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Abstract

Android uses a permission-based security model to limit its app’s capability. However, the user’s decision is
almost completely unrelated to the app’s risk level due to insufficient information. The platform openness and
the plethora of available software also make dangerous apps (not necessarily malware) very common.

To enhance end-user security awareness, we propose a new approach and tool to evaluate the potential risks of
Android app packe integrated various static and dynamic analysis techniques into a framework able to
detect suspicious activities, map them to fine-grained risk categories and evaluate them with the fuzzy logic
algorithm. This tool can retrieve and analyse large quantities of apps automatically and provides a simple logic
for other tools to integrate with. Finally, our software has been tested on a large set of real-world samples, both

benign and maliciou
Android app packa,

demonstrating its efficiency (4s/app) and a reasonable capacity to evaluate the risk of

Keywords: Android application analysis, application risk level estimation, fuzzy logic algorithm

Received on 10 February 2014; accepted on 24 April 2015; published on 26 May 2015
Copyright (©) 2015 T. Su et al., licensed to ICST. This is an open access article distributed under the terms of the Creative

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and

reproduction in any medium so long as the original work is properly cited.

d0i:10.4108/ue.1.4.e5

1. Introduction

Nowadays, the vast majority (84.4%, Q3 2014, IDC) of
smartphones [1] and a huge share (67.5%, Q1, 2014, IDC)
of tablets [2] are powered by Android, a mobile operating
system based on Linux kernel and maintained by Google.
Every day, thousands of apps are published through
the official or third-party application repositories. As
shown in practice, many among this huge number
of applications contain security and privacy risks [3],
such as accessing the contacts, uploading location and
retrieving device information.

These types of dangerous behaviour are common in
both benign and malicious applications. Some are caused
by developers’ misjudgement, e.g. invoking suspicious ad-
ware or recycled codes. Some are caused deliberately to
fulfil the requirements of application functionality.

The first reason is easy to understand, while to clarify
the second one, we have the example of the instant
message application Viber, which requires access to the
user’s contact list to find out who else is also using
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it. Moreover, as part of the authentication mechanism,
it uses the mobile phone number as user identity. For
this reason, during the account activation process, the
Viber server sends a short message to the phone number
with an activation code. Then the app installed on
the user’s device accesses the message and verifies the
activation code to confirm that the user owns the phone
number. Even if in this case there is an acceptable
reason, accessing a contact list and SMS service is as
equally risky as in malware. In scenarios like this one, the
boundary between legitimate and malicious applications
is blurred, and security-sensitive users may wisely avoid
installing too invasive software.

The Android permission-based security model leaves
the management of accessing control of device resources
to end users. However, end users have almost no useful
information about the danger of their choices, since
the potential risk of an application is not evident. For
this reason, we designed and implemented an automated
Android app analyser, based on both static and dynamic
analysis techniques, able to evaluate the potential risk
level of an Android app package (apk). The analysis
output consists of a detailed app behaviour report and a
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simple numerical value as comprehensive risk estimation,
which can give a risk indication for both tech-savvy and
common users prior to apk installation.

One of the biggest challenges in building fully
automatic analysis systems is how to evaluate the
analysis results in order to present end users a valid
help for decision making. In fact, an automated system
can successfully deal with objective truth but less
easily with “reasonable” decisions. This phenomenon is
also true in Android app analysis environment: in all
previous researches, including static [4-10], dynamic [11-
13] or hybrid [14] analysis approaches, this final
decision is made by calling for human intervention. The
analysis modules will filter out the majority of samples
which do not trigger certain thresholds, then human
inspection is required to categorise the rest samples.
Although the filtering process can significantly reduce
the human effort, it is still inconvenient for a market-
scale analysis. Further researches address this point by
applying complex reasoning techniques (e.g. machine
learning, data mining, ...) [15-18] to make the automatic
analysers capable of taking the final decision. We, on the
contrary, adopt the fuzzy logic algorithm to overcome the
uncertainty raised by the nature of automatic analysis.
However, we do not claim the ability to directly detect
malware, since, as a matter of fact, applications can be
low-quality, buggy and risky without necessarily being
malware.

This paper makes the following major contributions:

e we propose an automatic analysis approach
exploiting both static and dynamic analysis
techniques for Android app packages, and we
map the detected activities to fine-grained risk
categories;

e we evaluate application’s risk level using the fuzzy
logic algorithm, trying to overcome/mitigate the
uncertainty limitation arose from the nature of
automatic analysis;

e we implement a prototype, evaluating its effective-
ness by analysing real-world benign and malicious
Android apps, and we discuss the results and give
an insight on the discriminating characteristics of
the results for these two sets.

The rest of the paper is organised as follows: in Sec. 2
we present the Android security model, showing the
basic mechanisms Android uses for protection, allowing
readers to understand their limitations. In Sec. 3 we
describe our analyser, including both the static and
dynamic analysis modules, as well as the fuzzy logic
system used in computing final results. After that, we
present our evaluation results in Sec. 4, and in Sec. 5 we
discuss previous work on Android application analysis
and compare them with our analyser. Finally, in Sec. 6,
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we give a brief summary of our analyser and the results
we achieved.

2. Android Security Model

Android operating system is based on the Linux kernel,
and inherits many of its security features. For example,
it takes advantage of the user-based permissions model
to manage application execution; a unique Linux user
identifier (UID) is assigned to every installed package.
Consequently, applications are “sandboxed” in kernel-
level and run as different users in separate processes.

Applications for Android are written in Java and run
on a proprietary Virtual Machine called Dalvik (DVM).
While the classic Java Virtual Machine is stack-based,
Dalvik is instead register-based, which makes it faster
on ARM microprocessors present on the majority of
mobile devices. Java sources are compiled into class files
using the Java Compiler (javac), and then converted into
Dalvik bytecode (dez files) using the dz tool. The related
resources (e.g., images and strings) are also compiled
with the command aapt into a single file.

All the files are then packaged using apkbuilder
into an apk (Android Package) file, which is, basically
a zip compressed archive. This file is then signed
with jarsigner, using a self-generated certificate. This
certificate is checked by the underlying system only once,
at the installation time.

Fundamentally, the components of an apk file are:

e a META-INF directory:

— MANIFEST.MF, the manifest file containing
the list of resources and their SHA1 digest;

— CERT.RSA, the certificate of the developer;

— CERT.SF, the SHA-1 digests of the resources
in the MANIFEST.MF file.

a lib directory, containing the compiled code
specific to a software layer of a given processor,
splits into more sub-directories, armeabi, x86 or
mips;

e a res directory, that contains raw resources which
are not compiled into resource.arsc;

e an optional assets directory, that contains
application assets that can be retrieved by
AssetManager!;

e AndroidManifest.xml, an additional Android mani-
fest file, describing the name, version, access rights,
referenced library files for the application. The
file may be Android binary XML format that can
be converted into human-readable plaintext XML
format with other tools like AXMLPrinter [19];

1Provides access to an application’s raw asset files.
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e classes.dex, the source code of the application that
is compiled in Dalvik executable format;

e resources.arsc, a file containing various types of
pre-compiled resource, such as binary XML.

The manifest file contains the essential data needed by
the operating system needs in order to install and run the
application, including:

e the name of the Java code package, which can be
used as a unique identifier for the application;

e the application components (activities, services,
broadcast receivers and content providers);

e the list of permissions required by the application;

e the minimum/target level of the Android API
(SDK version) required,;

e the external libraries that the application must be
dynamically linked to;

e the features of the device used (e.g., hardware
Sensors).

From the security point of view, the list of
permissions required by the app and the used features
(e.g., hardware sensors) are of particular interests.
Sensitive APIs are intended for usage by trusted
applications alone and are protected through the
permissions security mechanism. Therefore, explicit
permissions must be required a prior to installation, for
example, the camera functions, location data, telephony
functions, SMS/MMS functions and the network
connections. Each permission is identified by a unique
label, for example android.permission.SEND_SMS,
android.permission.INTERNET, etc.. At installation
time, the user is required to approve the permission list
requested by the app, as shown in Fig. 1. If an application
tries to use a feature whose permission is not granted, the
system will throw an exception or return no results.

The permission-based model, while being intuitive for
developers and users, presents some security flaws. As
demostrated in practice, by itself it is not enough to
prevent malicious software. For example, TapLogger [20]
is a proof-of-concept key-logger which does not need any
permission; it uses information from motion sensors of
the device to deduce which keys the user has tapped.
Another possible way to circumvent the Android security
mechanism is by means of dynamic code loading. The
code can be pre-stored inside the apk or even downloaded
from the Internet at run-time, such code may contain
malicious parts that are much more difficult to detect.

3. Android Application Evaluator

In mobile environment, either due to the software
vulnerabilities or the users’ tendency to allow more
permissions than needed as well as the developers’
inclination to ask for more than necessary, risky
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Figure 1. Permissions requested by an application.

operations can easily cause privacy leaks or money losses
for the device owner.

To better inform users, our risk evaluator herein
exploits various techniques, based on both static and
dynamic analysis.

The goal of our system is to express, with a simple
numerical value, the potential damage that the analysed
app can cause to device and/or user; this value is called
“risk score”. The purpose of this value is to give a quick
indication to the users, who can subsequently choose how
to manage the potential source of threat, e.g., carefully
read the detailed report provided by our tool.

In our context, the word “risk” is used for alerting
about a tangible danger (e.g., a privilege escalation
is signalled when a specific shell command is present,
money risk when short messages are sent or phone calls
are made, etc.). Conservatively, it also flags a potentially
dangerous situation (e.g., the presence of a generic
embedded binary executable), as well as potentially
malicious behaviour patterns (e.g., read and then send
the contact list). Each situation is mapped to a specific
risk category according to different analysis patterns, as
indicated in the following subsections.

3.1. Static Analysis

Static analysis is the process of analysing the source code
of an application without actually executing it. Usually
the starting point is decompiling the application’s binary
and generating a representation of the source code.

In Android, the first step is to unpackage the apk files
(e.g., with a simple wunzip command). The application
manifest file (AndroidManifest.zml) is usually a key
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source of information, and many tools exist to make
it human readable (e.g. AAPT, the Android Asset
Packaging Tool included in the Android SDK). By
reading the manifest content, a number of tools can
be employed to point out possible security issues. For
example, Manitree [21], among a number of others,
searches for the services shared with other apps without
an intent filter or an explicit permission requirement,
which would allow accessing from other apps. Meanwhile,
since malware often sets higher priority values to forerun
other app requests, the tool also looks at the intents’ and
the actions’ priority values searching for insecure points.

In case the application has to be used in a trusted
environment (e.g., on a device with sensitive data
stored), a complete static analysis would require human
inspections. To fully understand what an application
does, the main file (classes.dex) has to be decompiled
into human-readable codes. Different tools exist to dump
Dalvik bytecode or to convert it to other low-level
representations (e.g., Smali [22]). Generally, the result
is easily understandable, unless obfuscation techniques
have been used. Depending on the analysis goal, the
preferred human-readable representation can differ. For
example, an assembly-like representation, which is often
easier to re-compile but harder to read, would be a better
choice in order to modify and repackage the app.

In our case, the static analysis is implemented through
several modules, which leverage extensively on the
androguard APTs [23], an effective set of tools written
in Python which helps implementing various static
analysis methods on Android applications. We extended
it through two complementary modules, Behaviour and
FileScan.

Behaviour module. Behaviour is the first static
analysis module, aims to check 1) whether the
permissions required by the application are effectively
used and 2) the critical APIs usage in order to finds out
potential dangerous operations.

As the first step, Behaviour scans the app’s manifest,
retrieving the required permission list. Afterwards, it
decompiles the app to obtain the source code, and the
source code is analysed to find out what APIs are invoked
and which operations the app attempts to execute.
The tool can further check potential risks, e.g. privacy
violations, frauds, device abuse and so on. In the final
step, it correlates the APIs used with the requested
permissions and detect incoherencies among them. A
detailed list of all the behaviour patterns Behaviour
identifies and their violated risk categories are shown in
the appendix F.1.

In order to provide more details on the types of
menace posed by dangerous operations, we enlarged the
androrisk risk taxonomy and enable Behaviour module
to map all the Android permissions [24] to an increased
number of risk categories. The source code which lead
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to dangerous activities is mapped to the following risk
categories:

e root privileges escalation, target app contains
functionalities which require or exploit root
privilege;

e encrypted code, target app uses crypto algorithms
which can be used to obfuscate code;

e binary code, target app uses JNI, native code;

e internet, target app contains the Internet related
activities;

e dangerous, target app calls dangerous APIs and
permissions;

e dynamic code loading, target app calls for external
libraries when executing;

e cxploit, target app invokes functionalities which
can be exploited (e.g., gingerbread exploit for
Android 2.3 [25]);

e phone, target app contains functionalities which
can affect the phone (e.g. enabling WIFI, accessing
to phone settings);

o SMS activities, target app invokes
API/functionalities which permits to handle
SMS;

e money, target app contains activities that costs
phone owner’s money (e.g., phone calls, sending
SMS);

e signature, target app declares Signature permission
in the manifest?;

e signature system, target app declares Signature-
ORSystem permission in the manifest®;

e privacy wviolation, target app contains activities
which violate user’s privacy (e.g., accessing to
contacts, GPS location).

The rationale behind this mapping is to enumerate
and characterise the possible danger the user might
face, and present this result in a way which is
immediately meaningful to the users. Some of the

2 Signature permission is a permission that the system grants only
if the requesting application is signed with the same certificate
as the application that declared the permission. If the certificates
match, the system automatically grants the permission without
notifying the user or asking for the user’s explicit approval.

3 SignatureOrSystem permission is a permission that the system
grants only to applications that are in the Android system image
or that are signed with the same certificate as the application that
declared the permission. So this permission should never be granted
to third party developers besides the ones that publish the OS
image. This permission should be used only in very special cases
when multiple vendors have applications built into a system image
and need to share specific features explicitly because they have
to be built together. In general, this and the previous permission
should not be used by ‘common’ applications. Since when the OS
grant them, the application can do some critical operations, even
without user notification.
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mappings are straightforward (e.g., the root privileges
escalation activity is categorised into the homologous
risk category). Some other activities are mapped into
multiple risk categories; for example, the Internet
activities are categorised into both Internet and Money
risk categories. In this way, we can evaluate the app’s
dangerousness based on both the detected activities
and on a finer-grained level of risk categories and their
violation occurrences, which are more understandable by
end users. Thanks to this more accurate categorisation,
the evaluator can compute the risk score which
accurately reflects the app’s behaviour.

FileScan module. FileScan is the second static analysis
module, which analyses every file stored inside the app
package. It is structured as a Python class which can
recursively analyse apk files, as well as zip, tar, gzip and
rar archives. After analysing every file stored inside the
archive, it computes a risk score which represents the
potential harm posed by that apk. It can provide various
information about the apk file (e.g., files list, checksums,
URLs and phone numbers found inside them), point
out suspicious behaviour patterns (e.g., hidden files,
shell scripts with potentially dangerous commands) and
identify known infected files (e.g., embedded malware
apk, infected native libraries).

FileScan accomplishes all these task by means of
a recursive approach, it automatically analyses every
single file and identifies its type using the magic number
analysis. Magic number analysis uses the magic number
(a 2-byte identifier at the beginning of the file), as well
as specific patterns, in order to identify the format of a
file without relying on its extension. The output of this
analysis is the MIME type of the file, a standard two-
parts identifier, which is used by FileScan to correctly
categorise the file.

Many malware apps attempt to conceal their purposes,
and often alter file names to use some innocuous
extension (e.g. png) and deceive anyone who would
quickly analyse the app content; for example the malware
families of DroidDream and GingerMaster use this trivial
technique. FileScan can identify the dangerous files even
if they have been renamed; moreover, it considers the
case of a renamed critical file (embedded application
or binary) as a clear sign of malicious intention. In
order to decide whether the extension of a file has
been changed, two approaches are used: comparing the
extension against a list of valid extensions (white list
approach) and against a list of invalid ones (black list
approach).

Embedded apps are apk files stored inside another app
package, that can be installed or loaded at run-time
through dynamic code injection. Many static analysis
systems are not able to detect and analyse them
properly; some malware use this technique to carry
another application with other functionalities. The elf
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binaries, either executables or shared libraries, can be
used by the app for a direct access to the system APIs.
Usually they are used for performance or compatibility
reasons, and they can be called from the main application
as external libraries. Such code is more difficult to be
detected and analysed; moreover, since the system call
interface of Linux kernel is directly exposed to the native
code, it can be used to exploit the system vulnerabilities.
Shell script files are textual files containing commands,
which our module can identify as threats; for example,
they can be used to perform privilege escalation attacks.

In order to determine if a file is malicious, FileScan can
look up checksums of the files using the Malware Hash
Registry online service*, and retrieving the detection
rate for that file. It also uses a limited set of checksums
associated with infected binaries from known families of
malware, in order to speed up the analysis process and
be able to identify malicious file even when the online
lookup service is not available.

Concisely, the risk categories considered and estimated
by FileScan are the followings:

e hidden elf binary, analysed apk archive contains an
ELF file which is not in the standard directory and
has unexpected extension;

e hidden apk, the archive contains an embedded apk
file with an unexpected extension;

e hidden text, the archive has a textual file with an
invalid extension;

e infected elf binary, the archive has an ELF detected
as infected;

e infected dex code, the archive contains a dex file
which is detected as infected;

e input shell, the archive contains a shell script;

e shell install, the archive contains a shell script with
install commands;

e shell privilege, the archive has a shell script
containing commands usable to perform a privilege
escalation;

e shell other, the archive has a shell script containing
dangerous shell commands.

FileScan is also able to look for URLs and phone
numbers inside textual files, which could be used by
the app to communicate with malicious C&C (command
& control) servers, to make phone calls or send
short messages to. URLs and phone numbers are also
searched in the string dictionary in the application
package, which is contained in the compiled resource file
(resources.arsc). The regular expression used for URL
addresses is able to identify URLs with escape characters
or formatted parameters, which could be manipulated by
the application to produce valid addresses. Moreover, a

4w . team- cymru.org/MHR.html

EAIl Endorsed Transactions on

5 Ubiquitous Environments

01 -05 2015 | Volume 1| Issue 4 | e5


www.team-cymru.org/MHR.html

T.Suetal

white list of the most common URLs is used to filter
out irrelevant results. The regular expression used for
phone numbers is able to find potential phone numbers
composed by 4 or more digits, but the false positive
rate in this case is significant and manual controls are
needed. However, this shortcoming can be mitigated by
combining the results from FileScan with the analysis
result of the dynamic analysis module, which is able to
identify phone numbers and URL addresses used during
the sample’s execution.

FileScan is, to the best of our knowledge, the first tool
capable to automatically analyse all the files in Android
app package and detect these kinds of menace. Although
it is not able to defeat more advanced techniques (e.g.,
file encryption), it can quickly and efficiently identify a
wide set of dangerous alternatives. In our opinion, at
the moment it achieves the best result for an automated
analysis of this type.

3.2. Dynamic Analysis

Dynamic analysis is the run-time analysis of applications,
performed by executing the samples inside a controlled
environment. The environment should be instrumented
to collect various types of information during the
execution, which can be used in a real environment
or in an emulated one. Emulation is the cheaper
solution, but it suffers some limitations. For example,
the emulated environment might not connect to
the real communication network and some specific
firmwares cannot be satisfactorily emulated. The obvious
advantage of a real environment is the accuracy of the
answers and the connection to the real world, but it
is much more complex and expensive to manage in a
secure way. For the sake of reproducibility, we chose the
approach of emulation.

Our dynamic analysis module is developed on top
of Droidbox [26], a well-known open-source dynamic
analysis tool for Android applications. Droidbox lies in
the security analysis suite category. It is an open-sourced
sandbox for Android apps [26], which uses tainted data
tracking and function call monitoring techniques. It is
developed by Patrik Lantz using Python programming
language. The following information will be shown when
the analysis ends.

e digest of the analysis package;
e network operations;
e file system accesses;

e services started and classes loaded through
DexClassLoader;

e cryptographic operations performed using Android
API,;

e tainted data which leave the system through
network, file or SMS;

e broadcast receivers;
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e SMS(es) sent and phone number(s) called.

Even though the original version of Droidbor can
provide a comprehensive analysis result of the apps, it
is quite inefficient to import and generate output. Our
module enriches Droidboz in a number of ways, especially
from the input and output data processing points of
view. The modified version can input the selected apps
continuously from a set of samples, and create a clean
virtual device image for each of them. In order to simplify
the work for further analysis, we extended the tool’s
output, such that all detected activities and relevant
information (e.g. phone numbers, URLs and file names
used by the sample) are stored in separated files. In
this way, dynamic analysis can be totally automatic to
analyse multiple number of samples; this is, to the best
of our knowledge, very rare in dynamic analysis systems.

Analogous to static analysis modules, the activities
detected by dynamic analysis module are mapped into
the following risk categories, to provide a finer-grained
basis for the fuzzy evaluation system.

e encrypted code, target app uses Android encryption
APIs;

e binary code, target app invokes dex class loader,
that may execute external code;

e dynamic code loading, target app calls system’s
native functions;

e cxploit risk, target app contains and runs an
exploit;

e internet, target app uses Internet service;

e money risk, target app executes money cost
operations;

o SMS activities, target app accesses or sends SMS;

e privacy violation, target app collects private data
(e.g., device ID, contacts, IMEI);

e phone abuse,
integrity.

target app harms the system’s

The detailed mappings between detected activities and
their risk categories are shown in the appendix F.2.

Our automatic dynamic analyser is very effective
against risky apps which execute dangerous operations
directly after they are installed and started by adb. If
some stealth techniques are used, for example a hidden
trigger, our analyser, as most automatic systems, needs
human interactions to trigger the dangerous operations.
Moreover, new generation malware is capable to find
out whether it is running inside an emulator [27], more
advanced malware can even detect whether it is running
inside a device belonging to a security analyst for
research purposes (which usually has stored no personal
data inside). Nevertheless, in most cases, the risk scores
our analyser computes can offer realistic and reliable
danger level estimations from a fully automatic analysis
point of view.
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Another drawback of the dynamic analysis consists in
its time-consuming nature. The emulator needs to start
up a clean Android virtual device image for each apk, and
then it has to wait for the tested app to finish all its initial
operations. In average, in order to obtain reasonable
results, a complete analysis of a single sample should take
up to 5 minutes and no less than 3 minutes. Therefore, for
the sake of efficiency, in many cases dynamic analysis is
only performed on apks which are classified as “risky” by
the static analysis modules (i.e., the static analysis risk
score is situated above a threshold), in order to confirm
the dangerousness of the sample.

3.3. Applications Risk Evaluation

The fuzzy logic is widely used in decision making sys-
tems. As stated by Prof. Zadeh in [28], “fuzzy logic is a
precise logic of imprecision and approximate reasoning” .
It is capable to converse, reason and make rational
decisions in an environment of imprecision, uncertainty,
incomplete information, conflicting information, partial-
ity of truth and partiality of possibility, which is exactly
the case of Android application risk level estimation.

However, the fuzzy logic is not the only option,
and other scoring algorithms can also be adopted. As
a matter of fact, we keep the analysis modules and
evaluation system separate intentionally, to facilitate
further experiments with alternative scoring algorithms.

In spite of the scoring algorithm, the risky activities
detected and their mappings to risk categories remain
most valuable outputs, which allow end users a fine-
grained inspection of the application’s characteristics.

Based on the fuzzy logic rules, the evaluator outputs
a risk score, which gives a quick indication to the users
about how dangerous the app may be, so that they can
give permission informed about the potential sources of
threat. It should be noted that, in our context, the word
“risk” is used for alerting about a tangible danger, not
necessarily the presence of malware.

To make the evaluator as flexible as possible, the fuzzy
logic risk scoring system is embedded alongside the three
analysis modules as indicated before, so that the modules
can be used independently (to have a quick feedback) or
together in cascade (to have a fully detailed insight).

Fuzzy interpretation of risk states. The input of the
fuzzy logic system are derived from the risk categories
and their corresponding violation frequencies in each
module. For each risk category, the dangerousness level
to end users is not equal. For instance, the risk categories
associated to money and privacy are considered the
most dangerous ones as they are the biggest concerns
to end users. Therefore, we defined four separated states
domains for each risk category, from the least to the most
dangerous estimation, they are LOW, AVERAGE, HIGH and
UNACCEPTABLE risk states. Linguistic logic is used since
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human understandability matters to the end users while
it can be easily interpreted using the fuzzy logic.

Fuzzy sets assign a truth-value called probability
in the range [0,1] to each possible value of the
domain. These values form a possibility distribution
over a continuous or discrete space. The violation
occurrences combined with truth-value of each risk
category determine its state. If we consider the violation
occurrence as a discrete space [0, +00) with increment
equals to one, then we can present graphically the
possibility distribution of the state given the risk
category.

As an example: the risk states associated to
BINARY RISK in Behaviour module is defined below and
shown in Fig. 2.

e Definitely LOW from 0 to 6, and not LOW if higher
than 10;

e Not AVERAGE if lower than 6, AVERAGE at 10
and not AVERAGE if higher than 15;

e Not HIGH if lower than 10, HIGH at 20 and not
HIGH if higher than 24;

e Not UNACCEPTABLE if lower than 23, and
absolutely UNACCEPTABLE if higher than 30.

= \
= \
=} \
< \
g \
& e LOW
- AVERAGE
—— HIGH
—+ UNACCEPTABLE

30

Input value

Figure 2. Adjectives defined for BINARY RISK.

For instance, if the violation occurrence is 7, then
BINARY_RISK is 75% in LOW risk state and 25% in AVERAGE
state.

The scoring system can be tuned to better adapt to
specific context (e.g., security sensitive environments).
For example, to give more weight to BINARY RISK, the
adjectives for each risk state can be reduced hence
BINARY RISK reaches UNACCEPTABLE state with less
violation occurrences.

Selecting the boundaries for these adjectives is
challenging. The expected outcome is the realistic risk
level of analysed samples; therefore we needed to improve
our experience to achieve this result. The tool requires
iterative tuning, so that the most relevant risk categories
(e.g., MONEY, PRIVACY) weight more than others (e.g.
INTERNET), until the final result is meaningful for the
end users.

At the end of this step, each sample should have a set
of risk states for all categories.
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However, filescan, requires different settings. Since it
looks for the most peculiar behaviour of the apk archive
(as a matter of facts, they are most likely to be malicious
behaviour), we set the risk categories differently than
other modules. The risk states are set to be “HIGH” once
filescan detects a corresponding event, so its tolerance
is stricter; therefore the results from filescan have more
influence compared with the other two modules.

Computing fuzzy risk level. To combine the states of
all risk categories in the scoring system, the fuzzy logic
rules are required. However, before defining these rules,
the output of the rules were defined and their adjectives
were associated using singleton functions to simplify
the computation as following:

e NULL_RISK to Singleton(0.0);

AVERAGE _RISK to Singleton(30.0);

e HIGH RISK to Singleton(70.0);
UNACCEPTABLE_RISK to Singleton(100.0).

Defining the fuzzy logic rules that associate the
fuzzified input variables (i.e. the risk state set) to the
output adjectives is a key domain in influencing the
final result. In the current configuration, the system is
governed by more than 100 rules aggregated in these
three analysis modules. All the rules will be evaluated,
and if true they will contribute to the final risk score.

To give a very simple example with parameters
defined in Fig. 2, if a rule states:

IF BINARY RISK IS AVERAGE THEN output IS
HIGH_RISK

In the case that the violation occurrence is 7, and this
is the only rule in the scoring system, the risk score will
be:

(truth_level) * (adjective) = 0.25 % 70 = 17.5
If, the only rule in the system is changed to following:

IF BINARY RISK IS LOW THEN

AVERAGE_RISK

output IS

then with the same input value, the output risk score
will be:

(truth_level) * (adjective) = 0.75 x 30 = 22.5

The last step of computing the risk score is called
defuzzification, which can be performed using several
different methods. In our case, the fuzzy logic systems
in all three modules use the Centroid Method, which
means to calculate the centre of gravity for the area
under the curve. Thanks to the choice of singleton
function, this computation is simple to understand. The
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formula is the following:

COG — ZZ:G ua(x)zr
S ua(y)

Variables a and b represent the attributes in the fuzzy
logic system, from NULL RISK to UNACCEPTABLE RISK.
While ua(x) indicates the truth level for all the
attributes, and z is the adjectives for each attribute.

As an example, the final risk score with only two rules
defined before and input value equals to 7, is computed
as:

(0.25  70) + (0.75 x 30)

=40.0
0.25+0.75

Risk_score =

Of course, there are rules with more complex
conditions in our fuzzy logic system. They combine
multiple risk categories using logical operators like
AND, OR and NOT, which will highlight some specific
dangerous operations treated as heuristics. For example
in dynamic analysis module, leaking data to the
Internet operation will violate PHONE_STATE RISK and
INTERNET RISK. Hence, if both risk categories are at HIGH
risk state, then the final risk score should be significantly
increased. Similarly, for other obvious dangerous actions,
there are corresponding rules to leverage the final score.
On the contrary, if certain risk category combinations
are in LOW state, the final risk score will decrease.

The rules with FALSE condition will give no
contribution. Otherwise, the rule’s output will concur
to the final risk score. Hence, apps with less obvious
dangerous operations will have smaller risk scores than
the ones with more obvious dangerous operations. Even
though in some cases, less risky apps may have more
violation occurrence in certain risk category. Thus, the
result is not monotonic solely based on the occurrences
but leverage more on the heuristics, which gives more
accurate indications of application’s risk level. The same
type of heuristics is applied in all three modules. For
example in Behaviour module, if the application has
permissions to access user’s contact and in the mean time
has the permission to send data through the Internet,
the final risk score is higher than the one only has the
permission to send data through the Internet. Even in
some case, the latter can send data more times than
the former when the behaviour is confirmed using the
dynamic analysis module.

4. Experimental results

To perform an extensive testing of the system,
we developed an additional software module, the
AppsDownloader, which is based on the unofficial open
source project named Android Market API [29]; it
can automatically retrieve free apps from any Android
repositories and also from the local file system.
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Figure 3. Danger level evaluator testing architecture.

Exploiting the AppsDownloader and the workflow
described in Fig. 3, we tested our analyser against a set of
41000 free goodware applications (this set will be referred
as market set); and a set of 1488 known malware samples
from 90 distinct families, from the Android Genome
Project [30] and ContagioMiniDump [31] (this set will
be referred as malware set).

The number of goodware is significantly higher than
the number of known malware. This follows the real
world situation: there are magnitudes more goodware
developers than malware developers. Meanwhile, even
though the number of goodware sample is imbalanced
with the number of malware sample, this huge number
of application samples can be used to show the efficiency
of our evaluator in a meaningful way. Thanks to Android
Genome Project [30], the malware dataset we used in our
experiments is one of the largest compared with previous
work.

Apps Behaviour Analysis Total Risk Distribution

. mGoogle Play [Genome
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Figure 4. Behaviour module results: app risk scores
distribution, market vs. malware.

In the first place, as shown in Fig. 4, 40% of the market
apks obtained a risk score greater than 70 tested using
Behaviour module, while 88% of malware apks obtained
a risk score greater than 70. The result is in accordance
with Felt’s result [5], which shows one-third of apps in
Google Play are over-permissioned. For this reason, the
discrimination power of Behaviour is limited. However,
risk score is only for indicating risk level, thus apps
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Average Apps Risk for Each Risk Category

mGoogle Play DGenome
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Figure 5. Behaviour module results: average app risk value
per category, market vs. malware.

exceed this threshold will be considered risky in the case
of permission abuse and calling potentially dangerous
APIs. The threshold is set to be 70 is not the final
settlement, it is only a choice based on our experiences. If
a stricter criteria is needed, this threshold can be reduced
to 60. But in this case, more application samples need to
analysed dynamically, and much more time and resources
are needed.

From the risk score distribution, we can also see
that the scores of free applications are concentrated
in the interval from 60 to 80, while the scores of
known malware are in the intervals from 70 to 90. The
histogram from Fig. 5 shows the distribution of average
app risk scores for each risk category in both market and
malware sets. The distribution patterns are contrasting.
Known malware has conspicuous peaks on Dangerous
API, Money and Privacy risk categories, while market
apps have a smoother distribution.

To reason about the limited discrimination power of
our Behaviour module, we studied in more depth about
the distinguishing characteristics of the malware and the
goodware dataset. The result shows that the patterns
of goodware and malware referring to the requested
permissions and the identified behaviour is quite similar.

As shown in Fig. 6, the five most common permissions
required by the goodware are:

INTERNET;
ACCESS_NETWORK_STATE
READ_PHONE_STATE
WRITE_EXTERNAL_STORAGE
READ_CONTACTS

Top 20 requested

GOODWARES HISTOGRAM '

Figure 6. The top 20 required permissions of goodware.
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Top 20 requested

Figure 7. The top 20 required permissions of malware.

Three of these permissions are also the most requested
ones by known malware as illustrated in Fig. 7. For
this reason, we presume and confirm that, it is quite
hard to find the differences between goodware and
malware by only examining the requested permission
list. Some research uses the permission combination to
indicate the potential privacy risk level, such as [32].
However, by solely relying on permissions and their
combination patterns, it is extremely difficult (sometimes
just not possible) to discriminate between malware and
goodware.

Further results on possible differences between the
behaviour of goodware and malware samples are
illustrated in Fig. 8 and Fig. 9. Of the top five identified
behaviour patterns, four of them are the same for the
two datasets. They are:

e REFLECTION, java reflection, makes it possible to
inspect classes, interfaces, fields and methods at
run-time, without knowing the name of the class,
methods, etc.;

e DYN_RCV, app is loading one or more receivers®
dynamically, without declaring them in the
manifest file;

e HTTP, app is trying to issue a HT'TP connection;

e TEL_MANAGER, app is trying to get telephony service
information on the device.

The most interesting point here is that, goodware
tends to use DYN_CLASS_LOAD during the execution, which
can invoke code from shared libraries or even external
parties, putting user’s device in danger. The figures are
another evidence that solely rely on behaviour patterns
is not enough to discriminate goodware from malware,
as in the same case of permissions.

After Behaviour analysis, FileScan module tested
both sets. The result is shown in Fig. 10, 99% of the
market apks has a null risk score, while 40% of the
malware apks has a risk score greater than 80. The
distribution of applications on FileScan risks categories
is shown in Fig. 11, we can see that the HiddenElf,
ShellPrivilege and HiddenText are the most violated

5receivers enable applications to receive intents that are broadcast

by the system or by other applications, even when other
components of the application are not running.
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Top 20 identified behaviour patterns
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Figure 8. The top 20 identified behaviours of goodware.

Top 20 identified behaviour patterns

Numbar f seeurrences

Figure 9. The top 20 identified behaviours of malware.
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Figure 10. FileScan module results: risk scores

distribution, market vs. malware.
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Figure 11. FileScan module results: app percentage per
violating risk category, market vs. malware.

risk categories by known malware. In our dataset,
the samples with peaking risk score (i.e., 100) are
mostly from GingerMaster, which contains shell install
commands inside the package.

Dynamic