

POLITECNICO DI TORINO Repository ISTITUZIONALE

Compressed sensing: basics and beyond (tutorial)

Original

Compressed sensing: basics and beyond (tutorial) / Fosson, Sophie; Magli, Enrico. - (2015). ((Intervento presentato al convegno Fifteenth International Conference on Computer Aided Systems Theory (EUROCAST 2015) tenutosi a Las Palmas de Gran Canaria, Spain nel Feb 8-13, 2015.

Availability:

This version is available at: 11583/2624990 since: 2015-12-05T15:07:46Z

Publisher:

Published DOI:

Terms of use: openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

<section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

www.crisp-erc.eu

Outline

1 Mathematical problem

2 Applications

8 Recovery

④ Distributed compressed sensing

Outline

1 Mathematical problem

2 Applications

3 Recovery

4 Distributed compressed sensing

Mathematical problem

Compressed sensing (compressed sampling, compressive sensing CS) deals with
Underdetermined linear systems
Ax = y
$x \in \mathbb{R}^n$ (unknown), $y \in \mathbb{R}^m$ (measurements), $A \in \mathbb{R}^{m imes n}$, $m < n$
Within the infinite set of solutions, CS looks for the sparsest one
with sparsity assumptions
x is k -sparse, i.e., it has k non-zero components, where $k \ll n$

Questions

- $Ax = y, x \in \mathbb{R}^n$ (sparse), $y \in \mathbb{R}^m, m < n$
- Is the problem well-posed (= is the solution unique)?
- 2 Are there feasible algorithms to find the solution?
- S Which applications motivate this study?

Answers

- 1 Yes, under some conditions
- 2 A number of recovery algorithms have been proposed
- Sparsity is ubiquitous: many signals are sparse in some basis (y = Aφx where φ is the sparsifying basis, e.g., DCT, wavelets, Fourier...)
 - Applications where data acquisition is difficult/expensive, and one aims to move the computational load to the receiver

Outline

Mathematical problem

2 Applications

3 Recovery

4 Distributed compressed sensing

Medical Imaging

Magnetic Resonance Imaging (MRI): acquisition is slow [Lustig (2012)]

 \rightarrow sense the compressed information directly

Compression and sampling

 $Ax = y, x \in \mathbb{R}^n$ (sparse), $y \in \mathbb{R}^m, m < n$

- Sampling: Nyquist-Shannon sampling theorem states given a signal bandlimited in (B, B), to represent it over a time interval T, we need at least 2BT samples
- CS indicates a way to merge compression and sampling, and sample at a sub-Nyquist rate [Tropp et al. (2009)]

Compression and sampling

S.M. Foss

10/33

Wideband spectrum sensing

- Sub-Nyquist sampling for signals sparse in the frequency domain

COMPRESSED SENSING

Realized in hardware (with commercial devices)

Single-pixel camera

Boufonos et al., ICASSP 2008

Key ingredient: a microarray consisting of a large number of small mirrors that can be turned on or off individually Light from the image is reflected on this microarray and a lens combines all the reflected beams in one sensor, the single pixel of the camera

Outline

Mathematical problem

2 Applications

8 Recovery

4 Distributed compressed sensing

Mathematical formulation

$$\begin{split} & \begin{pmatrix} \ell_0 \text{-norm} \\ \|x\|_0 := \text{ number of nonzeros entries of } x \in \mathbb{R}^n \\ & \text{Natural formulation of the CS problem:} \\ & P_0: \min_{x \in \mathbb{R}^n} \|x\|_0 \text{ subject to } Ax = y \\ & \text{- Is the solution unique?} \\ & P_0 \text{ is NP-hard!} \end{split}$$

COMPRESSED SENSING

Uniqueness of the solution

Spark

spark(A) := minimum number of columns of A that are linearly dependent

Theorem [D. Donoho, M. Elad (2003)]

For any vector $y \in \mathbb{R}^m$, there exists at most one k-sparse signal $x \in \mathbb{R}^n$ such that y = Ax if and only if spark(A) > 2k.

Uniqueness of the solution

Coherence

$$\mu(A) := \max_{i \neq j} \frac{|A_i^T A_j|}{\|A_i\|_2 \|A_j\|_2} \ (A_i = i \text{th column of } A)$$

Theorem [D. Donoho, M. Elad (2003)]

 $k < \frac{1}{2} \left(1 + \frac{1}{\mu(A)} \right)$

 $y \in \mathbb{R}^m$, there exists at most one k-sparse signal $x \in \mathbb{R}^n$ such that y = Ax.

Basis Pursuit (BP)

Possible solution: convex relation

Basis Pursuit

 $P_1: \min_{x \in \mathbb{R}^n} \|x\|_1$ subject to Ax = y

- P₁ is convex; can be solved by linear programming
- Are P_0 and P_1 equivalent?

Coherence

Coherence

$$\mu(A) := \max_{i \neq j} \frac{|A_i'A_j|}{\|A_i\|_2 \|A_j\|_2} \ (A_i = i \text{th column of } A)$$

Theorem [Elad and Bruckstein (2002)]

If for the sparset solution x^* we have

$$\|x^{\star}\|_{0} < \frac{\sqrt{2} - \frac{1}{2}}{\mu(A)}$$

then the solution of P_1 is equal to the solution of P_0 .

Restricted Isometry Property (RIP)

RIP

Matrix A satisfies the RIP of order k if there exists $\delta_k \in (0, 1)$ such that the following relation holds for any k-sparse x:

$$(1 - \delta_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_k) \|x\|_2^2$$

Theorem [Candès (2008)]

If $\delta_k < \sqrt{2} - 1$, then for all *k*-sparse $x \in \mathbb{R}^n$ such that Ax = y, the solution of P_1 is equal to the solution of P_0 .

Which matrices?

S.M. Fos

- Coherence, spark, RIP: not easy to compute
- Random matrices A with i.i.d. entries drawn from continuous distributions have spark(A) = m + 1 with probability one.
- Gaussian, Bernoulli matrices: given δ ∈ (0, 1) there exist c₁, c₂ depending on δ such that G. and B. matrices satisfy the RIP with constant δ and any m ≥ c₁klog(n/k) with probability ≥ 1 − 2e^{-c₂m} [Baraniuk (2008)]

COMPRESSED SENSING

20/33

Structured matrices: circulant matrices, partial Fourier matrices

Orthogonal Matching Pursuit (OMP)

- "When we talk about BP, we often say that the linear program can be solved in polynomial time with standard scientific software, and we cite books on convex programming [...]. This line of talk is misleading because it may take a long time to solve the linear program, even for signals of moderate length" [Tropp and Gilbert (2007)]
- Possible solution: greedy algorithm, fast, easy to implement $\rightarrow \mathsf{OMP}$

Orthogonal Matching Pursuit (OMP)

1 Initialize $r_0 = y$, $\Lambda_0 = \emptyset$

2 For
$$t = 1, ..., T_{max}$$

3 $\lambda_t = \underset{j=1,...,n}{\operatorname{argmax}} |A_j^T r_{t-1}|$
4 $\Lambda_t = \Lambda_{t-1} \cup \{\lambda_t\}$
5 $\widehat{x}_t = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} ||y - A_{\Lambda_t} x||_2$

$$\mathbf{6} \ \mathbf{r}_t = \mathbf{y} - \mathbf{A}_{\Lambda_t} \widehat{\mathbf{x}}_t$$

•
$$T_{max} \approx k$$

• OMP requires the knowledge of k!

COMPRESSED SENSING

22/33

Variants of BP

Basis Pursuit Denoise (BPDN)

 $P_1: \quad \min_{x \in \mathbb{R}^n} \left\| x \right\|_1 \text{ subject to } \left\| Ax = y \right\|_2 \leq \varepsilon$

Unconstrained version of BPDN

Lasso

 $\min_{x \in \mathbb{R}^{n}} \left(\left\| Ax - y \right\|_{2}^{2} + \lambda \left\| x \right\|_{1} \right)$

For some $\lambda > 0$, Lasso and BPDN have the same solution (the choice of λ is tricky!)

Iterative soft thresholding (IST)

1 $\hat{x}_0 = 0$ **2** For $t = 1, ..., T_{max}$ **3** $\hat{x}_t = S_\lambda(\hat{x}_{t-1} + \tau A^T(y - A * \hat{x}_{t-1}))$

where the operator S_{λ} is defined entry by entry as $S_{\lambda}(x) = \text{sgn}(|x| - \lambda)$ if $|x| > \lambda$, 0 otherwise

- IST achieves a minimum of the Lasso [Fornasier (2010)], and in many common situations such minimum is unique [Tibshirani (2012)]
- Faster method to get a minimum of the Lasso: alternating direction method of multipliers (ADMM)

Iterative hard thresholding

1 $\hat{x}_0 = 0$ **2** For $t = 1, ..., T_{max}$ **3** $\hat{x}_t = H_k(\hat{x}_{t-1} + A^T(y - A\hat{x}_{t-1}))$

where the operator $H_k(x)$ is the non-linear operator that sets all but the largest (in magnitude) k elements of x to zero [Blumensath (2008)]

Outline

Mathematical problem

2 Applications

3 Recovery

④ Distributed compressed sensing

Distributed compressed sensing (DCS)

- Data acquisition is perfomed by a network of sensors

$$y_v = A_v x_v$$
 $v \in \mathcal{V} = \{ \text{ sensors } \}$

- First works: recovery is performed by a fusion center that gathers information from the network (sensing matrices, measurements)
- New: in-network recovery, exploiting local communication and consensus procedures
- We need iterative algorithms

Distributed Compressed Sensing (DCS)

Distributed Compressed Sensing (DCS)

DCS: in-network recovery

- C. Ravazzi, S.M. Fosson, E. Magli, E., Energy-saving Gossip Algorithm for Compressed Sensing in Multi-agent Systems, ICASSP, 2014
- S.M. Fosson, J. Matamoros, C. Antón-Haro, E. Magli, Distributed Support Detection of Jointly Sparse Signals, ICASSP, 2014
- J. Matamoros, S.M. Fosson, E. Magli, C. Antón-Haro, Distributed ADMM for in-network reconstruction of sparse signals with innovations, IEEE GlobalSIP, 2014
- ④ C. Ravazzi, S.M. Fosson, E. Magli, Distributed iterative thresholding for $ℓ_0/ℓ_1$ -regularized linear inverse problems, IEEE Trans. Inf. Theory, 2015.

CS references

- http://dsp.rice.edu/cs
- E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, Feb. 2006
- S D. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, Apr. 2006
- A mathematical Introduction to Compressive Sensing, edited by S. Foucart and H. Rauhut, 2013
- Compressed Sensing: Theory and Applications, edited by Y.
 C. Eldar and G. Kutyniok, 2012
- Theoretical Foundations and Numerical Methods for Sparse Recovery, edited by M. Fornasier, 2010