by xk = x(kτ) ∈ X , k = 0, . . . ,K:

xk =

∫ kτ

0
e(kτ−s)AB

K−1∑
h=0

uh1hτ,(h+1)τ [(s)ds

= ekτA
k−1∑
h=0

∫ (h+1)τ

hτ
e−sABuhds

= ekτA
k−1∑
h=0

(
e−hτA − e−(h+1)τA

)
A−1Buh.

(3.4)

Notice that

xk+1 = e(k+1)τA
k∑

h=0

(
e−hA − e−(h+1)A

)
A−1Buh

= e(k+1)τA

(
k−1∑
h=0

(
e−hA − e−(h+1)A

)
A−1Buh +

(
e−kτA − e−(k+1)τA

)
A−1Buk

)
= eτAxk +

(
eτA − I

)
A−1Buk.

(3.5)

42



3.2 Information-theoretic approach

Defining
Q := eτA, W :=

(
eτA − I

)
A−1B (3.6)

we can write the following recursive formula:

xk+1 = Qxk + Wuk. (3.7)

Since x0 = 0,

xk =
k−1∑
h=0

QhWuk−h−1. (3.8)

Hence, for any k ∈ N

xk ∈ X =

{ ∞∑
h=0

QhWµh. µh ∈ U ∪ {0} ⊆ Rq
}
. (3.9)

Given this discrete setting, it is natural to interpret our deconvolution problem as
a digital transmission paradigm. Let us recall that a standard digital transmission is
composed by the following elements: an information message, i.e., a sequence of symbols
that one aims to transmit to a receiver; a suitable encoded version of the input message;
a noisy transmission channel over which the encoded message is sent; a decoder, i.e.,
the device that reads the output of the channel and recovers the information message.
Typically, the symbols composing the input arise from a finite alphabet, said source
alphabet. The decoder knows the source alphabet and recovers the information message
within it.

Now, our deconvolution problem can be thought in these terms:

1. (u0, . . . , uK−1) ∈ UK is an information message;

2. Convolution corresponds to encoding: (x1, . . . , xK) ∈ XK is an encoded version
of (u0, . . . , uK−1), the encoding procedure being defined by (3.7);

3. yk = Cxk + nk, k = 1, . . . ,K can be interpreted as the passage of (Cx1 . . . ,CxK)
through an additive-noise channel (C is an amplification/compression factor);

4. Deconvolution corresponds to decoding.

Under the Assumption 3, the considered channel actually is a so-called Additive White
Gaussian Noise (AWGN for short) channel, which is commonly used in communication
models.

The only one difference between a typical digital transmission and our problem
lies in the encoding philosophy. In digital transmissions, in fact, encoding is expressly
conceived to improve the communication reliability; in our case, instead, encoding is
imposed by the system itself. Hence, while in digital transmissions one designs both
the encoding and the decoding schemes in order to recover the information message as
well as possible, in our framework we can design only the decoding scheme.
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3.2 Information-theoretic approach

The fact that deconvolution can be thought of as a decoding in the framework
of quantized-input linear systems suggests us to perform deconvolution using a decod-
ing algorithm: this will be our focus in the next. Before introducing the decoding
procedures envisaged in this work, let us explain more in detail what a deconvolution
algorithm is expected to do in our framework and how we can evaluate its performance.

3.2.1 Deconvolution and Decoding

In the next, we will denote by y = (y1, . . . , yK) ∈ Rm×K the vector of all available
measures and by yba = (ya, ya+1, . . . , yb) the available measures from time a to time b,
with a, b ∈ {1, . . . ,K}, a < b.

In our framework, a decoding algorithm consists in a function D, named decoder,
such that

D : Rm×K → UK

û = D(y) ∈ UK .
(3.10)

û is the estimated input which in general will not coincide with the true input u, but
is expected to fulfill some consistency property: when the variance of the noise and the
sampling time go to 0, the error should converge (in some suitable sense) to 0.

Notice that classical deconvolution algorithms [148, 149] applied to our problem
would produce estimates lying in Rq×K . This is the conceptual difference between
decoding and classical deconvolution. In other terms, decoders are a particular class of
deconvolution algorithms which exploit the prior information about the source alphabet
and force the estimation of the input to be composed by symbols arising from that
alphabet.

We say that a decoding algorithm is causal (with bounded delay k0τ . k0 ∈ N) if
there exists a sequence of functions Dk : Rm×k+k0 → U , k = 1, 2, . . . ,K, such that
ûk−1 = Dk(y

k+k0
1 ), ûk−1 being an estimate of uk−1. Such a decoder estimates the

unknown input signal in the current time interval [(k− 1)τ, kτ [ exploiting the past and
present information yk1 and, in case, the future information yk+k0

k+1 .

3.2.2 Probabilistic setting

Given the Assumptions 3 and 5, all the system assumes a probabilistic nature. In the
sequel, we will use capital letters to indicate random variables: Uk will identify the
input r.v. at time k, Xk the corresponding system function and Yk = CXk + Nk, Nk

being the Gaussian noise. Furthermore, Ûk = D(Y)k and X̂k = QX̂k−1 + WÛk−1

(X̂0 = 0) will be respectively the estimated input and the estimated state. Finally,
U = (U0, . . . , UK−1), Û = (Û0, . . . , ÛK−1), Y = (Y1, . . . , YK), Y = (Y1, . . . , YK), Yb

a =
(Ya, . . . , Yb), a, b ∈ {1, . . . ,K}, a < b.

3.2.3 Performance Evaluation: The Mean Square Error

A fundamental issue in any deconvolution or decoding problem is the choice of the
norm with respect to which errors are evaluated. In our context, we consider the Mean
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3.3 Decoding Algorithms

Square Error (MSE):

MSE(D) =

K−1∑
k=0

E
[
||Uk − Ûk||2Rq

]
where Ûk = D(Y)k ∈ U . We now define D∗ as the decoder minimizing MSE(D) among
all the possible decoders. It can be constructed as follows: given the density fY(y) of
Y, notice that

MSE(D) =
K−1∑
k=0

∫
Rm×K

E
[
||Uk −D(y)k||2Rq |Y = y

]
fY(y)dy.

Hence, for any y ∈ Rm×K ,

D∗(y)k = argmin
v∈U

E
(
||Uk − v||2Rq |Y = y

)
= argmin

v∈U

∑
u∈U
||u− v||2RqP(Uk = u|Y = y).

(3.11)
This turns out to be a finite optimization problem which can be solved by means of a
marginalization procedure and a Bayesian inversion:

P(Uk = u|Y = y) =
∑

u∈UK : uk=u

f(Y|X)(y|E(u))P(U = u)

fY(y)
(3.12)

where E indicates the encoding function. Analogously, we can defineD∗k0 as the decoder
minimizing MSE(D) among all the possible causal decoders with delay k0:

D∗k0 (y)k = D
∗k0
k (yk+1+k0

1 ) = argmin
v∈U

∑
u∈U
||u− v||2RqP(Uk−1 = u|Yk+1+k0

1 = yk+1+k0
1 )

(3.13)
where

P(Uk = u|Yk+1+k0
1 = yk+1+k0

1 ) =

=
∑

u∈UK : uk=u

f
(Y

k+1+k0
1 |Xk+1+k0

1 )
(yk+1+k0

1 |E(uk+k0
0 ))P(Uk+k0

0 = u)

f
Y
k+1+k0
1

(yk+1+k0
1 )

.
(3.14)

3.3 Decoding Algorithms

The Bayesian inversions in (3.12) and (3.14) are numerically complex for large K.
However, we can compute them respectively through the well-known BCJR algorithm
[10] and a causal version of the BCJR.

The first aim of this section is then to introduce the BCJR and the causal BCJR
schemes; afterwards, we will derive from them two low-complexity causal algorithms,
named One State and Two States. These four decoding algorithms will be the ones
implemented in the sequel of the dissertation to perform deconvolution.
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3.3 Decoding Algorithms

3.3.1 The BCJR algorithm

Based on a forward-backward recursive procedure, the BCJR computes the a posteri-
ori probabilities (APP) on states and state transitions of a Markov source, given the
observed channel outputs.

In our framework, given the encoding rule xk+1 = Qxk + Wuk, the states are
x1, . . . , xK , while the state transitions are given by u0, . . . , uK−1; the observed channel
outputs are y1, . . . , yK . Our interest is then to evaluate the APP, on the state transitions
given y1, . . . , yK : these APP actually provide a soft decision on the input sequence.

Let us briefly remind the BCJR procedure.

BCJR Algorithm - Decoder D∗

For i, j ∈ X , we define the following probability density functions:

αk(i) = f(Xk,Y
k
1 )(i,y

k
1) k = 1, . . . ,K

βk(i) = f(YK
k+1|Xk)(y

K
k+1|i) k = 0, . . . ,K − 1

Γk(i, j) = f(Xk,Yk|Xk−1)(j, yk|i) k = 1, . . . ,K.

(3.15)

For any k = 1, . . . ,K, the APP state transitions are obtained dividing:

σk(i, j) = f(Xk,Xk−1,Y)(j, i,y).

by fY(y). Given the following initial and final conditions:

α0(i) = P(X0 = i) =

{
1 if i = 0
0 otherwise.

βK(i) = 1 for any i ∈ X

for k = 1, . . . ,K we have

σk(i, j) = αk−1(i)Γk(i, j)βk(j) (3.16)

where αk(i) and βk(i), i ∈ X , can be respectively computed with a forward and a
backward recursions:

αk(i) =
∑
h∈X

αk−1(h)Γk(h, i) βk(i) =
∑
h∈X

Γk+1(i, h)βk+1(h). (3.17)

At this point,

P(Uk = u|Y = y) =
1

fY(y)

∑
i∈X

σk(i,Qi+ Wu). (3.18)

Substituting (3.18) in (3.11), we obtain D∗.
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3.3 Decoding Algorithms

Though not used in this work, we remind that the APP on the states can be computed
as follows: given λk(i) := f(Xk,Y)(i,y), we have λk(i) = αk(i)βk(i) and P(Xk = i|Y =

y) = λk(i)
fY(y) .

3.3.2 The Causal BCJR

Causal versions of the BCJR algorithm can be used to implement the decoder (3.13)
with a bounded delay k0. For k = 1, . . . ,K − k0,

σ̃k(i, j) = f
(Xk,Xk−1,Y

k+k0
1 )

(j, i,yk+k0
1 ) = αk−1(i)Γk(i, j)β̃k(j) (3.19)

where αk and Γk are defined as above, while β̃k(j) = f
(Y

k+k0
k+1 |Xk)

(yk+k0
k+1 |j). For k >

K − k0, we reduce to the classical formulation (3.16). We name CBCJR the purely
causal BCJR algorithm, say with k0 = 0.

CBCJR Algorithm - Decoder D∗0

Given αk(i) = f(Xk,Y
k
1 )(i,y

k
1), Γk(i, j) = f(Xk,Yk|Xk−1)(j, yk|i), k = 1, . . . ,K and

the update rule αk(i) =
∑

h∈X αk−1(h)Γk(h, i), we compute

σ̃k(i, j) = f(Xk,xk−1,Y
k
1 )(j, i,y

k
1) = αk−1(i)Γk(i, j) (3.20)

Thus

P(Uk = u|Yk
1) =

1

fY(y)

∑
(i,j)∈Su

σ̃k(i, j). (3.21)

The CBCJR is optimal with respect to causal algorithms. However, causality has a
price and the CBCJR algorithm clearly has worse performance than BCJR.

On the other hand, by comparing the efficiency of the two procedures, we gather that
for both BCJR and CBCJR the required computations and storage locations increase
with the number of transmitted bits, which is a drawback in case of long transmission.

This fact motivates the development of new suboptimal causal algorithms that im-
prove the efficiency without substantial loss of reliability. To achieve that, we implement
the CBCJR fixing the number of states, that is, at each step we save the n states with
largest probability (where n is arbitrarily chosen) and we discard the others.

The algorithms in the cases n = 1 and n = 2, which are of great interest for their
low complexity, are now introduced.

3.3.3 One State Algorithm

A suboptimal causal decoder

D(1) : Rm×K → UK
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3.3 Decoding Algorithms

can be derived from the CBCJR by assuming the most probable state to be the correct
one. At any step k = 0, 1, . . . , D(1) decides on the current symbol by a single MAP
procedure and upgrades the estimated state, which is the only one value that requires
to be stored.

Consider (3.15), (3.19) and (4.12). Given the estimated state x̂k−1, the decoding
rule of D(1) at time step k is given by (4.12) with no backward recursion β̃k(j) and
αk−1(x̂k−1) = 1, αk−1(j) = 0 for any j 6= x̂k−1. This reduces the decoding task to the
comparison between two distances; in fact, the One State Algorithm (OSA for short)
that implements D(1) is as follows:

OSA - Decoder D(1)

Initialization: x̂0 = 0.

For k = 1, . . . ,K, given the received symbol rk ∈ Rm,

ûk−1 = D(1)(y)k−1 = argmax
u∈U

P(Uk−1 = u|Yk = yk, Xk−1 = x̂k−1)

= argmax
u∈U

Γk(x̂k−1,Qx̂k−1 + Wu)

x̂k = Qx̂k−1 + Wûk−1.

(3.22)

Notice that we have used the fact that

P(Uk−1 = u|Yk = yk, Xk−1 = x̂k−1) = P(Xk = Qx̂k−1 + Wu|Yk = yk, Xk−1 = x̂k−1)

1

fYk(yk)
Γk(x̂k−1,Qx̂k−1 + Wu).

(3.23)

3.3.4 Two States Algorithm

By fixing n = 2, we derive a decoder

D(2) : Rm×K → UK

that, at each step, estimates the current input bit and computes and stores the two
most likely states along with the corresponding probabilities αk(i) (defined by (3.15)).
As for the One State Algorithm, the estimation of the input bit is performed by a MAP
decoding rule (4.12) with no backward recursion and summing over the two “surviving”
states. In detail, the recursive Two States Algorithm (TSA for short) that implements
D(2) is the following:
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TSA - Decoder D(2)

For k = 1, given the unique starting state x̂0 = 0 ∈ Rn, we estimate the first bit
by a One State procedure:

û0 = D(2)(y)0 = argmax
u∈U

P(U0 = u|Y1 = y1, X0 = 0). (3.24)

Now, we have |U| possible states X1 = {Wu, u ∈ U} and

α1(j) = f(X1,Y1)(j, y1) = f(Y1|X1)(y1|j)P(X1 = j) j ∈ {Wvn, vn ∈ U}.

We define

x̂1(1) = argmax
j∈X1

α1(j)

x̂1(2) = argmax
j∈X1\{x̂1(1)}

α1(j).
(3.25)

We normalize

α∗1(1) =
α1(x̂1(1))

α1(x̂1(1)) + α1(x̂1(2))

α∗1(2) = 1− α ∗1 (2).

(3.26)

We store x̂1(1), x̂1(2), α∗1(1), α∗1(2) and we discard any other information.

For k = 2, 3, . . . ,K, given x̂k−1(1), x̂k−1(2), α∗K−1(1), α∗K−1(2):

ûk−1 = D(2)(y)k−1 =

= argmax
u∈U

P
(
Uk−1 = u|Yk = yk, X̂k−1(1) = x̂k−1(1), X̂k−1(2) = x̂k−1(2)

)
=

= argmax
u∈U

{α∗k−1(1)Γk(x̂k−1(1),Qx̂k−1(1) + Wu), α∗k−1(2)Γk(x̂k−1(2),Qx̂k−1(2) + Wu)}.

Now, we have 2|U| possible states Xk = {Qx̂1(1) + Wu, Qx̂1(2) + Wu, u ∈ U}
and

αk(j) = f(Xk,Yk)(j, yk) = f(Yk|Xk)(yk|j)P(Xk = j) j ∈ Xk.
We define

x̂k(1) = argmax
j∈Xk

αk(j)

x̂k(2) = argmax
j∈Xk\{x̂k(1)}

αk(j).
(3.27)

We normalize

α∗k(1) =
αk(x̂k(1))

αk(x̂k(1)) + αk(x̂k(2))

α∗k(2) = 1− αk(2).

(3.28)
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We store x̂k(1), x̂k(2), αk(1), αk(2) and discard any other information.

Remark 1 When the extreme case αk(1) = 1 occurs and x̂k(2) has null probability,
the Two States Algorithm actually behaves as the One State Algorithm.

Remark 2 OSA and TSA are conceivable also if the state space X is infinite, as we
force the number of surviving states to be finite. This makes them implementable also
in the case of K →∞.

3.4 Outline

After having introduced the model, the Information-theoretic approach and the decod-
ing algorithms, we are ready to study in detail some instances of quantized-input linear
systems. In particular, in the next we will always consider a binary quantization, which
is the simplest case, but envisaging the main difficulties arising from quantization.

In Chapter 4, we will focus on the one-dimensional differentiation problem x′(t) =
u(t). We will implement all the decoding algorithms presented above and provide
a complete theoretical description (in terms of Markov Processes) of the OSA and
TSA procedures, which allows to study analytically their performance. We will pay
particular attention to the asymptotic case K →∞.

In Chapter 5, we will extend the study to the one-dimensional linear problem x′(t) =
ax(t)+bu(t), a, b ∈ R, under the stability condition a < 0. As we will see, the extension
is not straightforward, due to some basic differences in the mathematical structure of
the state space.

Finally, Chapter 6 will be devoted to a three-dimensional Fault Tolerant Control
problem.
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Chapter 4

The Differentiation Problem

In this chapter, we consider the system (3.1) with Assumptions 1-5, in one dimension
(q = n = m = 1) and with A = 0, B = 1, C = 1. In other terms, we study the
case when deconvolution is a differentiation problem. As already noticed in Chapter 2,
differentiation is a typical inverse problem which is strongly affected by disturbances
and measurements’ inaccuracies.

The chapter is organized as follows. In Section 4.1, we describe the model, then
in Section 4.2 we adapt to it the algorithms proposed in Chapter 3. Afterwards, we
theoretically analyze the algorithms in the framework of Markov Processes (Sections
4.3 and 4.4), and finally we compare simulations and theoretical results.

4.1 Problem Statement

Let us consider the system

x(t) =

∫ t

0
u(s)ds t ∈ [0, T ] (4.1)

where u(t) and x(t) are real functions (u(t) is assumed to be integrable). The inverse
system can be written as follows: {

x′(t) = u(t)
x(0) = 0

(4.2)

Let us suppose that some additive noise affects the output, that is, the observable
function is

y(t) = x(t) + n(t). (4.3)

It is well known that the operation of differentiation is not robust with respect to
noise perturbation, then the reconstruction of u from y cannot be simply done by
differentiation. The goal is then to estimate u, using the available information on x
and any a priori information on u. Several procedures can be exploited to accomplish
this task and the choice is in general motivated by a suitable trade-off between precision
of the solution and complexity of the algorithm.
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4.1.1 Further Assumptions and Mean Square Error

In the next, we will stick to the problem (4.2) with Assumptions 1-5 and with the
further specifications:

Assumption 6 The input alphabet is binary: U = {0, 1}.

Assumption 7 For k = 0 . . .K − 1, the Uk’s are independent and uniformly dis-
tributed: P(Uk = 0) = P(Uk = 1) = 1

2 . In particular, the Uk’s are independent from
the Gaussian noises Nk’s.

Now the probabilistic setting is complete and we can resume the system as follows:
given X0 = X̂0 = 0, for k = 1, . . . ,K,

Uk−1 ∼ Bernoulli (1/2) ;
Xk = Xk−1 + τUk−1;
Nk ∼ N (0, σ2);
Yk = Xk +Nk;

Ûk−1 = D(Y)k−1;

X̂k = X̂k−1 + τÛk−1.

(4.4)

Notice that also Xk’s are independent from Nk’s.
In this one-dimensional setting, the Mean Square Error is given by

MSE(D) = E
(
||U− Û||2

)
=

K−1∑
k=0

E
(
|Uk − Ûk|2

)
where Û = D(U). Under Assumption 6,

MSE(D) =

K−1∑
k=0

E
(
|Uk − Ûk|

)
= KBER(D)

where

BER(D) =
1

K

K−1∑
k=0

P(Ûk 6= Uk) =
1

K
E(|U− Û|) (4.5)

is the Bit Error Rate (BER for short), a very common performance measure in digital
transmissions that expresses the average number of bits in error. In our context, min-
imizing MSE(D) is equivalent to minimizing the BER(D) and, therefore, the optimal
decoder D∗ that performs this minimization coincides with the well-known Bit-MAP
(Maximum a posteriori) decoder (see [126, 10]):

D∗(y)k = argmax
u∈{0,1}

P(Uk = u|Y = y). (4.6)
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Its causal version is given by

D∗k0 (y)k = argmax
u∈{0,1}

P(Uk = u|Yk+1+k0
1 = yk+1+k0

1 ). (4.7)

We introduce here also the Conditional Bit Error Rate, CBER for short:

CBER(D|U) =
1

K

K−1∑
k=0

P(Ûk 6= Uk|U) =
1

K
E(|U− Û| |U). (4.8)

While the BER is a parameter that evaluates the mean performance of the transmission
model, the CBER describes its behavior for each possible sent sequence. The CBER
is then a relevant parameter for our system, whose decoding performance changes in
function of the transmitted input.

For computational simplicity, from now onwards let

τ = 1 (4.9)

so that X = {0, . . . ,K} and in particular, if X0 = 0, Xk ∈ {0, . . . , k}. In the BCJR
implementation of decoders (4.6) and (4.7), we obtain that αk(i), i = 0, 1, . . . ,K,
is null for any i > k, while matrices Γk and σk are non-null only on diagonal and
superdiagonal. By Assumption 7, P(Xk = j|Xk−1 = i) = 1/2 if j = i, i + 1 and 0
otherwise. Recalling that the transition between Xk and Yk is modeled by an AWGN

channel, f(Yk|Xk)(yk|j) = 1
σ
√

2π
exp

(
− (yk−j)2

2σ2

)
, we obtain

Γk(i, j) = f(Yk|Xk)(yk|j)P(Xk = j|Xk−1 = i)

=
1

2σ
√

2π
exp

(
−(yk − j)2

2σ2

)
for j = i, i+ 1.

(4.10)

Given Γk, σk or its causal version σ̃k can be recursively computed and the corresponding
decoding rules are:

BCJR D∗(y)k−1 =

{
0 if

∑k−1
i=0 σk(i, i+ 1) ≤

∑k−1
i=0 σk(i, i)

1 otherwise.
(4.11)

CBCJR D∗k0 (y)k−1 =

{
0 if

∑k−1
i=0 σ̃k(i, i+ 1) ≤

∑k−1
i=0 σ̃k(i, i)

1 otherwise.
(4.12)

In the Appendix 4.7.9 we show that the CBCJR procedure actually is a causal LMSE
(see Section 2.5.7).

4.2 Suboptimal Causal Decoding Algorithms

From simulations, we evaluate the performance gap between BCJR and CBCJR (k0 =
0) as depicted in Figure 4.1: the two curves represent the corresponding BER’s in
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Figure 4.1: BCJR vs CBCJR.

Computations Storage Locations Decoding Delay

BCJR O(K2) O(K2) K

CBCJR O(K2) O(K2) k0 = 0

Table 4.1:

function of the Signal-to-Noise Ratio (SNR), here defined as τ2/σ2 = 1/σ2 and show
the loss of reliability due to causality. These outcomes are the averages over 5000
transmissions of 100 bit messages. On the other hand, as said in Chapter 3, the loss
of reliability is less dramatic than the high computational complexity that affects both
BCJR and CBCJR in case of long time transmissions. This is why, in the next, we
implement also the suboptimal causal algorithms OSA and TSA, introduced in Chapter
3 and now revised in the actual framework.

4.2.1 One State Algorithm

In the one-dimensional, binary input, differentiation case, the OSA has a very straight-
forward pattern:

OSA - Decoder D(1)
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Figure 4.2: Trellis representation of a possible evolution of the Two States Algorithm:
circled nodes are the surviving states.

Initialization: x̂0 = 0;

For k = 1, . . . ,K, given the received symbol yk ∈ R,

ûk−1 = D(1)(y)k−1 = argmax
u∈{0,1}

P(Uk−1 = u|Yk = yk, Xk−1 = x̂k−1)

=

{
0 if Γk(x̂k−1, x̂k−1) ≥ Γk(x̂k−1, x̂k−1 + 1)
1 otherwise

x̂k = x̂k−1 + ûk−1

(4.13)

and given the equality (4.10) in the AWGN case,

Γk(x̂k−1, x̂k−1) ≥ Γk(x̂k−1, x̂k−1 + 1) ⇔ |yk − x̂k−1| ≤ |yk − (x̂k−1 + 1)|. (4.14)

4.2.2 Two States Algorithm

The TSA scheme for the one-dimensional, binary input, differentiation problem is as
follows:

TSA - Decoder D(2)
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4.2 Suboptimal Causal Decoding Algorithms

Initialization: x̂0 = 0.

For k = 1: given the unique starting state x̂0 = 0, we estimate the first bit
by a One State procedure:

û0 = D(2)(y)0 = argmax
u∈{0,1}

P(U0 = u|Y1 = y1, X0 = 0)

=

{
0 if |y1| ≤ |yk − 1|
1 otherwise.

(4.15)

Afterwards, the possible states are two: x̂1(0) = 0 and x̂1(1) = 1 and the corre-
sponding probabilities α1(0) and α1(1) in our framework are given by

α1(j) = f(X1,Y1)(j, y1) = f(Y1|X1)(y1|j)P(X1 = j)

= f(Y1|X1)(y1|j)P(U0 = j) =
1

2
f(Y1|X1)(y1|j), j ∈ {0, 1}.

We then normalize these probabilities so that α1(0) +α1(1) = 1 and we just store
the couple of values (α1(0), x̂1(0)), as this is sufficient to retrieve also (α1(1), x̂1(1)) =
(1 − α1(0), x̂1(0) + 1). For notational simplicity we rename the stored vector
(α1(0), x̂1(0)) as (α1, x̂1).

For k = 2, 3, . . . ,K: let us define (Ak−1, X̂k−1) ∈ [0, 1] × N as the random vec-
tor that represents the stored state along with the corresponding (normalized)
probability. Given (αk−1, x̂k−1),

ûk−1 = D(2)(y)k−1 =

= argmax
u∈{0,1}

P
(
Uk−1 = u|Yk = yk, Xk−1 = x̂k−1, Ak−1 = αk−1, X̂k−1 = x̂k−1

)
=

=


0 if αk−1Γk(x̂k−1, x̂k−1) + (1− αk−1)Γk(x̂k−1 + 1, x̂k−1 + 1) ≥
≥ αk−1Γk(x̂k−1, x̂k−1 + 1) + (1− αk−1)Γk(x̂k−1 + 1, x̂k−1 + 2)

1 otherwise.

From step k − 1, three possible states arise: x̂k−1, x̂k−1 + 1 and x̂k−1 + 2, whose
probabilities are given by the forward recursion in (3.17):

αk(x̂k−1) = αk−1Γk(x̂k−1, x̂k−1)

αk(x̂k−1 + 1) = αk−1Γk(x̂k−1, x̂k−1 + 1) + (1− αk−1)Γk(x̂k−1 + 1, x̂k−1 + 1)

αk(x̂k−1 + 2) = (1− αk−1)Γk(x̂k−1 + 1, x̂k−1 + 2).

(4.16)
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4.2 Suboptimal Causal Decoding Algorithms

which can be reduced as follows in the case (4.10):

αk(x̂k−1) = αk−1
1

2σ
√

2π
exp

(
−(yk − x̂k−1)2

2σ2

)
αk(x̂k−1 + 1) =

1

2σ
√

2π
exp

(
−(yk − (x̂k−1 + 1))2

2σ2

)
αk(x̂k−1 + 2) = (1− αk−1)

1

2σ
√

2π
exp

(
−(yk − (x̂k−1 + 2))2

2σ2

)
.

Since |yk− (x̂k−1 + 1)| 6= max{|yk− (x̂k−1 + j)|, j = 0, 1, 2}, in the AWGN case
αk(x̂k−1 + 1) 6= min{αk(x̂k−1 + j), j = 0, 1, 2}. Hence, the state x̂k−1 + 1 is never
discarded and also the two “surviving” states are always adjacent. Therefore,

• we calculate αmin = min{αk(x̂k−1), αk(x̂k−1 + 2)}.
• If αmin = αk(x̂k−1), the surviving states are (x̂k−1+1, x̂k−1+2) with probabili-

ties (αk(x̂k−1+1), αk(x̂k−1+2)). We then store the lowest state along with the

corresponding normalized probability: (αk, x̂k) = (
αk(x̂k−1+1)

αk(x̂k−1+1)+αk(x̂k−1+2) , x̂k−1+

1).

• Similarly, if αmin = αk(x̂k−1 + 2), (αk, x̂k) = (
αk(x̂k−1)

αk(x̂k−1)+αk(x̂k−1+1) , x̂k−1).

Remark 3 Notice that if αk = 1, x̂k + 1, then x̂k+1 = x̂k; analogously, when αk = 0,
x̂k+1 = x̂k + 1. As a consequence, the unique initial state x̂0 = 0 can be interpreted as
a double state with all the probability in x̂0 = 0, that is, (α0, x̂0) = (1, 0).

The TSA procedure can be visualized on a trellis diagram in Figure 4.2. Both OSA
and TSA schemes, that for simplicity have been here written for U = {0, 1}, can be
easily extended to any finite source alphabet.

4.2.3 Simulations and comparisons

In this section, we report the simulations’ outcomes concerning the decoders D∗0 , D(1)

and D(2), respectively implemented with CBCJR, OSA and TSA. The results are the
averages overall 5000 transmissions of 100 bit messages.

In Figure 4.3 we compare the efficiency of the three decoding schemes, in terms
of BER: we evidence that two states are sufficient to achieve performance very close
to the causal optimal CBCJR: the gain between D(2) and D∗0 never exceeds 0.15 dB,
while it achieves 0.8 dB between D(1) and D∗0 for BER’s values between 0.2 and 0.3.
Furthermore, as reported in Table 4.2, OSA and TSA respectively require one and two
storage locations, which makes them efficient even for long time transmissions and for
a large number of states. Moreover, they have no delay.
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Figure 4.3: Performance comparison of different causal decoders.

Computations Storage Locations Decoding Delay

BCJR O(K2) O(K2) K

CBCJR O(K2) O(K) k0

OSA O(K) 1 0

TSA O(K) 2 0

Table 4.2: Complexities comparison

4.3 Theoretic Analysis of the One State Algorithm

In this and in the following section, we propose an exhaustive theoretic analysis of the
OSA and the TSA and provide a formal setting for the analytical evaluation of their
performance. According to Definitions 4.5 and 4.8 in Section 1, the performance will be
evaluated in terms of BER and CBER, which respectively describe the decoding for the
“mean input” and for each possible input. The main results, for both OSA and TSA,
consist in the assessment of the BER and the CBER in case of long time transmission;
in particular, we will show that the performance in the “mean” case is equal to the
performance obtained for “almost all” inputs.

Let us start with the analysis of the OSA. In order to state the main results, we
have to introduce the following setting. Suppose to transmit a very large number of
bits (say, K →∞) into our system and to decode the received message with the OSA;
we define the stochastic process

Dk = X̂k −Xk ∈ Z, k ∈ Z (4.17)
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4.3 Theoretic Analysis of the One State Algorithm

where X̂0 = 0, X̂k+1 = X̂k + Ûk and Ûk = D(1)(y)k (see the algorithm (4.13). Dk

represents the difference between the real and the estimated state values. Since D0 = 0,
the following recursive relationship holds:

Dk+1 = Dk + Ûk − Uk. (4.18)

While the Uk’s are mutually independent, each Ûk is function of Uk and Dk. Thus, the
stochastic process (Dk)k∈N is a Markov Chain.

By Markov Chain [129, Chapter 4] we intend any sequence of random variables
(Xn)n∈N assuming values in a denumerable set X (unless otherwise indicated, X = Z)
and satisfying the Markov property: P(Xn+1 = y|Xn = x,Xn−1, . . . , X0) = P(Xn+1 =
y|Xn = x). If the chain is time-homogeneous, that is P(Xn+1 = y|Xn = x) =
P(Xn+m+1 = y|Xn+m = x), the transition probabilities Px,y = P(Xn+1 = y|Xn = x)
are the entries of a stochastic transition probability matrix P ∈ [0, 1]X×X.

A probability vector (p.v. for short) Φ ( Φ ∈ [0, 1]X,
∑

x∈X Φx = 1 ) such that
ΦTP = ΦT is said to be invariant (or stationary) for the Markov Chain with transition
probability matrix P (see, e.g., [129, Section 4.4]).

4.3.1 OSA Performance Theorems

At this point, we have the elements to state the main performance results concerning
the OSA.

Theorem 2 (OSA - BER) Let qd = P[Ûk 6= Uk|Dk = d], then

lim
K→∞

BER(D(1)) =
∑
d∈Z

qdΦd

where Φ is the unique invariant p.v. of (Dk)k∈N.

Theorem 3 (OSA - CBER) Let π be the uniform Bernoulli probability measure over
{0, 1}N. Then, for the One State Algorithm,

lim
K→∞

CBER(D(1)|U) = lim
K→∞

BER(D(1)) for π-a.e. U.

Our next goal is to prove Theorem 2, on the basis of a classical ergodic result for
Markov Chains, which is now reviewed. Instead, the proof of Theorem 3 is a bit more
technical and requires some elements from the theory of Markov Chains in Random
Environments (see Section 4.7.1). We then postpone it to the Appendix 4.7.2.

4.3.2 Review of the Ergodic Theorem for Markov Chains

Let (Xn)n∈N be a Markov Chain on the state space X = Z.

Definition 2 [129, Section 4.3] Two states x, y ∈ Z communicate if there exist n,m ∈
N s.t. (Pn)x,y > 0 and (Pm)y,x > 0. Two states that communicate are said to belong
to same class. If all the states communicate, say there is only one class, the Markov
Chain is said to be irreducible.
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Definition 3 [68, Section 3.2] A state j is said to be positive recurrent if E(τj |X0 =
j) <∞ where τj = min{n > 0 : Xn = j}.

Positive recurrence is a class property (see [68, Section 3.2]); thus, if a Markov Chain
is irreducible and has one positive recurrent state, then all the states are positive
recurrent. In such case, the Markov Chain is said to be ergodic.

Theorem 4 (Ergodic Theorem for Markov Chains) [68, Propositions 3.3.1 - 3.3.2]
An ergodic Markov Chain admits a unique invariant p.v. Φ. Furthermore, for every
function f such that

∑
d∈Z |f(d)|Φd <∞ and for every initial state i ∈ Z,

lim
K→∞

K−1∑
k=0

∑
d∈Z

f(d)(Pk)i,d =
∑
d∈Z

f(d)Φd.

4.3.3 Proof of Theorem 2

Let us go back to the One State Algorithm. According to (4.18), (Dk)k∈N is a denu-
merable homogeneous Markov Chain on Z, with transition probabilities

Px,y = P(Dk+1 = y|Dk = x) =
1

2
[Px,y(0) + Px,y(1)]

where Px,y(u) = P(Dk+1 = y|Dk = x, Uk = u), u ∈ {0, 1}. Notice that the only
non-null entries of P(u) are the following:

Pd,d+1(0) =
1

2
erfc

(
d+ 1

2√
2σ

)
Pd,d(0) = 1−Pd,d+1(0)

Pd,d(1) =
1

2
erfc

(
d− 1

2√
2σ

)
Pd,d−1(1) = 1−Pd,d(1)

Now, we prove a few lemmas that will lead to the proof of Theorem 2.

Lemma 1 (Dk)k∈N is ergodic.

Proof P is tridiagonal and, for any x, y ∈ Z, Px,y = P−x,−y and Px,y > 0 if and
only if |x− y| ≤ 1; by iteration, for any n ∈ N, (P

n
)x,y > 0 if and only if |x− y| ≤ n.

Hence, given any couple of states x, y ∈ Z with distance |x− y| = m, (P
m

)x,y > 0 and
(P

m
)y,x > 0, that is, (Dk)k∈N is irreducible.

To prove that (Dk)k∈N is positive recurrent, it suffices to apply the criterion pro-
posed in [146, Exercise 3.3.3]: if there exists a function g ∈ R+Z so that gx ≥ (Pg)x+ε
for any x ∈ Z \ {y} and for some ε > 0, then y is a positive recurrent state. In our
case, it is easy to prove that y = 0 is a positive recurrent state considering gx = |x|.
Moreover, given that the chain is irreducible, if one state is positive recurrent, all states
are so.
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Lemma 2 (Dk)k∈N admits a unique invariant p.v. Φ, defined by

Φd = Φ0

|d|∏
i=1

Pi−1,i

Pi,i−1

(4.19)

where Φ0 =
[
1 + 2

∑∞
d=1

∏|d|
i=1 Pi−1,i/Pi,i−1

]−1
.

Proof (Dk)k∈N is ergodic by Lemma 1, hence it admits a unique invariant p.v. Φ by
Theorem 4. Let us then prove (4.19).

By (ΦTP)d = ΦT
d , for any d ∈ Z, it follows that

Φd−1Pd−1,d − ΦdPd,d−1 = c (c constant). (4.20)

In particular, as Φd = Φ−d for any d ∈ Z (this is due to the uniqueness of Φ and to the
symmetry of P), it suffices to substitute values d = 0 and d = 1 in (4.20) to conclude
that c = 0; hence, relation (4.19) holds.

Notice that c = 0 corresponds to the property of time-reversibility of a Markov
Chain (see Section 4.8 of [129]), hence one could even prove it by Theorem 4.2 in [129,
Section 4.8], after having verified the aperiodicity [129, Section 4.4]

From Lemma 2 we deduce in particular that for any d ∈ Z, Φd > 0. Moreover, since
Pi−1,i/Pi,i−1 < 1 for i ≥ 1, Φd has a maximum at d = 0 and it is monotone decreasing
for d > 0.

Let us know conclude the proof of Theorem 2. Since

BER(D(1)) =
1

K

K−1∑
k=0

P(Ûk 6= Uk) =
1

K

K−1∑
k=0

∑
d∈Z

qd(P
k
)0,d

the result follows from Theorem 4 and Lemma 1. In fact, given the ergodicity proved in
Lemma 1, we can apply Theorem 4 with f(d) = qd (as qd is a probability,

∑
d∈Z qdΦd <

∞ holds).

4.4 Theoretic Analysis of the Two States Algorithm

Similar to the OSA, the TSA procedure can be studied through the Markov Theory,
which provides the instruments to compute both BER and CBER. The main results
are collected in two Performance Theorems that we will state after having introduced
the necessary setting.

As shown in Section 4.2.2, the Two States procedure stores, at each step, a state
and its normalized probability, this information being sufficient to individuate also the
second state and probability. Let X̂k be the r.v. representing the stored state, Xk the
current correct state, Dk = X̂k−Xk and Ak the r.v corresponding to the probability of
X̂k: now, the stochastic process (Ak, Dk)k∈N in [0, 1] × Z is a Markov Process, whose
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definition (which actually extends the definition of Markov Chain from a denumerable
to a continuous set) is now given.

Consider a set X endowed with a countably generated σ-field F . A transition
probability kernel (or Markov probability kernel, see, e.g., [94, Section 3.4.1]) on (X,F)
is an application P : X×F → [0, 1] such that
(i) for each F ∈ F , P (·, F ) is a non-negative measurable function;
(ii) for each x ∈ X, P (x, ·) is a probability measure (p.m. for short) on (X,F).

Given a bounded measurable function v on (X,F), we denote by Pv the bounded
measurable function on (X,F) defined as

(Pv)(x) =

∫
X
v(y)P (x,dy). (4.21)

Further, let µ be a measure on (X,F): we define the measure µP

(µP )(F ) =

∫
X
P (x, F )µ(dx) F ∈ F . (4.22)

We define the n-th power of the transition kernel P simply putting P 1(x, F ) = P (x, F )
and Pn(x, F ) =

∫
X P (x,dy)Pn−1(y, F ). It is easy to see that Pn(x, F ) are transition

kernels, too. Corresponding actions on bounded functions and on measures will be
respectively denoted by Pnv and µPn.

A measure ψ on (X,F) is said to be invariant for the transition kernel P if ψP = ψ
(see, e.g., [94, (10.1)]).

We define a homogeneous Markov Process on space (X,F) with transition kernel P
as a sequence of X-valued random variables (Xn)n∈N such that, for any x ∈ X and
F ∈ F ,

Prob(Xn+1 ∈ F |Xn = x,Xn−1, . . . , X0) = Prob(Xn+1 ∈ F |Xn = x) = P (x, F )

for any n ∈ N. The evolution of (Xn)n∈N is completely described once we fix a prob-
ability law µ of X0 on (X,F); if µ is invariant, then the Markov Process is said to be
stationary: all the r.v.’s Xn are distributed according to µ. Notice also that for any
x ∈ X and F ∈ F , Prob(Xm+n ∈ F |Xm = x) = Pn(x, F ) for any m,n ∈ N.

4.4.1 TSA Performance Theorems

(Ak, Dk)k∈N is a Markov Process in ([0, 1]× Z,B([0, 1])× P(Z)) where B([0, 1]) is the
Borel σ-field on [0, 1] and P(Z) is the discrete σ-field of Z. In order to completely
define the process, we provide also an initial distribution L × κ, L and κ respectively
being the usual Lebesgue measure on [0, 1] and the counting measure on Z.

The transition probability kernel will be explicitly computed in the Appendix 4.7.3.

Theorem 5 (TSA - BER) Let q(α, d) := P (Ûk 6= Uk|αk = α,Dk = d), then

lim
K→∞

BER(D(2)) =

∫
[0,1]×Z

q dφ̃
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where φ̃ is the unique the invariant p.m. of the kernel of (Ak, Dk)k∈N.

Theorem 6 (TSA - CBER) Let π be the uniform Bernoulli probability measure over
{0, 1}N. Then, for the TSA,

lim
K→∞

CBER(D(2)|U) = lim
K→∞

BER(D(2)) for π-a.e. U.

Our next goal is to prove Theorem 2 using the Ergodic Theorem for Markov Processes,
which is now reviewed. Instead, we refer the reader to the Appendix 4.7.8 for the proof
of Theorem 6.

4.4.2 Review of the Ergodic Theorem for Markov Processes

From now onwards, we will assume X to be a locally compact separable metric space:
under this topological condition we can easily prove the existence of an invariant mea-
sure (see [94, Section 12.3]). Let B(X) be the Borel σ-algebra of X.

Definition 4 [94, Sections 6.1.1, 11.3.1] Let P be a transition kernel on (X,B(X)). If
P (·, O) is a lower semicontinuous function for any open set O ∈ B(X), then P is said
to be weak Feller. Moreover, we say that P verifies the Drift Condition if there exist
a compact set C ⊂ X, a constant b < ∞ and a function V : X → [0,∞] not always
infinite such that

∆V (x) :=

∫
X
P (x,dy)V (y)− V (x) ≤ −1 + b1C(x) (4.23)

for every x ∈ X.

Proposition 1 [94, Theorem 12.3.4] If a transition kernel P is weak Feller and verifies
the Drift Condition, then it admits an invariant p.m..

Under some further conditions, also the uniqueness of the invariant measure can be
proved.

Definition 5 [94, Section 4.2.1] For any B ∈ B(X), let τB = min{n > 0 : Xn ∈ B}.
(Xn)n∈N is said to be µ-irreducible if there exists a measure µ on B(X) such that for
every x ∈ X, µ(B) > 0 implies P(τB < +∞|X0 = x) > 0.

A µ-irreducible Markov Process whose kernel admits an invariant p.m. is said to be
positive recurrent [94] and

Proposition 2 [94, Theorem 10.0.1, Proposition 10.1.1] The kernel of a positive re-
current Markov Process admits a unique invariant p.m..

Furthermore,
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Definition 6 [68, Definitions 2.2.2, 2.4.1] A set B ∈ B(X) is said to be invariant if
P (x,B) ≥ 1B(x) for every x ∈ X.
A p.m. µ on B(X) is said to be ergodic if µ(B) = 0 or µ(B) = 1 for every invariant
set B ∈ B(X).

Proposition 3 [68, Proposition 2.4.3] If a Markov Process admits a unique invariant
p.m. µ, then µ is ergodic.

A fundamental issue for our analysis is the Ergodic Theorem of Markov Processes, which
is the transposition into stochastic terms of the Birkhoff’s Individual Ergodic Theorem
([159, Theorem 1.14]). Here we report its version under the ergodicity condition for an
invariant p.m.; for a more general treatise, see [54, 68].

Theorem 7 (Ergodic Theorem for Markov Processes) [68, Theorem 2.3.4 - Propo-
sition 2.4.2] Assume that a kernel P on (X,B(X)) admits an ergodic invariant p.m.
µ. Then, for any non-negative function v ∈ L1(X,B(X), µ),

lim
K→∞

1

K

K−1∑
k=0

(P kv)(x) =

∫
X
v dµ for µ-a.e. x ∈ X.

Finally, we report a result of direct convergence for the iterates of the kernel, in the
case of aperiodic behavior.

Definition 7 [8, Section 2] A Markov Process is said to be strongly aperiodic it there
exist a set A ⊆ X, a probability measure ν on A and a finite number c > 0 such that
P (x,B) ≥ cν(B) for any x ∈ A,B ∈ B(X).

Now, let ||Pn(x, ·)−µ|| = 2 sup
B∈B(X)

|Pn(x,B)−µ(B)| be the total variation norm between

the measures Pn(x, ·) and µ.

Proposition 4 [152, Theorem 4.1 (i)] For a positive recurrent, strongly aperiodic
Markov Process with invariant p.m. µ, ||Pn(x, ·) − µ(·)|| → 0 as n → ∞ for µ-a.e.
x ∈ X.

4.4.3 Proof of Theorem 5

The proof of Theorem 5 consists of three steps. First, we prove that the kernel of
(Ak, Dk)k∈N admits an invariant p.m. φ̃,; second, we prove the uniqueness of such
invariant p.m.; third, we show how to apply the Ergodic Theorem 7 to achieve the
thesis.

Lemma 3 The kernel of (Ak, Dk)k∈N admits an invariant p.m. φ̃.

The proof requires some technical computation and is postponed to Appendix 4.7.5.

Lemma 4 φ̃ is unique (and ergodic).
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Proof (Ak, Dk)k∈N is (L × κ)-irreducible (the proof of this fact is in the Appendix
4.7.6), then positive recurrent by Lemma 3. Thus, φ̃ is unique by Proposition 2 and
ergodic by Proposition 3.

Given these two Lemmas, we now evaluate the BER by means of the Ergodic
Theorem 7. The BER is given by

BER(D(2)) =

=
1

K

K−1∑
k=0

P (Ûk 6= Uk) =
1

K

K−1∑
k=0

∫ 1

0

∑
d∈Z

P (Ûk 6= Uk, Ak = α,Dk = d)dα

=
1

K

K−1∑
k=0

∫ 1

0

∑
d∈Z

P (Ûk 6= Uk|Ak = α,Dk = d)P k
(
(1, 0); (dα, d)

)
.

the initial state (1, 0) being discussed in the Remark 3. As q(α, d) = P (Ûk 6= Uk|αk =
α,Dk = d), (notice that q(α, d) actually does not depend on k) we have BER(D(2)) =
1
K

∑K−1
k=0 (P kq)(1, 0).

Given Lemma 4, by the Ergodic Theorem 7,

lim
K→∞

1

K

K−1∑
k=0

(P kq)(α, d) =

∫
[0,1]×Z

q dφ̃ φ̃-a.e. (α, d).

This result cannot be immediately applied to evaluate the BER since the convergence
is not assured for all the initial states. In particular, let N ⊂ [0, 1]×Z be the negligible
set for which there is no convergence and let N0 = {α ∈ [0, 1] : (α, 0) ∈ N}. Now,
recalling Remark 3,

BER(D(2)) =

=
1

K
q(1, 0) +

1

K

K−1∑
k=1

∫
α1∈[0,1]

∑
d1∈Z

P ((1, 0), (dα1, d1))(P k−1q)(α1, d1)

=
1

K
q(1, 0) +

1

K

K−1∑
k=1

∫
α1∈[0,1]

P ((1, 0), (dα1, 0))(P k−1q)(α1, 0).

By the Lebesgue’s Dominated Convergence Theorem,

lim
K→∞

BER(D(2)) =

∫
α1∈[0,1]

P ((1, 0), (dα1, 0)) lim
K→∞

1

K

K−1∑
k=1

(P k−1q)(α1, 0).

Notice that L(N0) = 0, otherwise φ̃(N0 × {0}) =
∫

[0,1]×Z P (ω,N0 × {0})φ̃(dω) >

Cε,0L(N0) > 0 by Proposition 7 in the Appendix 4.7.6. By Lemma 6 in the Appendix
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4.7.7, this implies that P ((1, 0), N0 × {0}) = 0. Finally,

lim
K→∞

BER(D(2)) =

∫
α1∈[0,1]\N0

P ((1, 0), (dα1, 0)) lim
K→∞

1

K

K−1∑
k=1

(P k−1q)(α1, 0)

=

∫
α1∈[0,1]\N0

P ((1, 0), (dα1, 0))

∫
[0,1]×Z

q dφ̃ =

∫
[0,1]×Z

q dφ̃

as (α1, 0) /∈ N . The function q(α, d) is explicitly computed in the Appendix 4.7.4.

4.4.4 Direct Convergence to φ̃

The explicit construction of an invariant p.m. is an intricate issue in the not countable
framework. When ergodic results are available, one can approximate it by several pro-
cedures (see, e.g, [68, Chapter 12]). In our framework, we can obtain an approximation
by Proposition 4, which states the direct convergence of the iterates Pn(·, ·) to the
invariant p.m.. Before illustrating that, let us prove that the hypotheses of Proposition
4 hold.

Proposition 5 The Markov Process (Ak, Dk)k∈N is strongly aperiodic.

Proof Let us consider the probability measure L× δd̄ on ([0, 1]×Z,B([0, 1])×P(Z)),
where L is the Lebesgue measure and δd̄(d) = 1 if d = d̄, 0 otherwise. By Proposition
7, P ((α, d),M × {d}) > 1

2Cε,dL(M), Cε,d > 0. Then, considering the Definition 7 with
ν = L × δd̄, c = 1

2Cε,d and A = [0, 1]× {d̄}, the proposition is proved.

This result along with Proposition 4 yields:

Corollary 1 (Direct Convergence) ||Pn((α, d), ·) − φ̃|| → 0 as n → ∞ for φ-a.e.
(α, d) ∈ [0, 1]×Z.

4.5 Analytic vs Simulations’ outcomes

To conclude our analysis of the OSA and TSA, we compare the simulations’ outcomes
with the theoretic results: we expect the BER’s obtained by the simulations of suffi-
ciently long transmissions to be consistent to the analytic computations.

By Theorems 2 and 5, the BER’s can be computed once we know the corresponding
invariant distributions. While for the OSA the invariant p.v. is explicitly given by
(4.19), for the TSA we have approximated the invariant p.m. using the Corollary 1. In
particular, we have discretized the kernel P into a matrix, afterwards we have computed
the iterates Pn for a sufficiently large n, so that to obtain an equilibrium condition,
that is, a matrix whose rows are all equal up to numerical roundoff . At this point, any
row of the matrix is a discretized, approximated version of the invariant p.m.

In Figures 4.4 and 4.5, we compare analytic and simulations’ outcomes respectively
for OSA and TSA: as expected, they do not present substantial differences.
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Figure 4.4: OSA: analytic computation vs simulation.

4.6 Conclusions

In this chapter, we have studied the differentiation problem in one dimension and in
case of binary input generated by a Bernoulli source. The algorithms BCJR, CBCJR,
OSA and TSA have been implemented to estimate the unknown input and simulations
have been proposed. Furthermore, we have provided an exhaustive theoretical analysis
of the performance of the OSA and the TSA, in terms of Markov Chains and Markov
Processes. In particular, we have described the behavior of these algorithms in the
asymptotic case - which is the most interesting for all those applications that envisage
long time transmissions - exploiting the ergodic properties of the associated Markov
Chains or Processes. The proposed algorithms are known to be sensible to the input
sequences, say they have different performance for different inputs; however, we have
proved that for almost all possible input sequences the algorithms behave as in the
mean case (i.e., the case obtained by averaging the possible input sequences).

4.7 Appendix

4.7.1 Markov Chains in Random Environments

Consider a countable set Θ and a family of transition probability kernels {Pθ, θ ∈ Θ}
on a space (X,F). Given a σ-field B of Θ, let (θn)n∈N and (Xk)k∈N respectively be
sequences of Θ-valued and X-valued r.v’s. Pθk(Xk, F ) can now be interpreted as the
transition probability of Xk to set F depending on the r.v θk, which represents to so-
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Figure 4.5: TSA: analytic computation vs simulation.

called random environment.
We say that (Xk)k∈N with (θn)n∈Z is a Markov Chain in Random Environment (or
MCRE) if

P (Xk+1 ∈ F |Xk, . . . , X0, (θn)n∈Z) = Pθk(Xk, F ) a.s.

for all F ∈ F and k = 0, 1, . . .
(4.24)

Let us define ΘN =
∏+∞

0 Θ and BN =
∏+∞

0 B. An important feature of a MCRE is
that we can always associate to it a classical Markov Process. In fact, given any x ∈ X
and θ = (θ0, θ1, . . . ) ∈ ΘN and denoting by T the left sequence shift on ΘN (that is,
Tθ = θ̃ with θ̃n = θn+1 for any n ∈ N), we can introduce the following transition
probability kernel on (X×ΘN,F × BN):

P
(
(x, θ), F ×B

)
= Pθ0(x, F )1B(Tθ) (4.25)

which determines a Markov Process
(
Xk, T

k(θn)n∈N
)
k∈N on (X×ΘN,F ×BN). From

now onwards, we will refer to it as to the Extended Markov Process, EMP for short.

Remark 4 If the random environments θn’s are independent and identically distributed
then (Xk)k∈N is a Markov Process with transition probability kernel P (x, F ) = E [Pθ0(x, F )].
In other terms, (Xk)k∈N is the Markov Process moving in the average environment.

In this framework, we prove the following
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Proposition 6 Let (Xk)k∈N with (θn)n∈N be a MCRE on X×ΘN. Suppose the random
environments θn’s to be independent, identically distributed with distribution π0 on
(Θ,B) and define the distribution π = ×∞n=0π0 over (ΘN,BN). Moreover, suppose the
kernel P (·) = E[Pθ0(·, · · · )] of the Markov Process (Xk)k∈N (see Remark 4) to admit
an invariant p.m. φ. Then,

ψ = φ× π (4.26)

is an invariant p.m. for the EMP
(
Xk, T

k(θn)n∈N
)
k∈N over (X×ΘN,F × BN).

Proof Let ω = (x, θ) ∈ X×ΘN. ψ is an invariant p.m. for (Xk, T
k(θn)n∈N)k∈N if∫

X×ΘN
P (ω, F ×B)ψ(dω) = ψ(F ×B)

for any F ×B such that F ∈ F , B ∈ BN. Now,∫
X×ΘN

P (ω, F ×B)ψ(dω) =

∫
X

∫
ΘN

Pθ0(x, F )1B(θ1, θ2, . . . )π(dθ)φ(dx)

= π(B)

∫
X

∑
θ0∈Θ

Pθ0(x, F )π0(θ0)φ(dx)

= π(B)

∫
X
P (x, F )φ(dx) = π(B)φ(F ) = ψ(F ×B)

where we have exploited the fact that φ is invariant.

This Proposition is a partial extension of the Theorem 5 in [100], which states
the same result in the case of denumerable state space X and attests also the inverse
implication (that is, all the invariant p.m.’s are product measures of kind (4.26) still in
the denumerable framework.

For a more detailed treatise on MCRE’s, we refer the reader to [32, 33, 100, 101].

4.7.2 OSA: Proof of Theorem 3

From equation (4.18), (Dk)k∈N with (Uk)k∈N turns out to be a countable MCRE. This
is the right way to look at (Dk)k∈N if we want to understand its behavior with respect
to typical instances of the input U = (U0, U1, . . . ). For any x, y ∈ Z, we have

P (Dk+1 = y|Dk = x,Dk−1, . . . , D0; U) = Px,y(Uk).

Consider the space (Z×{0, 1}N,P(Z)×
∏∞

0 P({0, 1})) endowed with the initial distri-
bution κ×π, where κ is the counting measure on Z and π is the usual uniform Bernoulli
measure on {0, 1}N. Given x, y ∈ Z, u = (u0, u1, . . . ) ∈ {0, 1}N and B ∈

∏∞
0 P({0, 1}),

the EMP is defined by the transition probability kernel

P
(
(x,u); {y} ×B

)
= Px,y(u0)1B(Tu). (4.27)

By Proposition 6, an invariant probability measure exists for our EMP and we explicitly
compute it: in fact, let φ be a p.m. on (Z,P(Z)) given by φ({d}) = Φd, Φd being the
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invariant p.v. defined in the Lemma 2, for any integer d. Then, ψ = φ × π is an
invariant p.m. for the EMP.
We can verify that ψ is ergodic by the following criterion (see Chapter 3 of [33]). Let
P(n)(U0, . . . Un−1) the n-step transition matrix whose entries are

P(n)
x,y(U0, . . . Un−1) = P(Dn = y|D0 = x, U0, . . . Un−1). (4.28)

If for each x, y ∈ Z and π-a.e. U there exist n = n(x, y,U) ∈ N and z =

z(x, y,U, n) ∈ Z such that P
(n)
x,z(U0, . . . , Un−1)P

(n)
y,z (U0, . . . Un−1) > 0, then ψ is er-

godic. In our context it is easy to check that given any couple of starting states x and
y, after n > |x − y| steps we have a non-null probability of having joined a common
state z.
Define qd(Uk) = P [Ûk 6= Uk|Dk = d, Uk] = Pd,d+1(Uk) + Pd,d−1(Uk) (qd is actually the
mean of qd). For any K ∈ N and given D0 = 0, the CBER can be expressed as follows:

CBER(D(1)) =
1

K

K−1∑
k=0

∑
d∈Z

qd(Uk)P
(n)
0,d (U0, U1, . . . Uk−1) (4.29)

Notice that, since the Uk’s k ∈ N are independent, P(n)(U0, U1, . . . , Uk−1) = P(U0)P(U1) · · ·P(Uk−1).
Consider ω = (x,U) and the function g(ω) = qx(U0): we have that∑

d∈Z
qd(Uk)Px,d(U0, . . . Uk−1) = (P kg)(x,U)

and notice that

CBER(D(1)) =
1

K

K−1∑
k=0

(P kg)(0,U). (4.30)

Now, by the Ergodic Theorem 7:

lim
K→∞

1

K

K−1∑
k=0

P kg(ω) =

∫
Z×{0,1}N

g(ω)ψ(dω) for ψ-a.e. ω. (4.31)

Notice that, as pointed out after Lemma 2, φ({d}) > 0 for any d ∈ Z; then, a set
{d} ×B, d ∈ Z, B ⊂ {0, 1}N, is ψ-negligible if and only if π(B) = 0. Hence, in (4.31),
“ψ-a.e. ω” is equivalent to “for any d ∈ Z and π-a.e. U”.

This, along with the equality (4.30), implies that

lim
K→∞

CBER(D(1)) =

∫
Z×{0,1}N

g(ω)ψ(dω) for π-a.e. U. (4.32)

Finally, recalling that ψ = φ× π,∫
Z×{0,1}N

g(ω)ψ(dω) =
∑
d∈Z

∑
U0=0,1

qd(U0)π(U0)Φd =
∑
d∈Z

qdΦd.
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4.7.3 TSA: Computation of the Transition Probabilities

In the next pages, we compute the probability of moving from a state (α, d) ∈ [0, 1]×Z
to a set of type (0, β) × {d′}, β ∈ (0, 1], d′ ∈ Z, for the Markov Process (Ak, Dk)k∈N
defined in Section 3.2. Let Pu

(
(α, d), (0, β)×{d′}

)
be the transition probability given the

transmitted bit u: P
(
(α, d), (0, β)×{d′}

)
= 1

2P0

(
(α, d), (0, β)×{d′}

)
+1

2P1

(
(α, d), (0, β)×

{d′}
)

are null if d′ /∈ {d−1, d, d+1}, if d′ = d+1 and u = 1 or if d′ = d−1 and u = 0; we
now compute the non-null instances. Given (α, d) ∈ (0, 1)×Z and x ∈ {α, (1−α)−1, 1},
y ∈ {d− 1, d, d+ 1}, z ∈ (0, 1), we define:

cα =

√
exp(1/σ2)

α(1− α)

hx,y(z) =
σ2 log

(
x1−z

z

)
+ y + 1

2

σ
√

2

Hx,y(z) =
1

2
erfc (hx,y(z)) .

(4.33)

Notice that these quantities depend on the noise variance σ2, even if the notation does
not emphasize that.

Case 1: d′ = d, u = 0.

P0

(
(α, d), (0, β)× {d}

)
= Prob(ζ3 ≤ ζ1 ≤ β(ζ1 + ζ2)|Ak = α,Dk = d, Uk = 0)

=


0 if α = 0 or if α ∈ (0, 1) and β ≤ 1

1+cα

Hα,d (β)−Hα,d

(
1

1+cα

)
if α ∈ (0, 1) and β > 1

1+cα

H1,d (β) if α = 1.

(4.34)

Case 2: d′ = d, u = 1.

P1

(
(α, d), (0, β)× {d}

)
=

= Prob
(
(ζ3 ≥ ζ1) ∩ (βζ3 ≥ (1− β)ζ2)|Ak = α,Dk = d, Uk = 1

)
=


H 1

1−α ,d
(β) if α = 0 or if α ∈ (0, 1) and β ≤ cα

1+cα

H 1
1−α ,d

(
cα

1+cα

)
if α ∈ (0, 1) and β > cα

1+cα

0 if α = 1.

(4.35)

Case 3: d′ = d+ 1, u = 0.

P0

(
(α, d), (0, β)× {d+ 1}

)
=

= Prob
(
(ζ3 ≥ ζ1) ∩ (βζ3 ≥ (1− β)ζ2)|Ak = α,Dk = d, Uk = 0

)
=


H 1

1−α ,d+1 (β) if α = 0 or if α ∈ (0, 1) and β ≤ cα
1+cα

H 1
1−α ,d+1

(
cα

1+cα

)
if α ∈ (0, 1) and β > cα

1+cα

0 if α = 1.

(4.36)
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Case 4: d′ = d− 1, u = 1.

P1

(
(α, d), (0, β)× {d− 1}

)
=

= Prob(ζ3 ≤ ζ1 ≤ β(ζ1 + ζ2)|Ak = α,Dk = d, Uk = 1)

=


0 if α = 0 or if α ∈ (0, 1) and β ≤ 1

1+cα

Hα,d−1 (β)−Hα,d−1

(
1

1+cα

)
if α ∈ (0, 1) and β > 1

1+cα

H1,d−1 (β) if α = 1.

(4.37)

Remark 5 : Since cα > 2, then 1
1+cα

< 1
3 <

2
3 <

cα
1+cα

.

In summary:

P
(
(α, d), (0, β)× {d}

)
=

1

2



H1,d (β) if α = 0 or if α = 1
H 1

1−α ,d
(β) if α ∈ (0, 1) and β ≤ 1

1+cα

Hα,d (β)−Hα,d

(
1

1+cα

)
+H 1

1−α ,d
(β)

if α ∈ (0, 1) and 1
1+cα

< β ≤ cα
1+cα

Hα,d (β)−Hα,d

(
1

1+cα

)
+H 1

1−α ,d

(
cα

1+cα

)
if α ∈ (0, 1) and β > cα

1+cα

(4.38)

P
(
(α, d), (0, β)× {d+ 1}

)
=

1

2


H 1

1−α ,d+1 (β) if α = 0 or if α ∈ (0, 1) and β ≤ cα
1+cα

H 1
1−α ,d+1

(
cα

1+cα

)
if α ∈ (0, 1) and β > cα

1+cα

0 if α = 1

(4.39)

P
(
(α, d), (0, β)× {d− 1}

)
=

1

2


0 if α = 0 or if α ∈ (0, 1) and β ≤ 1

1+cα

Hα,d−1 (β)−Hα,d−1

(
1

1+cα

)
if α ∈ (0, 1) and β > 1

1+cα

H1,d−1 (β) if α = 1.

(4.40)

4.7.4 TSA: Computation of q(α, d)

The function q on [0, 1] × Z defined in the Corollary 5 is given by q(α, d) = 1
2P(Ûk =

1|Uk = 0, Ak = α,Dk = d) + 1
2P(Ûk = 0|Uk = 1, Ak = α,Dk = d). Note that

P(Ûk = 1|Uk = 0, Ak = α,Dk = d) =

= Prob
(
αf(Yk+1|Xk+1)(yk+1|x̂k + 1) + (1− α)f(Yk+1|Xk+1)(yk+1|x̂k + 2)

> αf(Yk+1|Xk+1)(yk+1|x̂k) + (1− α)f(Yk+1|Xk+1)(yk+1|x̂k + 1)
)

=
1

2
erfc

(
σ2 log z1 + d+ 1

2√
2σ

)

72



4.7 Appendix

where z1 is the positive solution of the equation (1 − α)e−
1
σ2 z2 + (2α − 1)z − α = 0.

Similarly,

P(Ûk = 0|Uk = 1, Ak = α,Dk = d) = 1− 1

2
erfc

(
σ2 log z1 + d− 1

2√
2σ

)

hence

q(α, d) =
1

2

[
1

2
erfc

(
σ2 log z1 + d+ 1

2√
2σ

)
+ 1− 1

2
erfc

(
σ2 log z1 + d− 1

2√
2σ

)]
.

Naturally, if α = 1, then q(α, d) = 1
2

[
1
2erfc

(
d+ 1

2√
2σ

)
+ 1− 1

2erfc
(
d− 1

2√
2σ

)]
= qd and we

reduce to the One State case.

4.7.5 TSA: Proof of the Lemma 3

We prove that the kernel of (Ak, Dk) satisfies both the Weak Feller Property and the
Drift Condition; the result will then follow from Proposition 1. First, we check the
Drift Condition. By equations (4.38)- (4.40) in the Appendix,

P
(
(α, d), [0, 1]× {d+ 1}

)
=

1

4
erfc

σ2 log
√

α
1−α + d+ 1

σ
√

2


P
(
(α, d), [0, 1]× {d− 1}

)
=

1

2
− 1

4
erfc

σ2 log
√

α
1−α + d

σ
√

2

 .

(4.41)

In particular, P
(
(α, d), [0, 1] × {d + 1}

)
and P

(
(α, d), [0, 1] × {d − 1}

)
have values in

[0, 1/2] and are monotone respectively decreasing and increasing with respect to α.
Now, let us define

δd =
1

2(|d|+ 10)
(4.42)

and

V (α, d) =

{
d2 if d ≥ 0, α ≥ δd or if d < 0, α ≤ 1− δd;
d2 + 2|d| otherwise.

(4.43)

We are going to prove that V fulfills the Drift inequality for some compact C:

∆V (α, d) =

∫
[0,1]×Z

P
(
(α, d), d(α′, d′)

)
V (α′, d′)− V (α, d) ≤ −1 + b1C(α, d) (4.44)

for every (α, d) ∈ [0, 1] × Z. In order to individuate C, let us find out the values of
(α, d) such that (4.44) holds with 1C(α, d) = 0. Recall that P

(
(α, d), A× {d′}

)
> 0⇒
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d′ ∈ {d− 1, d, d+ 1} for any α ∈ [0, 1], A ∈ B([0, 1]).
In the next, let us use the notation ω = (α, d), ω′ = (α′, d′).

If d ≥ 0,

∆V (ω) =

∫ 1

0

d+1∑
d′=d−1

P (ω, (dα′, d′))V (ω′)− V (ω)

=
d+1∑

d′=d−1

[∫ δd

0
P (ω, (dα′, d′))(2d′ + d′2) +

∫ 1

δd

P (ω, (dα′, d′))d′2
]
− V (ω)

=
d+1∑

d′=d−1

[∫ 1

0
P (ω, (dα′, d′))d′2 +

∫ δd

0
P (ω, (dα′, d′))2d′

]
− V (ω)

=

d+1∑
d′=d−1

[
P (ω, [0, 1]× {d′})d′2 + P (ω, [0, δd]× {d′})2d′

]
− V (ω)

= d2 + 2d[P (ω, [0, 1]× {d+ 1})− P (ω, ([0, 1]× {d− 1})]
+ P (ω, [0, 1]× {d+ 1}) + P (ω, [0, 1]× {d− 1}) + 2dP (ω, [0, δd]×Z)

+ 2[P (ω, [0, δd]× {d+ 1})− P (ω, [0, δd]× {d− 1})]− V (ω).

As P (ω, [0, 1] × {d + 1}) + P (ω, [0, 1] × {d − 1}) ≤ 1
2 (see equations (4.41)) and

P (ω, [β1, β2]×Z) ≤ G(β2 − β1) (see Lemma 6 in the Appendix 4.7.7).

∆V (ω) ≤ d2 + 2d[P (ω, [0, 1]× {d+ 1})− P (ω, [0, 1]× {d− 1})] +
1

2
+ 2(d+ 1)Gδd − V (ω)

≤ d2 + 2d[P (ω, [0, 1]× {d+ 1})− P (ω, [0, 1]× {d− 1})] +
1

2
+G− V (ω)

(4.45)

where we exploited that 2(d+ 1)Gδd < G by the definition (4.42) of δd.
If d < 0, by analogous computation we obtain again the inequality (4.45). Let us

study the behavior of this bound for every ω ∈ [0, 1]×Z, according to the partition of
[0, 1]×Z into four subsets given by the definition of V .

Subset 1: If d ≥ 0 and α ≥ δd, V (ω) = d2 and

P (ω, [0, 1]× {d+ 1}) ≤ 1

4
erfc

σ2 log
√

δd
1−δd + d

σ
√

2


P (ω, [0, 1]× {d− 1}) ≥ 1

2
− 1

4
erfc

σ2 log
√

δd
1−δd + d

σ
√

2
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hence inequality (4.45) becomes

∆V (ω) ≤ G+ d

erfc

σ2 log
√

δd
1−δd + d

σ
√

2

− 1

+
1

2

= G+ d

[
erfc

(
−σ2

2 log(2d+ 19) + d

σ
√

2

)
− 1

]
+

1

2
.

As erfc(x) ∈ (0, 1) whenever x > 0 , then for d is sufficiently large the quantity in the
square bracket is negative. Moreover, this quantity is multiplied by d; hence, there nec-
essarily exists an integer d+

0 > 0, depending on the noise σ, such that for any d > d+
0 ,

∆V (ω) ≤ −1.

Subset 2: If d < 0 and α ≤ 1− δd ,

P (ω, [0, 1]× {d+ 1}) ≥ 1

4
erfc

−σ2 log
√

δd
1−δd + d+ 1

σ
√

2


P (ω, [0, 1]× {d− 1}) ≤ 1

2
− 1

4
erfc

−σ2 log
√

δd
1−δd + d+ 1

σ
√

2


hence inequality (4.45) becomes

∆V (ω) ≤ G+ d

erfc

−σ2 log
√

δd
1−δd + d+ 1

σ
√

2

− 1

+
1

2

= G+ d

[
erfc

(
σ2

2 log(−2d+ 19) + d+ 1

σ
√

2

)
− 1

]
+

1

2
.

The computation is now analogous to the previous case and we conclude that there
necessarily exists an integer d−0 < 0, depending on the noise, such that for any d < d−0 ,
∆V (ω) ≤ −1.

Subset 3: If d ≥ 0 and α < δd, V (ω) = d2 + 2d; moreover, we have no tight
bounds for P (ω, [0, 1]×{d+ 1}) and P (ω, [0, 1]×{d−1}): we can just notice that their
difference is smaller than 1

2 . Substituting it in (4.45) we obtain

∆V (ω) ≤ d2 +G+
1

2
+ d− d2 − 2d = G+

1

2
− d

hence ∆V (ω) ≤ −1 if d > d1 = G+ 3
2 .
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Subset 4: If d < 0 and α > 1 − δd, V (ω) = d2 − 2d; as P (ω, [0, 1] × {d + 1}) −
P (ω, [0, 1]× {d− 1}) ≥ −1

2 ,

∆V (ω) ≤ G+
1

2
+ d

and ∆V ≤ −1 if d < −d1.
Now, it is easy to verify that the subsets of [0, 1] × Z not yet considered form the

compact set
(
[0, δd]×{0, . . . , d1}

)
∪
(
[δd, 1]×{0, . . . , d+

0 }
)
∪
(
[0, 1−δd]×{d−0 , . . . ,−1, 0}

)
∪(

[1− δd, 1]× {−d1, . . . ,−1, 0}
)
. For simplicity, we can consider the bigger compact set

C = [0, 1]×{−dC, . . . , dC}, where dC = max{d+
0 ,−d

−
0 , d1}: now, it is easy to check that

for any ω ∈ C the Drift Condition is satisfied whenever b ≥ G+ dC + 3
2 .

We now check the Weak Feller Property. Given any open interval I ⊂ [0, 1] and
d′ ∈ Z, the continuity of P (·, I × {d′}) can be easily verified by the equations (4.38)-
(4.40) (Section 4.7.3): P ((α, d), I×{d′}) is piecewise defined as combination of H, which
is a continuous function; moreover, it is straightforward to check that the continuity
holds also at the connection points. Furthermore,
(a) any open set on the real line (hence on [0, 1]) is a countable union of disjoint
intervals;
(b) if fN is a monotone increasing sequence of lower semicontinuous functions such that
fN ↑ f pointwise, then f is lower semicontinuous.

By (a), any open set O in [0, 1] can be expressed as O = ∪∞n=1In, with In mutually
disjoint open intervals in [0, 1]. Moreover, fN (ω) = P (ω, (∪Nn=1In)×{d′}) ≤ 1 fulfills the
hypotheses of statement (b), hence its pointwise limit f(ω) = P (ω, (∪∞i=1Ii) × {d′}) =
P (ω,O × {d′}) is lower semicontinuous. As any open set of the product topology can
be expressed as ∪n∈Z(On×{n}), On open in [0, 1], the lower semicontinuity is extended
to all the open sets.

4.7.6 TSA: Proof of the (L × κ)-irreducibility of (Ak, Dk)k∈N

In this paragraph, we complete the proof of the Lemma 4 and then of the Theorem
5 showing the (L × κ)-irreducibility of (Ak, Dk)k∈N in the space ([0, 1]× Z,B([0, 1])×
P(Z)). For this purpose, we first prove that any non-negligible Borel subset of kind
M × {d′} ⊂ [0, 1]×Z is achievable with positive probability from any (α, d), in one or
two steps, if d′ ∈ {d− 1, d, d+ 1} and M is sufficiently far from the extreme points of
[0, 1]:

Lemma 5 For any ε > 0, d ∈ Z, there exists a constant Cε,d > 0 such that the
following inequalities hold for every (α, d) ∈ [0, 1]×Z and M ∈ B([ε, 1− ε]):

P
(
(α, d),M × {d}

)
≥ Cε,dL(M)

P 2
(
(α, d),M × {d+ 1}

)
≥ Cε,dL(M)

P 2
(
(α, d),M × {d− 1}

)
≥ Cε,dL(M)

where L is the Lebesgue measure.
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Proof First, we prove the lemma on the open intervals (β1, β2) ⊂ [ε, 1 − ε]. Let
ᾱ = 1

1−α . Consider the first inequality. On the basis of the equations (4.38) and
Remark 5, the following cases may occur:

Case 1: If α = 0, (β1, β2) ⊂ [ε, 1− ε] or if α ∈ (0, 1), (β1, β2) ⊂ [ε, 1
1+cα

] ⊆ [ε, 1
3 ]:

P
(
(α, d),(β1, β2)× {d}

)
=

1

2
Hᾱ,d (β2)− 1

2
Hᾱ,d (β1)

=
1

2
√
π

∫ hᾱ,d(β1)

hᾱ,d(β2)
e−t

2
dt

= − 1

2
√
π

∫ β2

β1

e−h
2
ᾱ,d(z) ∂

∂z
hᾱ,d(z)dz

≥ 1

2
√
π

(β2 − β1) min
z∈(β1,β2)

(
−e−h

2
ᾱ,d(z) ∂

∂z
hᾱ,d(z)

)
≥ 1

2
√
π

(β2 − β1) min
z∈(β1,β2)

(
− ∂

∂z
hᾱ,d(z)

)
min

{
e−h

2
ᾱ,d(β1), e−h

2
ᾱ,d(β2)

}
.

By definition (4.33), for any x, y, ∂
∂zhx,y(z) = σ

z(z−1)
√

2
≤ −σ2

√
2; moreover,

min
{
e−h

2
ᾱ,d(β1), e−h

2
ᾱ,d(β2)

}
≥ min

{
e−h

2
ᾱ,d(ε), e−h

2
ᾱ,d(1−ε)

}
=: mᾱ,d.

Notice now that for any d ∈ Z, mᾱ,d → 0 if and only if α → 1; nevertheless, if α → 1,
also (1 + cα)−1 → 0 and in particular there will be some α such that (1 + cα)−1 < ε,
which contradicts the hypothesis β1 ≥ ε. Hence, we can conclude that

P
(
(α, d), (β1, β2)× {d}

)
≥ σ

√
2/π min

α
mα,d(β2 − β1) > 0

where the minimum has to be computed for α satisfying the initial hypotheses.
Case 2: If α = 1,(β1, β2) ∈ [ε, 1 − ε] or if α ∈ (0, 1), (β1, β2) ⊂ [ cα

1+cα
, 1 − ε] ⊆

[2
3 , 1− ε]: by analogous procedure, we obtain

P
(
(α, d), (β1, β2)× {d}

)
≥ σ

√
2/π min

α
mα,d(β2 − β1) > 0

where mα,d = min
{
e−h

2
α,d(ε), e−h

2
α,d(1−ε)

}
> 0 and its minimum is computed for α

satisfying the above hypotheses. The positiveness holds since for any d ∈ Z, mα,d → 0
if and only if α→ 0, which implies cα

1+cα
→ 1 and contradicts β2 ≤ 1− ε.

Case 3: Otherwise: it is straightforward to verify that

P
(
(α, d), (β1, β2)× {d}

)
≥ σ

√
2/π (mα,d +mᾱ,d) (β2 − β1).

Finally, if we consider

m̄(α, d, β1, β2) =


mᾱ,d if α = 0 or if α ∈ (0, 1) and ε < β1 < β2 ≤ 1

1+cα
;

mα,d if α = 1 or if α ∈ (0, 1) and cα
1+cα

< β1 < β2 ≤ 1− ε;
mα,d +mᾱ,d otherwise.

(4.46)
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and

C
(1)
ε,d = σ

√
2

π
min
α∈[0,1]

(β1,β2)⊂[ε,1−ε]

m̄(α, d, β1, β2) (4.47)

we conclude that for any ε > 0, d ∈ Z,

P
(
(α, d), (β1, β2)× {d}

)
≥ C(1)

ε,d (β2 − β1) C
(1)
ε,d > 0. (4.48)

Let us prove the second inequality, on the basis of equations (4.39). In this case, the
component d of the state moves to d + 1, which is not always possible in one step. In
particular, there are two situations in which the transition probability is null: α = 1
and when β1 = cα

1+cα
(and given the continuity of (4.39), problems occur whenever

α→ 1 or β1 → cα
1+cα

).
Both issues can be solved considering two-step transition: roughly speaking, if α

is close to 1, a first step is used to move α away from 1 (and d remains constant); at
this point, the probability to move d to d+ 1 is positive. On the other hand, when β1

is close to cα
1+cα

a first step is used to move d to d + 1 and a second one to move the
component α to the desired interval (and now this is possible since we reduce to the
case in which d remains constant, previously studied).

Let us assess this qualitative argumentation.
Case 1: If α = 0, (β1, β2) ⊂ [ε, 1 − ε] or if α ∈ (0, 1 − δ1] for some small δ1 > 0,

(β1, β2) ⊂ [ε, cα
1+cα

]
(

cα
1+cα

≤ 1− ε
)

:

P
(
(α, d), (β1, β2)× {d+ 1}

)
≥ σ

√
2/π min

α∈[0,1−δ1]
mᾱ,d+1(β2 − β1) > 0 (4.49)

where the positiveness of minα∈[0,1−δ1]mᾱ,d+1 > 0 has been discussed above.
Case 2: If α ∈ (0, 1 − δ1], β1 ∈ [ε, cα

1+cα
− δ2] for some small δ1, δ2 > 0 and

β2 ∈ [ cα
1+cα

, 1− ε]: the transition probability depends on β1, not on β2, and

P
(
(α, d), (β1, β2)× {d+ 1}

)
≥ σ

√
2/π min

α∈(0,1−δ1]
mᾱ,d+1

(
cα

1 + cα
− β1

)
where cα

1+cα
− β1 ≥ δ2 ≥ δ2(β2 − β1).

Let us now consider the cases that require two steps to move with non-null proba-
bility into the desired set. For this purpose, notice that

P 2
(
(α, d), (β1, β2)× {d+ 1}

)
=

=

∫ 1

0

∑
d′=d,d+1

P
(
(α, d), (dα′, d′)

)
P
(
(α′, d′), (β1, β2)× {d+ 1}

)
Case 3: If α ∈ (0, 1 − δ1], β1 ∈ ( cα

1+cα
− δ2, β2) and β2 ∈ [ cα

1+cα
, 1 − ε], we exploit

that

P 2
(
(α, d), (β1, β2)× {d+ 1}

)
≥

≥
∫ 1

0
P
(
(α, d), (dα′, d+ 1)

)
P
(
(α′, d+ 1), (β1, β2)× {d+ 1}

) (4.50)
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As P
(
(α′, d+ 1), (β1, β2)× {d+ 1}

)
≥ C(1)

ε,d+1(β2 − β1) by (4.48),

P 2
(
(α, d), (β1, β2)× {d+ 1}

)
≥ C(1)

ε,d+1(β2 − β1)P
(
(α, d), ([0, 1], d+ 1)

)
≥ C(1)

ε,d+1(β2 − β1)P
(
(α, d), ([ε, 1− ε], d+ 1)

)
≥

≥ C(1)
ε,d+1(β2 − β1)σ

√
2/π(1− 2ε) min

α∈(0,1−δ1]
mᾱ,d+1.

(4.51)

Case 4: If α ∈ (1− δ1, 1], we exploit that

P 2
(
(α, d), (β1, β2)× {d+ 1}

)
≥

≥
∫ 1

0
P
(
(α, d), (dα′, d)

)
P
(
(α′, d), (β1, β2)× {d+ 1}

)
.

(4.52)

From (4.49), a sufficient condition to have P
(
(α′, d), (β1, β2)×{d+1}

)
> σ

√
2/π minα∈[0,1−δ1]mᾱ′,d+1(β2−

β1) is α′ ∈ (0, 1 − δ1] for some small δ1 > 0 and β2 ≤ cα′
1+cα′

. The latter corre-

sponds to cα′ ≥ β2

1−β2
, that is, α′2 − α′ + exp

(
1
σ2

) (1−β2

β2

)2
≥ 0. This holds for

any α′ if 4 exp
(

1
σ2

) (1−β2

β2

)2
≥ 1, otherwise for α′ ∈ [0, ζ(β2)] ∪ [1 − ζ(β2), 1] where

ζ(β2) =
1−
√

1−4 exp
(

1
σ2

)(
1−β2
β2

)2

2 .

Given the initial hypothesis β1 ≤ 1 − ε, ζ(β2) ≥
1−
√

1−4 exp
(

1
σ2

)
( ε

1−ε)
2

2 =: η. Since
η ≤ 1

2 , η < 1− δ1. Now, reducing the domain of integration to [0, η], we obtain

P 2
(
(α, d), (β1, β2)× {d+ 1}

)
≥

≥
∫ η

0
P
(
(α, d), (dα′, d)

)
P
(
(α′, d), (β1, β2)× {d+ 1}

)
≥
∫ η

0
P
(
(α, d), (dα′, d)

)
σ
√

2/π mᾱ′,d+1(β2 − β1)

≥ σ
√

2/π min
α′∈[0,η]

mᾱ′,d+1(β2 − β1)P
(
(α, d), ([0, η], d)

)
≥ σ

√
2/π min

α′∈[0,η]
mᾱ′,d+1(β2 − β1)C

(1)
ε,dη.

(4.53)

Finally, gathering the bounds obtained in the previous four cases, we obtain

P 2
(
(α, d), (β1, β2)× {d+ 1}

)
≥ C(2)

ε,d (β2 − β1). (4.54)

where C
(2)
ε,d = δ2(1− 2ε)ησ

√
2/πminα∈[0,1−δ1]mᾱ,d+1 min{C(1)

ε,d , C
(1)
ε,d+1} > 0.

We omit the proof of the third inequality as it is analogous to the second one: by

the same argumentation, we obtain a suitable constant C
(3)
ε,d . Finally, for any small

ε > 0 and d ∈ Z, Cε,d = min{C(1)
ε,d , C

(2)
ε,d , C

(3)
ε,d}.
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The thesis is now proved for any open interval in [ε, 1 − ε]. The generalization to
all the open sets in [ε, 1 − ε] is straightforward since any open set on the real line is
countable union of disjoint open intervals. Finally, we can extend the result to all the
Borelians in [ε, 1− ε]. Remind that for any Lebesgue measurable set M (in particular,
for any Borelian) in R there exists a sequence of open sets On such that M ⊂ ∩∞n=1On
and L(M) = L(∩∞n=1On), see [130]. As any finite intersection of open sets is open, we
have

P r
(
(α, d),∩Nn=1On × {d′}

)
≥ CεL(∩Nn=1On) ≥ CεL(∩∞n=1On) = CεL(M)

for any d′ ∈ {d− 1, d, d+ 1} and r = 1, 2 according to the value of d′. This inequality
holds for any N ∈ N, hence

lim
N→∞

P r
(
(α, d),∩Nn=1On × {d′}

)
= P r((α, d),∩∞n=1On × {d′}) ≥ CεL(M).

By this lemma, it follows in particular that for any M ∈ B([ε, 1− ε]),{
P 2|d−d′|((α, d),M × {d′}

)
≥ C |d−d

′|
ε,d L(M) if d 6= d′;

P
(
(α, d),M × {d}

)
≥ Cε,dL(M).

Moreover,

Proposition 7 For any M ∈ B([0, 1]) with L(M) > 0,{
P 2|d−d′|((α, d),M × {d′}

)
> 1

2C
|d−d′|
ε,d L(M) if d 6= d′;

P
(
(α, d),M × {d}

)
> 1

2Cε,dL(M).

In particular, (Ak, Dk)k∈N is (L × κ)-irreducible, κ being the counting measure.

Proof By the previous lemma, this result holds when M ∈ B([ε, 1−ε]) given any ε > 0.
Now, if we consider any M ∈ B([0, 1]) with L(M) = λ > 0, we have L(M ∩ [ε, 1− ε]) =
L(M)−L(M ∩ [ε, 1−ε]c) ≥ λ−2ε and we can always choose ε = ε(λ) such that λ > 2ε.
For instance, let us choose ε = λ

4 , so that λ− 2ε = λ
2 . Therefore,

P 2|d−d′|((α, d),M × {d′}
)
≥ P 2|d−d′|((α, d), (M ∩ [ε, 1− ε])× {d′}

)
≥ Cε,dL(M ∩ [ε, 1− ε]) > λ

2
C
|d−d′|
ε,d

when d 6= d′, and similarly when d = d′.
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4.7.7 TSA: an upper bound for the transition probability kernel

Lemma 6 There exists a real positive constant G such that

P
(
(α, d),M ×Z

)
≤ GL(M)

for any (α, d) ∈ [0, 1]×Z and M ∈ B([0, 1]).

Proof First, we prove the lemma when M is an open interval. Consider the equations
(4.38) - (4.40): given (α, d), P

(
(α, d), (β1, β2) × Z

)
is equal to a sum of integrals of

type
∫ β2

β1
e−h

2
x,y(z)(−h′x,y(z))dz with x ∈ {α, 1

1−α} and y ∈ {d − 1, d, d + 1} according

to the instance. As we have shown in the Proof of Lemma 2, h′x,y(z) = σ
z(z−1)

√
2
,

hence g(z) = −e−h2
x,y(z)h′x,y(z) > 0 for every z ∈ (0, 1). Furthermore, as h′′x,y(z) =

(h′x,y(z))
2
√

2
σ (1 − 2z), g′(z) = 2e−h

2
x,y(z)(h′x,y(z))

2
(
hx,y(z)−

√
2
σ

(
1
2 − z

))
= 0 at z0 ∈

(0, 1), z0 being the unique solution of the equation hx,y(z) =
√

2
σ (1

2 − z); hence g(z)
is increasing in (0, z0), decreasing in (z0, 1) and admits a maximum in z0 ∈ (0, 1). In

conclusion,
∫ β2

β1
g(z)dz ≤ G(β2 − β1), G = g(z0).

The extension to all the open sets is trivial as any open set is countable union of disjoint
intervals. Finally, as for any M ∈ B([0, 1]) there exists a sequence of open sets On such
that M ⊂ ∩∞n=1On and L(M) = L(∩∞n=1On) (see [130]), for any n ∈ N we can write

P
(
(α, d),∩∞n=1On ×Z

)
≤ P

(
(α, d),∩Nn=1On ×Z

)
≤ GL(∩Nn=1On)

as any finite intersection of open sets is open. The result follows from the arbitrariness
of N .

4.7.8 TSA: Proof of Theorem 6

The process (Ak, Dk)k∈N with (Uk)k∈N is an instance of MCRE. The corresponding
EMP in Ω = [0, 1] × Z × {0, 1}N is defined by the following transition probability
kernel:

P
(
(α, d,u), A× {d′} ×B

)
= Pu0

(
(α, d), A× {d′}

)
1B(Tu) (4.55)

where u = (u0, u1, . . . ) ∈ {0, 1}N, A ∈ B([0, 1]), d′ ∈ Z, B ∈ P({0, 1}N).
Pu0

(
(α, d), A×{d′}

)
can be assessed by equations (4.34)-(4.37). Moreover, we denote

by Pu0,...uk−1

(
(α, d), A× {d′}

)
the probability of moving from (α, d) ∈ [0, 1]×Z to the

set A×{d′}, A ∈ B([0, 1]), in k-steps, given the input sequence (u0, . . . , uk−1) ∈ {0, 1}k.
By Proposition 6, ψ̃ = φ̃ × π (φ̃ being defined in Lemma 3), is an invariant p.m. for
the EMP. Moreover,

Lemma 7 ψ̃ is ergodic.

Proof Let F ⊂ Ω be an invariant set: by Definition 6, to prove the ergodicity of ψ̃ is
sufficient to show that ψ̃(F ) > 0 implies ψ̃(F ) = 1.
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Then, let us suppose ψ̃(F ) > 0. We name

UF =
{
u ∈ {0, 1}N : (α, d,u) ∈ F for some (α, d) ∈ [0, 1]×Z

}
;

U0 =
{
u ∈ {0, 1}N : u contains infinitely many 0’s and 1’s

}
;

Un0 =
{
u ∈ U0 : u contains at least a 0 and a 1 in its first n bits

}
, n ≥ 2.

Given the transition probability kernel (4.55), if u ∈ UF then also Tu ∈ UF and since π
is an ergodic measure with respect to the shift operator T (see [159, Section 1.5]) and
π(UF ) > 0 (otherwise ψ̃(F ) = 0), we have that π(UF ) = 1 by the Birkhoff’s Individual
Ergodic Theorem ([159, Theorem 1.14]).

By analogous reasoning, π(U0) = 1. Furthermore, Un0 ⊂ U
n+1
0 , then Un0 ↑ U0. This

implies the existence of an n0 ≥ 2 such that π(Un0
0 ) > 0.

At this point, let us consider the equations (4.34)-(4.37): by applying the procedure
used to prove Lemma 5 and Proposition 7, it is easy to verify that for any (α, d) ∈
(0, 1)×Z,

P0

(
(α, d),M × {d}

)
> 0 for any M ∈ B ( (1/3, 1] ) , L(M) > 0;

P1

(
(α, d),M × {d}

)
> 0 for any M ∈ B ( [0, 2/3) ) , L(M) > 0;

P0

(
(α, d),M × {d+ 1}

)
> 0 for any M ∈ B ( [0, 2/3) ) , L(M) > 0;

P1

(
(α, d),M × {d− 1}

)
> 0 for any M ∈ B ( (1/3, 1] ) , L(M) > 0.

(4.56)

where 1
3 and 2

3 are sufficient, not necessary bounds derived from Remark 5. These
inequalities yield to

P01

(
(α, d),M × {d}

)
> 0 for any M ∈ B ( [0, 1] ) , L(M) > 0;

P10

(
(α, d),M × {d}

)
> 0 for any M ∈ B ( [0, 1] ) , L(M) > 0

(4.57)

which may interpreted as follows: whenever the input sequence contains a couple of
bits 01 or 10, the component α can reach any non-negligible subset in (0, 1). Notice also
that we are not considering the negligible cases α = 0 and α = 1, which may prevent
the one-step transition (see (4.34)-(4.37)). Maintaining this hypothesis, let us consider
(α, d,u) ∈ F such that u ∈ Un0

0 ∩ UF (remind that π(Un0
0 ) > 0 and π(UF ) = 1, then

π(Un0
0 ∩ UF ) > 0).
Now, let us consider the evolution (α, d,u) ∈ F , reminding that it cannot get out

of F . As u ∈ Un0
0 , u contains at least one couple 01 or 10 in its first bits and given

(4.57), after n0 steps α could have been reached all the interval (0, 1). Moreover, for
any bit sequence, d can maintain its position. Hence, we can conclude that

(0, 1)× {d} × {Tn0u} ⊂ F. (4.58)

Now, the fact that Un0
0 is not negligible implies that we can always choose u ∈ Un0

0 such
that Vu = {Tnu, n ∈ N} has measure π(Vu) = 1, as a consequence of [159, Theorem
1.14]. Hence,

[0, 1]× {d} × Vu ⊂ F (4.59)
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Finally, let us consider the evolution of the component d ∈ Z: from equations (4.56),
there is a positive probability that, in n steps, d achieves any integer d′ ∈ Dn where
Dn = {d−m1, d−m1 + 2, . . . , d+ n−m1}, m1 being the number of 1’s in the corre-
sponding n-bit input sequence. Hence,

[0, 1]×Dn × TnVu ⊂ F (4.60)

where TnVu = Vu except for at most a π negligible set. Given that for any n, Dn ⊂
Dn+1, in particular, Dn+1 has one more element than Dn, then Dn ↑ Z. This finally
proves that

[0, 1]×Z× Vu ⊂ F (4.61)

except for at most a π negligible set. This implies

ψ̃(F ) = φ̃([0, 1]×Z)π(Vu) = 1. (4.62)

Given q(α, d, Uk) = P (Ûk 6= Uk|Uk, Ak = α,Dk = d),

CBER(D(2)|U) =
1

K

K−1∑
k=0

P (Ûk 6= Uk|U) =

=

∫ 1

0

∑
d∈Z

1

K

K−1∑
k=0

q(α, d, Uk)P(U0,...Uk−1)

(
(1, 0), (dα, d)

)
.

(4.63)

Now, let g(α, d,U) = q(α, d, U0): it is easy to verify that

(P kg)(α, d,U) =

∫ 1

0

∑
d′∈Z

q(α′, d′, Uk)P(U0,...Uk−1)

(
(α, d), (dα′, d′)

)
then

CBER(D(2)|U) =
1

K

K−1∑
k=0

(P kg)(1, 0,U). (4.64)

By the Ergodic Theorem 7,

lim
K→∞

1

K

K−1∑
k=0

(P kg)(ω) =

∫
Ω
g dψ̃ for ψ̃-a.e. ω ∈ Ω

Let N ⊂ Ω be the negligible set for which there is no convergence and let N0,U = {α ∈
[0, 1] : (α, 0,U) ∈ N}. By the same argumentation used in Corollary 5, PU0((1, 0), Nu,U×
{0}) = 0 and

CBER(D(2)|U)) =

=
1

K
g(1, 0,U) +

1

K

K−1∑
k=1

∫
α1∈[0,1]

PU0((1, 0), (dα1, 0))(P k−1g)(α1, 0, TU)

K→∞−→
∫
α1∈[0,1]\N0,U

PU0((1, 0), (dα1, 0))

∫
Ω
g dψ̃ =

∫
Ω
g dψ̃ π-a.e.U ∈ {0, 1}N.
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which proves the thesis, as∫
Ω
g dψ̃ =

∫
[0,1]

∑
d∈Z

∑
u∈{0,1}

q(α, d, u)φ̃(dα, d)π0(u) =

∫
[0,1]×Z

q dφ̃.

4.7.9 CBCJR vs LMSE

Let us consider the binary input case. While the CBCJR computes the estimate

ûCBCJRk−1 (yk1) = arg min
v∈{0,1}

E[|Uk−1 − v|2|Yk
1 = yk1 ]

the (causal) LMSE (see Section 2.5.7) computes

ûLMSE
k−1 (yk1) = arg min

v∈R
E[||Uk−1 − v||2|Yk

1 = yk1 ].

Thus, the only one difference lies in the space where the minimum is calculated. In
particular,

Proposition 8

ûCBCJRk−1 =

{
0 if ûLMSE

k−1 ≤ 1
2

1 otherwise.
(4.65)

Proof We know that (see 4.12)

ûCBCJRk−1 =

{
0 if

∑k−1
i=0 σ̃k(i, i+ 1) ≤

∑k−1
i=0 σ̃k(i, i)

1 otherwise.

where σ̃k(i, j) = f(Xk,Xk−1,Y
k
1 )(j, i,y

k
1). Hence,

k−1∑
i=0

σk(i, i+ 1)− σk(i, i− 1) =

=
k−1∑
i=0

f(Uk−1,Xk−1,Y
k
1 )(1, i,y

k
1)− f(Uk−1,Xk−1,Y

k
1 )(0, i,y

k
1)

= f(Uk−1,Y
k
1 )(1,y

k
1)− f(Uk−1,Y

k
1 )(0,y

k
1)

Noting that

ûLMSE
k−1 = E[Uk−1|Yk

1 = yk1 ] = P (Uk−1 = 1|Yk
1 = yk1)− P (Uk−1 = 0|Yk

1 = yk1)

=
f(Uk−1,Y

k
1 )(1,y

k
1)− f(Uk−1,Y

k
1 )(0,y

k
1)

fYk
1
(yk1)

we obtain the thesis.
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Chapter 5

One-dimensional Linear Systems

In this chapter, we study the deconvolution of a generic quantized-input, one-dimensional,
linear input/output system.

The structure is analogous to the one of Chapter 4: we introduce the problem
and the assumptions, state the algorithm we intend to use, and develop a theoretical
analysis, which in this case is mainly based on results about Iterated Random Functions.

Furthermore, the last part (Section 5.6) is devoted to the comparison of our tech-
niques with Kalman Filtering method.

5.1 Problem Statement

We consider the input/output linear system
x′(t) = ax(t) + bu(t) t ∈ [0, T ]
y(t) = cx(t)
x(0) = 0

(5.1)

where u(t), x(t) and y(t) are real functions and respectively represent the input, the
state function and the output; a, b and c are non-null real constants, [0, T ] is a possibly
infinite time horizon. u(t) is supposed to be unknown, while y(t) is accessible, but
possibly affected by an observational noise.

Our aim is to reconstruct u(t) from y(t), that is, to reverse the input/output con-
volution integral:

y(t) = cb

∫ t

0
ea(t−s)u(s)ds. (5.2)

This problem is the natural extension of the differentiation problem (4.2) studied
in Chapter 4. Our aim is to extend the Information-Decoding setting and apply the
algorithms introduced in Chapter 4 in this more general framework, under analogous
assumptions on the quantization of the input and the sampling of the output. We
will observe that the dynamics of the present system is different, mainly since in the
differentiation case the sampled version of x was a vector of natural numbers, while now
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the state space is not countable. This is drawback from the complexity implementation
viewpoint: as we will in the next, not all the algorithms previously introduced can be
applied and in particular only the One State Algorithm turns out to be efficient. Its
performance will be theoretically analyzed in the framework of Markov Process and
using the Iterated Random Functions theory. Finally, a comparison with the Kalman
Filter, which is the most used algorithm for linear systems, is proposed.

In the next, we will stick to the problem (5.1)) under Assumptions 1-5 of Section
3.1 and Assumptions 6-7 of Section 4.1.1, that is: the input is stepwise constant with
constant sampling time step τ , it is quantized over two levels 0 and 1 and is generated by
a Bernoulli source; the output is sampled and synchronized with the input; a Gaussian
noise affects the measurements of the output.

Moreover, we state

Assumption 8 The system is stable, that is a < 0.

Notice that the case a = 0 actually corresponds to the differentiation problem, see
Chapter 4).

Assumption 6 induces a discrete description for x(t):

xk := x(kτ) = beakτ
∫ kτ

0
e−as

K−1∑
h=0

uh1[hτ,(h+1)τ [(s)ds

= beakτ
k−1∑
h=0

uh

∫ (h+1)τ

hτ
e−asds

=
b

a
(eaτ − 1)ea(k−1)τ

k−1∑
h=0

uhe
−ahτ .

(5.3)

Defining

q := eaτ , w :=
b

a
(eaτ − 1) =

b

a
(q− 1) (5.4)

we can write the following recursive formula:

xk = qxk−1 + wuk−1. (5.5)

By trivial computations, we obtain also

xk = w

k−1∑
h=0

uk−h−1qh

which shows that each xk assumes values in the set

X = w

{ ∞∑
h=0

µhqh, µh ∈ {0, 1}

}
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that includes all the xk’s, k ∈ N. The structure of X will play a fundamental role in
the deconvolution’s performance. For computational simplicity, from now onwards let

τ = 1 and b > 0.

Notice that X ⊆ w[0, 1
1−q ] and q ∈ (0, 1) by Assumption 8. Now, two possible cases

have to be distinguished.

5.1.1 Case q ∈
[

1
2
, 1
)
.

If q ∈
[

1
2 , 1
)
, then X ≡ w

[
0, 1

1−q

]
. This can be proved as follows. Given any x ∈

w
[
0, 1

1−q

]
, we construct a series w

∑∞
h=0 µhqh = x, µh ∈ {0, 1} defining on by one the

coefficients µh. The series being positive termed, the procedure is:
For h = 0, fix {

µ0 = 1 if x ≥ w
µ0 = 0 otherwise

For h = 1, 2, 3, . . . , fix {
µh = 1 if x ≥ w

∑h−1
i=0 µi + wqh

µh = 0 otherwise

For any h ∈ N, we then obtain a polynomial w
∑h

i=0 µiq
i ≤ x. In case of equality, the

property is proved; otherwise, we have to show that

x ≤ w
h∑
i=0

µiq
i + w

∞∑
i=h+1

qi (5.6)

This is obvious if µi = 1 for any i = 0, . . . , h. Otherwise, if there exists at least
one null coefficient between 0 and h, let us consider the null coefficient with greater
index, that is, pick j such that µj = 0 and µi = 1 for any i = j + 1, . . . , h. Then,

x < w
∑j−1

i=0 µiq
i + wqj , otherwise it should have been µj = 1. Now, in order to prove

the bound (5.6) it is sufficient to show that

j−1∑
i=0

µiq
i + qj ≤

h∑
i=0

µiq
i +

∞∑
i=h+1

qi (5.7)

This is obtained by easy computations:

qj ≤
h∑
i=j

µiq
i +

∞∑
i=h+1

qi

=
∞∑

i=j+1

qi =
qj+1

1− q
.

(5.8)
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Finally,

qj ≤ qj+1

1− q
⇔ q ≥ 1

2

and this proves (5.6). Now, we know that

w
h∑
i=0

µiq
i ≤ x ≤ w

h∑
i=0

µiq
i + w

qh+1

1− q
(5.9)

and in the limit case h→∞, this becomes x = w
∑∞

i=0 µiq
i.

In conclusion, w[0, 1
1−q ] ⊆ X and given that the opposite inclusion holds by definition,

we have the equivalence

X ≡
[
0,

1

1− q

]
. (5.10)

5.1.2 Case q ∈ (0, 1
2
).

If q < 1
2 , X is a Cantor set. It can be constructed from the interval w

[
0, 1

1−q

]
by

deleting the elements that cannot be represented by the series, that is, the subintervals

w
(

q
1−q , 1

)
, w
(

q2

1−q , q
)
∪ w

(
1 + q2

1−q , 1 + q
)

, etc. More precisely,

X = w

[
0,

1

1− q

]
− w

∞∑
m=0

2m⋃
n=1

(
pm,n +

qm+1

1− q
, pm,n + qm

)
(5.11)

where pm,1, . . . ,pm,2m are the binary polynomials in q of degree at most m−1 (p−1,1 = 0
by convention).

Notice that w
∑∞

i=0 µiq
i is a bijective map from {0, 1}N to X if q < 1

2 . The surjec-
tivity is obvious, while as far as the injectivity is concerned, suppose that

∑
µnqn =∑

νnqn, µn, νn ∈ {0, 1} but with some different coefficients; for instance, let µn = νn

for n = 0, . . . ,m− 1, µm = 0 and νm = 1 for some m. Since q < 1
2 , qm+1

1−q < qm, hence∑
µnqn <

∑
νnqn: this proves that there cannot be two series with the same sum, but

different coefficients.

The geometrical characterization of X strongly affects the performance of our de-
convolution algorithm, that will be shortly introduced. Before that, we need to change
our perspective on the problem, describing it in Information theoretic, probabilistic
terms.
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5.2 One State Algorithm

5.1.3 Probabilistic Setting and Performance Evaluation

Given the assumptions stated in the last section, let us now rewrite our dynamical
system in probabilistic terms:

Uk−1 ∼ Ber (1/2)
Nk ∼ N (0, σ2)
Xk = qXk−1 + wUk−1 (X0 = 0)
Yk = cXk +Nk

(5.12)

Moreover, we will denote by Ûk the estimate of the bit Uk obtained by a deconvolution-
decoding algorithm D, that is, Ûk = D(U)k (see Section 4.1).

As in Chapter 4 (see in particular Section 4.1), we measure the performance of a
deconvolution-decoding algorithm D in terms of Mean Square Error:

MSE(D) =
K−1∑
k=0

E(Uk − Ûk)2

which, in case of binary input, corresponds to

MSE(D) =

K−1∑
k=0

P(Uk 6= Ûk) = KBER(D).

5.2 One State Algorithm

Let us implement the OSA in order to estimate the input of the system (5.12): in detail,
the pattern is as follows.

OSA - Decoder D(1)

Initialization: x̂0 = 0.

For k = 1, . . . ,K, given the received symbol yk ∈ R, estimate the current bit
and the current state:

ûk−1 = D(1)(y)k−1

{
0 if |yk − cqx̂k−1| ≤ |yk − (cqx̂k−1 + cw)|
1 otherwise.

x̂k = qx̂k−1 + wûk−1.

(5.13)

We recall the causality of the OSA: ûk−1 = D(1)(y)k−1 = D(1)(y1, y2, . . . yk)k−1.
Given the estimation of the current state xk, the decoder estimates the possible

transmitted signal according to the dynamics of the system. As the input is binary, at
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each step we have just two possible signals and we decide between them evaluating the
distance between them and the acquired output sample yk.

We recall that the OSA is suboptimal, but presents two main good properties: (a)
it is low-complexity, both for number of computations and storage locations; (b) it is
causal, that is, it uses only the past and the present information to decode the current
bit. Therefore, (a) it can be applied to our case in which the number of states is (not
countably) infinite and (b) it can be used on-line, making unnecessary the complete
transmission before starting deconvolution, this feature being fundamental to study
long time transmissions.

We observe that BCJR, CBCJR and TSA (introduced in Chapter 4) are not efficient
in this framework. In fact, BCJR and CBCJR cannot be applied for complexity issues:
even if we consider the number K of transmitted bits to be finite, the state xK may
assume 2K values and the complexity of these algorithms grows exponentially. The
TSA, instead, has no complexity problems but has performance too similar to the OSA
(in spite of a slightly higher complexity) because of the structure of the state space X :
the two best states turn out to be very close to each other, which does not improve the
information provided by the OSA. Its implementation is then not motivated.

5.3 Theoretic Analysis of the OSA through IRF

The theoretical analysis of the OSA performance is based on the definition of the
random difference between the real and the estimated state, at each step k = 1, . . . ,K:{

Dk = X̂k −Xk = qDk−1 + w(Ûk−1 + Uk−1)
D0 = 0

(5.14)

Given Dk−1 = z, Dk ∈ {qz, qz + w, qz − w}. Considering K → ∞, (Dk)k∈N with
D0 = 0 is a Markov Process on the state space w

{∑∞
h=0 µhqh, µh ∈ {−1, 0, 1}

}
; the

structure is analogous for X : this state space is the interval D =
[
b
a ,−

b
a

]
if q ≥ 1

3 ,
otherwise it is a Cantor set included in D. Neglecting the given initial state, let us
generically say that (Dk)k∈N is Markov Process on D, starting from D0 = z, z ∈ D,
and evolving according to a transition probability kernel P , which in turn is ruled by
the independent stochastic process (Uk−1, Nk)k=1,2,.... A suitable way to describe such
model is given by Iterated Random Functions’ theory; before doing that, let us state
the main result of this work based on the evolution of Dk.

5.3.1 Performance Theorem

Through IRF theory, it is possible to prove that

Theorem 8 Under the stability condition a < log

(
1

3+
√

2
eπ

)
,

lim
K→∞

BER(D(1)) =

∫
D
gdµ (5.15)
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where g(z) = P(Ûk 6= Uk|Dk = z) is the probability of bad decoding at step k = 0, 1, . . .
given the knowledge of Dk, and µ is the unique invariant probability measure for the
kernel P of (Dk)k∈N.

Notice that g(z) is time-invariant (i.e., does not depend on k) and can be analytically
computed. In fact, given Dk−1 = z, Dk = qz if and only if Ûk = Uk, Dk = qz + w if
and only if Ûk = 1 and Uk = 0, Dk = qz − w if and only if Ûk = 0 and Uk = 1 and

P (z, qz + w) = P(Ûk = 1, Uk = 0|Dk = z)

=
1

4
erfc

(
cqz + cw/2

σ
√

2

)
P (z, qz − w) = P(Ûk = 0, Uk = 1|Dk = z)

=
1

4
erfc

(
−cqz + cw/2

σ
√

2

)
P (z, qz) = 1− P (z, qz + w)− P (z, qz − w)

(5.16)

g(z) = P (z, qz + w) + P (z, qz − w). (5.17)

Furthermore, the limit probability measure µ can be numerically evaluated.

5.3.2 Iterated Random Functions

Let (D, d) be a complete metric space and S be a measurable space. Consider a mea-
surable function w : D×S → D and for each fixed s ∈ S, ws(x) := w(x, s), x ∈ D. Let
(Ik)k∈N be a stochastic sequence in S such that I0, I1, . . . are independent, identically
distributed. Then, the set {wIk(x), k ∈ N} is a family of random functions. The
systems obtained by iterating such random functions, called IRF or Iterated Functions
Systems (IFS), are studied for diverse purposes: for example, IRF with contractive
properties are used to construct fractal sets, see [69, 38]. More interesting for our study
is the exploitation of IRF to study Markov Processes. In particular, given an IRF and
a starting state x ∈ D, we can define the induced Markov Process (Zk(x))k∈N as

Zk(x) := wIk−1
◦ wIk−2

◦ wIk−3
◦ · · · ◦ wI0(x) (k ≥ 1) (5.18)

and analyze its asymptotic behavior through the properties of wIk(x), k ∈ N. It has
been proved that if the wIk(x) have some contractive properties, the transition prob-
ability kernel of Zn(x) converges to a limit probability measure, unique for all initial
states x ∈ D. The required contractive properties may be slightly different: [38] studied
the case of Lipschitz functions wIk(x) “contracting on average”, while similar results
have been obtained by [144] without the continuity requirement on wIk(x), by [143] for
“locally contractive” functions and by [74] for “non-separating on average” functions.
A useful survey on the argument has been recently proposed by [70].

Let us show how to exploit the IRF theory in our framework.
The evolution of (Dk)k∈N can be modeled by IRF. We consider the complete metric

space D naturally endowed with the Euclidean metric d of R, the measurable space
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S = {0, 1} × R and the stochastic process Ik = (Uk, Nk+1), k = 0, 1, 2, . . . , on S, and
we define the random function

wIk(x) = qx+ w1(cqx+cw( 1
2
−Uk),+∞)(Nk+1)− wUk, x ∈ D (5.19)

that describes the dynamics of (Dk)k∈N. The key result for our purpose is the following
theorem (here stated for compact spaces), which does not require continuity. Let dW
be the Wasserstein (or Kantorovich) distance between probability measures defined as

dW (µ, ν) = sup
f∈1-Lip(D)

∫
fdµ−

∫
fdν (5.20)

where 1-Lip(D) indicates the set of all the Lipschitz functions with Lipschitz constant
equal to 1 on D (see [144] and [121, Section 2.1, Example 3.2.2] for more details on this
metric).

Theorem 9 Stenflo Theorem [144, Theorem 1].
Suppose that there exists a constant l < 1 such that

E[d(wI0(x), wI0(y))] ≤ l d(x, y) (5.21)

for all x, y ∈ D, (D, d) being a compact metric space. Then there exists a unique
invariant probability measure µ for the Markov Process Zn and there exists a positive
constant γD such that

sup
x∈D

dW (Pn(x, ·), µ(·)) ≤ γD
1− l

ln n ≥ 0 (5.22)

where Pn(x, ·) is the n-step transition probability kernel of the Markov Process Zn(x)
and

Theorem 8 can be proved applying the Stenflo Theorem.
Proof of Theorem 8.
Let us analyze the condition (5.21). Consider x, y ∈ D with x > y (recall that q >
0,w > 0). Let H = H(x, y, I0) and Iu be defined by

H := 1(cqy+cw( 1
2
−U0),cqx+cw( 1

2
−U0))(N1)

Iu :=
1√
2πσ

∫ cqx+cw( 1
2
−u)

cqy+cw( 1
2
−u)

e−
n2

2σ2 dn

=
1

2
erfc

(
c
qy + w

(
1
2 − u

)
σ
√

2

)
− 1

2
erfc

(
c
qx+ w

(
1
2 − u

)
σ
√

2

)
.
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5.3 Theoretic Analysis of the OSA through IRF

Hence,

E
[
|w(U0,N1)(x)− w(U0,N1)(y)|

]
= E [|q(x− y)− wH|]

=
∑

u∈{0,1}

P(U0 = u)
1√
2πσ

∫
R

fN1(n)|q(x− y)− wH|dn

=
1

2

∑
u∈{0,1}

∫
R

e−
n2

2σ2 |q(x− y)− wH|dn

=
1

2

∑
u∈{0,1}

|q(x− y)− w|Iu + q(x− y)(1− Iu).

(5.23)

If q(x − y) > w, then E
[
|w(U0,N1)(x)− w(U0,N1)(y)|

]
< q(x − y) and the contraction

would be proved with l = q. This is never the case when q < 1
3 , |x − y| ≤ −2 ba =

2 w
1−q <

w
q for every x, y ∈ D.

Let us then consider q(x− y) < w. We can write

E
[
|w(U0,N1)(x)− w(U0,N1)(y)|

]
=

1

2

∑
u∈{0,1}

(w − q(x− y))Iu + q(x− y)(1− Iu)

≤ 1

2

∑
u∈{0,1}

wIu + q(x− y).

(5.24)

The last expression is obtained by neglecting −
∑

u∈{0,1} q (x− y)Iu, which is the sum
of two second degree terms in (x− y), since, by the integral mean value theorem,

Iu =
1√
2πσ

cq(x− y)e−
n2

0
2σ2 (5.25)

for some n0 ∈
[
cqy + cw

(
1
2 − u

)
, cqx+ cw

(
1
2 − u

)]
, (n0 6= 0). The remaining terms

are of order one, then 1
2

∑
u∈{0,1}wIu + q(x − y) is a suitable approximation of the

mean when x→ y. Notice also that

1

2

∑
u∈{0,1}

wIu + q(x− y) = F (x)− F (y) (5.26)

where

F (x) = qx− w

4
erfc

(
cqx+ cw

2

σ
√

2

)
− w

4
erfc

(
cqx− cw

2

σ
√

2

)
.

Therefore, the thesis is achieved if F (x) is a contraction; since F (x) is differentiable
and monotone increasing, its Lipschitz constant is the maximum of its first derivative:

F ′(x) = q +
cwq

2σ
√

2π

[
exp

(
−
(
cqx+ cw

2

)2
2σ2

)
+ exp

(
−
(
cqx− cw

2

)2
2σ2

)]
(5.27)
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In order to find the maximum of F ′(x), let us compute:

F ′′(x) =

= − cwq

2σ
√

2π

2
(
cqx+ cw

2

)
cq

2σ2
exp

(
−
(
cqx+ cw

2

)2
2σ2

)
+

− cwq

2σ
√

2π

2
(
cqx− cw

2

)
cq

2σ2
exp

(
−
(
cqx− cw

2

)2
2σ2

)

which is null for x satisfying:(
qx+

w

2

)
exp

(
−c

2qwx

σ2

)
+
(

qx− w

2

)
= 0 (5.28)

a solution of which is x = 0. Now, considering that F ′(x) is a mixture of two Gaussians,
two cases may occur: (a) x = 0 is the maximum of F ′(x); (b) x = 0 is a minimum for
F ′(x) and there are two symmetric maxima (F ′′(x) is an even function) at x0 ∈ (0, w

1−q ]
and −x0, but x0 cannot be analytically computed from the exponential equation (5.28).
By studying the sign of F ′′(x) for x → 0, it is easy to see that x = 0 is a maximum

point only for c2w2

σ2 < 4, that is, only for large noise, which makes this case not really
interesting.

On the other hand, when x = 0 is a minimum point, F (x) is contractive only under
some conditions. In particular, consider x > 0 and σ2 close to zero: by (5.28), |x− w

2q |

tends to zero more quickly than σ2, hence exp

(
−(cqx−cw

2 )
2

2σ2

)
tends to one and the

maximum of F ′(x) (see (5.27) may assume very large values.
More in general, we observe that the points x = ± w

2q are undesired as they are
the unique points where the OSA fails: for these values, the error probability given by
(5.16) is at least 1

4 , no matter which is the noise variance. This “singular” phenomenon
is more evident when the noise is small; in terms of F (x), it causes large variations,
hence the loss of the contractivity, in a neighborhood of the point ± w

2q , the radius of

the neighborhood being larger for smaller σ2.
This problem is bypassed if we consider q < 1

3 (which corresponds to require a
“stronger” stability for the system (5.1), which forces ± w

2q to be outside the state space
D. Under this assumption, for any x ∈ D

exp

(
−
(
cqx+ cw

2

)2
2σ2

)
< exp

−
(
−cq w

1−q + cw
2

)2

2σ2


exp

(
−
(
cqx− cw

2

)2
2σ2

)
< exp

−
(
cq w

1−q − c
w
2

)2

2σ2


(5.29)
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hence

F ′(x) ≤ q +
cwq

σ
√

2π
exp

−c2w2
(

1−3q
2(1−q)

)2

2σ2

 (5.30)

that is, a sufficient condition for F ′(x) < 1 is

q
− b
ac

σ
√

2π
exp

(
−
(
b
ac
)2

(1− 3q)2

8σ2

)
< 1 (5.31)

where we used the fact that w = − b(1−q)
a . As maxt≥0 te

−t2 = 1√
2e

,

q
− b
ac

σ
√

2π
exp

(
−
(
b
ac
)2

(1− 3q)2

8σ2

)
≤ 2q√

π(1− 3q)

1√
2e

which is smaller than 1 whenever

q <
1

3 +
√

2
eπ

(5.32)

which approximately corresponds to a < −5/4. This is then the required condition
to have average contraction; notice that it depends only on a and not on the other
parameters or on the noise.

At this point, the hypotheses of Stenflo’s Theorem are fulfilled, hence the existence
and uniqueness of a limit probability measure µ is assured for (Dk)k∈N; in particular,
it is assured for any initial state D0 ∈ D.

Now, let us prove the convergence of the BER. First, notice that

BER(D(1)) =
1

K

K−1∑
k=0

P(Ûk 6= Uk) =

=
1

K

K−1∑
k=0

∫
D

P(Ûk 6= Uk|Dk = z)P k(0,dz)

=
1

K

K−1∑
k=0

(P kg)(0)

(5.33)

where (P kg)(0) =
∫
D P (0,dz)g(z). Moreover, we have that g ∈ Lg-Lip(D) where

Lg = maxz∈D |g′(z)| and

|g′(z)| = cq

2σ
√

2π

∣∣∣∣−e− (cqz+cw)2

2σ2 + e−
(−cqz+cw)2

2σ2

∣∣∣∣ ≤ cq

σ
√

2π
(5.34)
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then Lg ≤ cq

σ
√

2π
is finite. Since for any L > 0

sup
f∈L-Lip(D)

∣∣∣∣ ∫ fd(µ− ν)

∣∣∣∣ = sup
f∈L-Lip(D)

L

∣∣∣∣ ∫ 1

L
fd(µ− ν)

∣∣∣∣
≤ sup

f∈1-Lip(D)
L

∣∣∣∣ ∫ fd(µ− ν)

∣∣∣∣ = L dW (µ, ν)

we have

sup
x∈D

∣∣∣∣(P kg)(x)−
∫
gdµ

∣∣∣∣ = sup
x∈D

∣∣∣∣ ∫ g(z)P k(x,dz)−
∫
gdµ

∣∣∣∣
≤ sup

x∈D
sup

f∈Lg-Lip

∣∣∣∣ ∫ f(z)P k(x,dz)−
∫
fdµ

∣∣∣∣
= sup

x∈D
LgdW (P k(x, ·), µ(·)) k→∞−→ 0.

(5.35)

The convergence is then assured also for the Cesàro sum, for any starting state x ∈ D:

1

K

K−1∑
k=0

(P kg)(x)
K→∞−→

∫
gdµ ∀x ∈ D. (5.36)

As convergence holds for any initial state, in particular it holds for x = 0, which is our
case of interest.

5.3.3 Observations

The OSA performance improve if the values of a, b and c increase (under the constraints
a < 0, b > 0 and c > 0). This occurs because the distance between the possible
states is cw = cb1−ea

−a and larger distances may counterbalance a larger noise in the

decoding. c2w2 can be also interpreted as the signal power per channel use, hence we
can define the signal-to-noise ratio as SNR= c2w2

σ2 and evaluate the performance of the
OSA with respect to it. In Figure 5.1 we depict the Bit Error Rate for b = c = 1 and
a = −5/4,−2,−10 with respect to the SNR (expressed in dB): we notice that for the
same SNR, smaller values of a are slightly preferable for mid SNR values: this is due to
the fact that if q = ea is very small, the system ”loses its memory”, i.e., in the iteration
xk+1 = qxk + wuk the value of xk becomes less significant; analogously, an incorrect
estimate of xk by the OSA is less dramatic.

Furthermore, we have reported the (numerically approximated) densities of the
limit probability measures in the cases a = −5/4 and a = −2 in Figures 5.2-5.3 for
σ2 = 1: as expected, the densities are symmetric and with global maximum in zero,
which corresponds to null error in the state estimation; their support is a Cantor set.
Since at each step a product by q = ea is performed, for a = −2, the density is close to
a sequence of spikes, while for a = −5/4 it is more distributed over the state space.
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Figure 5.1: BER for a = −2,−10,−5/4.
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Figure 5.3: Density of the Limit Probability Measure µ for a = −2, b = c = 1, σ2 = 1.

In the next (see Remark 6), we will show that the probability measure µ has support
on the Cantor set DC = w

{
z ∈ D : z = w

∑∞
n=0 αnqn for some αn ∈ {−1, 0, 1}, n =

0, 1, 2 . . .
}

.

5.4 Alternative Theoretic Analysis with Markov Processes

In the differentiation case, an analogous of the Performance Theorem was proved using
the Ergodic Theorem of Markov Processes (see Theorem 7 and equation (4.31)); in that
case, IRF could not be used since no contractive property occurred.

Though in the present case the use of IRF is very efficient, one might wonder if we
could prove the Performance Theorem 5.15 using Markov Processes. The answer is yes,
but with the introduction of some non-classical Markov tool as explained in the next.

As shown in Chapter 4, typically, the steps to describe the asymptotic behavior of
the system using the Ergodic Theorem for Markov Processes 7 are the following: (1)
prove the existence of an i.p.m.; (2) prove its uniqueness, classically obtained through
the φ-irreducibility; (3) uniqueness implies ergodicity, which is the condition that makes
the Ergodic Theorem true. Nevertheless, the Ergodic Theorem holds almost every-
where, while in our case, we fix the starting point. In other terms, In order to have
the expected result, we have to prove that our starting point does not belong to the
negligible set that does not lead to convergence.

We will see that, for the current problem, existence is obtained with no efforts.
On the other hand, uniqueness is a tricky issue: φ-irreducibility is typically obtained
with respect to the Lebesgue measure, but this is not the case, since the i.p.m.’s are
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singular with respect to it; moreover, finding an other measure φ is a very tricky issue.
Sometimes, a φ is provided by the so-called topological irreducibility, but the SEEMS
to be not the case.

Anyway, uniqueness can be proved in an original way, that is, exploiting the con-
tractive properties of the operator T : µ→ µP acting on probability measures and the
Banach Fixed Point Theorem. At this point, we will have all the conditions required
for the Ergodic Theorem in a slightly different version, say convergence holds for any
starting state, but it is weak, which is sufficient in our context.

We notice that this procedure exactly leads to the same results obtained with IRF;
however, we report it because of its elements of originality.

Proposition 9 (Existence of an i.p.m.) The transition probability kernel of the Markov

Process (Dk)k∈N on (D,B(D)), D =
[
− w

1−q ,
w

1−q

]
admits at least one invariant proba-

bility measure.

Proof D is compact. This property, along with the weak-Feller property, guarantees
the existence of an i.p.m. (see for example [68, Theorem 7.2.3]). The weak-Feller
property is easily proved: if f ∈ Cb(D), then Pf(ξ) =

∑
i∈{−w,0,w} P (ξ, qξ+i)f(qξ+i) ∈

Cb(D) since P (ξ, qξ+ i), i ∈ {−w, 0,w}, are continuous and bounded as functions of ξ.

Proposition 10 (Uniqueness of the i.p.m.) The condition q < 1

3+
√

2
eπ

is sufficient

so that the transition probability kernel of (Dk)k∈N admits a unique i.p.m..

Proof Let µ and ν be two probability measures on D. We define the operator

T : µ→ Tµ = µP (5.37)

on the space of the probability measures on D. Now, we prove the following lemmas.

Lemma 8 If q < 1

3+
√

2
eπ

, for any f ∈ 1 -Lip(D), Pf ∈ h-Lip(D) with h < 1.

Proof Given any f ∈ 1-Lip(D) and ξ, ζ ∈ D,

Pf(ξ)− Pf(ζ)

=
∑

i∈{−w,0,w}

f(qξ + i)P (ξ, qξ + i)− f(qζ + i)P (ζ, qζ + i)

= f(qξ) +
∑

i∈{−w,w}

[f(qξ + i)− f(qξ)]P (ξ, qξ + i)+

− f(qζ)−
∑

i∈{−w,w}

[f(qζ + i)− f(qζ)]P (ζ, qζ + i).

Adding and removing the quantity [f(qξ + w) − f(qξ)]P (ζ, qζ + w) + [f(qξ − w) −
f(qξ)]P (ζ, qζ −w), using the Lipschitz property of f and recalling that P (ζ, qζ + w) +
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P (ζ, qζ − w) ≤ 1
2 for any ζ ∈ D, we obtain

Pf(ξ)− Pf(ζ) =

[f(qξ + w)− f(qξ)][P (ξ, qξ + w)− P (ζ, qζ + w)]

+ [f(qξ − w)− f(qξ)][P (ξ, qξ − w)− P (ζ, qζ − w)]

+ [f(qξ + w)− f(qξ)− f(qζ + w) + f(qζ)]P (ζ, qζ + w)

+ [f(qξ − w)− f(qξ)− f(qζ − w) + f(qζ)]P (ζ, qζ − w)

+ f(qξ)− f(qζ) ≤
≤ w

∣∣P (ξ, qξ + w)− P (ζ, qζ + w)
∣∣

+ w
∣∣P (ξ, qξ − w)− P (ζ, qζ − w)

∣∣+ q|ξ − ζ|

which exactly corresponds to (5.24), hence the proof follows from (5.24)-(5.32).

Lemma 9 In the hypotheses of Lemma 8, T is a contraction on the metric space of
the probability measures on D, endowed with the Wasserstein metric dW , that is,

dW (µP, νP ) ≤ h dW (µ, ν), h < 1. (5.38)

Proof Given a function f ∈ L1(D,B(D), µP ),∫
f d(µP ) =

∫
ξ∈D

∫
ζ∈D

f(ξ)P (ζ, dξ)µ(dζ)

=

∫
Pf dµ

Hence

d(µP, νP ) = sup
f∈1-Lip(D)

(∫
f d(µP )−

∫
f d(νP )

)
= sup

f∈1-Lip(D)

(∫
Pf dµ−

∫
Pf dν

)
.

By Lemma 8, if f ∈ 1-Lip(D), then Pf ∈ h-Lip(D), h < 1. Then, for any probability
measures µ, ν on (D,B(D)) and f ∈ 1-Lip(D):∫

Pf dµ−
∫
Pf dν ≤

≤ sup
g∈h-Lip(D)

(∫
gdµ−

∫
gdν

)
= h d(µ, ν)

In particular,

d(µP, νP ) =

= sup
f∈1-Lip(D)

(∫
Pf dµ−

∫
Pf dν

)
≤ h d(µ, ν)
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with h < 1. At this point, we can conclude the proof of Theorem 10. In fact, under
the required conditions, the operator T is a contraction in the space of the probability
measures on (D,B(D)), then it admits a unique fixed point, i.e., there is a unique
probability measure µ such that Tµ = µ, or equivalently µP = µ. In conclusion, µ is
the unique i.p.m. for (Dk)k∈N.

Now the Performance Theorem is proved using [94, Proposition 12.1.4]. We recall
that a sequence of probability measures (µk)k∈N on a space D is said to be tight if for
any ε > 0 there exists a compact subset C ⊆ D such that lim infk→∞ µk(C) ≥ 1 − ε;
moreover, the transition probability kernel P of a Markov Process is said to be bounded
in probability on average if for each initial condition x the sequence 1

K

∑K−1
k=0 P k(x, ·),

K ∈ N is tight (see [94, Chapter 12]). Then,

Proposition 11 [94, Proposition 12.1.4]
If the transition probability kernel P of a Markov Process is weak Feller, bounded in
probability on average and admits a unique i.p.m. µ, then

for every x ∈ D, 1

K

K−1∑
k=0

P k(x, ·)⇒ µ (5.39)

where ⇒ indicates the weak convergence:

µn ⇒ µ if lim
n→∞

∫
fdµn =

∫
fdµ for every f ∈ Cb(D). (5.40)

In our case, tightness is trivially assured by the compactness of D. Hence, the previous
propositions lead to the weak convergence, which is sufficient for our purpose (recall
that the function g in Theorem 5.15 is bounded and continuous).

Remark 6 Let DC = w
{
z ∈ D : z = w

∑∞
n=0 αnqn for some αn ∈ {−1, 0, 1}, n =

0, 1, 2 . . .
}

. DC is a Cantor (hence closed) set and is an invariant set for our Markov
process: Pn(z,DC) = 1 if z ∈ DC , for any n ∈ N. It follows from (5.39) and the
Portmanteau Theorem [68, Theorem 1.4.16] that µ(DC) = 1.

5.5 A few simulations

In the next, we report the outcomes of some simulations of our transmission system.
Recalling the pattern of the One State Algorithm, notice that |cw| = |c ba(1 − q)|,
which represents the distance between the two possible transmitted signals at each
step, plays a fundemental role. A larger value of |cw| is then desirable, since, as already
mentioned, a larger distance improves the reliability of our estimation technique. On the
other hand, c2w2 can be interpreted as the energy per channel use of our transmission
system, then for the applications its value cannot be increased too much.

In the next, we will represent the BER(D(1)) in function of the SNR of our trans-
mission, that is, c2w2/σ2. This quantity represents the proportion between signal and
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Figure 5.4: Simulations with b = c = 1, a = −5/4,−2,−10.

noise energies and is usually assumed as reference parameter to study the quality of a
transmission.

Given that cw is the leading parameter, in the simulations we fix and b = c = 1,
while a can vary. In Figure 5.4 the cases a = −5/4, a = −2 and a = −10 are
represented: the graphs show the BER(D(1)) in function of SNR = c2w2/σ2 expressed
in dB. We can notice that the performance improve (that is, the BER decreases) as a
decreases; the performance of the cases a = −2 and a = −10 are very close.

In Figure 5.5 we show a comparison between the Bit Error Rate obtained by analytic
computation and by the simulations in the case b = c = 1 and a = −1: the graphs are
coincident. This is only an example, but a perfect consistency between simulated and
analytic results has been observed to hold in every case.

5.6 One State Algorithm vs Kalman Filter

As in the Appendix 4.7.9 we have compared the causal BCJR and the causal Least
Means Squares Estimation procedures, in the next we compare the One State Algorithm
and the (causal) Linear Least Mean Square Estimation, computed through the Kalman
Filter, and we propose a theoretical performance analysis.

We know that the Kalman Filter (see Section 2.5.8) is a widely used recursive
algorithm that computes the causal linear least squares estimate of the states of a
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Figure 5.5: Analytic vs Simulated Bit Error Rate (system with b = c = 1, a = −5/4
and a = −2): the results are consistent.
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dynamical linear system. Let us consider our dynamical model (5.12)
Uk−1 ∼ Ber (1/2)
Nk ∼ N (0, σ2)
Xk = qXk−1 + wUk−1 (X0 = 0)
Yk = cXk +Nk

with Uk−1 ∈ {−1, 1} (notice that in this Section we assume the binary inputs to be −1
and 1 instead of 0 and 1, the motivation of which will be clear in a while).

For any k = 1, 2, . . . , the Kalman Filter (KF for short) computes the Linear Least
Mean Squares Estimate (LLMSE, see Section 2.5.7) of Xk given the measurements
Y1, Y2, . . . , Yk, which we will denote by

LLMSE[Xk|Y1, . . . Yk] = X̂FK
k . (5.41)

In general, the LLMSE of a random variable X given a random variable Z is known to
be

LLMSE[X|Z] = cov[X,Z](cov[Z,Z])−1Z (5.42)

(see [124, Proposition 3]) and the KF allows to compute it in the case (5.41) through
a low-complexity iterative algorithm.

Our purpose being to estimate Uk, k = 0, 1, . . . , given LLMSE[Xk|Y1, . . . Yk] we will
be able to compute

LLMSE[Uk−1|Y1, . . . Yk] (5.43)

and finally we will define

ÛKF
k−1 = sgn (LLMSE[Uk−1|Y1, . . . Yk]) (5.44)

where sgn is the sign function:

sgn(x) =

{
1 if x ≥ 0
−1 if x < 0

.

The aim of this section is to compare the KF approach and the One State Algo-
rithm. Interesting conclusions will be drawn in terms of complexity and performance:
in particular, we will show that the two algorithms have very similar patterns and that
the OSA performs better in case of low SNR (in case of long time transmissions), the
latter result being analytically obtained using the IRF theory.

Let us first describe the KF approach to estimate the input of the system 5.12.

5.6.1 The Kalman Filter approach

KF is typically used to provide LLMSE[Xk|Y1, . . . , Yk] for linear dynamical systems of
kind {

Xk = a1Xk−1 + a2uk−1 + a3Mk

Yk = a4Xk +Nk
(5.45)
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5.6 One State Algorithm vs Kalman Filter

where a1, a2, a3, a4 ∈ R1, uk is a known control input, Mk and Nk are random distur-
bances with E[Mk] = E[Nk] = 0, cov[Mk,Mh] = ηkδkh, cov[Nk, Nh] = θkδkh (where
δkh = 1 if k = h and 0 otherwise), respectively called process noise and measurement
noise. If the noises are Gaussian, the Kalman Filter is optimal.

In our system 5.12, no control input neither process noise are present; however, we
can consider our input Uk as the process noise (since E[Uk] = 0 and cov[Uk, Uh] = δkh)
and the control input to be null. Furthermore, in our case the measurement noise is
Gaussian and θk = σ2 is constant.

In this setting, the KF procedure is as follows (see [124] or [29, Chapter 7] for more
details). Let

Σk = E
[

(Xk+1 − LLMSE[Xk+1|Y1, . . . , Yk])
2 ] (5.46)

then,

1. Initialization: x̂KF
0 = 0 and Σ0 = E[(X1)2] = E[(wU0)2] = w2;

2. For any k = 1, 2, . . . , given the measurements y1, . . . , yk

Kk =
cΣk−1

c2Σk−1 + σ2

Σk = q2(1− cKk)Σk−1 + w2

x̂KF
k = LLMSE[Xk|y1, . . . , yk] = qx̂KF

k−1 +Kk(yk − cqx̂KF
k−1)

(5.47)

Kk is sometimes called the Kalman gain.

Given the causal LLMSE of the states, we can also compute the causal LLMSE of
the inputs Uk, k ∈ N. In fact,

Lemma 10

LLMSE[Uk−1|Y1, . . . , Yk] = LLMSE[Uk−1|Yk − cqX̂KF
k−1] (5.48)

Proof By [124, Proposition 4b - Property 4],

LLMSE[Uk−1|Y1, . . . , Yk] = LLMSE[Uk−1|Y1, . . . , Yk−1]+

+ LLMSE
[
Uk−1 − LLMSE[Uk−1|Yk, . . . , Yk−1]

∣∣Yk − LLMSE[Yk|Y1, . . . , Yk−1]
] (5.49)

Applying the formula (5.42)

LLMSE[Uk−1|Y1, . . . , Yk−1] = 0

since cov[Uk−1, Yj ] = 0 for any j = 1, . . . , k − 1. Furthermore, as Yk = c(qXk−1 +
wUk−1) +Nk

LLMSE[Yk|Y1, . . . , Yk−1] = LLMSE[c(qXk−1 + wUk−1) +Nk|Y1, . . . , Yk−1]

= cqX̂KF
k−1

1KF can be applied to n-dimensional systems with coefficients varying in time: for our purpose,
here we outline only the one-dimensional case, with constant coefficients.
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5.6 One State Algorithm vs Kalman Filter

by the linearity of (5.42) (see [124, Propositon 4a - Property 5]), and this proves the
lemma.

Lemma 11

LLMSE[Uk−1|Y1, . . . Yk] = w
Kk

Σk−1
(Yk − cqX̂KF

k−1) (5.50)

Proof By the previous lemma, ÛKF
k−1 = LLMSE[Uk−1|Yk − cqX̂KF

k−1] By (5.42),

LLMSE[Uk−1|Yk−cqX̂KF
k−1] = E[Uk−1(Yk−cqX̂KF

k−1)]
(
E[(Yk−cqX̂KF

k−1)2]
)−1

(Yk−cqX̂KF
k−1)

(5.51)

E[Uk−1(Yk − cqX̂KF
k−1)] = E[Uk−1Yk] = cw. (5.52)

Moreover,

LLMSE[Xk|Y1, . . . , Yk−1] = LLMSE[qXk−1 + wUk−1|Y1, . . . , Yk−1] = qX̂KF
k−1) (5.53)

hence

E[(Yk − cqX̂KF
k−1)2] = E[(Yk − cLLMSE[Xk|Y1, . . . , Yk−1])2]

= E[(Nk + cXk − cLLMSE[Xk|Y1, . . . , Yk−1])2]

= E[N2
k ] + c2E[Xk − LLMSE[Xk|Y1, . . . , Yk−1])2]

= σ2 + c2Σk−1

(5.54)

and finally,

LLMSE[Uk−1|Y1, . . . Yk] =
cw

σ2 + c2Σk−1
(Yk − cqX̂KF

k−1) = w
Kk

Σk−1
(Yk − cqX̂KF

k−1) (5.55)

Finally, given that Uk ∈ {−1, 1}, we force its estimate to lie in the same set by com-
puting:

ÛKF
k−1 = sgn (LLMSE[Uk−1|Y1, . . . Yk])

= sgn
(
Yk − cqX̂KF

k−1

)
.

(5.56)

as w > 0, Σk > 0 and Kk > 0 for any k ∈ N.

Let us remark also that

Lemma 12

Σk = w2 + w2
k∑
i=1

q2i
k∏

j=k−i+1

(1− cKj) = w2 + w2
k∑
i=1

q2i
k∏

j=k−i+1

1

1 + c2

σ2 Σj−1

(5.57)

and in particular it is an increasing, convergent sequence. Furthermore, Kk is an
increasing, convergent sequence in

(
0, 1

c

)
.
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One State Algorithm Kalman Filter

x̂OSA
k = qx̂OSA

k−1 + w sgn(yk − cqx̂OSA
k−1) x̂KF

k = qx̂KF
k−1 +Kk(yk − cqx̂KF

k−1)

ûOSA
k−1 = sgn(yk − cqx̂OSA

k−1) ûKF
k−1 = sgn(yk − cqx̂KF

k−1)

x̂OSA
k ∈ w{

∑∞
i=0 µiq

i, µi ∈ {−1, 1}} x̂KF
k ∈ R

Table 5.1: One State Algorithm vs LLMSE estimation through KF.

Proof The expression (5.57) can be trivially proved for k = 1:

Σ1 = w2 + q2(1− cK1)Σ0 = w2 + q2(1− cK1)w2 (5.58)

and K1 = 1
c

1

1+ c2w2

σ2

. By induction, if the expression holds for a given k, it holds also

for k + 1:

Σk+1 = w2 + q2(1− cKk+1)Σk

= w2 + q2(1− cKk+1)

w2 + w2
k∑
i=1

q2i
k∏

j=k−i+1

(1− cKj)


= w2 + q2(1− cKk+1)w2 + w2

k∑
i=1

q2i+2
k+1∏

j=k−i+1

(1− cKj)

= w2 + w2
k+1∑
i=1

q2i+2
k+1∏

j=k−i+1

(1− cKj).

(5.59)

Σk is then increasing, which implies that also Kk is so. On the other hand 0 < Kk =
1
c

1

1+ σ2

c2Σk−1

< 1
c is bounded, hence convergent. Moreover, also Σk is bounded and

convergent. In particular, since 1− cKj < 1− cK1 = 1
1+SNR , we have

w2 ≤ Σk < w2 + w2
k∑
i=0

q2i

(
1

1 + SNR

)i
< w2 + w2 1

1− q2

1+SNR

. (5.60)

This lemma shows that the Kalman gain Kk tends to stabilize to an equilibrium
value. which will be exploited in the performance analysis.

At this point, we can compare the OSA procedure and the estimation of Uk based
on LLMSE and KF now introduced. In the Table 5.1, we have rewritten the OSA in
the case of input in {−1, 1} and at the corresponding update using the Kalman Filter.
It is interesting to notice that the decision on the transmitted Uk is performed in the
same way, but the estimation of the state Xk is different: in the OSA, we compare the
Euclidean distances and we force the estimate x̂OSA

k to lie in the set where Xk lies; using
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5.6 One State Algorithm vs Kalman Filter

the KF method, the state is updated using the Kalman gain Kk and the state estimate
can be any real number.

From the point of view of the complexity, both procedures perform a few operations
at each step and require to store only a state value at each step.

The performance are now studied.

5.6.2 Theoretical Analysis of the Kalman Filter Method through IRF

The aim of this section is to evaluate the performance of the KF method in terms of
BER:

BER(KF) =
1

K

K−1∑
k=0

P(Uk 6= Ûk)

In particular, in our next theorem we will analytically determine

lim
K→∞

BER(KF )

using the Iterated Random Functions; afterwards, we will compare the KF and OSA
performance in terms of BER.

Let us introduce the IRF setting for the KF method.
As in the OSA case, the evaluation of the BER can be done studying the Markov

Process
Dk = XKF

k −Xk, k ∈ N (5.61)

on R with initial state D0 = 0. As it will be clear at the end of the section the asymp-
totic BER can be easily obtained if (Dk)k∈N is strongly ergodic, that is, if asymptotically
the states are distributed according to an invariant probability measure. Notice that

Dk = qXKF
k−1 +Kk(Yk − qcXKF

k−1)−Xk

= qXKF
k−1 +Kk(c− qXk−1 + cwUk−1 +Nk − qcXKF

k−1)− qXk−1 − wUk−1

= q(1− cKk)Dk−1 − w(1− cKk)Uk−1 +KkNk.

(5.62)

and in particular let us remark that (Dk)k∈N is time-nonhomogeneous.
The evolution of the Markov Process (Dk)k∈N and its ergodic properties can be

obtained by the Iterated Random Functions. In fact, if we define the IRF

wIk(x) = q(1− cKk)x− w(1− cKk)Uk−1 +KkNk, x ∈ R (5.63)

where Ik = (Uk−1, Nk) is a random process on {−1, 1}×R and the Ik are mutually in-
dependent, we can exploit Stenflo Theorem 9 in order to state that that if k →∞, then
the transition probability P k(x, ·) of (Dk)k∈N tends (with respect to the Wasserstein
distance) to a probability measure µ(·), independent on the initial state x, .

Before keeping on the analysis, we have to observe that (5.63) defines a time-
nonhomogeneous IRF, with a deterministic term Kk varying in time: this prevents
the immediate application of the Stenflo Theorem. However, we will apply it to the
limit IRF and then deduce our main result as explained as follows.
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Let us consider K = limk→∞Kk and define the limit IRF

w̃Ik(x) = q(1− cK)x− w(1− cK)Uk−1 +KNk, x ∈ R. (5.64)

This time-homogeneous IRF fulfills the hypothesis of Stenflo Theorem 9, since it is
always contractive:

|w̃I0(x)− w̃I0(y)| = q(1− cK)|x− y| (5.65)

where q(1− cK) < q(1− cK1) = q
1+SNR < 1 and given any x ∈ R

E[|w̃I0(x)− x|] ≤ (1− q(1− cK))|x|+ w(1− cK)E[|U0|] +KE[|N1|]

= (1− q(1− cK))|x|+ w(1− cK) +K

√
2σ2

π
< +∞.

(5.66)

Then, if Pl(·, ·) is the transition probability of the limit process, there exists a
probability measure µ̃ such that

Pnl (x, ·) dW−→ µ̃ for n→∞,∀x ∈ R

and Z̃n(x) = w̃In−1 ◦ w̃In−2 ◦ · · · ◦ w̃I0(x) tends a.s to a random variable Z̃ distributed
according to µ̃. More precisely,

dW (Pnl (x, ·), µ̃) ≤ [q(1− cK)]n

1− q(1− cK)
E(d(w̃I0(x), x)).

At this point, we can prove the following result about our original time-nonhomogeneous
process

Theorem 10

lim
K→∞

BER(KF ) =

∫
g dµ̃ (5.67)

where µ̃ is the limit probability measure of the limit IRF (5.64) and g(z) = P(Ûk 6=
Uk|Dk = z).

In order to prove this theorem, we need the following Lemma. If Zn(x) = wIn−1 ◦
wIn−2 ◦ · · · ◦ wI0(x), then

Lemma 13
d
(
Zn(x), Z̃

)
→ 0 in probability for any x ∈ R. (5.68)

Proof We have that

Zn(x) =

(
qn

n−1∏
i=0

li

)
x+ w

n−1∑
i=0

Un−1−i

qi
n−1∏

j=n−1−i
lj

+

n−1∑
i=0

Kn−1Nn−1

qi
n−1∏
j=n−i

lj


Z̃ = lim

n→∞
wl

n−1∑
i=0

Un−1−i(ql)
i +K

n−1∑
i=0

Nn−1(ql)i

(5.69)
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where Kk ↗ K and lk = 1− cKk ↘ l. Now,

lim
n→∞

E[|Zn(x)− Z̃|]

≤ lim
n→∞

w
n−1∑
i=0

E[|Un−1−i|]qi
 n−1∏
j=n−1−i

lj − li+1

+
n−1∑
i=0

qiE[|Nn−1|]

∣∣∣∣∣∣Kn−1

n−1∏
j=n−i

lj −Kli
∣∣∣∣∣∣

(5.70)

Let us prove that the last expression tends to zero. First, notice that E[|Un|] and
E[|Nn|] are bounded (and constant for any n ∈ N). Recalling that that lj ↘ l and
lj ∈ (0, 1) for any j, let us fix a small ε > 0 and let iε ∈ N be such that for any i ≥ iε,
qi < ε. Then,

n−1∑
i=0

qi

 n−1∏
j=n−1−i

lj − li+1

 =

iε−1∑
i=0

qi

 n−1∏
j=n−1−i

lj − li+1

+

n−1∑
i=iε

qi

 n−1∏
j=n−1−i

lj − li+1


and

lim
n→∞

iε−1∑
i=0

qi

 n−1∏
j=n−1−i

lj − li+1

 ≤ lim
n→∞

iε−1∑
i=0

qi
(
li+1
n−1−i − l

i+1
)

=

iε−1∑
i=0

qi lim
n→∞

(
li+1
n−1−i − l

i+1
)

= 0

as iε is finite, while

lim
n→∞

n−1∑
i=iε

qi

 n−1∏
j=n−1−i

lj − li+1

 ≤ lim
n→∞

n−1∑
i=iε

qi

= lim
n→∞

qiε − qn

1− q
=

qiε

1− q
<

ε

1− q
.

Since ε can be chosen arbitrarily small, this limit is zero and we can conclude that

lim
n→∞

w
n−1∑
i=0

E[|Un−1−i|]qi
 n−1∏
j=n−1−i

lj − li+1

 = 0.

Analogously,

n−1∑
i=0

qi

∣∣∣∣∣∣Kn−1

n−1∏
j=n−i

lj −Kli
∣∣∣∣∣∣ =

iε−1∑
i=0

qi

∣∣∣∣∣∣Kn−1

n−1∏
j=n−i

lj −Kli
∣∣∣∣∣∣+

n−1∑
i=iε

qi

∣∣∣∣∣∣Kn−1

n−1∏
j=n−i

lj −Kli
∣∣∣∣∣∣

and

lim
n→∞

iε−1∑
i=0

qi

∣∣∣∣∣∣Kn−1

n−1∏
j=n−i

lj −Kli
∣∣∣∣∣∣ =

iε−1∑
i=0

qi lim
n→∞

∣∣∣∣∣∣Kn−1

n−1∏
j=n−i

lj −Kli
∣∣∣∣∣∣ = 0
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as iε is finite, while

lim
n→∞

n−1∑
i=iε

qi

∣∣∣∣∣∣Kn−1

n−1∏
j=n−i

lj −Kli
∣∣∣∣∣∣ ≤ lim

n→∞

n−1∑
i=iε

qi
1

c

=
1

c
lim
n→∞

qiε − qn

1− q
=

1

c

qiε

1− q
<

1

c

ε

1− q
.

Since ε can be chosen arbitrarily small,

lim
n→∞

n−1∑
i=0

E[|Nn−1|]qi
∣∣∣∣∣∣Kn−1

n−1∏
j=n−i

lj −Kli
∣∣∣∣∣∣ = 0.

In conclusion, E[|Zn(x)− Z̃|] n→∞−→ 0, hence the convergence in probability is proved
by the Chebichev inequality:

P[|Zn(x)− Z̃| < ε] ≤ E[|Zn(x)− Z̃|]
ε

n→∞−→ 0. (5.71)

Proof of Theorem 10.
The convergence in probability stated by the previous Lemma implies the convergence
in distribution, that is if µxn is measure probability of Zn(x), then

∫
fµxn →

∫
fµ̃ for

any x ∈ R where µf =
∫
fdµ and f is any continuous and bounded function in R.

This is sufficient to prove the convergence of the BER. In fact,

g(z) = P(sgn(Nk+1 + cwUk + cqz) = 1|Uk = −1)P(Uk = −1)+

+ P(sgn(Nk+1 + cwUk + cqz) = −1|Uk = 1)P(Uk = 1)

=
1

4
erfc

(
cw − cqz
σ
√

2

)
+

1

4
erfc

(
cw + cqz

σ
√

2

) (5.72)

and P kg(x) =
∫
g dµxk →

∫
g dµ̃ for any x, then

lim
K→∞

BER(KF ) = lim
K→∞

1

K

K−1∑
k=0

P kg(0) =

∫
g dµ̃.

5.6.3 Design Criteria

In the previous sections, we have analytically evaluated the asymptotic MSE for both
the OSA and the KF based method, using the IRF theory.

The conclusion we achieve is that neither algorithm is definitely better than the
other one, the performance depending on the system parameters and noise conditions.
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It is not intuitive to understand for which values of a, b, c and σ2 the OSA is better than
the KF and vice-versa, but given these parameters, one can compute the corresponding
i.p.m. and BER and decide which method is preferable. In the next we illustrate these
observations presenting some instances (see Figure 5.6), where we fix b = c = 1 and
vary a and the noise variance. From the graphs we deduce that a stronger stability
(i.e., smaller a) leads to more similar performance. This can be explained noting that
a smaller a corresponds to a smaller q, then to the reduction of the weight assigned to
the state estimate in both algorithms (see Table 5.1). In particular, in the limit case
a→ −∞, OSA and KF coincide.

On the other hand, when a is close to zero, the OSA performs better than the KF
method for high values of SNR. This can be motivated by the OSA “hard” decision on
the states (that is, the state estimates are forced to belong to the state space): in fact,
for high SNR, the hard procedure gives the correct state with higher probability, while
the KF will give a good (real) estimate, but in general not the true value.

A final consideration is about the complexity: both algorithms just store one state
value at each step and perform very easy operations (linear operation for KF and a sign
computation for OSA) to update the state. On the other hand, the KF method has an
additional operation, that is the computation of the Kalman gain Kk; moreover, the
KF is less straightforward to implement (and is not optimal) when the unknown input
has not the characteristics of a white noise, while the OSA scheme is easily adapted to
different source distributions.

5.7 Conclusions

In this chapter, we have studied the deconvolution of one-dimensional, linear systems
in case of binary input generated by a Bernoullian source. We have exploited the
approach used for the differentiation problem, even if the mathematical setting turns
out to be different: in particular, the state space is no more N, but a compact interval.
This prevents the implementation of the proposed algorithm except for the OSA, for
complexity issues (the state space is not denumerable). We have then implemented
OSA, simulated the system and provided a theoretical analysis of the performance
using the Iterated Random Functions, computing the asymptotic BER for sufficiently
stable systems. We have also shown that analogous results can be achieved using the
Markov Processes’ theory and the Fixed Point Theorem.

Afterwards, we have developed a Kalman Filter based method to recover the input
and analyzed it with the IRF. Finally, we have compared the KF with the OSA and
concluded that neither is definitely better than the other: their performance depend
on the particular instance, say on the parameters of the system and the measurement
noise. Given the knowldege of parameters and noise, one can analytically choose the
more suitable algorithm, which is very useful from the design viewpoint.

112



5.7 Conclusions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-20 -15 -10 -5  0  5  10  15  20

OSA
KF

B
E
R

SNR (dB)

a = −2, b = c = 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-20 -15 -10 -5  0  5  10  15  20

OSA
KF

B
E
R

SNR (dB)

a = −5/4, b = c = 1a = −5/4, b = c = 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-20 -15 -10 -5  0  5  10  15  20

OSA
KF

B
E
R

SNR (dB)

a = 0, b = c = 1a = 0, b = c = 1a = 0, b = c = 1

Figure 5.6: OSA vd KF: Bit Error Rate in function of the SNR for b = c = 1 and
a = −2,−5/4, 0
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Chapter 6

A Fault Tolerant Control
Problem

Fault Tolerant Control (FTC for short, see [24], [71], [41]) aims to cancel or contain the
consequences of faults in an automation system. Such an operation is fundamental in
modern technological processes, which are required to assure robust performance, sta-
bility and safety even in case of partial malfunctions or degradations. Often, robustness
is achieved by redundancy, say by the introduction of many control components like sen-
sors; nevertheless, this sophistication naturally increases the probability of breakdown
and then continues to motivate the research on reliable control systems.

The problem of upholding the functionality of an apparatus affected by a distur-
bance is ubiquitous in the industrial and transport fields. In particular, FTC systems
are widely applied in those contexts where human health and environment are con-
cerned, for example, in the design of mechanical and chemical plants; nuclear power
reactors; medical systems; aircrafts, helicopters and spacecrafts; automotive engines,
railway and marine vehicles. Another application is in the communication networks
(for instance, wireless sensor networks), where the aim of FTC is to avoid unexpected
interruptions of data flow in case of troubled connectivity or impaired nodes. In general,
a satisfying FTC design prevents total failures and stops, with the ultimate objective
of reducing health, environmental and economic damages.

The literature about FTC is definitely widespread and contributions arise from di-
verse applied mathematical domains. Several survey works report the main theoretical
concepts and provide classifications of the outstanding FTC approaches, with detailed
references; for example, we refer the reader to the recent review by [167], which supplies
a comprehensive bibliography, and to [76], [145], [110], [162].

As far as the applications are concerned, flight control has been motivating FTC
research since 1970s, given the evident danger that aircraft faults may cause to hu-
man safety. A significant amount of papers have been produced on the argument,
pertaining to the many different aspects that characterize a safe flight dynamics. For
a general overview, see [142], [46], and the up-to-date book by [41] which in Chapter II
provides the list of the most common flight control systems, with the relative references.
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In this work, we consider a linear model with a multiplicative disturbance factor,
which is common in flight control ([165]); in particular, we adopt the system presented
by [3, 2] and studied also by [166] and [47] as an application test.

Even if FTC systems can be designed in many different ways according to the
specific aim they are conceived for, in general they all have to perform the following
main tasks:

1. the fault detection: the controller makes a binary decision on the presence of a
malfunction;

2. the fault identification: the controller determines or estimates the size of the
disturbance; when necessary, identification is preceded by the fault isolation, that
is, the location of the impaired component;

3. an active compensation to the fault, i.e., the reconfiguration of the system inputs
and/or parameters in order to maintain, as much as possible, the integrity of the
process.

Fault Detection and Identification (FDI) can be undertaken in diverse ways. In the
cited works, in particular [41] a comprehensive discussion about the most popular FDI
schemes is presented: among them, we recall the unknown input observers (UIO, [111],
[156]) and residual generation; the Kalman filtering; the statistical methods and the
more recent techniques based on neural networks ([98]).

In this chapter, we present a novel approach to FDI. Our setting is a continuous,
time-invariant, linear system in which a quantized disturbance input is introduced.
Such a hybrid model, that combines discrete and continuous dynamics, is motivated by
the upcoming digitalization of modern devices: a quantized disturbance may represent
the switches of actuators and sensors or a malfunction in a digital component; moreover,
it may describe the behavior of any mechanical device that is known to occupy only
certain positions and also it may be the approximation of a continuous disturbance.

Results about FTC for hybrid systems are not very common; in part, they can be
retrieved in the extensive discussion about the detection of abrupt changes in dynamical
systems, whose leading work is by [14] (while some further contributions are given by
[86] and [105]). The problem of estimating brusque alterations is always actual (see, e.g.,
[155] and [147], which respectively concern medical imaging and ground-penetrating
radar issues) and in general is approached by classical estimation techniques, such as
Kalman filtering.

Recently, input quantization in linear systems has been studied with the aim of
reducing the effects of a coarse quantization ([109], [44]). In this work, instead, our
purpose is to detect faults using the information that the disturbance input is quantized,
assuming the quantization to be sufficiently accurate.

In order to detect and evaluate a quantized input disturbance, we propose an In-
formation theoretic approach: given the discrete nature of the disturbance, we suggest
to perform FDI using the One State Algorithm introduced in Chapter 3.
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6.1 Problem Statement

The structure of the chapter is the following: in Section 6.1, we describe the prob-
lem; in Section 6.2, we introduce the decoding algorithm we intend to use for the fault
detection; in Section 6.3, we provide a theoretical analysis aimed at deriving optimal
design criteria (Section 6.4). The analysis includes considerations about the sensitiv-
ity of system to the false alarm (false positive) and to miss detection (false negative),
promptness of detection and reconfiguration. In Section 6.5 we show a few significant
simulations about a specific numerical example, arisen from flight control literature;
finally, in Sections 6.6 and 6.7 we propose some considerations about possible quanti-
zation errors and a few concluding observations.

6.1 Problem Statement

Let us consider processes that can be modeled by the following finite-dimensional,
input/output linear system:

ẋ(t) = Ax(t) + Bz(t)f(t) t ∈ [0, T ]
x(0) = 0
y(t) = Cx(t)

(6.1)

where x(t) ∈ Rn, y(t) ∈ Rm, f(t) and z(t) are scalar functions and A, B and C are
constant matrices with consistent dimensions. The output y(t) is supposed to be noisy
observable; f(t) is a known input signal, while z(t) is a disturbance modeling some fault
in the system. Typically, z(t) ∈ (0, 1]; if z(t) = 1, the system operates in its nominal
(i.e., fault-free) regime and is totally driven by f(t): this is the condition that one aims
at reproducing when z(t) ∈ (0, 1), i.e., when some unexpected breakdown, interruption
or loss of effectiveness affects the dynamics. In order to achieve that, a control input
u(t) is introduced, which adjusts the dynamics as follows:

ẋ(t) = Ax(t) + Bz(t)
(
f(t) + u(t)

)
t ∈ [0, T ]

x(0) = 0
y(t) = Cx(t)

(6.2)

Notice that to maintain the error-free behavior, say Bz(t)
(
f(t) + u(t)

)
= Bf(t), in

principle it is sufficient to fix u(t) = f(t)
(

1
z(t) − 1

)
, but, in the real applications, this

is actually impossible for the following motivations. Generally, the disturbance z is
not known and the controller can access it only through the (noisy) observation of the
output y. In order to determine z one has to perform a deconvolution, that is, to invert
the solution of system (6.2), given by:

y(t) = Cx(t) = C

∫ t

0
e(t−s)ABz(s)(f(s) + u(s))ds. (6.3)

Under this condition, the inversion of expression (6.3) becomes tricky: deconvolution is
in fact known to be an ill-posed and ill-conditioned problem, that is, the uniqueness of
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6.1 Problem Statement

solution is not guaranteed and also small errors in the data may raise large errors in the
solution. In conclusion, the reconstruction of z(t) by inversion may produce outcomes
very far from the correct ones; for this reason, an estimation approach to the problem
is the most suitable one.

In the next, Assumptions 1, 2 and 3 of Section 3.1 are supposed to hold, that is:

• the available output signal is a sampled, noisy version of y(t):

yk = y(kτ) + nk = Cx(kτ) + nk k = 0, 1, . . . ,K

where τ > 0 is a constant sampling time and nk is an additive observational noise;

• K = T/τ ∈ N;

• the nk’s are realizations of independent, identically distributed Gaussian random
variables Nk’s of 0 mean and covariance matrix σ2I.

Moreover,

Assumption 9 The disturbance function z(t) is known to be quantized over two levels,
in particular z(t) can assume only the values ζ0 = 1 and ζ1 ∈ (0, 1).

In general, no prior stochastic information is available on the behavior of z(t).
ζ0 and ζ1 may respectively represent the fault-free and the faulty conditions. Such a

binary situation occurs in engineering issues such as the abrupt blocking of an actuator,
the sudden disconnection of a component, the use of alarm sensors and more in general
in the presence of any device that may switch on or off. In the next, we will refer to
the jumps from ζ0 and ζ1 and vice-versa as switch points.

Under Assumption 9, Fault Detection and Identification are coincident: the decision
on the fault presence automatically determines also its size. We have to remark that
this is not the typical FTC paradigm, as in most applications the “faulty” value ζ1 is
not known and moreover in many cases it is continuous (for example, it belongs to an
interval of real numbers). In this more common framework, the unknown value must
be identified and quantization can be assumed only if it is sufficiently coarse to ensure
a reliable Identification.

Here, we however consider a binary, perfect quantization for the following reasons.
First, the use of digital devices, which work within finite sets of values, is nowadays
widespread and increasing also in control systems. The state of a digital device typically
can assume a finite number of possible levels and a fault of it may be represented by
an undesired switch. In this context, the signals are not continuous and quantization
is naturally implied by the problem itself. On the other hand, the choice of a binary
quantization, which in many cases is too restrictive, has mainly an introductory pur-
pose: since our approach to FTC is novel and arising from a different research field, it
is preferable to consider the simplest scenario. More complicated (and more realistic)
cases will be addressed in future work.

Coming back to our model, our aim is to estimate z(t) as well as possible in order to
provide the best feedback compensation to the system. Clearly, the estimation has to
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6.1 Problem Statement

be performed on-line, that is, each time a sample is acquired (notice that the sampling
inevitably undertakes some delay): each τ instants the controller tries to detect possible
faults and consequently updates the system design.

For mathematical simplicity, the switch points of z(t) are supposed to occur at the
time instants kτ , in order to have synchronization with the output sampling. Hence,
we can write:

z(t) =
K−1∑
k=0

zk1[kτ,(k+1)τ)(t) zk ∈ {ζ0, ζ1} (6.4)

This forced synchronization is acceptable since it will not affect the performance of our
algorithm in a sensible way. In particular, it will just cause some negligible difference
in its delay (see Section 6.2).

Now, z(t) is equivalent to the binary sequence (z0, . . . , zK−1) ∈ {ζ0, ζ1}K : the esti-
mation problem is actually discrete. Let ẑk be an estimate of zk: since the operation
must be performed on-line, we expect ẑk−1 = D(r1, . . . , rk), where D indicates a detec-
tion/estimation function.

Taking account of the conditions mentioned before, the natural definition of the
control input is:

u(t) = f(t)

K−1∑
k=0

(
1

ẑk−1
− 1

)
1[kτ,(k+1)τ)(t) (6.5)

As the first measurement is performed at time τ , the initial value ẑ−1 is arbitrarily
fixed; for example it has sense to initialize it with ẑ−1 = 1, which means that no
compensation is introduced into the system in [0, τ).

Let us now plug z(t) and u(t) given by (6.4) and (6.5) into (6.3): if t ∈ [kτ, (k+1)τ)
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6.1 Problem Statement

for some k ∈ {0, . . . ,K − 1},

x(t) =

∫ t

0
e(t−s)ABz(s)(f(s) + u(s))ds

=

∫ t

0
e(t−s)AB

K−1∑
j=0

zj1[jτ,(j+1)τ)(s)

f(s) + f(s)

K−1∑
j=0

(
1

ẑj−1
− 1

)
1[jτ,(j+1)τ)(s)

ds

=

∫ kτ

0
e(t−s)AB

K−1∑
j=0

zj1[jτ,(j+1)τ)(s)

f(s) + f(s)

K−1∑
j=0

(
1

ẑj−1
− 1

)
1[jτ,(j+1)τ)(s)

 ds

+

∫ t

kτ
e(t−s)AB

K−1∑
j=0

zj1[jτ,(j+1)τ)(s)

f(s) + f(s)
K−1∑
j=0

(
1

ẑj−1
− 1

)
1[jτ,(j+1)τ)(s)

 ds

=
k−1∑
j=0

zj
ẑj−1

∫ (j+1)τ

jτ
e(t−s)ABf(s)ds+

zk
ẑk−1

∫ t

jτ
e(t−s)ABf(s)ds

= et−kτ
k−1∑
j=0

zj
ẑj−1

∫ (j+1)τ

jτ
e(kτ−s)ABf(s)ds+

zk
ẑk−1

∫ t

jτ
e(t−s)ABf(s)ds

= e(t−kτ)Axk +
zk
ẑk−1

Mt,kτ , t ∈ [kτ, (k + 1)τ)

where
xk = x(kτ)

and

Ma,b :=

∫ a

b
e(a−s)ABf(s)ds a, b ∈ R. (6.6)

At this point, the evolution of system (6.2) with (6.4) and (6.5) can be written recur-
sively as

x0 = 0
ẑ−1 = 1

x(t) = e(t−kτ)Axk + zk
ẑk−1

Mt,kτ k = 0, . . . ,K − 1, t ∈ [kτ, (k + 1)τ)

y(t) = Cx(t)

(6.7)

In (6.7), we have not specified yet how we intend to determine the estimates ẑk:
the detection algorithm will be introduced in Section 6.2.

Notice that u(t) is computed and introduced in the system each τ time instants.
Given a generic interval [kτ, (k + 1)τ), u(t) is deceptive when a switch occurs at kτ ,
as it is based on the estimate ẑk−1 relative to the previous interval; thus, the delay τ
underlies a temporary, unavoidable deviation (even in case of correct detection) from
the right trajectory. This issue will be widely discussed in the next; for the moment, let
us just observe that switch points cause the most of the problems in our FTC model.
For this reason, permanent interruptions, i.e., failures (which involve just one switch
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6.2 Fault Detection: One State Algorithm

point) are definitely preferable than transient faults for our purpose, though this should
appear as a paradox in the practice.

6.1.1 Illustrative Example: a Flight Control Problem

Before discussing our FDI algorithm, let us notice that systems of kind (6.1) are common
in flight control literature to model different aspects of the aerospace dynamics. A
typical example is the following: if we consider the matrices

A =

 −0.5162 26.96 178.9
−0.6896 −1.225 −30.38

0 0 −14

 B =

 −175.6
0
14

 C = [1 12.43 0]

the system (6.1) represents the longitudinal short-period mode of an F4-E jet with
additional horizontal canards, in supersonic conditions. The vector x(t) determines the
longitudinal trajectory: its three entries respectively represent the normal acceleration,
the pitch rate and the deviation of elevator deflection from the trim position. The
output y(t) is the C∗ response, a parameter that synthesizes the aircraft response
to the pilot inputs; typically, the C∗ response must lie in a given admissible flight
envelope. This application example is illustrated in the Appendix D.1 of the book by
[3] and studied also in [2], [166], [47].

Referring to this example, f(t) can be interpreted as the elevator deflection com-
mand and z(t) as the indicator of the status of the elevators: z = ζ0 may attest a good
status, while the switch to z = ζ1 may denote an abrupt loss of effectiveness. In such a
case, the controller is required to detect the accident and introduce a suitable control
input u(t) in order to recover the optimal trajectory, say the one imposed by the flight
plan. In terms of the output y(t), one aims at maintaining or at bringing it it back
within the prescribed envelope.

In this context, it makes sense to suppose that the elevator cannot recover its
efficiency during the flight: this is a case of failure, which will be our case study in the
next.

This Flight Control Problem will be retrieved later and used as test application for
the implementation of our detection algorithm, which is introduced in the next section.

6.2 Fault Detection: One State Algorithm

Given the quantization of zk ∈ {ζ0, ζ1}, it makes sense to settle the same set for the
estimation: ẑk ∈ {ζ0, ζ1} and to use one of the decoding algorithms proposed in Chapter
3 to identify the disturbance. In particular, since the considered process, in principle,
may never end, we have chosen to implement the causal, low-complexity One State
Algorithm (OSA).

The key idea of the One State procedure is to recursively provide an estimate x̂k of
the state xk = x(kτ) and of zk−1 given the current lecture yk and the estimate x̂k−1 of
the previous state xk−1.

120



6.3 Theoretical Analysis of the One State Algorithm

OSA - Decoder D(1)

Initialization: x̂0 = 0, ẑ−1 = 1.

For k = 1, . . . ,K:
System evolution: xk = eτAxk−1 +

zk−1

ẑk−2
Mkτ,(k−1)τ .

Measurement: yk = Cxk + nk.

Disturbance Estimation: ẑk−1 =


ζ0 if ||yk,CeτAx̂k−1 + ζ0

ẑk−2
CMkτ,(k−1)τ ||Rm

≤ ||yk,CeτAx̂k−1 + ζ1
ẑk−2

CMkτ,(k−1)τ ||Rm
ζ1 otherwise

State Estimation: x̂k = eτAx̂k−1 +
ẑk−1

ẑk−2
Mkτ,(k−1)τ .

We observe that the OSA neglects the evolution of the system except for the time
instants kτ , k ∈ N, that is, it considers a discretized version.

As already noticed, the system does not have compensation in [0, τ). For the binary
nature of each zk, the process of estimation/detection reduces here to the comparison
of two distances. Moreover, the storage required is of two locations (one float for the
current state and one boolean for the current disturbance): the algorithm is definitely
low-complexity.

Remark 7 The One State algorithm can be easily extended to the case of quantization
with q > 2 levels, by comparing the distances between the received symbol and the q
possible signals; nevertheless, the theoretical analysis of the performance, as we propose
it in the next Section, would be definitely more complicated.

6.3 Theoretical Analysis of the One State Algorithm

In this section, we provide a theoretical analysis of the performance of the One State
Algorithm with the final aim to determine optimal design criteria for our FTC system.
We will focus on the system (6.7) with a failure, that is, in the presence of just one
switch point TF = kF τ ∈ [0, T ], kF ∈ N, such that

z(t) =

{
ζ0 = 1 t ∈ [0, TF )
ζ1 ∈ (0, 1) t ∈ [TF , T ]

(6.8)

or equivalently, zk = ζ0 for k = 0, 1, . . . , kF − 1 and zk = ζ1 for k = kF , 1, . . . ,K − 1.
Switch points are critical since they always cause deviations from the desired tra-

jectory due to the detection delay. In fact, u(t) is deceptive in [kτ, (k + 1)τ) when a
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6.3 Theoretical Analysis of the One State Algorithm

switch occurs at kτ , as it is function of ẑk−1, which in turn depends on the evolution
of the system in [0, kτ).

Considering the case of one switch point is then oriented to isolate and understand
this phenomenon, as well as motivated by the ubiquity of failure occurrences in the
applications.

6.3.1 Probabilistic setting

Assuming the measurement noises nk’s to be realizations of independent, zero-mean,
Gaussian random variables, a certain amount of uncertainty affects all the system
(6.7); in particular also ẑk−1, x(t) and y(t) are random variables as they are directly or
indirectly functions of the noise. The evolution of our FTC procedure in probabilistic
terms is as follows (capital letters indicate random variables):

X0 = 0, X̂0 = 0, Ẑ−1 = ζ0 = 1
Xk = eτAXk−1 +

zk−1

Ẑk−2
Mkτ k = 1, . . . ,K

Yk = CXk +Nk

Ẑk−1 = D1(Yk, X̂k−1, Ẑk−2)

X̂k = eτAX̂k−1 +
Ẑk−1

Ẑk−2
Mkτ

(6.9)

where D1 indicates the One State decoding/detection function. We recall that z(t) is
not supposed to be driven by any known stochastic rule.

6.3.2 Aim of the analysis

The performance of the One State Algorithm must be determined in terms of a suitable
distance between the desired and the real output. Let us consider the Flight Control
Problem (Section 6.1.1) as reference: the output y(t), which summarizes the features
of the aircraft’s trajectory, must be maintained in a prescribed flight envelope. This
can be interpreted in two ways: the distance between desired and real output must be
(a) bounded in a certain range (b) minimized as much as possible, tolerating infrequent
and temporary excursions outside the flight envelope. For our model, these conditions
can be effectively formulated as follows:

1. choose τ so that the maximal amplitude M of the deviations is minimized;

2. choose τ so that the probability P that no deviations occur is maximized.

Since in a flight context both conditions may be important, we propose to merge the
two criteria in this way: fixed a small tolerance ε, we define the optimal τ as

τopt = argmin
τ∈Sε

M, Sε = {τ : P > 1− ε}. (6.10)

In other terms, we first individuate a possible set Sε so that P is above a safety threshold
1 − ε and then we choose τ ∈ Sε that minimizes the maximal amplitude. This trade-
off strategy has been derived observing that, for our model, a larger τ corresponds
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to a larger P, but also to larger deviations at switch points (even in case of correct
detection), i.e., to a larger M. In the next, we will specialize the criterion (6.10) to
our setting, in terms of an error function (Sections 6.3.3 and 6.3.4); afterwards, we will
discuss how to compute τopt in some specific cases (Section 6.4) and test it in the Flight
Control Problem.

6.3.3 Error Function and Probability of n-step Error Decay

The Error Function we adopt to represent the distance between the desired and the real
output is given by the discrete stochastic process (Ek)k=0,1,... that describes the differ-

ence between the stateXk and the nominal (i.e., fault-free) state xN (t) :=
∫ t

0 e
(t−s)ABf(s)ds,

at time instants kτ , k = 0, 1, . . . ,K:
E0 = 0
Ek = Xk − xN (kτ)

= eτAEk−1 +
(
zk−1

Ẑk−2
− 1
)

Mkτ k = 1, . . . ,K.
(6.11)

Let us notice that

Lemma 14 For any k0, n ∈ N, the events {Ek0+n = enτAEk0} and {Ẑk−1 = zk for all
k = k0, k0 + 1, . . . k0 + n} coincide.

Proof It immediately follows from the definition of Ek: for any n ∈ N, the event
{Ek+1 = eτAEk} coincides to {Ẑk−1 = zk} and then {Ek0+n = enτAEk0} coincides to
{Ẑk0−1 = zk0 , Ẑk0 = zk0+1, . . . , Ẑk0+n−1 = zk0+n}. Notice that under the

hypothesis of the proposition and if A is asymptotically stable, Ek exponentially decays
to zero, regardless of the initial value Ek0 . Moreover, observe that {Ẑk−1 = zk} is not
the event of correct detection {Ẑk = zk}, since the feedback in the system implies a
delay τ ; however, if zk is constant over the considered interval, the two events coincide.

Afterwards, let{
D0 = 0

Dk = X̂k −Xk = eτADk−1 +
Ẑk−1−zk−1

Ẑk−2
Mkτ

where the X̂k’s are the states estimated by the One State Algorithm. Given k0, n ∈ N,
k0 ≥ 1, we define the probability of n-step error decay (EDPn for short) as

EDPn(k0, d, ζ, η) =

P
(
Ek0+n = enτAEk0

∣∣Dk0−1 = d, Ẑk0−2 = ζ, zk = η for any k = k0 − 1, . . . , k0 + n− 1)
)

where d ∈ Rn, ζ, η ∈ {ζ0, ζ1}. Let us now reformulate the optimization problem (6.10)
in a more precise way. For simplicity, from now onwards we will assume y(t) ∈ R, as
in the Flight Control Problem.
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Before the failure, P corresponds to EDPTF /τ−1(1, 0, ζ0, ζ0), while after the failure

it corresponds to EDP(T−TF )/τ−1(kF + 1, DkF , ζ0, ζ1). Furthermore, the maximal devi-
ation M can be approximated by ||(CE0, . . . ,CEK)||∞ (this is an approximation since
the peak may be placed at any time instant in (0,Kτ ], not only at instants kτ). In
conclusion, fixed a small tolerance ε > 0,

τopt = argmin
τ∈Sε

||(CE0, . . . ,CEK)||∞

Sε = {τ > 0 : EDPTF /τ−1(1,0, ζ0, ζ0) > 1− ε, EDP(T−TF )/τ−1(kF + 1, DkF , ζ0, ζ1) > 1− ε}.
(6.12)

Notice that if τ ∈ Sε, with probability 1−ε there are no detection errors and ||(CE0, . . . ,CEK)||∞ =
CEkF+1. We will retrieve this issue in Section 6.4.

6.3.4 Evaluation of the Probability of n-step Error Decay

The evaluation of EDPn for the One State Algorithm, which is necessary to assess the formula
(6.12), is the central result of our theoretical analysis and will be used in the next section to
compute τopt in some significant instances.

Proposition 12 Let y(t) ∈ R and σ2 be the variance of Nk; let us call

Swk = CeτAX̂k−1 +
w

Ẑk−2
CMkτ ∈ R, w ∈ {ζ0, ζ1}

the two possible received signals estimated by the One State Algorithm at time step k. Then,

EDPn(k0, d, ζ, η) =

=
1

2n
erfc

−
∣∣∣ ζ0−ζ12ζ CMk0τ

∣∣∣+ CeτAd
[(

1− 21{ζ0}(η)
) (

1− 21
(S
ζ1
k ,+∞)

(Sζ0k )
)]

σ
√

2

 ·
·
n−1∏
m=1

erfc

−
∣∣∣ ζ0−ζ12η CM(k0+m)τ

∣∣∣
σ
√

2
−

Ce(m+1)τAd
[(

1− 21{ζ0}(η)
) (

1− 21
(S
ζ1
k+m,+∞)

(Sζ0k+m)
)]

σ
√

2

 .

(6.13)

In order to prove this proposition, we need a few technical lemmas. Let us define the following
detection error probability Pdet: given k ∈ N, d ∈ Rn and ζ ∈ {ζ0, ζ1},

Pdet(k, d, ζ) = P
(
Ẑk 6= zk|Dk = d, Ẑk−1 = ζ

)
.

EDP is connected to Pdet by the following law:

Lemma 15

EDPn(k0,d, ζ, η) =

=
(
1− Pdet(k0 − 1,d, ζ)

)∣∣zk0−1=η

n−1∏
m=1

(
1− Pdet(k0 +m− 1, emτAd, η)

)∣∣zk0+m−1=η
.
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Proof By Lemma 14, we have

EDP1(k0,d, ζ, η) = P
(
Ek0+1 = eτAEk0

∣∣Dk0−1 = d, Ẑk0−2 = ζ, zk0−1 = zk0 = η
)

= P
(
Ẑk0−1 = zk0

∣∣Dk0−1 = d, Ẑk0−2 = ζ, zk0−1 = zk0 = η
)

= 1− Pdet(k0 − 1,d, ζ)∣∣zk0−1=η

that is, the error decays when the detection is correct. Notice that this relation between EDP
and Pdet subsists in virtue of the condition zk0−1 = zk0 : if k0 were a switch point, the feedback
delay would produce a deviation in the Error Function in case of correct detection.

Generalizing to n steps,

EDPn(k0,d, ζ, η) =

= P (Ẑk0−1 = Ẑk0 = · · · = Ẑk0+n−2 = η
∣∣Dk0−1 = d, Ẑk0−2 = ζ)

= P
(

(Dk0 , Ẑk0−1) = (eτAd, η)|(Dk0−1, Ẑk0−2) = (d, ζ)
)
·

·
n−1∏
m=1

P
(

(Dk0+m, Ẑk0+m−1) = (e(m+1)τAd, η)
∣∣(Dk0+m−1, Ẑk0+m−2) = (emτAd, η)

)
= EDP1(k0,d, ζ, η)

n−1∏
m=1

EDP1(k0 +m, emτAd, η, η)

=
(
1− Pdet(k0 − 1,d, ζ)

)∣∣zk0−1=η

n−1∏
m=1

(
1− Pdet(k0 +m− 1, emτAd, η)

)∣∣zk0+m−1=η
.

At this point, let us compute Pdet.

Lemma 16 For any k = 1, 2, . . . ,K,

Pdet(k − 1, d, ζ) =

=
1

2
erfc


∣∣∣ ζ0−ζ12ζ CMkτ

∣∣∣+ CeτAd
[(

1− 21{ζ0}(zk−1)
) (

1− 21
(S
ζ1
k ,+∞)

(Sζ0k )
)]

σ
√

2

 .
(6.14)

Proof Under the hypothesis that zk−1 = ζ1, Pdet is given by:

Pdet(k − 1, d, ζ)|(zk−1=ζ1) = P
(
Ẑk−1 = ζ0

∣∣∣Dk−1 = d, Ẑk−2 = ζ, zk−1 = ζ1

)
= P

(
|Yk − Sζ0k | < |Yk − S

ζ1
k |

∣∣∣Dk−1 = d, Ẑk−2 = ζ, zk−1 = ζ1

)

=


P

(
Yk <

S
ζ1
k +S

ζ0
k

2

∣∣∣Dk−1 = d, Ẑk−2 = ζ, zk−1 = ζ1

)
if Sζ1k > Sζ0k

P

(
Yk ≥

S
ζ1
k +S

ζ0
k

2

∣∣∣Dk−1 = d, Ẑk−2 = ζ, zk−1 = ζ1

)
otherwise.
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If Sζ1k > Sζ0k :

P

(
Yk <

Sζ1k + Sζ0k
2

∣∣∣∣Dk−1 = d, Ẑk−2 = ζ, zk−1 = ζ1

)
=

= P

(
Yk < CeτAX̂k−1 +

ζ0 + ζ1
2ζ

CMkτ

∣∣∣∣Dk−1 = d

)
= P

(
CXk +Nk < CeτAX̂k−1 +

ζ0 + ζ1
2ζ

CMkτ

∣∣∣∣Dk−1 = d

)
= P

(
CeτAXk−1 +

ζ1
ζ

CMkτ +Nk < CeτAX̂k−1 +
ζ1 + ζ0

2ζ
CMkτ

∣∣∣∣Dk−1 = d

)
= P

(
Nk < CeτAd+

ζ0 − ζ1
2ζ

CMkτ

)
=

1

2
erfc

(
−CeτAd+ ζ1−ζ0

2ζ CMkτ

σ
√

2

)
.

The last step depends on the Gaussian distribution of Nk; notice also that ζ1−ζ0
ζ CMkτ =

Sζ1k − S
ζ0
k > 0. It follows also that for Sζ1k ≤ S

ζ0
k :

P

(
Yk ≥

Sζ1k + Sζ0k
2

∣∣∣∣Dk−1 = d, Ẑk−2 = ζ, zk−1 = ζ1

)
=

= 1− 1

2
erfc

(
−CeτAd+ ζ1−ζ0

2ζ CMkτ

σ
√

2

)

where ζ1−ζ0
ζ CMkτ = Sζ1k − S

ζ0
k ≤ 0. Summing up,

Pdet(k − 1, d, ζ)|(zk−1=ζ1) =

= P
(
|Yk − Sζ0k | < |Yk − S

ζ1
k |

∣∣∣Dk−1 = d, Ẑk−2 = ζ, zk−1 = ζ1

)

=


1
2erfc

(
−CeτAd+ ζ1−ζ0

2ζ CMkτ

σ
√
2

)
if Sζ1k > Sζ0k

1− 1
2erfc

(
−CeτAd+ ζ1−ζ0

2ζ CMkτ

σ
√
2

)
otherwise.

This actually corresponds to the false negative probability. The false positive probability
Pdet(k − 1, d, ζ)|(zk−1=ζ0) can be computed in the same way and the result is:

Pdet(k − 1, d, ζ)|(zk−1=ζ0) = P
(
Ẑk−1 = ζ1

∣∣∣Dk−1 = d, Ẑk−2 = ζ, zk−1 = ζ0

)
= P

(
|Yk − Sζ1k | < |Yk − S

ζ0
k |

∣∣∣Dk−1 = d, Ẑk−2 = ζ, zk−1 = ζ0

)

=


1− 1

2erfc

(
−CeτAd− ζ1−ζ0

2ζ CMkτ

σ
√
2

)
if Sζ1k > Sζ0k

1
2erfc

(
−CeτAd− ζ1−ζ0

2ζ CMkτ

σ
√
2

)
otherwise.

The thesis is then proved.
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Remark 8 By the definition of Dk, we have

Pdet(k, d, ζ) = P

(
Ẑk 6= zk, Dk+1 = eτAd+

zck − zk
zk−1

M(k+1)τ

∣∣∣∣Dk = d, Ẑk−1 = zk−1

)
(6.15)

where zck indicates the complementary of zk in {ζ0, ζ1}. This probability may be interpreted as
the transition probability of the Markov Process

(Dk, Ẑk−1)k=0,1,...

in the state space D × {ζ0, ζ1}, D ⊂ Rn, with starting state (D0, Ẑ−1) = (0, ζ0). A thorough
analysis of this process using Markov Theory should provide more general results than ours, but
this approach is too complex when the problem is multidimensional.

Remark 9 If d = 0 ∈ Rn,

Pdet(k − 1, 0, ζ) =
1

2
erfc


∣∣∣ ζ0−ζ12ζ CMkτ

∣∣∣
σ
√

2


=

1

2
erfc

(
|Sζ0k − S

ζ1
k |/2

σ
√

2

)
.

(6.16)

This expression suggests an Information-theoretic interpretation of our problem. In fact, the
presence of the Gaussian noise in the data lecture can be thought as if signal Cxk were trans-
mitted on an AWGN channel. If Dk−1 = 0, Cxk can be Sζ0k or Sζ1k . Moreover, if we shift

the signals by their average, so that they become antipodal ±S
ζ0
k −S

ζ1
k

2 , the average energy per

channel use at step k is Ek =

(
S
ζ0
k −S

ζ1
k

2

)2

. Given that the spectral density of the Gaussian

noise is N0 = 2σ2, the argument of the erfc function in (6.16) turns out to be the square root
of the so called Signal-to-Noise Ratio (SNR), defined as SNRk,τ = Ek/N0, of our ideal channel.
The subscripts emphasize the dependence of the SNR on time and on parameter τ .

Generally, the SNR compares the magnitudes of the transmitted signal and of the channel
noise and it is widely used in Information Theory to describe channel performance. In our
framework, the SNR determines the reliability of the detection, say the reliability of the channel
where Cxk is ideally transmitted. This remark emphasizes that our problem is analogous to a
common digital-transmission paradigm and bears out the idea of using decoding techniques to
the detection task.

In the next, we will use the common dB notation for the SNR, that is, we express it as 10 log10

of its value.

Remark 10 Since typically ζ1 < ζ0, by expression (6.16) we have

Pdet(k − 1, 0, ζ1) < Pdet(k − 1, 0, ζ0).

Given that Ẑk−2 = ζ1 is generally more likely when zk−2 = ζ1 (otherwise our detection method
would be improper), we can conclude that our detection algorithm is more reliable after the
failure, or, in other terms, it is more sensitive to false positives.
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Proof of Proposition 12.
Notice that zk is assumed to be constant in [k0 − 1, k0 + n − 1], that is, we consider the

system before or after a failure event. By Lemmas 15 and 16, we have

EDPn(k0, d, ζ, η) =

=
1

2
erfc

−
∣∣∣ ζ0−ζ12ζ CMk0τ

∣∣∣+ CeτAd
[(

1− 21{ζ0}(η)
) (

1− 21
(S
ζ1
k ,+∞)

(Sζ0k )
)]

σ
√

2

 ·
·
n−1∏
m=1

1

2
erfc

−
∣∣∣ ζ0−ζ12η CM(k0+m)τ

∣∣∣
σ
√

2
+

−
Ce(m+1)τAd

[(
1− 21{ζ0}(η)

) (
1− 21

(S
ζ1
k+m,+∞)

(Sζ0k+m)
)]

σ
√

2

 .

Let us now briefly distinguish the behavior of EDPn before and after the failure.

6.3.5 False positive evaluation

Let us suppose the system to be affected by a failure according to the model (6.8) with kF ≥ 1,
that is, the system is not faulty from the beginning. In particular, since there is no compensation
at the first time step (or equivalently Ẑ−1 = ζ0), no false positive is produced at k = 0. Then,
studying EDP in [1, kF ) actually corresponds to evaluate the probability that no false positives
occur during the whole pre-failure transient regime. Given that D0 = 0, we have

EDPkF−1(1, 0, ζ0, ζ0) =

kF−1∏
m=1

1

2
erfc

−
∣∣∣ ζ0−ζ12ζ0

CMmτ

∣∣∣
σ
√

2

 . (6.17)

Since E1 = 0 and D0 = 0, then EDPkF−1(1, 0, ζ0, ζ0) = P (EkF = 0) = P (DkF = 0).

6.3.6 Switch Point

Suppose that DkF = 0, then in particular, ẐkF−1 = zkF−1 and ẐkF−1 6= zkF . In other terms,
the detection is correct, but the compensation, based on the detection at the previous step, is
not efficient in correspondence of a switch point. Our detection method cannot control what
happens at step at step kF , that is, in the time interval [TF , TF + τ).

6.3.7 False negative evaluation

Given that we cannot control the system immediately after the switch point, it is likely that
EkF+1 6= 0. We now want to study the probability of decay of the Error Function towards
zero, which actually corresponds to the evaluation of the false negatives. In fact, under the
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hypothesis DkF = 0 (i.e., no false positives and in particular ẐkF−1 = ζ0),

EDPK−kF−1(kF + 1, 0, ζ0, ζ1) = EDP1(kF + 1, 0, ζ0, ζ1)

n−1∏
m=1

EDP1(kF + 1 +m, 0, ζ1, ζ1)

1

2
erfc

−
∣∣∣ ζ0−ζ12ζ0

CM(kF+1)τ

∣∣∣
σ
√

2

 n−1∏
m=1

1

2
erfc

−
∣∣∣ ζ0−ζ12ζ1

CM(kF+m+1)τ

∣∣∣
σ
√

2

 .

(6.18)

The considerations about EDP made in the last sections are now specialized to the case of
constant input f(t).

6.3.8 Constant input f(t)

If the input f(t) is constant the last expression can be simplified and analytically evaluated, as
the system evolution does not depend on time step k. Let us fix f ≡ 1: we have

Mkτ = Mτ := (eτA − I)A−1B

for any k = 1, . . . ,K. Hence,

EDPn(1, 0, ζ0, ζ0) =

1

2
erfc

−
∣∣∣ ζ0−ζ12ζ0

CMτ

∣∣∣
σ
√

2

n (6.19)

for any n ∈ N such that n+ 1 ≤ kF and

EDPn(kF + 1, 0, ζ0, ζ1) =
1

2
erfc

−
∣∣∣ ζ0−ζ12ζ0

CMτ

∣∣∣
σ
√

2

1

2
erfc

−
∣∣∣ ζ0−ζ12ζ1

CMτ

∣∣∣
σ
√

2

n−1 . (6.20)

In terms of signal-to-noise ratio, we can write

√
SNRτ (η) =

∣∣∣ ζ1−ζ02η CMτ

∣∣∣
σ
√

2

so that

EDPn(1, 0, ζ0, ζ0) =

[
1

2
erfc

(
−
√

SNRτ (ζ0)
)]n

EDPn(kF + 1, 0, ζ0, ζ1) =
1

2
erfc

(
−
√

SNRτ (ζ0)
)[1

2
erfc

(√
SNRτ (ζ1)

)]n−1
.

Under the hypothesis 0 < ζ1 < ζ0 = 1, SNRτ (ζ0) < SNRτ (ζ1), that is EDPm(k0, 0, ζ0, ζ0) <
EDPm(k1, 0, ζ1, ζ1); in other terms, our detection algorithm is more sensitive to false positives,
then our fault tolerant control method is more efficient after the failure. Thus, the suitable
design criteria for the pre-failure state will automatically be appropriate also for the post-failure
state, recalling that in general we ask EDP to be larger than a given threshold (see (6.22)).
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For this motivation, in the next we will focus on the pre-failure framework and, for brevity,
we will adopt this notation:

SNRτ = SNRτ (ζ0) and EDPn = EDPn(k0, 0, ζ0, ζ0) =

[
1

2
erfc

(
−
√

SNRτ

)]n
. (6.21)

The next section is devoted to assess the optimal design criteria for our FTC system, in a few
instances, on the basis of the theoretical analysis developed in this section.

6.4 Design Criteria

On the basis of the previous analysis, let us assess the optimal design criteria for our FTC system
in two different input instances: f(t) constant and f(t) sinusoidal. As far as the first case in
concerned, we will show that the theoretic analysis of Section 6.3 provides the instruments to
determine the optimal sampling step in an analytic way. On the other hand, when the input is
not constant some difficulties arise in the analytical computation.

6.4.1 Design Criteria in the case of constant input f(t)

Let us evaluate τopt when f(t) ≡ 1. If there are no detection errors, the maximal deviation

in the output is in the interval (kF τ, (kF + 1)τ ] and is equal to maxt∈(0,τ ] | ζ1−ζ0ζ0
CMt| where

Mt = (etA − I)A−1B. Let us approximate it by CEkF+1 = | ζ1−ζ0ζ0
CMτ |. Given the definition of

τopt in (6.12), our aim is then to provide

τopt = argmin
τ∈Sε

|CMτ | (6.22)

where Sε = {τ > 0 : EDPTF /τ−1(1, 0, ζ0, ζ0) > 1 − ε,EDP(T−TF )/τ−1(kF + 1, DkF , ζ0, ζ1) >
1− ε}.

6.4.1.1 Application to the Flight Control Problem

Let us now compute τopt for the Flight Control Problem introduced in Section 6.1.1, in the
case of constant input f(t). In the Figure 6.1, the graph of CMτ in function of τ is shown.
In particular, we notice that CMτ is negative for any τ > 0, achieves a global minimum
at τ0 = 0.55 and converges to a constant value for a sufficiently large τ . Then, if τ > τ0,
maxt∈(0,τ ] |CMt| = |CMτ0 |, that is, the peak is fixed and we cannot control it. This undesired
occurrence can be prevented by imposing

τ ∈ (0, τ0].

In this interval, CMτ is monotone decreasing and we exactly have maxt∈(0,τ ] |CMt| = |CMτ |.
Then, fixed the tolerance ε, our aim (see (6.12)) is the computation of

τopt = argmin
τ∈(0,τ0]:EDPW/τ>1−ε

|CMτ | (6.23)

where W = nτ indicates the length of the window we are considering.
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Notice that

EDPW/τ =

[
1

2
erfc

(
−
√

SNRτ

)]W/τ
=

[
1

2
erfc

(
−
| ζ1−ζ02ζ0

CMτ |
σ
√

2

)]W/τ
is monotone increasing as a function of τ . Then, let τm = τm(ε) be the minimum τ in (0, τ0]

such that EDPW/τ > 1− ε (if it exists). Then

τopt = argmin
τ≥τm

|CMτ | = τm. (6.24)

Now, let assign numerical values to the parameters and solve the corresponding instance: if

ζ0 = 1 ζ1 =
1

2
σ2 = 2

ε = 10−3 W = 20
(6.25)

then τopt = 0.12 as shown in Figure 6.2. The value of τopt clearly depends on the noise and

in particular there can exist noise values for which there is no τ making EDPW/τ > 1− ε: for
instance, this occurs if we consider σ2 > 34.72 in the example (6.25) (the range of admissible
σ2’s with the corresponding τopt’s is shown in Figure 6.3). In such occurrences, one should
allow a lower threshold 1− ε.

6.4.2 Design Criteria in the case of input f(t) = sin t

When f(t) is not constant, it is more difficult to study analytical design criteria as the quality
of the detection depends on time. In particular, at each time step kτ the detection is affected
by the values of f(t), t ∈ ((k− 1)τ, kτ), then any detection step is different from the others and
an analogous of (6.22) cannot be provided: roughly speaking, the optimum would be to change
τ according to the shape of f(t) in each considered interval.
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When f(t) is periodic, we can suggest some numerical computation in order to fix a suitable

τ . In fact, if we compute EDPW/τ (1, 0, ζ0, ζ0) for a sufficiently large W , we get an idea about
the sampling times that are more suitable. On the other hand, there is no way to control
the amplitude of the deviation in case of failure, given its dependence on time. The idea is
then to choose as sampling time that maximizes EDPW/τ (1, 0, ζ0, ζ0) or that makes it larger
than a given threshold, understanding that this does not arrange the issue of the unavoidable
deviation.

Let us illustrate these observations in the Flight Control Problem with f(t) = sin t and

parameters given by (6.25). First, let us numerically compute EDPW/τ (1, 0, ζ0, ζ0) in function
of τ , the result being presented in Figure 6.4: the graph shows a clear unsettled behavior which
cannot be described analytically. However, it also suggests the values of τ that give an high
EDPW/τ (1, 0, ζ0, ζ0) and which can then considered suitable.

More details about this instance can be retrieved in the simulations presented in the next
section.

6.5 Flight Control Problem: a few simulations

In this section, we show some simulations concerning the application of the One State Algo-
rithm to the Flight FTC example presented in the Paragraph 6.1.1 and studied in the previous
paragraphs.

In a time interval [0, T ] = [0, 40], we suppose that a failure occurs at TF = 20 and causes
the switch of the disturbance function z(t) from ζ0 = 1 to ζ1 = 1/2 (ζ1 = 1/2 might represent a
loss of effectiveness of 50% of the elevator of the aircraft). The measurement noise is a Gaussian
random variable N (0, 2). We consider both the cases of input f ≡ 1 and f(t) = sin t and we
show the behavior of the One State procedure for different values of τ . The graphs represent
the output y(t) of the system.

Figure 6.5 reproduces the case f ≡ 1. The first graph compares the nominal system,
that is, the desirable trajectory, to the faulty system with no compensation: after the failure,
the trajectory of the latter is appreciably incorrect. In the other graphs, we introduce the
compensation using the One State Algorithm: as proved in the Paragraph 6.4.1.1 , τopt = 0.12.
In the second graph, we fix τ = 0.4, which is larger than τopt: we obtain a correct detection
at each step, but the unavoidable deviation is not optimized: in fact, considering τopt (third
graph), we have a smaller peak after the failure. Furthermore, we see that also τ = 0.09 is

suitable, even if, the corresponding EDPW/τ > 1 − ε. On the other hand, τ = 0.06 assures a
good detection only after the failure (this is consistent with our observation about the different
sensitivity of false positives and false negatives), while a too small sampling time (τ = 0.001)
causes instability: the detection is not reliable and the Error is always non-null.

Figure 6.6 concerns the case f(t) = sin t. Again, the output of the system with no com-
pensation in the first graph undergoes an evident change after the failure at TF = 20. Instead,
applying the One State Algorithm with time step τ = 0.525 (this value being suggested by the
numerical computation of the EDP) allows to recover the nominal condition. The same occurs
with τ = 0.35, which is preferable for the smaller amplitude of the unavoidable deviation in
correspondence to the switch point.

When τ = 0.3, some detections fail (the error percentage is about 4%), but the output y is
not dramatically affected by them. Furthermore, when τ = 0.01 the error percentage is about
9%: many deviations occur, but they are not very large. In particular, they are quite null when
the slope of y(t) is steeper. In correspondence to the switch point a plain oscillation is present,
but it is less remarkable than in the cases of larger τ .
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Figure 6.5: Fault-free System vs System with a failure at TF = 20, with measurement
noise of variance σ2 = 2 and f ≡ 1. The x-axes represent the time, the y-axes the
trajectories y(t). Six different cases are shown: the first graph represents the system
with no fault compensation (say, u(t) ≡ 0); the other ones are with compensation,
respectively with time step τ equal to 0.4, 0.12, 0.09, 0.06, 0.01
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6.5 Flight Control Problem: a few simulations
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Figure 6.6: Nominal System vs System with a failure at TF = 20, with measurement
noise of variance σ2 = 2 and f(t) = sin t. The x-axes represent the time, the y-axes the
trajectories y(t). Six different cases are shown: the first graph represents the system
with no fault compensation (say, u(t) ≡ 0); the other ones are with compensation,
respectively with time step τ equal to 0.525, 0.35, 0.3, 0.01, 0.001

136



6.6 Inaccurate quantization

Decreasing τ again, the percentage of wrong detections does not overpass 10%, but for
very small values of τ , the system is unstable (see for instance, the last graph corresponding to
τ = 0.001) and many oscillations occur.

6.6 Inaccurate quantization

The disturbance function considered in this chapter may assume only two known values. This
is a simplified case that has been exploited to introduce our decoding approach to FTC in the
easiest way, but real systems are in general more complicated. Two main realistic cases should
be discussed:

1. the disturbance function is quantized, but assumes more than two values;

2. the disturbance function is not quantized.

Both problems require detection and also identification of the disturbance (see the introductory
part of this chapter). Point (1) can be tackled with our approach (see Remark 7): if q is the
number of quantization levels, it suffices to adapt the Disturbance Estimation task in the One
State Algorithm performing a comparison among q Euclidean distances. Nevertheless, the
corresponding theoretical analysis turns out to be more complicated. The second problem,
instead, can be approached introducing a sufficiently fine quantization, taking into account
that a larger number of quantization levels produces more precise results in spite of numerical
complexity.

The examination of these issues is beyond our purpose, but some observations can be made
about the following point: what happens if we apply the One State Algorithm when the value
of the disturbance function z(t) is constant, but unknown, after the failure?

More precisely, let us suppose that z(t) ∈ {ζ0, α} where ζ0 = 1 and α ∈ (0, 1) is not
given, while ẑ(t) ∈ {ζ0, ζ1}, ζ1 being fixed: the Algorithm works with two quantized states, but
the failure state value that it considers may be incorrect. Then, let us wonder which error is
produced by this inaccurate quantization; naturally, we expect that if α is sufficiently close to
ζ0, the outcomes will be sufficiently reliable. Notice also that the false positive discussion is not
touched by this issue.

First of all, we have to distinguish the errors in the detection task and in the trajectories.
The detection is correct if we become aware of the switch of z(t) from ζ0 to α; in this case,
the One State Algorithm estimates z(t) with ζ1. It is easy to compute that the probability of
incorrect detection is given by:

P (Ẑk = ζ0|zk = α,Dk = d, Ẑk−1 = ζ) =

=
1

2
erfc


∣∣∣ ζ0+ζ1−2α2ζ CMkτ,(k−1)τ

∣∣∣+ CeτAd
[(

1− 21{ζ0}(zk−1)
) (

1− 21
(S
ζ1
k ,+∞)

(Sζ0k )
)]

σ
√

2

 .

(6.26)

The calculus is analogous to the one for the Pdet and the result is similar, but with ζ0 + ζ1− 2α
instead of ζ0 − ζ1 Now, let us analyze it in the example proposed in Section 6.4.1.1, in the case
of constant f : considering d = 0, we have

P (Ẑk = ζ0|zk = α,Dk = 0, Ẑk−1 = ζ) =
1

2
erfc


∣∣∣ 2α−ζ0−ζ12ζ CMτ

∣∣∣
σ
√

2

 . (6.27)
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6.6 Inaccurate quantization
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Figure 6.7: Error due to inaccurate quantization. The graphs represent the trajectories
y in function of the time t. Above, the graphs for τ = 0.01: after the failure, if
α = ζ1 = 0.5 the detection presents many errors, while if α = 0.45, ζ1 = 0.5, it is exact
(the corresponding trajectory is perfectly parallel to the desired one). Below, the graphs
for τ = 0.09: after the failure, in both cases α = ζ1 = 0.5 and α = 0.45, ζ1 = 0.5 the
detection is correct, but in the second case the obtained trajectory is not the desired
one. However, we have to notice the evident improvement with respect to the not
controlled system: the trajectory error in case of control with inaccurate quantization
is about 1/5 the error in the not controlled case.
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6.7 Conclusions

This suggests that if |ζ0+ζ1−2α| > |ζ0−ζ1|, the detection is better in the inaccurate quantization
case. This is equivalent to require that α < ζ1 in the case ζ0 = 1 and ζ1, α ∈ (0, 1), which is a
quite intuitive result.

Thus, in case of inaccurate quantization detection may even be more reliable that in the
exact case. On the other hand, inaccurate quantization always produces an error in the tra-
jectory: even in case of exact detection, the recovered trajectory will not be the fault-free one
since the Error Function Ek does not decay to zero.

Let us present a few simulations: we exploit again our Flight Control numerical example
and we apply our FTC design, in the hypotheses that ζ1 = 1

2 is the quantization failure level
considered by the algorithm, while α = 0.45 is the real value assumed by z(t) after the failure.
Some outcomes are shown in Figure 6.7, where the graphs of the trajectories are reported. The
first two graphs represent the case with τ = 0.01. We have already said that in this case the
detection (with perfect quantization) is not reliable either before and after the failure. Instead,
if the quantization is inaccurate and α < ζ1 as in our instance, the detection is correct after the
failure. This can be appreciated in the second graph: the corresponding trajectory is parallel
to the fault-free one, while the trajectory in the case α = ζ1 is closer to the fault-free one, but
very “noisy”. The decision about which result is preferable depends on the applications: if we
imagine y(t) to be the trajectory of an aircraft, if α < ζ1, y(t) is in general more distant from
the planned trajectory, but the flight for α = ζ1 seems to be too disturbed.

The third and fourth graph show the instance τ = 0.09, where perfect detection is achieved
with α = ζ1 = 0.5. Detection is correct in both cases, but only if α = ζ1 we get back to the
right trajectory after the failure. However, let us notice that an appreciable improvement is
obtained also in the case α = 0.45, ζ1 = 1/2 if compared to the faulty system without control:
the distance between fault-free and “FTC with α = 0.45, ζ1 = 1/2” trajectories is about 1/5
the distance between fault-free and “faulty, not controlled” trajectories.

6.7 Conclusions

In this chapter, an original Fault Tolerant Control method, based on Information and Decod-
ing Theory, has been introduced. Given a linear system with a disturbance and supposing
the disturbance function to be quantized over two levels, the detection task can be tackled
by decoding techniques. In particular, we have used the low-complexity One State Algorithm.
Its application to a Flight FTC problem has produced satisfactory outcomes even in case of
relatively large noise in the data acquisition.

The low-complexity encourages the implementation of this method; moreover, adjusting
the sampling time step τ , one can improve its performance, according to the different values of
noise and of input f . In some cases, for instance when f is constant, an optimal value of τ can
be analytically computed with sufficient precision, where the optimality is intended in terms of
trade-off between convergence conditions and amplitude of the deviations. Other arrangements
might be obtained changing the values and the number of levels of quantization.

139



Chapter 7

Conclusions

In this dissertation, we have studied the deconvolution of input/output linear systems with
quantized input, where by “quantized” we indicate a digital signal that can assume only a finite
number of values.

This is an example of hybrid system, the input and the output respectively being digital
and analog, which is a fairly common scenario in modern engineering technologies.

Our aim has been the development of suitable deconvolution algorithms to recover the un-
known input from noisy measurements of the output, taking account of the quantized nature
of the input. This has been motivated by the fact that in the widespread literature on decon-
volution the input functions are generally supposed to be regular, thus “classical” algorithms
not suitable for hybrid scenarios.

Under the hypothesis that the available data is a sequence of samples picked from the output
at regular time intervals, and supposing an exact synchronization between input and output,
the problem turns out to be analogous to a typical digital transmission issue. In particular, the
convolution can be interpreted as a sort of encoding of the input signal, while deconvolution
becomes analogous to a classical decoding issue. This suggests to use decoding algorithms to
perform deconvolution.

The development of such decoding algorithms has been the core of this thesis. Our starting
point has been the well-known BCJR method, which is an iterative procedure that implements
an optimal decoding. Nevertheless, BCJR has been shown to be too complex for our problem, in
particular when long-time transmissions are considered. Thus, our efforts have been focused on
the development of some low-complexity, iterative, causal algorithms (derived from the BCJR),
which have been proved to be efficient in many situations. More precisely, we have introduced
the Causal BCJR, say a version of BCJR processing only past and present information, which
is optimal among the causal procedures, but whose complexity linearly increases in time. After-
wards, we have developed the One State Algorithm and the Two State Algorithm, which store
and process finite information at any iterative step, which makes them very low-complexity.

These algorithms have been tested in three different scenarios, under the common hypothesis
of binary input.

First, we have considered the one-dimensional differentiation problem. The direct system
in this case has been represented by a discrete-time dynamical system evolving in N and the
inversion takes account All the proposed algorithms have been implemented in this framework
and simulations have been reported. Moreover, a complete theoretical analysis has been devel-
oped to evaluated their performance. Using the Ergodic Theory of Markov Processes and the
theory of Markov Processes in Random Environments, the performance are computed in terms
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of a mean square error and for long-time transmissions.
Second, we have generalized our study to linear one-dimensional systems, under stability

hypotheses. The mathematical set is very different: in particular, the system evolves in a
compact Cantor space. The One State Algorithm has been implemented and shown to be
efficient. Again, simulations’ and theoretical results have been presented, the latter being
based on Iterated Random Functions and Markov Processes Theory.

Afterwards, we have compared the One State Algorithm with the Kalman Filter, which is
commonly used for optimal state estimation. The conclusion we have reached is that in our
context there are some instances in which the One State Algorithm performs better than the
Kalman Filter.

Third, we have studied an application to a multi-dimensional Fault Tolerant Control prob-
lem. The goal has been to design a control system that reveals the presence of faults in a process
and introduces a suitable compensation in order to minimize the negative effects of the faults,
then the system envisages also a feedback. We have implemented the One State Algorithm to
detect the faults, such a task consisting in a deconvolution, and shown some simulations and
theoretical considerations. In particular, we have observed that increasing the measurement
delay we increase the quality of the detection, since more information is collected; on the other
hand, a larger delay may cause serious damages, as the compensation is not promptly provided.
In conclusion, a suitable trade-off must be achieved, which can be theoretically studied. We
have to notice that in this setting, a complete theoretical analysis cannot be developed; never-
theless, fundamental design criteria can be theoretically provided at least for some instances,
in terms of the trade-off above mentioned.

In conclusion, in this dissertation we have developed and analyzed deconvolution algorithms
for quantized-input linear systems which have the following good features:

1. they are causal, hence they can be used to perform on-line deconvolution;

2. they are low-complexity and easy to implement, with no dramatic loss of efficiency with
respect to the optimal BCJR algorithm;

3. they can be theoretically analyzed in the mathematical framework of Markov Process
Theory.

Future work may be oriented to develop an exhaustive theoretical analysis in multi-dimensional
frameworks and to extend our study to input signals with more than two quantization levels.
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