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Mathematical problem

Compressed sensing (compressed sampling, compressive sensing... CS)
deals with
.Underdetermined linear systems .....

.

Ax = y
x ∈ Rn (unknown), y ∈ Rm (measurements), A ∈ Rm×n, m < n

Within the infinite set of solutions, CS looks for the sparsest one
.... with sparsity assumptions..
.x is k-sparse, i.e., it has k non-zero components, where k ≪ n
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Mathematical problem
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Questions

Ax = y, x ∈ Rn(sparse), y ∈ Rm,m < n

..1 Is the problem well-posed (= is the solution unique)?

..2 Are there feasible algorithms to find the solution?

..3 Which applications motivate this study?

Answers
..1 Yes, under some conditions
..2 A number of recovery algorithms have been proposed
..3 ▶ Sparsity is ubiquitous: many signals are sparse in some basis

(y = Aϕx where ϕ is the sparsifying basis, e.g., DCT, wavelets,
Fourier... )

▶ Applications where data acquisition is difficult/expensive, and
one aims to move the computational load to the receiver
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Medical Imaging

Magnetic Resonance Imaging (MRI): acquisition is slow
[Lustig (2012)]

→ sense the compressed information directly
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Compression and sampling

Ax = y, x ∈ Rn(sparse), y ∈ Rm,m < n

• Sampling: Nyquist-Shannon sampling theorem states given a
signal bandlimited in (B,B), to represent it over a time
interval T, we need at least 2BT samples

• CS indicates a way to merge compression and sampling, and
sample at a sub-Nyquist rate [Tropp et al. (2009)]
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Compression and sampling

sensing

ADC
compression

?
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Wideband spectrum sensing

Modulated wideband converter (MWC) [Mishali and Eldar (2010)]

• Sub-Nyquist sampling for signals sparse in the frequency domain
• Realized in hardware (with commercial devices)
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Single-pixel camera

Boufonos et al., ICASSP 2008
Key ingredient: a microarray consisting of a large number of small
mirrors that can be turned on or off individually
Light from the image is reflected on this microarray and a lens
combines all the reflected beams in one sensor, the single pixel of
the camera
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Mathematical formulation

.
ℓ0-norm..
.∥x∥0 := number of nonzeros entries of x ∈ Rn

Natural formulation of the CS problem:
.

.

P0 : min
x∈Rn

∥x∥0 subject to Ax = y

• Is the solution unique?
• P0 is NP-hard!
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Uniqueness of the solution

.Spark..

.
spark(A) := minimum number of columns of A that are linearly
dependent
.
Theorem [D. Donoho, M. Elad (2003)]
..

.
For any vector y ∈ Rm, there exists at most one k-sparse signal
x ∈ Rn such that y = Ax if and only if spark(A) > 2k.
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Uniqueness of the solution

.Coherence..

.µ(A) := maxi ̸=j
|AT

i Aj|
∥Ai∥2∥Aj∥2

(Ai = ith column of A)

.
Theorem [D. Donoho, M. Elad (2003)]
..

.

If
k <

1
2

(
1 +

1
µ(A)

)
y ∈ Rm, there exists at most one k-sparse signal x ∈ Rn such that
y = Ax.
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Basis Pursuit (BP)

Possible solution: convex relation
.Basis Pursuit..

.

P1 : min
x∈Rn

∥x∥1 subject to Ax = y

• P1 is convex; can be solved by linear programming
• Are P0 and P1 equivalent?
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Coherence

.Coherence..

.µ(A) := maxi ̸=j
|AT

i Aj|
∥Ai∥2∥Aj∥2

(Ai = ith column of A)

.
Theorem [Elad and Bruckstein (2002)]
..

.

If for the sparset solution x⋆ we have

∥x⋆∥0 <

√
2 − 1

2
µ(A)

then the solution of P1 is equal to the solution of P0.
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Restricted Isometry Property (RIP)

.RIP..

.

Matrix A satisties the RIP of order k if there exists δk ∈ (0, 1) such
that the following relation holds for any k-sparse x:

(1 − δk) ∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1 + δk) ∥x∥2
2

.
Theorem [Candès (2008)]
..

.
If δk <

√
2 − 1, then for all k-sparse x ∈ Rn such that Ax = y, the

solution of P1 is equal to the solution of P0.

S.M. Fosson COMPRESSED SENSING 19/33



Which matrices?

• Coherence, spark, RIP: not easy to compute
• Random matrices A with i.i.d. entries drawn from continuous

distributions have spark(A) = m + 1 with probability one.
• Gaussian, Bernoulli matrices: given δ ∈ (0, 1) there exist c1, c2

depending on δ such that G. and B. matrices satisfy the RIP
with constant δ and any m ≥ c1k log(n/k) with probability
≥ 1 − 2e−c2m [Baraniuk (2008)]

• Structured matrices: circulant matrices, partial Fourier
matrices
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Orthogonal Matching Pursuit (OMP)

• “When we talk about BP, we often say that the linear
program can be solved in polynomial time with standard
scientific software, and we cite books on convex programming
[...]. This line of talk is misleading because it may take a long
time to solve the linear program, even for signals of moderate
length” [Tropp and Gilbert (2007)]

• Possible solution: greedy algorithm, fast, easy to implement
→ OMP
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Orthogonal Matching Pursuit (OMP)

..1 Initialize r0 = y, Λ0 = ∅

..2 For t = 1, . . . ,Tmax

..3 λt = argmax
j=1,...,n

|AT
j rt−1|

..4 Λt = Λt−1 ∪ {λt}

..5 x̂t = argmin
x∈Rn

∥y − AΛtx∥2

..6 rt = y − AΛt x̂t

• Tmax ≈ k
• OMP requires the knowledge of k!
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Variants of BP

.
Basis Pursuit Denoise (BPDN)
..

.

P1 : min
x∈Rn

∥x∥1 subject to ∥Ax = y∥2 ≤ ε

Unconstrained version of BPDN
.Lasso..
.minx∈Rn

(
∥Ax − y∥2

2 + λ ∥x∥1
)

For some λ > 0, Lasso and BPDN have the same solution (the
choice of λ is tricky!)
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Iterative soft thresholding (IST)

..1 x̂0 = 0

..2 For t = 1, . . . ,Tmax

..3 x̂t = Sλ(x̂t−1 + τAT(y − A ∗ x̂t−1))

where the operator Sλ is defined entry by entry as
Sλ(x) = sgn(|x| − λ) if |x| > λ, 0 otherwise

• IST achieves a minimum of the Lasso [Fornasier (2010)], and
in many common situations such minimum is unique
[Tibshirani (2012)]

• Faster method to get a minimum of the Lasso: alternating
direction method of multipliers (ADMM)
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Iterative hard thresholding

..1 x̂0 = 0

..2 For t = 1, . . . ,Tmax

..3 x̂t = Hk(x̂t−1 + AT(y − Ax̂t−1))

where the operator Hk(x) is the non-linear operator that sets all
but the largest (in magnitude) k elements of x to zero [Blumensath
(2008)]
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Distributed compressed sensing (DCS)

• Data acquisition is perfomed by a network of sensors

yv = Avxv v ∈ V = { sensors }

• First works: recovery is performed by a fusion center that
gathers information from the network (sensing matrices,
measurements)

• New: in-network recovery, exploiting local communication and
consensus procedures

• We need iterative algorithms
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Distributed Compressed Sensing (DCS)
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Distributed Compressed Sensing (DCS)
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Distributed Compressed Sensing (DCS)
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Distributed Compressed Sensing (DCS)

S.M. Fosson COMPRESSED SENSING 31/33



DCS: in-network recovery
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