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Chapter 1

Introduction

Vehicular traffic is attracting a growing scientific interest because of its connections with
other important problems, like, e.g., environmental pollution and cities congestion. Ra-
tional planning and management of vehicle fluxes are key topics in modern societies under
both economical and social points of view, as the increasing number of projects aimed
at monitoring the quality of the road traffic demonstrates. In spite of their importance,
however, these issues cannot be effectively handled by simple experimental approaches.
On the one hand, observation and data recording may provide useful information on the
physics of traffic, highlighting some typical features like, e.g., clustering of the vehicles,
the appearance of stop-and-go waves, the phase transition between the regimes of free
and congested flow, the trend of the traffic in uniform flow conditions. The books by
Kerner [32] and Leutzbach [37] extensively report about traffic phenomena, real traffic
data, and their phenomenological interpretation. On the other hand, processing and or-
ganization of (usually huge amounts of) experimental measurements hardly allow to catch
the real unsteady traffic dynamics, which definitely makes this approach scarcely predic-
tive. Therefore vehicular traffic is not only an engineering matter but also a challenging
mathematical problem.

The mathematical modeling of vehicular traffic requires, first of all, the choice of the
scale of representation. The relevant literature offers many examples of models at any
scale, from the microscopic to the macroscopic through the kinetic one. Each of them
implies some technical approximations, and suffers therefore from related drawbacks, either
analytical or computational.

The microscopic scale is like a magnifying glass focused on each single vehicle. The
dynamics is described by a system of ordinary second order differential equations of the
form

ẍi = ai[t, {xk}
N
k=1, {ẋk}

N
k=1], i = 1, . . . , N, (1.1)

where t is time, xi = xi(t) the scalar position of the i-th vehicle along the road, ẋi = ẋi(t)
its velocity, and N ∈ N the total number of vehicles. The function ai describes the
acceleration of the i-th vehicle, which in principle might be influenced by the positions
and velocities of all other vehicles simultaneously present on the road. As a matter of fact,
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1 – Introduction

each vehicle is commonly assumed to be influenced by its heading vehicle only (follow-the-
leader models), so that the acceleration ai depends at most on xi, xi+1 and on ẋi, ẋi+1.
As an example, one may have (see e.g., Aw et al. [3])

ai[t, xi, xi+1, ẋi, ẋi+1] = C
ẋi+1 − ẋi

(xi+1 − xi)γ+1

for suitable constants C > 0, γ ≥ 0. Further references on microscopic modeling of
vehicular traffic are Gazis et al. [25], Helbing [28, 29], Kerner and Klenov [33], Treiber
et al. [48, 49, 50], as well as the review paper by Hoogendoorn and Bovy [31], where
cellular automaton and particle models are also considered. It is immediately seen that
the size of system (1.1) rapidly increases with the number N of vehicles considered, which
frequently makes the microscopic approach not competitive for computational purposes.
Furthermore, from the analytical point of view it is often difficult to investigate the relevant
global features of the system, also in connection with control and optimization problems.

On the other hand, both macroscopic and kinetic scales aim at describing the big
picture without looking specifically at each single subject of the system, hence they are
computationally more efficient: Few partial differential equations, that can be solved nu-
merically in a feasible time, are normally involved, and the global characteristics of the
system are readily accessible. Nevertheless, now the modeling is, in a sense, less accurate
than in the microscopic case, due to the continuum hypothesis underlying both approaches,
clearly not physically satisfied by cars along a road. The number of vehicles should be in-
deed large enough so that it makes sense to introduce the concepts of macroscopic density
and kinetic distribution function, respectively, as pointwise continuous functions of space
and, in the latter case, also velocity. Therefore, such a hypothesis must be accepted in the
abstract as a technical approximation of the physics of the problem.

In the macroscopic approach, the flow of cars along a road is assimilated to the flow
of fluid particles, for which suitable conservation or balance laws can be written. For this
reason, macroscopic models are often called in this context hydrodynamic models. Cars are
not followed individually, the point of view being rather that of the classical continuum
mechanics. One looks at the evolution in time and space of some average quantities of
interest, such as the mass density n = n(t, x), the mean velocity u = u(t, x), or the
flux q = nu, referred to an infinitesimal reference volume individuated by a point in the
geometrical one-dimensional space. In describing the system, the Eulerian point of view
is normally adopted, meaning that the above dependent variables evaluated at (t, x) yield
the evolution at time t of the vehicles flowing through the fixed in space position x. In
other words, the spatial coordinate is not linked to any reference configuration but rather
to the actual geometrical space, hence at different times the values of the state variables
computed in the point x refer in general to different continuum particles flowing through
x. Of course, models can in principle be restated in Lagrangian form, up to a proper
change of variable.

The basic evolution equation translates the principle of conservation of the vehicles:

∂n

∂t
+

∂

∂x
(nu) = 0. (1.2)
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1 – Introduction

According to this equation, the time variation in the amount of cars within any stretch of
road comprised between two locations x1 < x2 is only due to the difference between the
incoming flux at x1 and the outgoing flux at x2. Integration of Eq. (1.2) over the interval
[x1, x2] produces indeed

d

dt

x2∫

x1

n(t, x) dx = q(t, x1) − q(t, x2),

where the integral at the left-hand side defines precisely the mass of cars contained in
[x1, x2] at time t.

It can be questioned that Eq. (1.2) does not give rise by itself to a self-consistent
mathematical model, as it involves simultaneously two variables, n and u. To overcome
this difficulty, one possibility is to devise suitable closures which allow to express the
velocity u, or equivalently the flux q, as a function of the density n. This way Eq. (1.2)
becomes a conservation law for the sole density n:

∂n

∂t
+

∂

∂x
f(n) = 0, (1.3)

where q = f(n) is the closure relation known in this context as the fundamental diagram.
Fundamental diagrams are usually obtained by fitting some sets of experimental data
measured in homogeneous uniform flow conditions (see e.g., Bonzani and Mussone [15]).
Macroscopic models based on Eq. (1.3) are usually called first order models. Their most
popular prototype is the celebrated Lighthill-Whitham-Richards (LWR) model (Lighthill
and Whitham [39], Richards [45], Whitham [53]), in which the flux is taken to be

f(n) = numax

(
1 −

n

nmax

)

for positive constants umax, nmax denoting the maximum possible velocity and density,
respectively.

A second possibility consists instead in joining Eq. (1.2) to an evolution equation for
the flux q inspired by the momentum balance of a continuum:

∂q

∂t
+

∂

∂x
(qu) = A[n, u, Dn, Du], (1.4)

where A is some material model for the generalized forces acting on the system and
responsible for momentum variations. These forces express the macroscopic outcome of
the microscopic interactions among the vehicles, and in most models are assumed to be
determined by either the local density n or the local velocity u of the cars, as well as by
their respective variations in time and/or space (generically denoted by the differential
operator D in Eq. (1.4) above). Using q = nu and taking Eq. (1.2) into account, Eq.
(1.4) can be further manipulated to obtain

∂u

∂t
+ u

∂u

∂x
= a[n, u, Dn, Du],

3



1 – Introduction

where a := A/n is a material model for the acceleration of the vehicles to be specified.

Finally, the resulting set of equations is






∂n

∂t
+

∂

∂x
(nu) = 0

∂u

∂t
+ u

∂u

∂x
= a[n, u, Dn, Du],

(1.5)

which is self-consistent in the unknowns n, u once the acceleration a has been conveniently
designed. Mathematical models based on the system (1.5) are commonly termed in the
literature second order models. Among the most popular ones we recall here the Payne-
Whitham model (Payne [42], Whitham [53]) and the celebrated Aw-Rascle model [4],
which corrects some severe drawbacks of the former (see Daganzo [19]) caused by a too
straightforward application to cars of the analogy with fluid particles. For further details
on macroscopic first and second order models the interested reader is referred to the main
references listed in the above cited articles, as well as to the review paper by Bellomo et
al. [7] and to the book by Garavello and Piccoli [23].

The kinetic scale constitutes an intermediate representation level between the micro-
scopic and the macroscopic approaches. Indeed, despite the overall description of the
system, it allows a microscopic modeling of the interactions among the vehicles, without
the need for devising closure relations to get a self-consistent system of equations. As
seen above, macroscopic models recover this missing information from experimental ob-
servations under steady flow conditions. In the kinetic approach, instead, fundamental
diagrams are not assumed a priori but are mathematically studied as equilibrium solu-
tions of the model itself, and possibly compared with the available experimental data. In
addition, all interesting macroscopic quantities can be readily recovered a posteriori from
the kinetic results via suitable average procedures, so that both levels of description are
finally accessible.

In this thesis we are concerned with the mathematical modeling of vehicular traffic at
the kinetic scale. In more detail, starting from the general structures proposed by Arlotti
et al. [1, 2] and by Bellomo [5], we develop a discrete kinetic framework in which the
velocity of the vehicles is not regarded as a continuous variable but can take a finite num-
ber of values only. Discrete kinetic models have historically been conceived in connection
with the celebrated Boltzmann equation, primarily as mathematical tools to reduce the
analytical complexity of the latter (see e.g., Bellomo and Gatignol Eds. [8], Gatignol [24]):
The Boltzmann’s integro-differential equation is converted into a set of partial differential
equations in time and space, which share with the former some good mathematical prop-
erties being at the same time easier to deal with. In the present context, however, the
discretization of the velocity plays a specific role in modeling the system rather than being
simply a mathematical simplification, because it allows to relax the continuum hypothesis
for the velocity variable and to include, at least partially, the strongly granular nature of
the flow of cars in the kinetic theory of vehicular traffic.

The discrete velocity framework also gives rise to an interesting structure of the in-
teraction terms of the kinetic equations, which are inspired to the stochastic game theory
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1 – Introduction

developed by Bertotti and Delitala [13]. Encounters among the vehicles are described in
an essentially stochastic way, introducing the probability that a velocity transition occurs
after an interaction between a car and another vehicle located in front of it. The set of
all these transition probabilities constitutes the so-called table of games, a third order
tensor which is furthermore assumed to depend on the solution of the problem itself via
the macroscopic density of vehicles. This reflects the influence of the global conditions of
traffic on the behavior of the vehicles: The probabilities of acceleration-and-overtaking or
of braking-and-queuing change dramatically according to the crowding of the road. We
remark that stochasticity is an essential ingredient in order to capture the real essence of
the interactions among the vehicles. Velocity transitions are described without invoking
any classical concept of force, since vehicles do not interact mechanically: They simply see
each other and adjust their velocity according to the behavioral rules coded in the table
of games. Finally, interactions are binary like in the classical kinetic theory, but not local:
An interaction length is introduced, which defines a visibility zone for each vehicle. The
final outcome on the speed of a specific vehicle is then determined by a weighted average
of the interactions that the latter experiences with all vehicles comprised in its visibility
zone.

The thesis is organized in five more chapters that follow this Introduction:

• Chapter 2 contains a detailed review of the main kinetic models of vehicular traffic
available in the pertinent literature. The general structure of the equations and the
main modeling assumptions are illustrated, then particular models are analyzed and
discussed.

• Chapter 3 specifically reports about modeling by methods of the discrete kinetic
theory. A general discrete velocity kinetic framework for vehicular traffic with binary
nonlocal interactions is derived. Then, following some ideas on the discrete kinetic
and stochastic game theory, suitable modeling guidelines are outlined, and finally a
particular model is detailed.

• Chapter 4 deals with the spatially homogeneous problem, in which vehicles are sup-
posed to be well mixed and their flow uniform in space. This problem allows to
study the trend of the system toward the equilibrium, hence to draw fundamental
diagrams and to compare theoretical predictions of the models with available ex-
perimental data. Qualitative analysis of the mathematical structures presented in
Chapt. 3 is performed in terms of existence and uniqueness of solutions and equilib-
rium configurations of the system. Numerical results are also provided to compute
the fundamental diagrams predicted by the specific model developed in Chapt. 3.

• Chapter 5 deals with the spatially inhomogeneous problem, which describes the
evolution of the traffic accounting also for possible inhomogeneities in the spatial
distribution of the vehicles. Well-posedness of both the initial value and the periodic
initial-boundary value problem is addressed, with special emphasis on the possibility
to extend local in time solutions to solutions defined for large times. Numerical
simulations of some cases study (formation of a queue, bottleneck, clustering and

5



1 – Introduction

stop-and-go waves), based on the model developed in Chapt. 3, are presented in order
to test the ability of the model to reproduce some typical traffic effects documented
in the specialized literature.

• Chapter 6 finally draws some conclusions about modeling and mathematical issues
developed in the thesis, and briefly sketches further research perspectives in the
field. These include: (i) The extension of the modeling framework to systems of
active particles, with the aim of accounting for the presence of the drivers and their
influence on the behavior of the vehicles; (ii) Some preliminary ideas toward the
discretization of the whole state space, which should allow to include in the theory
also the spatial granularity of the flow of vehicles.

6



Chapter 2

Review of kinetic models of

vehicular traffic

2.1 The kinetic approach

The kinetic approach to the modeling of vehicular traffic is based on the choice of an in-
termediate representation scale between the macroscopic and the microscopic ones, tech-
nically called mesoscopic. Rather than looking at each single car of the system, like in the
microscopic approach, a distribution function, usually denoted by

P = P(t,w(1),w(2), . . . ,w(N)), (2.1)

is introduced over the microscopic mechanical states w(i) = (x(i), v(i)), i = 1, . . . , N , of
the N vehicles composing the system, x(i) standing for position and v(i) for velocity. In
order to describe the unidirectional flow of cars along a stretch of road, these variables are
usually supposed to be one-dimensional, with moreover v(i) ≥ 0 each i. In more detail, if
Dx ⊆ R, Dv ⊆ R+ denote the spatial domain and the velocity domain, respectively, and
DN

w = (Dx×Dv)
N the state space, the assumption that cars are indistinguishable from one

another allows in principle to describe the system by means of the marginal distribution
f over the generic state w = (x, v) only:

f(t, x, v) =

∫

DN−1
w

P(t, x, v,w(2), . . . ,w(N)) dw(2) . . . dw(N).

The function f is technically termed the one-particle distribution function. However,
since most of the times in kinetic theories and in kinetic models one deals with f rather
than with P, it is customary to rename f simply distribution function. The distribution
function is such that the quantity

f(t, x, v) dx dv

represents a measure of the number of vehicles whose position at time t is comprised
between x and x + dx, with a velocity comprised between v and v + dv. Consequently,
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2 – Review of kinetic models of vehicular traffic

under suitable integrability assumptions on f ,

N (t) =

∫

Dv

∫

Dx

f(t, x, v) dx dv (2.2)

gives the total amount of vehicles present in the system at time t. It is worth pointing
out that f is in general not a probability density over (x, v), as the integral in Eq. (2.2)
may not equal 1 at all times. However, if the total mass of cars is preserved then N (t) is
constant in t, hence it is possible to rescale the distribution function so that it have a unit
integral on the state space Dx × Dv for all times t of existence.

The knowledge of the distribution function enables one to recover the usual macroscopic
variables of interest as local averages over the microscopic states of the vehicles. For
instance, the number density n of cars at time t in the point x is given by

n(t, x) =

∫

Dv

f(t, x, v) dv, (2.3)

while the flux q and the average velocity u are obtained from the first momentum of f
with respect to v as

q(t, x) =

∫

Dv

vf(t, x, v) dv, u(t, x) =
q(t, x)

n(t, x)
. (2.4)

Higher order momenta are related to other macroscopic variables, such as the average
kinetic energy E and the variance of the velocity Θ:

E(t, x) =
1

2

∫

Dv

v2f(t, x, v) dv, Θ(t, x) =
1

n(t, x)

∫

Dv

(v − u(t, x))2f(t, x, v) dv.

In particular, Θ is easily seen to be proportional to E − 1
2nu2, that is the internal energy

of the system, therefore it is often linked, at a macroscopic level, to the traffic pressure,
or the traffic temperature, responsible for the anticipation terms in the hydrodynamic
equations of traffic (see e.g., Klar and Wegener [34] for further details).

Modeling of the system is obtained by stating an evolution equation in time and space
for the distribution function f . Unlike the macroscopic approach, such an equation is
written considering the influence of the microscopic interactions among the vehicles on
the microscopic states, rather than referring to classical concepts of point and continuum
mechanics, such as forces and stresses. It is useful to introduce a specific terminology to
distinguish in an interaction the vehicle which is likely to change its state from the one
which potentially causes such a change. The former is technically called the candidate
vehicle, while the latter is called the field vehicle. Furthermore, a third kind of vehicle
is often identified, namely the test vehicle, that is an ideal vehicle of the system whose
microscopic state is targeted by a hypothetical observer. Although the test vehicle is not
actually involved in the interactions, the results of the latter are evaluated in terms of its
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2 – Review of kinetic models of vehicular traffic

microscopic state, considering the number of candidate vehicles which get or lose the state
of the test vehicle in the unit time.

Practically all kinetic models of vehicular traffic present in the literature describe the
interactions by appealing to the following general guidelines:

1. Cars are regarded as points, their dimensions being negligible.

2. Interactions are binary, in the sense that those involving simultaneously more than
two vehicles are disregarded.

3. Interactions modify by themselves only the velocity of the vehicles, not their posi-
tions. More specifically, in an interaction the sole velocity of the candidate vehicle
may vary, that of the field vehicle remaining instead unchanged.

4. Vehicles are anisotropic particles which react mainly to frontal than to rear stim-
uli (see Daganzo [19]), therefore candidate vehicles only interact with field vehicles
located ahead of them.

5. There exists a probability of passing P such that when a candidate vehicle encounters
a slower field vehicle it may overtake it instantaneously with probability P without
modifying its own velocity.

6. Interactions are conservative, in the sense that they preserve the total number of
vehicles of the system.

The evolution equation relates the time variation of the number of vehicles in an
arbitrarily fixed subset of the state space Dx × Dv to the state transitions caused by the
interactions of the vehicles with each other. Therefore, in the absence of external actions
on the system it reads

∂f

∂t
+ v

∂f

∂x
= J [f ], (2.5)

where J [f ] = J [f ](t, x, v) is an operator acting on the distribution function f , charged to
describe the interactions and their effects on the states of the vehicles, and (x, v) is the
microscopic state of the test vehicle. Following the classical terminology coming from the
collisional kinetic theory of the gas dynamics (see e.g., Villani [51]), J is frequently termed
the collisional operator, though in the present context this is a slight abuse of speech
because interactions among vehicles are not like collisions among mechanical particles.

In view of the assumption 6 above, the operator J is required to satisfy
∫

Dv

J [f ](t, x, v) dv = 0, ∀x ∈ Dx, ∀ t ≥ 0

so that integrating Eq. (2.5) with respect to v and recalling Eqs. (2.3), (2.4) yields the
macroscopic mass conservation equation (1.2).

Specific models are obtained from Eq. (2.5) by detailing the form of the collisional
operator. In the next sections we will review some of the relevant contributions to the
kinetic modeling of vehicular traffic available in the literature.

9
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2.2 Prigogine model

In his pioneering work on the mathematical modeling of vehicular traffic by methods
of the kinetic theory, Prigogine [43, 44] constructs the collisional operator through the
contribution of two terms:

J [f ] = Jr[f ] + Ji[f2]. (2.6)

The first one, Jr[f ], is called relaxation term and models the tendency of each driver
to adapt the state of her/his vehicle to a desired standard state. The latter is described
by the desired distribution function f0 = f0(t, x, v), which in essence corresponds to the
driving program each driver aims at. In Prigogine’s model, the function f0 is expressed as

f0(t, x, v) = n(t, x)f̃0(v), (2.7)

where f̃0 is a prescribed probability distribution over the variable v, independent of x and
t. The factorization (2.7) translates the hypothesis that the desired distribution of the
velocity is, for each driver, unaffected by the local vehicle density. The relaxation term is
then taken to be

Jr[f ] = −
f − f0

T
,

where T is the relaxation time which depends on the probability of passing P as

T = τ
1 − P

P
for P = 1 −

n

nmax
. (2.8)

In these formulas, τ is a positive parameter of the model and nmax denotes the maximum
vehicle density locally allowed along the road according to the road capacity.

The second term appearing in the decomposition (2.6), Ji[f2], is called interaction
term and is represented by an operator which models the interactions among candidate
and field vehicles. As usual in the kinetic framework, it is further split into two more
operators:

Ji[f2] = G[f2] − L[f2].

The gain operator G[f2] accounts for the interactions of candidate vehicles having velocity
v∗ > v with field vehicles with velocity v, which force the former to slow down to v if they
cannot overtake the latter, causing this way a gain of cars with velocity state v:

G[f2] = (1 − P )

+∞∫

v

(v∗ − v)f2(t, x, v∗, x, v) dv∗. (2.9)

The loss operator L[f2] accounts instead for the interactions of candidate vehicles having
velocity v with field vehicles with velocity v∗ < v, which force the former to slow down to
v∗ if they cannot overtake the latter, thus giving rise to a loss of cars with velocity state
v:

L[f2] = (1 − P )

v∫

0

(v − v∗)f2(t, x, v, x, v∗) dv∗. (2.10)

10
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In Eq. (2.9) it is assumed Dv = R+, that is no upper limitation is imposed on the velocity
of the cars.

The function f2 appearing in Eqs. (2.9), (2.10) is the so-called two-particles distribution
function, formally obtained from the distribution P given in Eq. (2.1) as

f2(t, x, v, x∗, v∗) =

∫

DN−2
w

P(t,w,w∗,w
(3), . . . ,w(N)) dw(3) . . . dw(N)

for w = (x, v) and w∗ = (x∗, v∗). In other words, f2 is the joint distribution function
of candidate and field vehicles, such that f2(t, x, v, x∗, v∗) gives a measure of the joint
probability to find a candidate vehicle in the state (x, v) and simultaneously a field vehicle
in the state (x∗, v∗). Introducing the hypothesis of vehicular chaos (see e.g., Hoogendoorn
and Bovy [31]), which states that vehicles are actually uncorrelated due to the mixing
caused by overtaking, one can express f2 in terms of f as

f2(t, x, v, x∗, v∗) = f(t, x, v)f(t, x∗, v∗),

so that the interaction operator takes the form of a bilinear operator Ji[f, f ] acting on f :

Ji[f, f ] = (1 − P )f(t, x, v)

+∞∫

0

(v∗ − v)f(t, x, v∗) dv∗

and Prigogine’s model finally reads

∂f

∂t
+ v

∂f

∂x
= −

f(t, x, v) − f0(t, x, v)

T
+ (1 − P )f(t, x, v)

+∞∫

0

(v∗ − v)f(t, x, v∗) dv∗. (2.11)

Notice that the operators G and L in Eqs. (2.9), (2.10), and consequently also the
final model (2.11), implicitly assume localized interactions (x = x∗) like in the classical
Boltzmann collisional kinetic theory.

2.3 Paveri Fontana model

One of the main criticisms to Prigogine’s model is that the desired speed distribution
function f̃0 in Eq. (2.7) is prescribed a priori, and is thus independent of the evolution of
the system. In order to correct this drawback, Paveri Fontana [41] conceived a model in
which the desired speed is taken into account as a further state variable w ranging in the
same domain Dv of the true speed v. At the same time, a generalized distribution function
g = g(t, x, v, w) is introduced, such that

g(t, x, v, w) dx dv dw

gives a measure of the number of vehicles that at time t have a position comprised between
x and x+dx, a true speed comprised between v and v+dv, and a desired speed comprised

11
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between w and w+dw. Notice that the distribution function f and the desired distribution
function f0 are readily recovered by integrating out w and v, respectively, from g:

f(t, x, v) =

∫

Dv

g(t, x, v, w) dw, f0(t, x, w) =

∫

Dv

g(t, x, v, w) dv. (2.12)

Using these relations, an evolution equation for g is straightforwardly derived from the
corresponding equation (2.5) for f :

∂g

∂t
+ v

∂g

∂x
= I[g], (2.13)

where I is a new collisional operator acting on the generalized distribution function.
Analogously to Eq. (2.6), Paveri Fontana’s choice consists in splitting I in a twofold

contribution:
I[g] = Ir[g] + Ii[g, g],

where the first term is again a relaxation toward the desired speed having now the form

Ir[g] = −
∂

∂v

(
w − v

T
g

)
, (2.14)

while the second one describes the interactions among the vehicles. Specifically, in the
same spirit as Prigogine’s model (cf. Eqs. (2.9), (2.10)), a gain and loss term can be
identified such that

Ii[g, g] = G[g, g] − L[g, g]

with specifically

G[g, g] = (1 − P )

+∞∫

v

(v∗ − v)f(t, x, v)g(t, x, v∗, w) dv∗, (2.15)

L[g, g] = (1 − P )

v∫

0

(v − v∗)f(t, x, v∗)g(t, x, v, w) dv∗, (2.16)

the probability of passing P being defined as

P =

(
1 −

n

nmax

)
H

(
1 −

n

nc

)
, (2.17)

where H(·) is the Heaviside function and nc ∈ (0, nmax) a critical density threshold above
which overtaking is inhibited. Notice in particular that candidate vehicles are described
via the generalized distribution function g in order to take their desired speed into account,
while field vehicles are described by means of the distribution function f , in which the
dependence on w has been integrated out, to focus rather on their actual speed. Moreover,
Eqs. (2.15), (2.16) still assume localized interactions as confirmed by the fact that both
f and g are evaluated at the same spatial position x.

12
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Putting Eqs. (2.13)-(2.16) together we deduce the final form of Paveri Fontana’s model:

∂g

∂t
+ v

∂g

∂x
= −

∂

∂v

(
w − v

T
g

)
+ (1 − P )

[
f(t, x, v)

+∞∫

v

(v∗ − v)g(t, x, v∗, w) dv∗

− g(t, x, v, w)

v∫

0

(v − v∗)f(t, x, v∗) dv∗

]
. (2.18)

Integrating Eq. (2.18) over w and using the first of Eqs. (2.12) gives an evolution
equation for the distribution function f :

∂f

∂t
+ v

∂f

∂x
= −

∂

∂v



 1

T

+∞∫

0

wg(t, x, v, w) dw −
vf(t, x, v)

T





+ (1 − P )f(t, x, v)

+∞∫

0

(v∗ − v)f(t, x, v∗) dv∗.

This equation differs from the corresponding Eq. (2.11) of Prigogine’s model only for the
relaxation term at the right-hand side, which here maintains the explicit dependence on
the generalized distribution function g.

Similarly, integration of Eq. (2.18) with respect to v, along with the second of Eqs.
(2.12), yields the following evolution equation for the desired distribution function f0:

∂f0

∂t
+

∂

∂x




+∞∫

0

vg(t, x, v, w) dv



 = 0,

which definitely confirms that f0 depends now on the overall evolution of the system.

2.4 Enskog-like models

As noticed by some Authors (see e.g., Klar and Wegener [34]), the localized interactions
framework used in classical kinetic models of traffic (like Prigogine’s and Paveri Fontana’s
ones) prevents backward propagation of the perturbations in the negative x direction. This
is essentially due to the fact that the flow of vehicles is unidirectional, given the positivity
constraint on the velocity v. Indeed, integrating Eq. (2.5) along the characteristics, that
is the lines x − vt = constant in the time-space domain, gives

f(t, x, v) = f0(x − vt, v) +

t∫

0

J [f ](s, x + v(s − t), v) ds,

where f0(x, v) = f(0, x, v) is the initial datum. Since v ≥ 0 and s ≤ t, one gets both
x − vt ≤ x and x + v(s − t) ≤ x, hence the value of f in x at time t depends only on

13
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its former values at points behind x, i.e., in the interval (−∞, x], and there is no way to
extend such a domain of dependence to points located in the right interval [x, +∞). On the
other hand, the localized interactions assumption is a heritage of the Boltzmann collisional
kinetic theory, where however the aforementioned drawback is not present because the flow
of gas particles need not be unidirectional.

To obviate this difficulty of the theory, Klar and coworkers suggest, in a series of papers
[26, 27, 34, 35, 52] focusing among other things on this topic, see also the review by Klar
and Wegener [36], to describe the collisional operator J of the kinetic equation (2.5) in
terms of the two-particles distribution function as:

J [f2] = G[f2] − L[f2] (2.19)

where the gain operator is given by

G[f2] =

M∑

j=1

∫∫

Ωj

|v1 − v2|σj(v; v1, v2, n)f2(t, x, v1, x + Hj(v1, v2), v2) dv1 dv2 (2.20)

and the loss operator by

L[f2] =
M∑

j=1

∫

ωj

|v − v2|f2(t, x, v, x + Hj(v, v2), v2) dv2.

Notice that the interacting pairs are not supposed to occupy the same spatial position.
In particular, the field vehicle is assumed to be located in x+Hj , x being the position of the
candidate vehicle. The thresholds Hj > 0, j = 1, . . . , M , are introduced to delocalize the
interactions, similarly to an Enskog-like kinetic setting, and to trigger different behaviors
of the candidate vehicle (acceleration, deceleration) on the basis of both the distance
separating it from its heading field cars and the specific velocities which it and the leaders
are traveling at. Integration is performed over subsets of the velocity domain, Ωj ⊆ D2

v ,
ωj ⊆ Dv, associated with each of the thresholds Hj .

In the simplest situation, two constant thresholds H1, H2 are considered to model,
respectively, a deceleration of the candidate vehicle when the distance from the field vehicle
falls below H1, and an acceleration when it grows instead above H2. Correspondingly, the
deceleration domains in G and L are given by

Ω1 = {(v1, v2) ∈ D2
v : v1 > v2}, ω1 = {v2 ∈ Dv : v2 > v},

while the acceleration domains are

Ω2 = {(v1, v2) ∈ D2
v : v1 < v2}, ω2 = {v2 ∈ Dv : v2 < v}.

Specifically, in the case of a deceleration it is assumed that the post-interaction velocity
v of the candidate vehicle either remains unchanged, thus equal to the initial velocity v1, if
an overtaking of the field vehicle is possible, or stochastically reduces to a certain fraction

14
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of the velocity v2 of the field vehicle, if the candidate is forced to queue. This is expressed
by the following form of the transition probability σ1:

σ1(v; v1, v2, n) = Pδ(v − v1) + (1 − P )
1

(1 − β)v2
χ[βv2, v2](v),

where P is the probability of passing defined like in Eq. (2.8), which carries the dependence
of σ1 on n, β ∈ [0, 1] is a parameter, and χI is the indicator function of the set I.

Conversely, in the case of an acceleration the post-interaction velocity of the candidate
vehicle is assumed to be uniformly distributed between the values v1 and v1+α(vmax−v1),
where α depends on n through P as α = α0P for a suitable parameter α0 > 0, and vmax is
the maximum allowed velocity on the road. Therefore, the transition probability associated
with this second threshold takes the form

σ2(v; v1, v2, n) =
1

α(vmax − v)
χ[v1, v1+α(vmax−v)](v).

In order to express the gain and loss operators in terms of the one-particle distribution
function f , the hypothesis of vehicular chaos is invoked, which entails

f2(t, x, v1, x + Hj , v2) = f(t, x, v1)f(t, x + Hj , v2)k(Hj , n(t, x)). (2.21)

The function k appearing in this expression weights the interactions according to the
distance of the interacting pairs and the local congestion of the road. Its presence in the
collisional operator can be formally justified by referring to the Enskog kinetic equations
of a dense gas. The interested reader might want to consult the book by Bellomo et al. [9]
and the paper by Cercignani and Lampis [16] for further details on this part of the theory.

The final form of Klar and coworkers’ model with two equal interaction thresholds
(H1 = H2 ≡ H) writes:

∂f

∂t
+ v

∂f

∂x
=

+∞∫

0

+∞∫

0

|v1 − v2|σ(v; v1, v2, n)f(t, x, v1)f(t, x + H, v2)k(H, n) dv1 dv2

− f(t, x, v)

+∞∫

0

|v − v2|f(t, x + H, v2)k(H, n) dv2, (2.22)

where we have defined

σ(v; v1, v2, n) =
2∑

j=1

σj(v; v1, v2, n)χΩj
(v1, v2).

In particular, it can be noticed that when considering just one interaction threshold for
the deceleration, with furthermore H = 0, the collisional operator in (2.22) reduces to
Prigogine’s localized interaction operator for

σ(v; v1, v2, n) = Pδ(v1 − v) + (1 − P )δ(v2 − v),
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up to the weight function k.

We finally observe that the spirit in which the collisional operator is constructed in
model (2.22) somehow differs from Prigogine’s and Paveri Fontana’s models in that in-
teractions are now defined by detailing the short-range reactions of each driver to the
dynamics of the neighboring vehicles rather than by interpreting her/his overall behavior.

2.5 Discrete velocity models

Recently new mathematical models of vehicular traffic, based on the discrete kinetic the-
ory, have been proposed in the literature, with the aim of taking into account, still at
a mesoscopic level of description, some aspects of the strong granular nature of the flow
of vehicles. Indeed, as reported by several Authors (see e.g., Ben-Naim and Krapivsky
[10, 11], Berthelin et al. [12]), cars along a road tend to cluster, which gives granularity
in space, with a nearly constant speed within each cluster, which makes also the velocity
a discretely distributed variable.

In this review we concisely report about the discrete velocity model by Coscia et al.
[18], referring the reader to the next chapters for a thorough development and analysis of
the model by Delitala and Tosin [22].

The main idea is to make the velocity variable v discrete by introducing in the domain
Dv a grid Iv = {vi}

2m−1
i=1 consisting of 2m − 1 points, m ∈ N, of the form

0 = v1 < v2 < · · · < vm < · · · < v2m−1 = 1,

and letting then v ∈ Iv, while time and space are left continuous. Each vi is interpreted
as a velocity class, encompassing a certain range of velocities v which are not individu-
ally distinguished. Correspondingly, the distribution function f is expressed as a linear
combination of Dirac functions in the variable v, with coefficients depending on time and
space:

f(t, x, v) =
2m−1∑

i=1

fi(t, x)δ(v − vi), (2.23)

where fi(t, x) gives the distribution of cars in the point x having at time t a velocity
comprised in the i-th velocity class. Using this representation, the following expressions
for the macroscopic variables of interest are easily derived from Eqs. (2.3)-(2.4):

n(t, x) =
2m−1∑

i=1

fi(t, x), q(t, x) =
2m−1∑

i=1

vifi(t, x), u(t, x) =

∑2m−1
i=1 vifi(t, x)

∑2m−1
i=1 fi(t, x)

.

One of the main features of model [18] is that the velocity grid Iv is conceived so as to
have a variable step, which tends to zero for high vehicle concentrations (adaptive velocity
grid). Specifically, the discrete velocities depend on the macroscopic vehicle density n as

vi(n) =
i − 1

m − 1
Ve(n), i = 1, . . . , 2m − 1,
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where Ve(n) is an average equilibrium velocity, so that v1 = 0, v2m−1 = vmax = 2Ve(n), and
the grid is symmetric with respect to its central point vm = Ve(n). Since, by definition,
Ve(n) → 0 for n → nmax, we note that vi(n) → 0 each i = 1, . . . , 2m − 1 as the density
locally approaches its maximum admissible value. The Authors of [18] recommend the use
of the following equilibrium velocity:

Ve(n) = e−α n
nmax−n ,

where α > 0 is a constant related to road and environmental conditions (α = 0 stands
for good conditions and α = 1 for bad conditions), and nmax denotes the road capac-
ity. Alternatively, one can use the classical relation Ve(n) = 1 − n/nmax found in the
Lighthill-Whitham-Richards first order macroscopic model (see Lighthill and Whitham
[39], Whitham [53]).

The mathematical structure of the discrete kinetic equations to generate particular
models relies on the localized Boltzmann-like collisional framework:

∂fi

∂t
+

∂

∂x
(vi(n)fi) = Gi[f , f ] − fiLi[f ], i = 1, . . . , 2m − 1,

with f = (f1, . . . , f2m−1), for gain and loss operators inspired by a stochastic game theory
approach (cf. Bertotti and Delitala [13]):

Gi[f , f ] =
2m−1∑

h, k=1

γ|vh − vk|A
i
hkfhfk, Li[f ] =

2m−1∑

k=1

γ|vi − vk|fk,

where γ > 0 is a constant.
Acceleration and deceleration of the vehicles are described, like in Klar and coworkers’

model, as short-range reactions of the drivers to the traffic dynamics in terms of velocity
class transitions. Specifically, a table of games Ai

hk is introduced, which gives the probabil-
ity that a candidate vehicle with velocity vh adjusts its speed to vi after an interaction with
a field vehicle traveling at speed vk. The following technical requirements are imposed:

Ai
hk ≥ 0,

n∑

i=1

Ai
hk = 1, ∀ i, h, k ∈ {1, . . . , 2m − 1},

in order for Ai
hk to represent a discrete probability distribution over the post-interaction

velocity vi of the candidate vehicle.
The table of games is assumed to be constant in time and space, and is constructed so

as to allow interactions only among vehicles belonging to sufficiently close velocity classes
(|h− k| ≤ 1 in [18]). After an interaction, the candidate vehicle can only fall in a velocity
class adjacent to its current one, thus the sole potentially non-zero coefficients Ai

hk are
those for which i = h − 1, i = h, and i = h + 1. In addition, slow and fast cars, which
are distinguished by comparing their velocity class to the central class vm, are supposed
to interact only with faster and slower cars, respectively, with a possible tendency to
accelerate in the former case and to decelerate in the latter case. If ǫa, ǫd ∈ [0, 1] denote
constant acceleration and deceleration probabilities, the table of games proposed by Coscia
and coworkers reads as follows:

17



2 – Review of kinetic models of vehicular traffic

(i) for h < m

Ah
h, h+1 = 1 − ǫa, Ah+1

h, h+1 = ǫa, Ai
hk = 0 otherwise;

(ii) for h > m

Ah−1
h, h−1 = ǫd, Ah

h, h−1 = 1 − ǫd, Ai
hk = 0 otherwise.

A further particularization of these expressions is obtained by setting ǫa = ǫ, ǫd = νǫ for
0 ≤ ν ≤ 1, in order to identify a basic reaction probability ǫ ∈ [0, 1] and a measure ν of
the relative strength of ǫa and ǫd.
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Chapter 3

The discrete velocity model

3.1 Preliminaries

The flow of vehicles along a road is in many aspects a discrete process. First of all, the
spatial distribution of the vehicles does not give rise to a continuous density, so that,
as discussed in the Introduction, the continuum hypothesis applied to such a system is
in principle only a modeling abstraction. However, since it offers several theoretical and
practical advantages over the microscopic approach, it can ultimately be accepted in order
to model the big picture. Of course, the age-old problem still remains of how one should
understand the pointwise values of the vehicle density. It is perhaps a common experience
that trying to give them a physical interpretation often results in obscure, ambiguous,
and finally unconvincing explanations. Probably the best way to face the question is to
honestly say that, strictly speaking, they are meaningless by themselves, because cars are
clearly not point particles that can be tightly packed in a reference volume. What instead
makes sense is to see the vehicle density on the whole as a measure of the macroscopic
occupancy of the road, and as a tool to depict the spatial and temporal evolution of
traffic waves. A second source of discreteness is represented by the velocity of the vehicles,
which is not continuously distributed over the range of admissible values. Indeed, isolated
vehicles maintain preferably a nearly constant speed, whose value strongly depends on the
attitude of each driver. Packed vehicles tend instead to move in clusters featuring a specific
average speed, which may substantially differ from one another. This is why it is more
natural to speak roughly of slow and fast vehicles, rather than to distinguish meticulously
between any two vehicles having an arbitrarily small difference in their speeds.

As anticipated in the Introduction, the goal of this thesis is to develop a mathematical
framework of vehicular traffic modeling along a one-way road, focusing in particular on
this second aspect of discreteness of the flow of vehicles. To this aim, we choose to
work within the general setting of the discrete kinetic theory, because it is specifically
devoted to model systems of interacting elements characterized by some discrete state
variables. In addition, upon accepting the underlying continuum hypothesis in the sense
discussed above, the kinetic approach allows an accurate microscopic-like modeling of the
interactions among the vehicles along with a quick retrieval of all global, i.e. macroscopic,
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observable quantities of the system.

From the modeling point of view, the main independent one-dimensional variables
needed to describe the system are the space coordinate x, the velocity v, and the time
t, which we understand as dimensionless with respect to some characteristic values of
length L, speed V , and consequently time τ = L/V . This means that the physical, i.e.
dimensional, space coordinate x̃, velocity ṽ, and time t̃ are recovered as x̃ = Lx, ṽ = V v,
and t̃ = τt, respectively. Concerning the above reference values, we observe that L may
be taken for instance as the road length, so that the dimensionless spatial domain Dx

coincides with the interval [0, 1], although for theoretical purposes, like for instance the
formal deduction of mathematical models and the investigation of their relevant qualitative
properties, it is often convenient to think of Dx as unbounded, which is typically done by
setting Dx = R. Conversely, V may represent a certain characteristic maximum velocity
attained by the vehicles, which implies that the dimensionless velocity domain Dv can
be taken as the interval [0, 1] as well. Actually, this choice may be questionable if V
is understood as the typical mean velocity attained by the vehicles under light traffic
conditions, for in this case the velocity domain should have more properly the form [0, 1+
µ], where µ > 0 is a parameter accounting for the fact that isolated vehicles possibly
travel at speeds higher than V (see e.g., Coscia et al. [18] and Delitala [21]). However,
we anticipate that in a discrete velocity framework this detail is irrelevant, since µ is in
general sufficiently small to allow to confuse 1 + µ with 1 in a sense that we will make
precise in a moment.

To make the velocity variable v discrete means technically to introduce a discrete grid
with a finite number of points, say m points, Iv = {vi}

m
i=1 ⊂ Dv and to let v ∈ Iv. This

essentially amounts to partitioning the range of admissible speeds in m velocity classes, and
to describing then velocity variations of the vehicles as state transitions of the latter from
one class to another. In principle, the only requirement on m is that it be a nonnegative
integer different from zero: m ∈ N, m > 0, which will be always implicitly assumed in
the sequel. In practice, however, it should be considered that the larger the number of
classes is the smaller the range of velocities covered by each class is, hence an excessively
high value of m results in a too fine, thus potentially meaningless from the physical point
of view, velocity grid. Indeed, as previously mentioned, the spirit of the discrete kinetic
approach in our project of traffic modeling is to render in the mathematical theory of
traffic the actual impossibility to distinguish too carefully the speeds of the vehicles from
one another due to their intrinsic discrete distribution.

We take the first velocity class to be v1 = 0, which coincides with the left endpoint of
the interval Dv. The other classes are then recovered as

vi+1 = vi + (∆v)i, i = 1, . . . , m − 1,

where (∆v)i represents the amplitude of the i-th velocity class. A customary choice is to
consider a uniformly spaced velocity grid over Dv, which implies a constant step

∆v =
|Dv|

m − 1
,
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|Dv| being the length of the interval Dv. This way it results also

vi = (i − 1)∆v, i = 1, . . . , m,

with vm = |Dv|. If one takes Dv = [0, 1 + µ] with µ ‘sufficiently small’ then the resulting
amplitude ∆v = 1+µ

m−1 of the velocity classes little differs from the case Dv = [0, 1], which

instead produces ∆v = 1
m−1 . Consequently, one can choose to refer to the unit dimen-

sionless velocity domain Dv = [0, 1], simply assuming that vehicles possibly traveling at
speeds higher than 1 are included in the extreme velocity class vm = 1.

In the sequel, whenever necessary, we will explicitly refer to a uniformly spaced velocity
grid of the form

vi =
i − 1

m − 1
, i = 1, . . . , m (3.1)

with constant grid step

∆v =
1

m − 1
.

The discreteness of the velocity variable entails a particular structure for the one-
particle distribution function f , which can be formally rewritten as a linear combination
of Dirac functions with coefficients depending on x and t:

f(t, x, v) =
m∑

i=1

fi(t, x)δ(v − vi). (3.2)

Since space and time are left continuous, each function fi is defined over the set R+ ×Dx

and takes values in R+. The quantity fi(t, x) represents the density of vehicles belonging
to the i-th velocity class which at time t are located in x. For the sake of convenience, in
the sequel we will usually call it the i-th distribution function and, whenever needed, we
will use the vector notation f(t, x) = (f1(t, x), . . . , fm(t, x)).

Using the representation of the distribution function f given by Eq. (3.2), the following
expressions for the classical macroscopic average quantities are easily derived:

(i) the vehicle density

n(t, x) =
m∑

i=1

fi(t, x), (3.3)

(ii) the vehicle flux

q(t, x) =
m∑

i=1

vifi(t, x), (3.4)

which should be understood in turn as dimensionless with respect to some characteristic
values. If N denotes the reference value for the vehicle density n, so that the physical
vehicle density is given by ñ = Nn, then the reference value Q for the vehicle flux has to
be set coherently to Q = V N . Notice that if each fi is understood as dimensionless and
linked to its dimensional counterpart f̃i by the relation

f̃i(t̃, x̃) = N fi(t, x), i = 1, . . . , m
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as suggested by Eq. (3.3), then all these definitions apply straightforwardly and consis-
tently. From the density n and the flux q, other important macroscopic quantities can be
obtained, namely:

(iii) the average velocity

u(t, x) =
q(t, x)

n(t, x)
=

m∑

i=1

vifi(t, x)

m∑

i=1

fi(t, x)

, (3.5)

rescaled with respect to the characteristic value V , and

(iv) the variance of the velocity

Θ(t, x) =
1

n(t, x)

m∑

i=1

(vi − u(t, x))2fi(t, x), (3.6)

rescaled with respect to V 2. The quantity nΘ is sometimes termed the traffic pres-
sure (see e.g., Aw and Rascle [4], Klar and Wegener [34, 52], Whitham [53]), espe-
cially in second order macroscopic traffic models.

3.2 Evolution equations

As usual in kinetic theories, an evolution equation for the distribution function is obtained
from a balance principle which states that the time variation in the number of subjects of
the system belonging to any subset of the state space is determined by the state transitions
due to the interactions of the subjects themselves with each other. In particular, such a
principle may imply the conservation of the mass, or of the total number of subjects, of the
system, hence, as a conservation law, it is particularly suitable for vehicular traffic. For
different systems, in which the totality of the interacting subjects need not be preserved,
the same general idea still applies but without specific reference to the conservation of
mass.

Confining the investigation to the standard kinetic Boltzmann-like framework of bi-
nary interactions, Arlotti and her coauthors discuss in [1, 2] a quite general structure of
the kinetic equations, including the celebrated Boltzmann equation as a particular case,
which enables one to address the modeling of various systems from applied sciences under
a unified mathematical framework. In particular, Arlotti and coworkers deal with indus-
trial applications, like the modeling of mixtures of dissipating gases, as well as biological
applications in the fields of epidemiology and immune competition. The mathematical
theory is then further developed and detailed in the book by Bellomo [5].

The general mathematical structure illustrated in [1, 2] refers to d-dimensional systems
(d = 1, 2, 3 from the physical point of view) for which the (continuous) state variable,
hereafter denoted by w, is represented by the space position x ∈ Dx ⊆ Rd, the velocity
v ∈ Dv ⊆ Rd, and the so-called internal structure u ∈ Du, an l-dimensional vector
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3 – The discrete velocity model

quantity (Du ⊆ Rl with l any nonnegative integer) which characterizes the microscopic
internal state of each element of the system. The evolution equation for the one-particle
distribution function f = f(t,w) is then written as

∂f

∂t
+ v · ∇xf + Fv · ∇vf + ∇u · (Fuf) = J [f, f ], (3.7)

where Fv = Fv(t,x) and Fu = Fu(t,u) model an external force field and the evolution of
the internal state, respectively. The bilinear operator J [f, f ] at the right-hand side is the
so-called interaction operator, which reads

J [f, f ] =

∫

D3

[F(w1,w2; w,w∗)f(t,w1)f(t,w2)

−F(w,w∗; w1,w2)f(t,w)f(t,w∗)] dw1 dw2 dw∗ (3.8)

where D is the state space Dx ×Dv ×Du and F : D4 → R+ is the transition distribution
function, such that F(w1,w2; w,w∗) represents a measure of the probability that two
subjects, with respective states w1, w2, change state into w, w∗ after interacting.

The structure depicted by Eqs. (3.7), (3.8) can be profitably used to derive formally
our framework for traffic flow models, up to reformulating the equations in the discrete
velocity context. In more detail, considering that in our specific case we deal with scalar
space and velocity variables, x ∈ Dx ⊆ R and v ∈ Iv ⊂ Dv ⊆ R, and that the microscopic
internal structure u of the vehicles is not supposed to play a specific role, the state variable
w is fully mechanical and is given by w = (x, v) ∈ Dx × Iv. Taking Eq. (3.2) into account
and inserting it into Eq. (3.7) yields, after some technical calculations, the following
system of equations for the distribution functions fi:

∂fi

∂t
+ vi

∂fi

∂x
= Gi[f , f ] − fiLi[f ], i = 1, . . . , m, (3.9)

where:

(i) Gi[f , f ] is the i-th gain operator defined as

Gi[f , f ](t, x) =
m∑

j, h, k=1

∫

D3
x

F ij
hk(x1, x2; x, x∗)fh(t, x1)fk(t, x2) dx1 dx2 dx∗, (3.10)

giving the amount of vehicles per unit time that, in consequence of binary collisions,
get the test state (x, vi);

(ii) Li[f ] is the i-th loss operator defined as

Li[f ](t, x) =
m∑

j, h, k=1

∫

D3
x

Fhk
ij (x, x∗; x1, x2)fj(t, x∗) dx1 dx2 dx∗, (3.11)

giving instead the amount of vehicles per unit time that, owing again to mutual
interactions, lose the test state (x, vi).
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3 – The discrete velocity model

We observe that letting
Ji[f , f ] := Gi[f , f ] − fiLi[f ]

gives the discrete counterpart of the interaction operator defined by Eq. (3.8).
The transition distribution function F ij

hk : D4
x → R+, along with all possible permu-

tations of the indexes i, j, h, k, is such that the quantity F ij
hk(x1, x2; x, x∗) expresses a

measure of the probability that the interaction between two vehicles, belonging to the h-th
and to the k-th velocity class and located in x1 and in x2, respectively, leads the first one
in x with a simultaneous transition to the i-th velocity class and the second one in x∗

with a transition to the j-th velocity class. From the function F ij
hk two other important

quantities originate, which will be fundamental in structuring the mathematical model,
namely:

(i) the interaction rate

ηhk(x1, x2) =
m∑

i, j=1

∫

D2
x

F ij
hk(x1, x2; x, x∗) dx dx∗, (3.12)

which measures the frequency at which two vehicles located in x1 and in x2, and
belonging to the h-th and to the k-th velocity class, respectively, may interact, and

(ii) the table of games (see Bertotti and Delitala [13])

Ai
hk(x1, x2; x) =

1

ηhk(x1, x2)

m∑

j=1

∫

Dx

F ij
hk(x1, x2; x, x∗) dx∗, (3.13)

which yields the probability that a vehicle located in x1 and belonging to the h-th
velocity class moves to x and makes a transition to the i-th velocity class due to an
interaction with a vehicle located in x2 and belonging to the k-th velocity class.

Equations (3.9)-(3.11) constitute the general discrete velocity framework to generate
particular models. We now introduce a preliminary characterization of the structure of
the transition distribution function F ij

hk in the case of the specific traffic model we are
going to develop.

Consider two vehicles with states w1 = (x1, vh), w2 = (x2, vk), and assume that
x1 ≤ x2. Clearly, writing their speeds as vh, vk is shorthand to mean more properly that
they belong to the h-th and k-th velocity class, respectively. Using the observation made
by Daganzo [19] that a vehicle is essentially an anisotropic particle, in that it reacts mainly
to frontal stimuli than to rear ones, we may generically suppose that the first vehicle, being
located behind the other, is influenced by the presence of the second one on the road, but
not the converse. As a consequence, we possibly expect a variation in the state w1, while
w2 should remain basically unchanged after the interaction. The vehicle which is likely
to change its current state due to an interaction is technically termed candidate vehicle,
whereas any generic vehicle of the system potentially responsible for a change of state of
the candidate vehicle is called field vehicle. The state w = (x, vi), in which the candidate
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3 – The discrete velocity model

vehicle may fall, is said to be that of the test vehicle, the latter being understood as a
hypothetical vehicle whose state is targeted by an ideal observer of the system. This
discussion can be formally stated as follows:

Assumption 3.1. After an interaction, neither the candidate nor the field vehicle changes
position along the road. If x, x∗ ∈ Dx denote their respective post-interaction positions,
this means that

x = x1, x∗ = x2.

Assumption 3.2. After an interaction, the field vehicle does not change velocity class
(while, in principle, the candidate vehicle does). If vj ∈ Iv labels the post-interaction
velocity class of the field vehicle, then

vj = vk or, equivalently, j = k.

Owing to Assumptions 3.1, 3.2 we detail the transition distribution function F ij
hk as

F ij
hk(x1, x2; x, x∗) = δ(x1 − x)δ(x2 − x∗)δjkF

i
hk(x1, x2), (3.14)

where F
i
hk : D2

x → R+ is charged to describe the actual stochastic mechanism leading
the candidate vehicle to the i-th velocity class on the basis of its pre-interaction state
and of that of the field vehicle. Notice, however, that in view of Assumption 3.1 we are
henceforth allowed to speak generically of position of the candidate and the field vehicle
without distinguishing between pre- and post-interaction position, and to use the symbols
x1, x and x2, x∗ interchangeably.

According to the above structure of F ij
hk, interactions are in general not local, indeed

no term of the form (cf. e.g., Arlotti et al. [1])

δ

(
x1 + x − x2 − x∗

2

)

appears in Eq. (3.14). In other words, one may have x1 6= x2, that is the candidate and the
field vehicle need not be located in the same spatial position in order for the interaction
to be triggered. This is meaningful in view of the observation that interactions among
vehicles are structurally different from those among classical mechanical particles dealt
with by the standard collisional kinetic theory. Indeed, vehicles need not be in contact
to interact. More specifically, we may suppose that the state of the candidate vehicle be
influenced by the presence of field vehicles within a finite distance ξ ahead of it along the
road, that we call interaction length and understand as dimensionless with respect to the
reference length L previously introduced. If x is the position of the candidate vehicle,
the interaction length defines naturally an interaction interval Jξ(x) = [x, x + ξ] in which
interactions are effective.

As a further general principle, it is reasonable to guess that the closer a field vehicle
is to the candidate vehicle the more influential its presence is on the latter, so that finally
interactions turn out to be more or less important, in terms of effect on the state of the
candidate vehicle, according to the distance between the interacting vehicles.

We formalize the ideas above in the following
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Assumption 3.3. Interactions among a candidate vehicle located in x ∈ Dx and the
field vehicles are effective only within the interaction interval Jξ(x) = [x, x + ξ], and are
weighted there on the basis of the distance separating the candidate vehicle from each of
the field vehicles. Weighting is carried out by a weight function w : R → R+ such that:

(i) w(y) ≥ 0 for all y ∈ Dx,

(ii) w(y) = 0 for all y 6∈ [0, ξ],

(iii)

ξ∫

0

w(y) dy = 1.

In view of Assumption 3.3 the function F
i
hk specializes as

F
i
hk(x1, x2) = ai

hk(x2)w(x2 − x1),

so that the transition distribution function F ij
hk takes the form

F ij
hk(x1, x2; x, x∗) = δ(x1 − x)δ(x2 − x∗)δjka

i
hk(x2)w(x2 − x1). (3.15)

Here, ai
hk : Dx → R+ models in detail the stochastic dynamics of the velocity transitions

operated by the candidate vehicle. Notice that it depends explicitly on the spatial position
of the field vehicle only, the mutual position of the candidate and the field vehicle being
already accounted for by the weight function w. Concerning this, we observe that, owing
to Assumption 3.3-(ii), we have w(x2 − x1) = 0 for all x2 < x1 and all x2 > x1 + ξ,
which guarantees that interactions are indeed effective only if the field vehicle precedes
the candidate vehicle within the interaction interval of the latter.

Inserting the form of F ij
hk given by Eq. (3.15) into Eqs. (3.10), (3.11) yields

Gi[f , f ](t, x) =
m∑

h, k=1

x+ξ∫

x

ai
hk(x∗)fh(t, x)fk(t, x∗)w(x∗ − x) dx∗, (3.16)

Li[f ](t, x) =
m∑

j=1

x+ξ∫

x

(
m∑

h=1

ah
ij(x∗)

)
fj(t, x∗)w(x∗ − x) dx∗, (3.17)

whereas, according to Eqs. (3.12), (3.13), the interaction rate ηhk and the table of games
Ai

hk take the form

ηhk(x1, x2) =

(
m∑

i=1

ai
hk(x2)

)
w(x2 − x1),

Ai
hk(x1, x2; x) =

ai
hk(x2)

m∑

i=1

ai
hk(x2)

δ(x1 − x).
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Since ai
hk depends on the space through x2 only, from the latter expression we infer that

for the specific modeling framework at hand the relevant entities in defining the table of
games are

Ai
hk(x2) :=

ai
hk(x2)

m∑

i=1

ai
hk(x2)

, (3.18)

which represent a discrete probability distribution over the velocity class i of the test
vehicle, indeed from Eq. (3.18) we deduce

Ai
hk(x2) ≥ 0,

m∑

i=1

Ai
hk(x2) = 1, ∀h, k = 1, . . . , m, ∀x2 ∈ Dx. (3.19)

Moreover, introducing the unweighted interaction rate

η̄hk(x2) :=

m∑

i=1

ai
hk(x2) (3.20)

we also get

ηhk(x1, x2) = η̄hk(x2)w(x2 − x1), ai
hk(x2) = η̄hk(x2)A

i
hk(x2). (3.21)

Therefore, taking Eqs. (3.16), (3.17) into account, the set of discrete velocity kinetic
evolution equations for the distribution functions {fi}

m
i=1 finally becomes

∂fi

∂t
+ vi

∂fi

∂x
=

m∑

h, k=1

x+ξ∫

x

η̄hk(x∗)A
i
hk(x∗)fh(t, x)fk(t, x∗)w(x∗ − x) dx∗

− fi(t, x)

m∑

k=1

x+ξ∫

x

η̄ik(x∗)fk(t, x∗)w(x∗ − x) dx∗, (3.22)

where, unlike Eq. (3.17), we have renamed k the (mute) index of the sum in the loss
operator to avoid an unnecessary redundancy of indexes.

Equation (3.22) is actually a system of integro-differential equations with hyperbolic
linear advection term at the left-hand side and nonlocal interaction operator at the right-
hand side. Apart from Assumptions 3.1, 3.2, 3.3, the discrete velocity framework it depicts
is still quite general, and can be specialized to originate particular models by acting on
the specific forms of the table of games and the interaction rate, the latter detailed in both
its unweighted and weighted component. We will deal with this topic in the next section.

3.3 Modeling microscopic interactions

According to the kinetic theory approach, the system of equations (3.22) calls for a mi-
croscopic analysis of the interactions among the vehicles, although it focuses on a global
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description of the traffic dynamics. Indeed, it allows an a posteriori retrieval of the usual
macroscopic observable quantities via the set of distribution functions {fi}

m
i=1 and the

definitions (3.3)-(3.6).

In modeling the microscopic interactions, vehicles must be regarded as nonclassical
particles, in spite of their fully mechanical state, because they interact, without colliding,
in a nonlocal way. In particular, this implies that the relations usually found in the
standard collisional kinetic theory (see e.g., Villani [51] and the main references listed
therein) between pre- and post-collisional velocities need not apply in the present context:
Interactions do not preserve in general either the momentum or the kinetic energy. Instead,
they are described in an essentially probabilistic way via the table of games, without
invoking any classical concept of force or law of point mechanics to account for velocity
variations. Furthermore, the following implicit assumptions hold true:

(i) vehicles are regarded as points, their dimensions being negligible;

(ii) interactions involving simultaneously more than two vehicles are disregarded (binary
interactions).

3.3.1 The table of games

The table of games Ai
hk models the stochastic dynamics of the velocity transitions of the

vehicles, yielding the probability that the candidate vehicle changes its state class from h
to that of the test vehicle i as a result of an interaction with a field vehicle lying in the
state class k. In this subsection we present and discuss a possible form of the table of
games, conceived on the basis of some elementary intuitions about the microscopic physics
of traffic. Technical modifications and improvements, based either on specific theoretical
modeling needs or on the particular physical setting at hand, are of course possible, some
of which will be proposed and commented in Chapt. 5.

We suggest that a key role in the dynamics of the microscopic interactions should be
played by the density n, regarded as an indicator of the macroscopic local conditions of
traffic (cf. the discussion at the beginning of this chapter). In particular, we assume
that it represents one of the main pieces of information used by a driver to decide how to
adjust instantaneously the velocity of its vehicle, indeed phenomena like an acceleration,
a deceleration or an overtaking are reasonably highly influenced by the free space locally
available along the road. Observing that Eq. (3.18) allows in principle for a dependence
of the table of games on the space variable via the position occupied by the field vehicle,
we exploit this feature by devising a functional relationship linking Ai

hk to the density n
computed for x = x2 (or, equivalently, for x = x∗). Accordingly, in the sequel we will
emphasize this by writing the table of games specifically as Ai

hk[n]. As the density n
evolves in time, this makes the table of games depend also on the variable t, which is not
explicitly provided for by Eq. (3.18). However, we notice that this fact does not invalidate
by itself the formal derivation of the equations discussed in Sect. 3.2, requiring simply to
allow a dependence on t of the transition distribution function F in Eq. (3.8), as well as
of F ij

hk in Eqs. (3.10), (3.11) when reducing to the discrete velocity framework.
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Another important factor strongly affecting the flux of vehicles is represented by the
road conditions. Bumpy roads make people drive more carefully, keeping slow speeds and
avoiding accelerating and overtaking, while smooth roads usually offer more opportunities
of maneuver. We duly incorporate this aspect in the table of games via a phenomenological
parameter α ∈ [0, 1], whose lower and higher values are related to bad and good road
conditions, respectively.

Let us focus on a candidate vehicle belonging to the velocity class h which interacts
with a field vehicle belonging to the velocity class k, and let i be the velocity class of the
test vehicle, i, h, k ∈ {1, . . . , m}. We address separately the three cases h < k, h > k, and
h = k, for in principle different behavioral rules apply in each of these situations.

In conceiving the explicit dependence of the table of games on the dimensionless vehicle
density, one has to take carefully into account the admissible range of values of n resulting
from the performed nondimensionalization, so as to fulfil the requirements expressed by Eq.
(3.19). This amounts in essence to specifying the physical sense given to the reference value
N : The particular form of the elements Ai

hk[n] may vary if one gives N a different physical
interpretation, the formal structure of the whole model remaining however unchanged.

One of the most common choices is to identify N with the maximum density nmax

allowed on the road according to the road capacity, whence it follows 0 ≤ n ≤ 1. The
form of the table of games we propose is specifically based on this kind of nondimension-
alization, therefore it assumes a priori that the dimensionless vehicle density is bounded
between 0 and 1. Consequently, it is meaningful as long as the resulting model is able
to provide solutions that actually keep such a constraint. It is worth pointing out that
this latter property cannot be assumed in turn a priori but requires to be proved by an
appropriate qualitative analysis of the mathematical model itself. However, for the sake
of modeling we temporarily refrain from dealing with this issue, postponing its discussion
to the subsequent Chapts. 4 and 5.

Interaction with a faster vehicle (h < k)

When h < k, the candidate vehicle is encountering a faster field vehicle. The result of this
interaction can be modeled according to a follow-the-leader strategy, which implies that
the candidate vehicle either maintains its current speed or possibly accelerates, depending
on the available surrounding free space. We set then (Fig. 3.1a)

Ai
hk[n] =






1 − α(1 − n) if i = h

α(1 − n) if i = h + 1

0 otherwise

(h, k = 1, . . . , m). (3.23)

Note that when α = 0 (worst road conditions) the candidate vehicle simply keeps
its current speed, and does not accelerate in any case. Conversely, when α = 1 (best
road conditions) the result of the interaction is essentially dictated by the local traffic
congestion.
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a) h k

1 − α(1 − n)

α(1 − n)

b) h

1 − α(1 − n)

α(1 − n)

k

c) h = k

αn
1 − α

α(1 − n)

Figure 3.1. Pictorial representation of the interaction rules coded in the table of games.
In the diagrams, h is the velocity class of the candidate vehicle, k that of the field vehicle.
The arrows indicate the possible changes of class of the former due to an encounter with
the latter, and are labeled with the probabilities associated to each transition.

Interaction with a slower vehicle (h > k)

When h > k, the candidate vehicle interacts with a slower field vehicle. In this case, we
assume it does not accelerate. Rather, either it is forced to queue, reducing its speed to
that of the leading vehicle, or it maintains its current speed, because it has enough free
space to overtake. Consequently, we define (Fig. 3.1b)

Ai
hk[n] =






1 − α(1 − n) if i = k

α(1 − n) if i = h

0 otherwise

(h, k = 1, . . . , m). (3.24)

Note that this choice amounts to defining a probability of passing (cf. Eqs. (2.8), (2.17))
Pα = Pα[n] depending on the local traffic and parameterized by the road conditions:

Pα[n] = α(1 − n).

The emptier the road is the closer to α this probability becomes, and, if the road conditions
allow, the candidate vehicle is more likely to overtake the leading field vehicle without the
need for slowing down.

Interaction with an equally fast vehicle (h = k)

When h = k, the candidate vehicle and the field vehicle are traveling at the same speed.
In this case, the result of the interaction has a higher degree of randomness than in the
previous cases: The physical situation does not suggest any a priori more probable upshot.
Therefore, we use as guideline the phenomenological idea of the spread of the velocity:
The two vehicles are unlikely to strictly preserve their speed during the motion, for this
would imply they do not interact, behaving as if they were alone along the road. Thus,
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we distribute the effect of the interaction over four possible outcomes (Fig. 3.1c):

Ai
hh[n] =






αn if i = h − 1

1 − α if i = h

α(1 − n) if i = h + 1

0 otherwise

(h = 2, . . . , m − 1). (3.25)

In this definition, α plays the role of a tuning parameter that regulates the mutual
relevance of the outcomes. If α = 0, then Ah

hh[n] = 1 each h ∈ {2, . . . , m − 1} and each
n, so that one obtains the trivial interaction that does not cause any velocity transition.
Conversely, if α = 1 the interaction between two equally fast vehicles results in a full
spread of the velocity, since Ah

hh[n] = 0 each n, and consequently none of them is allowed
to maintain its current speed.

Note that the form of Ai
hh[n] given by Eq. (3.25) applies only if h 6= 1, m. In contrast,

a technical modification is needed at the boundary of the velocity grid, since when h = 1
or h = m the candidate vehicle cannot brake or accelerate respectively, due to the lack of
further lower or higher velocity classes. In these cases, we merge the deceleration or the
acceleration into the tendency to preserve the current speed:

Ai
11[n] =






1 − α(1 − n) if i = 1

α(1 − n) if i = 2

0 otherwise,

Ai
mm[n] =






αn if i = m − 1

1 − αn if i = m

0 otherwise.

(3.26)

3.3.2 The interaction rate

The interaction rate ηhk is a measure of the frequency at which vehicles in the traffic flow
interact. According to Eq. (3.21), it can be split into a first component, the unweighted
interaction rate, which accounts for the frequency of interaction between candidate and
field vehicles regardless of their relative location along the road, and a second component,
the weight function, which instead takes into account the distance between the interacting
pairs in order to define the effectiveness of the interactions.

From its definition (cf. Eq. (3.20)), we see that the unweighted interaction rate η̄hk

may depend in general not only on the respective velocity classes of the interacting vehi-
cles, like in the Boltzmann-like collisional kinetic theory, but also on the spatial position of
the field vehicle along the road. In modeling this term of the equations it is worth stress-
ing once again that interactions among vehicles are strongly different from mechanical
collisions among classical particles. As a consequence, the standard forms of the inter-
action rate, deduced under momentum and energy conservation principles and involving
then the relative velocity of the interacting pairs, are not suitable for the system at hand
and require to be revised on the basis of different guidelines, resorting to the human-like
behavioral nature of the vehicles.

Specifically, we choose not to emphasize the link between the interaction rate and
the relative velocity of the interacting vehicles, assuming that ηhk, hence also η̄hk, is
independent of the specific velocity classes h, k. Furthermore, borrowing some ideas from
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Figure 3.2. The unweighted interaction rate η̄ as a function of the macroscopic
density n on the basis of Eq. (3.27)

the Enskog kinetic theory of dense gases (see e.g., Bellomo et al. [9]) and coherently
with the considerations previously introduced about the table of games, we formalize the
dependence of the unweighted interaction rate on the position of the field vehicle via
the vehicle density n, meaning that the frequency of the interactions experienced by the
candidate vehicle is affected by the macroscopic conditions of traffic in the stretch of road
ahead of it. Owing to all of this, in the sequel we will explicitly write η̄[n] instead of η̄hk.

The discussion above suggests that one can reinterpret the unweighted interaction rate
η̄[n] in terms of reactiveness of the vehicles (or possibly of their drivers) to the traffic
conditions along the road. In view of this, higher or lower rates of interaction should be
understood as corresponding higher or lower levels of awareness of the traffic evolution
from the vehicles, determined in particular by the local traffic congestion. Therefore, a
form of η̄[n] which closely recall that of the analogous term in the kinetic equations for a
dense Enskog gas may apply also in this case (see Fig. 3.2):

η̄[n] ≃
1

1 − n
, (3.27)

where we have implicitly assumed a nondimensionalization of n with respect to the refer-
ence value N = nmax. Accordingly, the fact that this function is monotonically increasing
for n ∈ [0, 1) implies that the local interaction rate becomes higher and higher as the vehi-
cle density increases toward its limit threshold fixed by the road capacity. Or, rephrasing
in other words, that the reactiveness of the vehicles rises as the traffic conditions on the
road become more and more serious, requiring more and more carefulness. We observe
that for n = 1, denoting the maximum possible occupancy of the road, the unweighted
interaction rate given by Eq. (3.27) blows up, meaning an infinite reactiveness of the
vehicles. Clearly, this is just a mathematical abstraction which schematizes the physical
reality, hence it is questionable from the modeling point of view. Notice, however, that for
very high values of road occupancy the physics itself of the system is likely to change dra-
matically. Indeed, vehicles cannot actually withstand arbitrarily large packing levels, as
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demonstrated by the fact that bump-to-bump configuration is never reached in real traffic.
Refraining from dealing with such an issue in this work, we nevertheless observe that if
one allows density values only strictly less than the maximum possible threshold then one
gets from Eq. (3.27) a physically and mathematically consistent rate of interaction, which
does not blow up for n < 1.

Concerning the weight function w, Assumption 3.3 fixes all its relevant properties in
order for the integrals appearing in the gain and loss operators of the kinetic equations
to represent an average of the interactions experienced by the candidate vehicle with the
field vehicles within the interaction interval Jξ(x). As for the specific form of w, different
choices can be made according to different possible criteria to evaluate the relevance of
the interactions. For merely theoretical purposes, we note here that setting w(y) = δ(y),
the Dirac function centered at the origin, allows a formal a posteriori retrieval of the
local interactions framework with, in addition, Assumption 3.3 satisfied (possibly in the
sense of distributions). Nevertheless, local interactions are hardly compatible with the
physical problem at hand, therefore more realistic weight functions fitting in the nonlocal
interactions setting need to be sought.

Probably the simplest form of such a w is obtained from the following piecewise con-
stant function:

w(y) =
1

ξ
χ[0, ξ](y), (3.28)

where χ[0, ξ] denotes the indicator function of the interval [0, ξ]. Introducing this term in
Eq. (3.22) gives a uniform average of the interactions in the interaction interval Jξ(x).
More sophisticated weight functions may be proposed, assuming for instance that the
relevance of the interactions decreases with the distance separating the interacting pairs
(cf. e.g., Delitala [21]). This amounts to requiring explicitly that w satisfies the further
condition of being monotonically decreasing in [0, ξ]:

w(y2) ≤ w(y1), ∀ y1, y2 ∈ [0, ξ], y1 ≤ y2.

As an example, one might consider the family of functions

w(y) = ae−byχ[0, ξ](y)

for suitable choices of the constants a, b > 0 that guarantee the fulfilment of the conditions
expressed by Assumption 3.3.

3.4 Concluding remarks

The form of the table of games and of the interaction rate proposed in the previous Sect.
3.3 deserves several comments from both theoretical and technical points of view.

As a major issue, we observe that the dependence of the table of games and the
interaction rate on the vehicle density n introduces a new nonlinearity in the gain and
loss operators Gi[f , f ] and Li[f ], initially not accounted for by the general discrete velocity
framework depicted by Eqs. (3.9)-(3.11). The transition distribution function F ij

hk is
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3 – The discrete velocity model

indeed originally not supposed to depend in turn on the distribution function f . In other
words, strictly holding to Eqs. (3.10), (3.11), the whole dependence of the gain and loss
operators on the functions {fi}

m
i=1 should be expressed by the quadratic term fhfk for

the former and the linear term fj for the latter, without any further influence from other

terms. However, as the transition distribution function F ij
hk generates the table of games

(cf. Eq. (3.13)) and the interaction rate (cf. Eq. (3.12)), this would force a stochastic
dynamics of the interactions independent of the spatial and temporal evolution of the local
traffic conditions on the road, which seems unrealistic considering the nonclassical nature
of the vehicles. Therefore, the choice of envisaging a dependence of the table of games
and the interaction rate on the distribution function f through n, although at present
unjustified from the point of view of the classical theoretical framework of reference, is
motivated by the necessity to address the modeling of nonclassical subjects featuring a
specific ability to adapt their behavior to the instantaneous evolution of the system.

As a minor issue, since for this specific model the interaction rate does not depend on
the velocity classes of the interacting vehicles, the i-th loss operator is formally independent
of the index i and can be technically specialized as

Li[f ](t, x) = L[f ](t, x) =

x+ξ∫

x

η̄[n](t, x∗)n(t, x∗)w(x∗ − x) dx∗,

so that one can finally consider the evolution equations (3.22) in the equivalent form

∂fi

∂t
+ vi

∂fi

∂x
=

m∑

h, k=1

x+ξ∫

x

η̄[n](t, x∗)A
i
hk[n](t, x∗)fh(t, x)fk(t, x∗)w(x∗ − x) dx∗

− fi(t, x)

x+ξ∫

x

η̄[n](t, x∗)n(t, x∗)w(x∗ − x) dx∗ (3.29)

for i = 1, . . . , m. However, for notational purposes (see Chapt. 5) and in view of a
usual trend in kinetic theories, we will maintain in the sequel the notation Li for the loss
operators of our equations.

Summing the right-hand sides of the above equations on i and taking Eq. (3.19) into
account yields

m∑

i=1

(Gi[f , f ] − fiLi[f ]) = 0,

which implies
∂n

∂t
+

∂q

∂x
= 0, (3.30)

that is the conservation of mass for the model described by Eq. (3.29).
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Chapter 4

The spatially homogeneous

problem

4.1 Mathematical setting

In this chapter we address the spatially homogeneous problem, in which the distribution
functions {fi}

m
i=1 are assumed to be independent of the spatial variable x:

fi = fi(t) : R+ → R+, i = 1, . . . , m.

As a consequence, it results

∂fi

∂x
= 0, ∀ i = 1, . . . , m,

so that the system of equations (3.29) reduces to

dfi

dt
= η̄[n]




m∑

h, k=1

Ai
hk[n]fhfk − nfi



 , i = 1, . . . , m, (4.1)

where we have specifically used the fact that, owing to Assumption 3.3, the weight function
w satisfies

x+ξ∫

x

w(x∗ − x) dx∗ = 1,

as it can be immediately seen by performing the change of variable y = x∗−x in the above
integral.

The mathematical formalization of the spatially homogeneous problem consists in the
system of ordinary differential equations (4.1) in the unknowns fi, supplemented by a
suitable set of initial conditions

fi(0) = ϕi ∈ R+, i = 1, . . . , m. (4.2)
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4 – The spatially homogeneous problem

Like for the distribution functions fi, we similarly introduce the shorthand vector notation

ϕ = (ϕ1, . . . , ϕm) ∈ Rm

to denote at once the m scalar initial conditions of system (4.1).
The spatially homogeneous problem is a good benchmark to test the reliability of the

theoretical predictions of the model with respect to the available experimental data, since it
provides some information on the trend of the system toward the equilibrium, the so-called
fundamental diagrams, that can be duly compared with the measurements performed
under uniform flow conditions (see e.g., Kerner [32]). Qualitative and computational
investigation of fundamental diagrams will be the object of the second part of the analysis
presented in this chapter (Sect. 4.3), after establishing the well-posedness of the spatially
homogeneous problem.

In order to address the qualitative analysis of Problem (4.1)-(4.2), we introduce, for
T > 0, the linear space

XT = C([0, T ]; Rm)

of the vector-valued continuous functions u = u(t) : [0, T ] → Rm, u(t) = (u1(t), . . . , um(t)),
endowed with the ∞-norm

‖u‖∞ = sup
t∈[0, T ]

‖u(t)‖1,

where, for every fixed t ∈ [0, T ], the quantity ‖u(t)‖1 denotes the 1-norm of the vector
u(t) in Rm:

‖u(t)‖1 =
m∑

i=1

|ui(t)|, t ∈ [0, T ].

We observe that (XT , ‖ · ‖∞) is a real Banach space. Furthermore, if u(t) ≥ 0 then the
1-norm of the vector u(t) yields the ‘mass’ nu(t) of the function u at time t:

‖u(t)‖1 =
m∑

i=1

ui(t) =: nu(t).

The 1-norm is expected to take advantage more directly of the conservation of mass
featured by the system at hand (cf. Sect. 3.4). However, we point out that setting in Rm

a different p-norm (see Delitala and Tosin [22]) does not affect substantially the results we
are going to state, up to some technicalities in the proof of the theorems, because in Rm

all norms are equivalent.
Regarding the table of games Ai

hk[n] and the unweighted interaction rate η̄[n] appearing
in Eq. (4.1), we assume that, besides the general modeling properties stated in Chapt. 3,
they technically satisfy the following requirements:

Assumption 4.1. We assume that the dependence of the table of games on the vehicle
density is such that

0 ≤ Ai
hk[n] ≤ 1

whenever 0 ≤ n ≤ 1.
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4 – The spatially homogeneous problem

Assumption 4.2. We assume that for all nonnegative K < 1 there exists Cη̄,K > 0 such
that

0 < η̄[n] ≤ Cη̄,K

whenever 0 ≤ n ≤ K.

Note that the table of games and the unweighted interaction rate proposed in Sect.
3.3 agree with these hypotheses. However, Assumptions 4.1, 4.2 enable one to conceive
different stochastic dynamics of the interactions, and to generate then alternative models,
for which the qualitative results we are going to establish still hold.

4.2 Well-posedness

Well-posedness of the spatially homogeneous problem means global in time existence and
uniqueness of a solution f = f(t) to the Cauchy problem (4.1)-(4.2), featuring in addition
the following properties:

(i) nonnegativity, i.e., fi(t) ≥ 0 for all t > 0 and all i = 1, . . . , m;

(ii) uniform in time boundedness, i.e.,

sup
t>0

max
i=1, ..., m

fi(t) < +∞,

related to the confinement of the vehicle density n(t) within a certain maximum
threshold linked to the road capacity (cf. Subsect. 3.3.1).

To achieve these results we go through two classical steps: First we prove existence and
uniqueness of a local in time solution f ∈ XT ∗ for a certain T ∗ > 0, featuring all the
desired characteristics, then extend it to a global solution defined for all t > 0.

4.2.1 Local existence

We agree to denote by n0 the initial mass of the system as fixed by the initial condition
ϕ ≥ 0:

n0 := ‖ϕ‖1 =
m∑

i=1

ϕi.

Existence and uniqueness of a local in time solution to Problem (4.1)-(4.2) are now ob-
tained.

Theorem 4.3. Let Assumptions 4.1, 4.2 hold, and let in addition 0 ≤ n0 < 1. Then there
exists T ∗ > 0 such that Problem (4.1)-(4.2) admits a unique nonnegative local solution
f ∈ XT ∗ satisfying the a priori estimate

‖f(t)‖1 = n0, ∀ t ∈ (0, T ∗]. (4.3)
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4 – The spatially homogeneous problem

Proof. Let us preliminarily introduce, for any u ∈ XT , the antiderivative Nu(t) vanishing
for t = 0 of the function η̄[nu](t)nu(t):

Nu(t) =

t∫

0

η̄[nu](s)nu(s) ds;

we agree to drop in the sequel the subscript u from nu and Nu whenever referring to these
quantities computed for u = f , i.e., the expected solution to Problem (4.1)-(4.2).

After multiplying both sides of Eq. (4.1) by eN(t) and integrating over [0, t], 0 ≤ t ≤ T ,
the system (4.1) is formally rewritten as follows:

fi(t) = e−N(t)ϕi +

t∫

0

eN(s)−N(t)η̄[n](s)
m∑

h, k=1

Ai
hk[n](s)fh(s)fk(s) ds. (4.4)

We now consider the subset of XT

BT = {u ∈ XT : u(t) ≥ 0, nu(t) = n0 for all t ∈ [0, T ]}

and the operator S defined componentwise on XT as

(Su)i(t) = e−Nu(t)ϕi +

t∫

0

eNu(s)−Nu(t)η̄[nu](s)
m∑

h, k=1

Ai
hk[nu](s)uh(s)uk(s) ds

for u = (u1, . . . , um) ∈ XT .
From Eq. (4.4) we deduce that any possible solution in BT to Problem (4.1)-(4.2)

corresponds to a fixed point of S on BT . In particular, if n0 = 0 then ϕ = 0, and the set
BT reduces to {0}. In this case, the function f = 0 is trivially the unique fixed point of S
on BT , i.e., the unique local in time solution to Problem (4.1)-(4.2) corresponding to zero
initial conditions, and the proof is completed. Therefore we hereafter assume n0 > 0.

Let us point out the following:

(i) For all u ∈ BT we have Nu(t) = η̄[n0]n0t, where 0 < η̄[n0] ≤ Cη̄,n0
is well-defined

(i.e., not infinite) in view of Assumption 4.2 because n0 < 1, and constant. As a
consequence, the operator S on BT takes the form

(Su)i(t) = e−η̄[n0]n0tϕi + η̄[n0]

t∫

0

eη̄[n0]n0(s−t)
m∑

h, k=1

Ai
hk[n0]uh(s)uk(s) ds. (4.5)

In addition, the coefficients Ai
hk[n0] of the table of games are constant and bounded

between 0 and 1 owing to Assumption 4.1.

(ii) S maps BT into itself. Indeed, given u ∈ BT it is immediate to check from Eq. (4.5)
that Su ∈ XT , due to the well-known continuity properties of the integral and of the
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4 – The spatially homogeneous problem

exponential function, and that (Su)(t) ≥ 0 for all t ≥ 0, due to the nonnegativity of
the initial condition ϕ. Moreover, by a direct computation we obtain

m∑

i=1

(Su)i(t) = n0e
−η̄[n0]n0t + η̄[n0]

t∫

0

eη̄[n0]n0(s−t)
m∑

h, k=1

uh(s)uk(s) ds

= n0e
−η̄[n0]n0t + n0

(
1 − e−η̄[n0]n0t

)
= n0,

which confirms that S(BT ) ⊆ BT .

(iii) The set BT is closed in XT , each T > 0. Indeed, let {u[k]}k∈N ⊆ BT be a sequence
converging to some ū ∈ XT , i.e., ‖ū − u[k]‖∞ → 0 when k → ∞. Then u[k](t)
converges pointwise to ū(t) on [0, T ], i.e., ‖ū(t) − u[k](t)‖1 → 0 when k → ∞ for all

t ∈ [0, T ], which in turn implies |ūi(t) − u
[k]
i (t)| → 0 as k → ∞ for all i = 1, . . . , m

and all t ∈ [0, T ]. Since u
[k]
i (t) ≥ 0, this says that ūi(t) ≥ 0. Moreover:

∣∣∣∣∣

m∑

i=1

ūi(t) − n0

∣∣∣∣∣ =

∣∣∣∣∣

m∑

i=1

ūi(t) −
m∑

i=1

u
[k]
i (t)

∣∣∣∣∣ ≤ ‖ū(t) − u[k](t)‖1,

whence, considering that the right-hand side of the above inequality can be made
arbitrarily small for large enough k, we conclude

∑m
i=1 ūi(t) = n0 for all t ∈ [0, T ],

and finally ū ∈ BT .

In view of the previous points (i)-(iii), it is sufficient to prove that, for a suitable
choice of T , the mapping S : BT → BT is a contraction to obtain from Banach Fixed Point
Theorem the existence and uniqueness of a local in time solution to Problem (4.1)-(4.2).
To this end, we introduce the operator A : BT → XT defined componentwise by

(Au)i(t) = eη̄[n0]n0t
m∑

h, k=1

Ai
hk[n0]uh(t)uk(t).

Therefore, one has

(Su)(t) = e−η̄[n0]n0t



ϕ + η̄[n0]

t∫

0

(Au)(s) ds



 ,

whence, for u,v ∈ BT ,

‖(Su)(t) − (Sv)(t)‖1 ≤ η̄[n0]e
−η̄[n0]n0t

t∫

0

‖(Au)(s) − (Av)(s)‖1 ds,

which, recalling Assumption 4.2 and taking the supremum over t ∈ [0, T ] of both sides,
entails

‖Su − Sv‖∞ ≤ Cη̄,n0
T‖Au − Av‖∞. (4.6)
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4 – The spatially homogeneous problem

If we can show that A is Lipschitz on BT (though not necessarily a contraction), Eq.
(4.6) will provide suitable conditions on T that make S a contraction on BT . For this we
compute:

‖(Au)(t) − (Av)(t)‖1 = eη̄[n0]n0t
m∑

i=1

∣∣∣∣∣∣

m∑

h, k=1

Ai
hk[n0] [uh(t)uk(t) − vh(t)vk(t)]

∣∣∣∣∣∣

≤ eη̄[n0]n0t
m∑

h, k=1

|uh(t)uk(t) − vh(t)vk(t)|;

adding and subtracting uh(t)vk(t) yields

≤ eη̄[n0]n0t

(
m∑

h=1

|uh(t)|
m∑

k=1

|uk(t) − vk(t)|

+
m∑

k=1

|vk(t)|
m∑

h=1

|uh(t) − vh(t)|

)

= eη̄[n0]n0t(nu(t) + nv(t))‖u(t) − v(t)‖1

= 2n0e
η̄[n0]n0t‖u(t) − v(t)‖1,

thus
‖Au − Av‖∞ ≤ 2n0e

η̄[n0]n0T ‖u − v‖∞.

Owing to Eq. (4.6) we deduce

‖Su − Sv‖∞ ≤ 2n0Cη̄,n0
Teη̄[n0]n0T ‖u − v‖∞,

therefore S is a contraction on BT provided T > 0 is chosen in such a way that

Teη̄[n0]n0T <
1

2n0Cη̄,n0

.

As the function t 7→ teη̄[n0]n0t is continuous and strictly increasing for t ≥ 0, vanishes
for t = 0, and tends to +∞ for t → +∞, there exists at least a positive value of T ,
say T = T ∗, satisfying the above inequality. Thus we conclude that Problem (4.1)-(4.2)
admits a unique local in time solution f ∈ BT ∗ such that

‖f(t)‖1 = n(t) = n0, ∀ t ∈ (0, T ∗],

which completes the proof.

The a priori estimate (4.3) has its physical counterpart in the conservation of the
vehicle mass fulfilled by the system, as it can be further checked by summing Eq. (4.1)
over i: one gets

d

dt

m∑

i=1

fi(t) = 0,

40



4 – The spatially homogeneous problem

which states precisely that for the local in time solution f the macroscopic mass n is
constant in t. We observe moreover that this a priori estimate can be easily converted
into an estimate for the local solution f in XT ∗ , in fact:

‖f‖∞ = sup
t∈[0, T ∗]

‖f(t)‖1 = n0.

Before ending this subsection, we want to stress the importance of the hypotheses of
Theorem 4.3. The boundedness of the initial density n0 between 0 and 1 is crucial to have
a table of games Ai

hk[n] consistent with the probabilistic interpretation discussed in Sect.
3.3, hence for the Cauchy problem (4.1)-(4.2) to make sense with respect to the general
framework within which it is conceived. This issue is not present in other works sharing
with the present one a similar framework, like e.g., Bertotti and Delitala [13] or Coscia et
al. [18], because there the table of games is not assumed to depend on the solution f itself
of the problem.

4.2.2 Global existence

The existence of a local in time solution f(t) to Problem (4.1)-(4.2) and the a priori
estimate (4.3) allow to extend f(t) on the whole positive real axis R+. In fact, we can
prove:

Theorem 4.4. Under the same hypotheses of Theorem 4.3, one can take T ∗ = +∞,
that is Problem (4.1)-(4.2) admits a unique nonnegative global solution f ∈ C(R+; Rm)
satisfying

‖f(t)‖1 = n0, ∀ t > 0.

Proof. It suffices to apply the same reasoning developed in the proof of Theorem 4.3 on
the interval (T ∗, 2T ∗], taking f(T ∗) as new initial condition. Since fi(T

∗) ≥ 0 for all
i = 1, . . . , m, and moreover

m∑

i=1

fi(T
∗) = n0 ∈ [0, 1),

we are in the same hypotheses of Theorem 4.3, hence we conclude on the existence and
uniqueness of a local in time continuous solution on (T ∗, 2T ∗] satisfying

‖f(t)‖1 = n0, ∀ t ∈ (T ∗, 2T ∗].

Therefore, the local solution f ∈ BT ∗ to Problem (4.1)-(4.2) given by Theorem 4.3 can be
uniquely extended to a local solution f ∈ B2T ∗ . Iterating this reasoning on all intervals
of the form (kT ∗, (k + 1)T ∗], k ∈ N, we construct the global solution on R+ and we are
done.

The a priori estimate on the global solution implies its uniform in time boundedness,
in fact, observing that fi(t) ≤ ‖f(t)‖1 for all t > 0 and all i = 1, . . . , m due to the
nonnegativity of each fi, we have

sup
t>0

max
i=1, ..., m

fi(t) ≤ sup
t>0

‖f(t)‖1 = n0 < +∞. (4.7)
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As far as the regularity of the solution is concerned, we observe that, strictly speaking,
Theorem 4.4 defines f as a mild solution of Problem (4.1)-(4.2), indeed it asserts the
continuity in time of f but not its differentiability. Actually, this is a consequence of
the fact that both local and global well-posedness of the spatially homogeneous problem
have been addressed by Theorems 4.3 and 4.4 on the basis of Eq. (4.4), which, being
a reformulation of the Cauchy problem (4.1)-(4.2) in an integral, thus weak, form, only
requires the continuity of the functions fi. However, classical (and even more) regularity
of f can be straightforwardly recovered a posteriori as follows:

Corollary 4.5. The solution f to Problem (4.1)-(4.2) is of class C∞ on R+.

Proof. The continuity of f on R+ implies that the right-hand side of Eq. (4.1) is continuous
in t ≥ 0 for each i = 1, . . . , m, that is f ′

i ∈ C(R+) each i. Differentiating once Eq. (4.1)
with respect to t gives, by a similar reasoning, f ′′

i ∈ C(R+) each i. Proceeding inductively
this way finally yields the thesis.

4.3 Fundamental diagrams

Fundamental diagrams show the dependence of some macroscopic quantities of interest,
like e.g., the vehicle flux q (cf. Eq. (3.4)) or the average velocity u (cf. Eq. (3.5)), on the
density n at the equilibrium, i.e., under uniform homogeneous flow conditions. Technically,
the name ‘fundamental diagram’ should be used specifically for the diagram of q vs. n,
while the diagram of u vs. n should be called more properly velocity diagram. However,
for the sake of simplicity, in the present context we will use the term fundamental diagram
to refer to any diagram relating a certain macroscopic quantity to the vehicle density at
the equilibrium.

The use of fundamental diagrams is especially popular in first order hydrodynamic
traffic models, where they are employed to devise a phenomenological closure q = q(n) (or,
alternatively, u = u(n), considering that q = nu) of the macroscopic mass conservation
equation (1.2), see also Eq. (1.3). Some of them, trying to mimic the experimentally
computed fundamental diagrams (examples of which are reported in the Introduction of
the book by Kerner [32] for several US highways), can be found in the works by Bonzani
[14], Bonzani and Mussone [15], and Whitham [53], as well as in the review paper by
Bellomo and Coscia [6].

Kinetic models do not rely instead on this procedure to get a self-consistent system
of evolution equations, therefore in this case fundamental diagrams can be studied a
posteriori as a by-product of the model itself. In particular, this can be done by means of
the spatially homogeneous problem, because the possible equilibria of system (4.1) identify
precisely the points of the fundamental diagrams corresponding to a certain initially fixed
macroscopic density n0.

One consequence of Theorem 4.4 is that the set

B = {x ∈ Rm : x ≥ 0, ‖x‖1 = n0 ∈ [0, 1)} (4.8)

is positively invariant for the system (4.1): If f(0) = ϕ ∈ B, then f(t) ∈ B for all t > 0.
On the other hand, we have already discussed in Subsect. 4.2.1 the necessity to choose
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the initial condition (4.2) in B, so that this subset of the state space Rm turns out to be
the only one relevant for our purposes.

According to the discussion above, in order to plot fundamental diagrams we need to
investigate and characterize the equilibria of system (4.1), that is the points x ∈ B such
that if ϕ = x then f(t) = x for all t > 0. More specifically, we are preliminarily interested
in their existence and uniqueness. We anticipate that we will be much more exhaustive on
the first issue, while for the second one we will essentially limit ourselves to the analysis
of particular cases, simple enough to make the analytical investigation affordable but at
the same time quite representative of the main features of the system.

We begin by stating a result that says that equilibria actually exist for our system.

Theorem 4.6. The system (4.1) has at least one equilibrium point in the set B defined
by Eq. (4.8).

Proof. The equilibria of the system (4.1) on B are given by

m∑

h, k=1

Ai
hk[n0]xhxk − n0xi = 0, i = 1, . . . , m. (4.9)

Notice in particular that, due to n0 < 1 and to Assumption 4.2 on the unweighted inter-
action rate, the term η̄[n0] is a constant to be hidden in the time scale.

If n0 = 0 then the set B reduces to the point x = 0, which is actually an equilibrium.
Otherwise, if 0 < n0 < 1 then any solution to Eq. (4.9) can be viewed as a fixed point of
the operator S : B → Rm defined componentwise as

(Sx)i =
1

n0

m∑

h, k=1

Ai
hk[n0]xhxk, i = 1, . . . , m.

Looking more closely at the set B, we discover the following characteristics:

(i) B is bounded, indeed it is contained into the (closed) ball of Rm with radius n0 and
center at the origin.

(ii) B is closed in Rm. Let {x[k]}k∈N ⊆ B be a sequence converging to some x̄ ∈ Rm,
that is ‖x̄ − x[k]‖1 → 0 when k → ∞. To see that x̄ ∈ B we first observe that

|x̄i − x
[k]
i | → 0 when k → ∞ for all i = 1, . . . , m, which, owing to x

[k]
i ≥ 0, implies

x̄i ≥ 0. Furthermore,

|‖x̄‖1 − n0| =

∣∣∣∣∣

m∑

i=1

x̄i −
m∑

i=1

x
[k]
i

∣∣∣∣∣ ≤ ‖x̄ − x[k]‖1,

whence ‖x̄‖1 = n0 as the right-hand side of the above inequality can be made
arbitrarily small for sufficiently high k.

Since B ⊆ Rm, properties (i) and (ii) say that B is compact. In addition:
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(iii) B is convex. Let x,y ∈ B and let us define zλ ∈ Rm as a convex linear combination
of x and y via a parameter λ ∈ [0, 1], that is zλ = λx+(1−λ)y. To see that zλ ∈ B
for all λ ∈ [0, 1] we first check that zλ ≥ 0, then, owing to the nonnegativity of x,y,
we further obtain ‖zλ‖1 = λ‖x‖1 + (1 − λ)‖y‖1 = n0.

As for the operator S, we instead observe that it maps B into itself: Using the proper-
ties of the table of games expressed by Eq. (3.19) we immediately get the nonnegativity of
Sx and also

∑m
i=1(Sx)i = 1

n0
n2

0 = n0, thus S(B) ⊆ B. In addition, for x,y ∈ B it results

‖Sx − Sy‖1 =
m∑

i=1

|(Sx)i − (Sy)i| ≤
1

n0

m∑

h, k=1

|xhxk − yhyk|

whence, adding and subtracting xhyk,

≤
1

n0
(‖x‖1 + ‖y‖1)‖x − y‖1 = 2‖x − y‖1,

which implies the continuity (actually, the Lipschitz continuity) of S on B.

In view of the above reasoning we are in a position to apply Brouwer Fixed Point
Theorem, which guarantees existence of fixed points of S in B, and thus leads us to the
thesis.

As it often happens when using a fixed point technique, Theorem 4.6 gives existence
but not uniqueness of equilibria in B. As a matter of fact, uniqueness cannot be ensured
for all possible choices of the coefficients of the table of games, for neither hypotheses
(3.19) nor Assumption 4.1 is in general sufficient to exclude multiple equilibria.

As a simple example, assume that the table of games is such that

Ah
hh[n0] = 1, ∀h = 1, . . . , m,

and, by consequence,

Ai
hh[n0] = 0, ∀ i 6= h.

For instance, this may be obtained from the structure presented in Subsect. 3.3.1 by
setting α = 0 in Eqs. (3.23)-(3.26). Consider then the point xi0 ∈ B whose components
are given by

xi0
i =

{
n0 if i = i0

0 otherwise

for a certain fixed i0 ∈ {1, . . . , m} and for 0 < n0 < 1. Referring to the operator S
defined in the proof of Theorem 4.6, it is easy to compute (Sxi0)i = Ai

i0,i0
[n0]n0 for all

i = 1, . . . , m, hence finally

(Sxi0)i =

{
n0 if i = i0

0 otherwise,
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that is Sxi0 = xi0 . This means that any trivial distribution xi0 in which all vehicles are
traveling at the same speed in a unique cluster is a fixed point of S for all i0 = 1, . . . , m,
hence in this case the system has at least m admissible equilibria.

Conversely, if there exists i0 ∈ {1, . . . , m} such that Ai0
i0,i0

[n0] < 1 then the corre-
sponding trivial distribution is no longer an equilibrium point, in fact in this case we have
(Sxi0)i0 = Ai0

i0,i0
[n0]n0 < n0 = xi0

i0
. In particular, if one chooses α > 0 in Eqs. (3.23)-(3.26)

then

Ah
hh[n0] < 1, ∀h = 1, . . . , m,

thus none of the previous points xi0 is a possible equilibrium for the system. In other
words, in this case vehicles do not tend to concentrate in a cluster of constant velocity but
undergo the speed spread discussed in Subsect. 3.3.1.

Apart from these general considerations and in view of the difficulty to address the full
m-dimensional case, we now analyze in detail the equilibrium configurations of the system
in the relatively simple cases m = 2, m = 3, with specific reference to the table of games
presented in Chapt. 3. Although somehow limiting from the modeling point of view,
these cases study give however a quite good idea of the complexity of the dynamics of the
equilibria, highlighting at the same time some key issues they can be sensibly affected by.

4.3.1 The case study m = 2

For m = 2 the velocity grid is constituted by two points only, v1 = 0 and v2 = 1, therefore
each vehicle is characterized by a binary state: It is either staying or moving, without any
differentiation between fast and slow vehicles.

Given a density n0 ∈ (0, 1), the set B where we look for equilibria is

B = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 = n0}.

Due to the conservation of mass fulfilled by the system, with the substitution x2 = n0−x1

in Eq. (4.9) the problem reduces to find the solutions to the following single equation

(A1
11 − A1

12 − A1
21 + A1

22)x
2
1 − (1 − A1

12 − A1
21 + 2A1

22)n0x1 + A1
22n

2
0 = 0

in the unknown x1 ∈ [0, n0], which, according to the definition of the coefficients Ai
hk[n0]

discussed in Subsect. 3.3.1, further specializes to

(α − 1)x2
1 − (2α − 1)n0x1 + αn3

0 = 0. (4.10)

If α = 0, whence A1
11[n0] = A2

22[n0] = 1, the solutions to this equation are x1 = 0,
x1 = n0, corresponding to the trivial equilibrium distributions (0, n0) and (n0, 0) already
predicted by the general considerations developed above.

For α > 0, it is instead convenient to introduce the function F : R2 → R defined by
the left-hand side of Eq. (4.10), namely

F (x1, α) = (α − 1)x2
1 − (2α − 1)n0x1 + αn3

0,
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n2

0

n0

0 1

α

x1 = g(α)

Figure 4.1. The equilibrium point x1 as a function of α in the case m = 2.

which is such that
∂F

∂x1
(x1, α) = 2(α − 1)x1 − (2α − 1)n0.

Since (∂x1
F )(0, 0) = −(∂x1

F )(n0, 0) = n0, and recalling that we are working under the
hypothesis n0 6= 0, we infer that in suitable neighborhoods of the points (x1, α) = (0, 0),
(x1, α) = (n0, 0) Eq. (4.10), which can be read in terms of F as F (x1, α) = 0, defines
implicitly x1 as a function of α. In detail, there exist functions f, g : R → R such that
about α = 0 one has x1 = f(α) with f(0) = 0 and x1 = g(α) with g(0) = n0, respectively.
The Implicit Function Theorem enables one to compute the derivatives of f and of g for
α = 0:

f ′(0) = −
(∂αF )(0, 0)

(∂x1
F )(0, 0)

= −n2
0 < 0, g′(0) = −

(∂αF )(n0, 0)

(∂x1
F )(n0, 0)

= −n0(1 − n0) < 0.

Since they are both negative, we see that for sufficiently small α the point x1 = 0 moves
toward negative values (indeed f(α) = f ′(0)α + o(α) for α → 0+), hence it leaves the
interval [0, n0] and the corresponding equilibrium disappears, while the point x1 = n0

moves in the interior of [0, n0] (in fact g(α) = n0 + g′(0)α + o(α) for α → 0+) and still
defines an admissible equilibrium.

In this case it is easy to compute explicitly the function g by solving the second order
polynomial equation (4.10):

g(α) =





n0

2α − 1 −
√

1 + 4α(α − 1)(1 − n0)

2(α − 1)
if 0 ≤ α < 1,

n2
0 if α = 1;

the graph of g depicted in Fig. 4.1 confirms the theoretical prediction obtained above and
shows that the (right) neighborhood of α = 0 in which they hold actually coincides with

46



4 – The spatially homogeneous problem

0

0.25

1

0 0.5 1

n

u(n)

q(n)

Figure 4.2. The classical fundamental diagrams with linear velocity and parabolic flux
profiles, extensively used by many Authors in hydrodynamic first order traffic models, are
obtained here as equilibria of our discrete kinetic model with two velocities only.

the whole interval [0, 1], since the point x1 = g(α) remains in the admissible domain [0, n0]
for all α ∈ [0, 1].

Note that letting α = 1 yields x1 = n2
0 and consequently x2 = n0 − n2

0, therefore the
average velocity u and the macroscopic flux q at the equilibrium are expressed in terms of
the vehicle density n as

u(n) = 1 − n, q(n) = n(1 − n).

These functions, plotted in Fig. 4.2, correspond to the linear velocity and parabolic flux
profiles often cited as prototypes of closure relations of the mass conservation equation
in first order hydrodynamic traffic models. As a consequence, we can look at those mod-
els under a new point of view, arguing that they presuppose a quite poor dynamics of
the microscopic interactions among the vehicles however hidden by average macroscopic
modeling.

4.3.2 The case study m = 3

For m = 3 the velocity grid consists of three points, which, according to Eq. (3.1), are
v1 = 0, v2 = 1

2 , v3 = 1. The dynamics of the interactions is now richer than in the previous
case, since three state classes are represented, with possible differentiation between fast
and slow vehicles.

Given a density n0 ∈ (0, 1), the set B becomes specifically

B = {(x1, x2, x3) ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 + x3 = n0}.

Furthermore, after the substitution x3 = n0 − x1 − x2, Eq. (4.9) originates the following
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E′′′

E′′

α = 0

x1

x2

E′

n0

0

n00

α = 0.3

x1

x2

E′′

n0

0
n00

α = 1

x1

x2

E′′

Figure 4.3. The dependence of the equilibrium point (x1, x2) on α in the case m = 3. The
arrows represent the vector field F = (F1, F2) as a function of (x1, x2).

system of two equations in the unknowns x1, x2 ∈ [0, n0]:






[α(1 − n0) − 1]x2
1 + αn0x

2
2 + [1 − α(1 − n0)]n0x1 = 0,

αn0x
2
1 + [α(3 − n0) − 2]x1x2 + [α(1 − n0) − 1]x2

2

+αn0(1 − 3n0)x1 + (1 − α)n0x2 + αn3
0 = 0.

(4.11)

By the same previous technique, we try to characterize how the parameter α influences
the equilibria of the system.

For α = 0 the following three solutions to Eq. (4.11) are found:

E′ = (0, 0), E′′ = (n0, 0), E′′′ = (0, n0),

which constitute the vertexes of the triangle obtained by projecting B ⊂ R3 onto the plane
x3 = 0 (see Fig. 4.3).

In order to treat the case α > 0, we introduce the vector-valued function F : R3 → R2,
F = (F1, F2), defined by

F1(x1, x2, α) = [α(1 − n0) − 1]x2
1 + αn0x

2
2 + [1 − α(1 − n0)]n0x1,

F2(x1, x2, α) = αn0x
2
1 + [α(3 − n0) − 2]x1x2 + [α(1 − n0) − 1]x2

2

+ αn0(1 − 3n0)x1 + (1 − α)n0x2 + αn3
0,

and compute its Jacobian matrix with respect to x1, x2 in E′, E′′, E′′′ for α = 0:

(D(x1, x2)F ) = (E′, 0) = −(D(x1, x2)F )(E′′, 0) =

(
n0 0
0 n0

)
,

(D(x1, x2)F )(E′′′, 0) =

(
n0 0

−2n0 −n0

)
.

Since for n0 6= 0 none of these three matrices is singular, the system (4.11), which can be
read in terms of the function F as F (x1, x2, α) = 0, defines implicitly (x1, x2) as a function
of α in a neighborhood of α = 0 for each of the points E′, E′′, E′′′. More specifically,
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there exist vector-valued functions f, g, h : R → R2 such that (x1, x2) = f(α), g(α), h(α),
respectively, with moreover f(0) = E′, g(0) = E′′, h(0) = E′′′. As before, we compute
now the derivatives f ′(0), g′(0), h′(0) in order to discover how the equilibria E′, E′′, E′′′

are perturbed by α:

f ′(0) = −[(D(x1, x2)F )(E′, 0)]
−1 ∂F

∂α
(E′, 0) = −(0, n2

0),

g′(0) = −[(D(x1, x2)F )(E′′, 0)]
−1 ∂F

∂α
(E′′, 0) = n0(1 − n0)(−1, 1),

h′(0) = −[(D(x1, x2)F )(E′′′, 0)]
−1 ∂F

∂α
(E′′′, 0) = n0(−n0, 1).

For n0 6= 0 both vectors f ′(0) and h′(0) point outward the triangle E′E′′E′′′; recalling

f(α) = E′ + f ′(0)α + o(α), h(α) = E′′′ + h′(0)α + o(α) (α → 0+),

we see that that for α > 0 sufficiently small the equilibria E′, E′′′ disappear. Conversely,
the vector g′(0) points inward the triangle (more precisely, along the direction E′′E′′′),
therefore E′′ moves toward a still admissible and unique (at least for small α) equilibrium.

Figure 4.3 shows how E′′ moves toward the interior of the triangle E′E′′E′′′ and con-
firms the theoretical results obtained in this subsection, implying at the same time that
for all 0 < α ≤ 1 the point E′′ remains indeed the unique stable equilibrium of the system.

4.3.3 Computational analysis and the phase transition

Numerical simulations of Eq. (4.1) have been carried out to obtain the fundamental
diagrams relating the average velocity u, the macroscopic flux q, and also the variance
of the velocity Θ (cf. Eq. (3.6)) to the vehicle density n at the equilibrium. Time
integration has been performed by a standard fourth-order Runge-Kutta scheme, using a
uniform velocity grid with m = 6 velocity classes (v1 = 0, . . . , v6 = 1).

Figure 4.4 shows the numerical results for three different values of the parameter α,
namely α = 0.3, α = 0.6, α = 1, corresponding to different road conditions. Considering
in particular the cases of intermediate and good roads (α = 0.6 and α = 1, respectively),
we observe that for low density the flux q exhibits an almost linear behavior, which is
in agreement with the experimental observations reported by Kerner [32] under free flow
conditions. Its subsequent strongly nonlinear decrease to zero suggests a critical change
in the characteristics of the traffic for high density, that we interpret as the well-known
phase transition between the free and congested flow regimes, experimentally described
by Kerner himself and mathematically studied by some Authors, like e.g., Colombo [17],
in the framework of macroscopic hyperbolic models.

As a further confirmation of the ability of the model to capture such phase transi-
tion, we note that the maximum of the variance of the velocity Θ is located precisely
in correspondence of the density value for which the change in the flux behavior occurs.
In addition, the average velocity u rapidly switches from a nearly constant value for low
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Figure 4.4. Fundamental diagrams for the macroscopic flux (a), the average velocity
(b) and the velocity variance (c) as functions of the macroscopic density, obtained under
various road conditions (α = 0.3, α = 0.6, α = 1, respectively). In (d) the equilibrium
distribution of the velocity is shown for three possible values of the density (n = 0.2,
n = 0.4, n = 0.6) and for α = 1.

density, close to the maximum one allowed on the road, to values near to zero once the
above mentioned critical density threshold has been overcome.

Finally, we note that when the quality of the road decreases the phase transition is
correspondingly anticipated at lower values of n.

It is worth stressing that this experimentally observed feature is reproduced by our
discrete velocity kinetic model as a result of the evolution of the system. In other words,
it is not postulated a priori as a modeling assumption, like for instance in the above-cited
paper by Colombo [17], but is described by the model itself on the basis of more general
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principles, thanks to a detailed analysis of the microscopic interactions among the vehicles.
In Fig. 4.4(d) the equilibrium distribution of the velocity is shown for three possible

values of the vehicle density, n = 0.2, n = 0.4, n = 0.6, and for α = 1, the results for
different α being in principle similar for suitable corresponding densities. We observe, as
expected, the concentration of the vehicles in the extreme velocity classes for low and high
n, respectively, and instead their central distribution for intermediate density.
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Chapter 5

The spatially inhomogeneous

problem

5.1 Mild formulation of the problem

This chapter deals with the spatially inhomogeneous problem, which describes the spatial
and temporal evolution of the traffic subjected to suitable initial and boundary conditions.
The distribution functions fi feature now a full dependence on both variables t and x,
which are assumed to range in suitable intervals [0, T ] and Dx ⊆ R, respectively, T > 0
denoting the final time (possibly +∞):

fi = fi(t, x) : [0, T ] × Dx → R+, i = 1, . . . , m.

The spatially inhomogeneous problem consists of the system of equations

∂fi

∂t
+ vi

∂fi

∂x
= Gi[f , f ] − fiLi[f ], i = 1, . . . , m, (5.1)

supplemented by a set of initial conditions

fi(0, x) = ϕi(x), i = 1, . . . , m (5.2)

and of boundary values conveniently prescribed at the proper endpoints of the interval Dx

(or possibly at infinity if Dx is unbounded). For the sake of convenience, we recall here
the definitions of the i-th gain and loss operators as they have been modeled in Chapt. 3:






Gi[f , f ](t, x) =

m∑

h, k=1

x+ξ∫

x

η̄[n](t, x∗)A
i
hk[n](t, x∗)fh(t, x)fk(t, x∗)w(x∗ − x) dx∗

Li[f ](t, x) =
m∑

k=1

x+ξ∫

x

η̄[n](t, x∗)fk(t, x∗)w(x∗ − x) dx∗.

(5.3)
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Equation (5.1) is an integro-differential system of equations with linear hyperbolic
advection part, whose characteristic curves satisfy in the space-time domain the ordinary
differential equations

dx

dt
= vi, i = 1, . . . , m.

Hence, there exist m families of characteristics constituted by the lines x−vit = constant.
In particular, the equation of the characteristic of the i-th family issuing from the point
x = x0 at the initial time t = 0 is x − vit = x0. Since vi ≥ 0 for all i = 1, . . . , m, the
characteristics advect the data rightward (except at most for the characteristics of the first
family, which do not advect data as v1 = 0). Therefore, the inflow boundary of the spatial
domain is the left endpoint of the interval Dx, where boundary values possibly have to be
prescribed.

Following the approach introduced by Nishida and Mimura [40], and adopted among
others by Tartar [46] and Toscani [47], we hereafter denote by f̂i(t, x) the restriction of
the i-th distribution function to the characteristic of its own family issuing from the point
x at t = 0, that is

f̂i(t, x) := fi(t, x + vit). (5.4)

Bearing this in mind, we will henceforth use the hat over whatsoever function to indicate
the restriction of that function to a proper family of characteristics of the system at
hand. Notice in particular that when the i-th distribution function is restricted to the
characteristic of the j-th family, that is when one considers a quantity like fi(t, x + vjt),
then Eq. (5.4) generalizes to

fi(t, x + vjt) = f̂i(t, x + (vj − vi)t). (5.5)

The main example of this use, that will be extensively referenced in the sequel, concerns
the gain and loss operators (5.3):

Ĝi[f , f ](t, x) := Gi[f , f ](t, x + vit)

=
m∑

h, k=1

x+vit+ξ∫

x+vit

η̄[n](t, x∗)A
i
hk[n](t, x∗)fh(t, x + vit)

× fk(t, x∗)w(x∗ − x − vit) dx∗

=
m∑

h, k=1

x+ξ∫

x

η̄[n](t, x∗ + vit)A
i
hk[n](t, x∗ + vit)fh(t, x + vit)

× fk(t, x∗ + vit)w(x∗ − x) dx∗

=
m∑

h, k=1

x+ξ∫

x

η̄[n](t, x∗ + vit)A
i
hk[n](t, x∗ + vit)f̂h(t, x + (vi − vh)t)

× f̂k(t, x∗ + (vi − vk)t)w(x∗ − x) dx∗, (5.6)
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and analogously

L̂i[f ](t, x) := Li[f ](t, x + vit)

=
m∑

k=1

x+ξ∫

x

η̄[n](t, x∗ + vit)f̂k(t, x∗ + (vi − vk)t)w(x∗ − x) dx∗. (5.7)

In addition, we observe that the macroscopic vehicle density n can be expressed in terms
of the restrictions f̂i as

n(t, x) =
m∑

i=1

f̂i(t, x − vit). (5.8)

Remark. As a matter of fact, the restrictions of the gain and loss operators to the char-

acteristics should be denoted more properly by Ĝi[f , f ] and L̂i[f ], respectively, in strict
accordance with the meaning of the hat introduced above. However, in order not to make
the notation dull reading, we allow ourselves to use henceforth the corresponding lighter
writings Ĝi[f , f ], L̂i[f ] as defined by Eqs. (5.6), (5.7).

From Eq. (5.4) we deduce

∂f̂i

∂t
(t, x) =

∂fi

∂t
(t, x + vit) + vi

∂fi

∂x
(t, x + vit)

whence, taking Eqs. (5.6), (5.7) into account, we rewrite Eq. (5.1) along the characteristics
as

∂f̂i

∂t
(t, x) = Ĝi[f , f ](t, x) − f̂i(t, x)L̂i[f ](t, x), i = 1, . . . , m. (5.9)

Furthermore, we anticipate that for the subsequent treatment it will be customary to
consider the following transformation of the functions fi, f̂i:

φi(t, x) = fi(t, x)eλt, φ̂i(t, x) = f̂i(t, x)eλt, (5.10)

where λ > 0 is a parameter to be chosen conveniently. Denoting φ = (φ1, . . . , φm), from
Eqs. (5.6), (5.7) it is readily computed that

Ĝi[f , f ](t, x) = Ĝi[φ, φ](t, x)e−2λt, L̂i[f ](t, x) = L̂i[φ](t, x)e−λt. (5.11)

In addition, differentiating the second of Eqs. (5.10) with respect to t we discover

∂f̂i

∂t
= e−λt

(
∂φ̂i

∂t
− λφ̂i

)

so that system (5.9) can be reformulated in terms of the φ̂i’s as

∂φ̂i

∂t
= Ĝi[φ, φ]e−λt + φ̂i

(
λ − L̂i[φ]e−λt

)
, i = 1, . . . , m. (5.12)
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Notice that the initial conditions on the fi’s remain unchanged when passing to the
functions φ̂i, indeed φ̂i(0, x) = φi(0, x) = fi(0, x). Therefore, system (5.12) is coupled to
the same initial conditions given by Eq. (5.2):

φ̂i(0, x) = ϕi(x), i = 1, . . . , m.

Integrating Eq. (5.12) up to a time instant t ≤ T yields the mild formulation of the
spatially inhomogeneous problem that we will refer to in the sequel:

φ̂i(t, x) = ϕi(x) +

t∫

0

{
Ĝi[φ, φ](s, x)e−λs + φ̂i(s, x)

(
λ − L̂i[φ](s, x)e−λs

)}
ds. (5.13)

It is understood that solving (5.13) for φ̂ = (φ̂1, . . . , φ̂m) is equivalent to solving (5.1) for
f = (f1, . . . , fm) in the sense that from any φ̂ one can uniquely recover a mild solution f
to the original problem via the relations (5.10).

5.2 The initial value problem

In addressing the well-posedness of the spatially inhomogeneous problem we focus first of
all on the case in which the spatial domain Dx coincides with the whole real axis R. In
other words, we consider the Cauchy problem generated by the system of equations (5.1)
joined to the set of initial conditions (5.2), which we specifically consider in the mild form
given by Eq. (5.13), for x ∈ R.

Let us introduce, for T > 0, the Banach space

XT = C([0, T ]; (L1(R))m)

of the vector-valued functions u = u(t, x) : [0, T ]×R → Rm such that for all fixed t ∈ [0, T ]
the function x 7→ (u(t))(x) = u(t, x) belongs to (L1(R))m, i.e.,

‖u(t)‖1 =
m∑

i=1

‖ui(t)‖1 =
m∑

i=1

∫

R

|ui(t, x)| dx < +∞, ∀ t ∈ [0, T ], (5.14)

with moreover the mapping t 7→ ‖u(t)‖1 continuous on [0, T ]. We take the quantity

‖u‖XT
:= sup

t∈[0, T ]
‖u(t)‖1 (5.15)

as a norm on XT .
In dealing with the mild formulation (5.13), it is necessary to translate some desired

features of the functions of XT , among which we look for the solution φ of the problem,
to their corresponding restrictions to the characteristics. For this, we make the following
preliminary observations:

(i) Given u ∈ XT , by a simple change of variable in Eq. (5.14) we discover ‖û‖XT
=

‖u‖XT
, therefore we conclude that u ∈ XT if and only if û ∈ XT .
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(ii) We clearly have u(t, x) ≥ 0 almost everywhere in R and for all t ∈ [0, T ] if and only if
the analogous property holds for the restriction û too, i.e., if and only if û(t, x) ≥ 0
for almost every x ∈ R and for all t ∈ [0, T ].

(iii) In order for the vehicle density n to stay below a certain threshold K ∈ [0, 1] almost
everywhere in R and for all t ∈ (0, T ], the solution f of the spatially inhomogeneous
problem should formally satisfy, owing to Eqs. (5.8), (5.10),

n(t, x) =
m∑

i=1

f̂i(t, x − vit) ≤ K,

or equivalently

n(t, x) = e−λt
m∑

i=1

φ̂i(t, x − vit) ≤ K, (5.16)

almost everywhere in R and for all t ∈ (0, T ]. However, we anticipate that this
condition alone turns out to be insufficient for our purposes, and has rather to be
reinforced as

m∑

i=1

f̂i(t, x − viτ) ≤ K,

that is
m∑

i=1

φ̂i(t, x − viτ) ≤ Keλt,

for almost every x ∈ R and for all t ∈ (0, T ], τ ≥ 0. The reason for this stronger
constraint relies in the specific structure of the domains of dependence of the points
(x, t) ∈ R× [0, T ] as determined by the m families of characteristics of the problem.
Its utility will be evident when inspecting the proof of Theorem 5.6 below. For the
moment, we simply observe that setting τ = t in the above expressions allows to
recover, as a particular case, the desired condition

n(t, x) ≤ K, a.e. in R, ∀ t ∈ (0, T ].

A mild solution to Problem (5.1)-(5.2) is a continuously integrable nonnegative vector-
valued function f = f(t, x) defined over the set (0, T ] × R for a certain final time T > 0,
which has the additional property that the macroscopic density n is uniformly bounded in
time below the maximum threshold n = 1. In particular, in view of the discontinuity of the
unweighted interaction rate η̄[n] at n = 1, we require, like in the spatially homogeneous
problem (cf. Chapt. 4), that n be bounded below a maximum threshold K < 1. Owing
to Eq. (5.10) and to the above reasoning, in considering the mild reformulation (5.13) of
the problem we seek a solution φ = φ(t, x) : (0, T ] × R → Rm such that

(i) φ̂ ∈ XT ,

(ii) φ̂(t, x) ≥ 0 for almost every x ∈ R and all t ∈ (0, T ],
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(iii)
∑m

i=1 φ̂i(t, x − viτ) ≤ Keλt for almost every x ∈ R and all t ∈ (0, T ], τ ≥ 0.

Before going into the technical details of the theorems, few considerations on the
unweighted interaction rate, the table of games, and the weight function are in order. In
particular, concerning η̄[n] and Ai

hk[n] we still require the validity of the Assumptions 4.1,
4.2 formulated on the occasion of the spatially homogeneous problem, but we complement
them with the following further hypothesis:

Assumption 5.1. We assume that both η̄[n] and Ai
hk[n] (all i, h, k = 1, . . . , m) are Lip-

schitz continuous functions of the macroscopic density n, i.e., that there exist constants
Lη, LA > 0 such that

|η̄[n2] − η̄[n1]| ≤ Lη|n2 − n1|, |Ai
hk[n2] − Ai

hk[n1]| ≤ LA|n2 − n1| (5.17)

for all n1, n2 ∈ [0, K] and all i, h, k = 1, . . . , m.

We observe in particular that the Lipschitz condition on the table of games expressed
by Eq. (5.17) amounts to a uniform Lipschitz continuity with respect to the indexes i, h, k.
If each of the functions Ai

hk[n] is Lipschitz continuous with respect to n with Lipschitz
constant Lihk

A > 0, then Eq. (5.17) holds with

LA := max
i, h, k=1, ..., m

Lihk
A ,

which is independent of the indexes i, h, k.

As for the weight function, we simply recall here Assumption 3.3, which can be equiv-
alently restated by saying that w = w(y) : R → R is a nonnegative function supported
in the interval [0, ξ] and with unit integral over R. In this context, we simply add the
following boundedness property:

Assumption 5.2. We assume that w is bounded in the interval [0, ξ], i.e., that there
exists a constant Cw > 0 such that

0 ≤ w(y) ≤ Cw, ∀ y ∈ [0, ξ].

Notice that Assumption 5.2 allows for a wide choice of weight functions w to gener-
ate specific mathematical models (in other words, it is not a too restrictive hypothesis).
Weight functions are indeed required to feature good boundedness properties within the
interaction interval [0, ξ] only, being set to zero by default outside it. In particular, no
continuity of w is required on R.

5.2.1 Local existence

Local in time existence and uniqueness of a solution to the Cauchy problem (5.1)-(5.2) for
x ∈ R, t ∈ [0, T ] are now obtained through a series of successive intermediate steps.
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As previously anticipated, we refer to the mild formulation (5.13) of the problem,
introducing for this the operator S defined componentwise (i = 1, . . . , m) on XT by its
restriction to the characteristics as

(Ŝu)i(t, x) = ϕi(x) +

t∫

0

{
Ĝi[u,u](s, x)e−λs + ûi(s, x)

(
λ − L̂i[u](s, x)e−λs

)}
ds. (5.18)

In addition, motivated by the previous discussions, we look for the solution in the following
subset of XT :

BT =

{
u ∈ XT : û(t, x) ≥ 0,

m∑

i=1

ûi(t, x − viτ) ≤ Keλt,

‖u(t)‖1 ≤ K1 a.e. in R, ∀ t ∈ [0, T ], τ ≥ 0

}
,

K, K1 being fixed nonnegative constants with in particular K < 1.

Finally, we assume that the initial data are such that ϕi ∈ L1(R), ϕi(x) ≥ 0 a.e. in R

for all i = 1, . . . , m, and that they further satisfy

m∑

i=1

ϕi(x − vit) ≤ K0, for a.e. x ∈ R, ∀ t ≥ 0 (5.19)

for a suitable nonnegative constant K0 < K, with in addition ‖ϕ‖1 < K1.

Remark. In what follows we will constantly switch, according to the convenience of the
moment, between a function and its restriction to the characteristics. This is possible, and
is indeed useful, due to the previously discussed one-to-one correspondence linking any u
to its ‘restricted’ counterpart û.

Lemma 5.3. There exists T1 > 0 such that S maps BT1
into itself.

Proof. 1. To prove Su ∈ XT for u ∈ XT , we check the equivalent property Ŝu ∈ XT .
For this we compute preliminarily

‖(Ŝu)i(t)‖1 ≤ ‖ϕi‖1 +

t∫

0

{
‖Ĝi[u,u](s)‖1e

−λs + λ‖ûi(s)‖1

+ ‖L̂i[u](s)ûi(s)‖1e
−λs

}
ds (5.20)
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and then we estimate, in view of Assumptions 4.2 on η̄ and 5.2 on w:

‖Ĝi[u,u](s)‖1 =

∫

R

∣∣∣∣∣

m∑

h, k=1

x+ξ∫

x

η̄[nu](s, x∗ + vis)A
i
hk[nu](s, x∗ + vis)

× ûh(s, x + (vi − vh)s)ûk(s, x∗ + (vi − vh)s)w(x∗ − x) dx∗

∣∣∣∣∣ dx

≤ Cη̄,KCw

m∑

h, k=1

∫

R

∫

R

Ai
hk[nu](s, x∗ + vis)ûh(s, x + (vi − vh)s)

× ûk(s, x∗ + (vi − vk)s) dx∗ dx

= Cη̄,KCw

m∑

h, k=1

∫

R

∫

R

Ai
hk[nu](s, x∗)ûh(s, x − vhs)

× ûk(s, x∗ − vks) dx∗ dx

where, in the same spirit as the spatially homogeneous problem and according to
Eq. (5.16), we have set

nu(s, x∗) := e−λs
m∑

i=1

ûi(s, x∗ − vis).

Notice in particular that nu ≤ K for u ∈ BT , hence Assumption 4.2 on the un-
weighted encounter rate applies. Summing over i and using Eq. (3.19) we get

m∑

i=1

‖Ĝi[u,u](s)‖1 ≤
m∑

h, k=1

Cη̄,KCw‖ûh(s)‖1‖ûk(s)‖1 = Cη̄,KCw‖u(s)‖2
1. (5.21)

Analogous computations on the loss operator yield

‖L̂i[u](s)ûi(s)‖1 =

∫

R

∣∣∣∣∣

m∑

k=1

x+ξ∫

x

η̄[nu](s, x∗ + vis)ûk(s, x∗ + (vi − vk)s)

× w(x∗ − x) dx∗

∣∣∣∣∣ûi(s, x) dx

≤ Cη̄,KCw

m∑

k=1

∫

R

∫

R

ûk(s, x∗ + (vi − vk)s)ûi(s, x) dx∗ dx

= Cη̄,KCw

m∑

k=1

‖ûk(s)‖1‖ûi(s)‖1 = Cη̄,KCw‖u(s)‖1‖ûi(s)‖1,

whence
m∑

i=1

‖L̂i[u](s)ûi(s)‖1 ≤ Cη̄,KCw‖u(s)‖2
1. (5.22)
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Collecting together Eqs. (5.21), (5.22) into Eq. (5.20) gives

‖(Su)(t)‖1 =

m∑

i=1

‖(Ŝu)i(t)‖1 ≤ ‖ϕ‖1 +

t∫

0

{
Cη̄,KCw‖u(s)‖2

1e
−λs + λ‖u(s)‖1

+ Cη̄,KCw‖u(s)‖2
1e

−λs
}

ds

≤ ‖ϕ‖1 + 2tCη̄,KCw‖u‖
2
XT

+ λt‖u‖XT

and finally, taking the supremum over t ∈ [0, T ],

‖Su‖XT
≤ ‖ϕ‖1 + 2TCη̄,KCw‖u‖

2
XT

+ λT‖u‖XT
.

This technically says that Su ∈ L∞(0, T ; (L1(R))m). To get actually the continuity
of the mapping t 7→ ‖(Su)(t)‖1 we have to accept for the moment the fact that, as
we will prove independently in the next point 2, it is possible to choose λ > 0 such
that

λ − L̂i[u](s, x)e−λs ≥ 0 (5.23)

almost everywhere in R, for all s ≥ 0, and for all i = 1, . . . , m. With such a choice
of λ, we infer from Eq. (5.18) that (Ŝu)i(t, x) is the sum of nonnegative terms, thus
for t1, t2 ∈ [0, T ], t1 ≤ t2, we can write

‖(Su)i(t2)‖1 − ‖(Su)i(t1)‖1 =

∫

R

{
(Ŝu)i(t2, x) − (Ŝu)i(t1, x)

}
dx.

In particular

(Ŝu)i(t2, x) − (Ŝu)i(t1, x) =

t2∫

t1

{
Ĝi[u,u](s, x)e−λs

+ûi(s, x)
(
λ − L̂i[u](s, x)e−λs

)}
ds,

so that, owing to the nonnegativity of both the gain and loss operators for u ∈ BT ,
we obtain the following estimate

‖(Su)i(t2)‖1 − ‖(Su)i(t1)‖1 ≤

t2∫

t1

{
‖Ĝi[u,u](s, x)‖1e

−λs + λ‖ûi(s)‖1

}
ds.

Summing over i and using Eq. (5.21) we further discover

‖(Su)(t2)‖1 − ‖(Su)(t1)‖1 ≤

t2∫

t1

{
Cη̄,KCw‖u(s)‖2

1e
−λs + λ‖u(s)‖1

}
ds
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and finally

|‖(Su)(t2)‖1 − ‖(Su)(t1)‖1| ≤ (t2 − t1)
{
Cη̄,KCw‖u‖

2
XT

+ λ‖u‖XT

}
,

which shows that ‖(Su)(t2)‖1 → ‖(Su)(t1)‖1 when t2 → t1 and gives therefore the
required continuity, i.e., Su ∈ XT .

2. We now check that (Ŝu)(t, x) ≥ 0 for a.e. x ∈ R and for all t ∈ [0, T ]. Since
Ĝi[u,u](t, x) ≥ 0 for u ∈ BT , while ϕi(x) ≥ 0 by assumption, the nonnegativity of
(Su)i(t, x) each i = 1, . . . , m strictly depends on the possibility to find λ > 0 such
that the inequality (5.23) holds. For this we observe that u ∈ BT implies

m∑

k=1

ûk(s, x∗ + (vi − vk)s) =
m∑

k=1

ûk(s, (x∗ + vis) − vks) ≤ Keλs

almost everywhere in R and for all s ∈ [0, T ], therefore from the expression of L̂i[u]
resulting from Eq. (5.7) we get

L̂i[u](s, x)e−λs ≤ K

x+ξ∫

x

η̄[nu](s, x∗ + vis)w(x∗ − x) dx∗

≤ KCη̄,K

x+ξ∫

x

w(x∗ − x) dx∗ = KCη̄,K .

The nonnegativity of (Ŝu)(t, x) is then achieved by fixing λ ≥ KCη̄,K .

3. To show that
∑m

i=1(Ŝu)i(t, x−viτ) ≤ Keλt for a.e. x ∈ R and for all t ∈ [0, T ], τ ≥ 0

we first notice that, due to the nonnegativity of L̂i[u](s, x) for u ∈ BT , it results

(Ŝu)i(t, x − viτ) ≤ ϕi(x − viτ) +

t∫

0

{
Ĝi[u,u](s, x − viτ)e−λs

+ λûi(s, x − viτ)

}
ds;

in addition, recalling Assumption 4.1 on the table of games, we have

Ĝi[u,u](s, x − viτ)e−λs ≤ Cη̄,Ke−λs

x−viτ+ξ∫

x−viτ

m∑

h, k=1

ûh(s, (x − vi(τ − s)) − vhs)

× ûk(s, (x∗ + vis) − vks)w(x∗ − x + viτ) dx∗

≤ K2Cη̄,Keλs

x−viτ+ξ∫

x−viτ

w(x∗ − x + viτ) dx∗ = K2Cη̄,Keλs,
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whence

(Ŝu)i(t, x − viτ) ≤ ϕ(x − viτ) +

t∫

0

{
K2Cη̄,Keλs + λûi(s, x − viτ)

}
ds

and finally

m∑

i=1

(Ŝu)i(t, x − viτ) ≤ K0 + K

(
1 +

mKCη̄,K

λ

) (
eλt − 1

)
.

The request on the left-hand side is certainly fulfilled if

K0 +
mK2Cη̄,K

λ

(
eλt − 1

)
− K ≤ 0, ∀ t ∈ [0, T ].

In particular, owing to the monotonicity of the exponential function, it is sufficient
that this relation holds for t = T , which entails

T ≤
1

λ
log

(
1 +

λ(K − K0)

mK2Cη̄,K

)
> 0. (5.24)

4. Finally we verify that the L1-norm of (Su)(t) remains bounded from above by K1.
Exploiting the calculations performed at the previous point 1 we easily deduce

‖(Su)(t)‖1 ≤ ‖ϕ‖1 +

t∫

0

{
2Cη̄,KCw‖u(s)‖2

1e
−λs + λ‖u(s)‖1

}
ds

≤ ‖ϕ‖1 + (2Cη̄,KCwK2
1 + λK1)t,

hence we get the required bound on the left-hand side for all t ∈ [0, T ] provided the
final time T is chosen in such a way that

T ≤
K1 − ‖ϕ‖1

2Cη̄,KCwK2
1 + λK1

> 0. (5.25)

In view of the results so far obtained, we conclude that choosing any T1 > 0 satisfying
simultaneously the inequalities (5.24), (5.25), that is such that

T1 ≤ min{Eq. (5.24), Eq. (5.25)},

yields S(BT1
) ⊆ BT1

and thus the thesis.

Lemma 5.4. There exists T2 > 0 such that S is a contraction on BT2
.

62



5 – The spatially inhomogeneous problem

Proof. Proving this lemma amounts in essence to showing that for a suitable choice of the
final time T the operator S is Lipschitz continuous on BT with Lipschitz constant strictly
less than 1. To this end we take u,v ∈ BT and we compute

(Ŝu)i(t, x) − (Ŝv)i(t, x) =

t∫

0

{
Ĝi[u,u](s, x) − Ĝi[v,v](s, x)

}
e−λs ds

+ λ

t∫

0

{ûi(s, x) − v̂i(s, x)} ds

+

t∫

0

{
L̂i[v](s, x)v̂i(s, x) − L̂i[u](s, x)ûi(s, x)

}
e−λs ds,

whence

‖(Su)i(t) − (Sv)i(t)‖1 = ‖(Ŝu)i(t) − (Ŝv)i(t)‖1

≤

t∫

0

‖Ĝi[u,u](s, x) − Ĝi[v,v](s, x)‖1e
−λs ds

+ λ

t∫

0

‖ûi(s, x) − v̂i(s, x)‖1 ds

+

t∫

0

‖L̂i[v](s, x)v̂i(s, x) − L̂i[u](s, x)ûi(s, x)‖1e
−λs ds. (5.26)

In more detail, we have

‖Ĝi[u,u](s, x) − Ĝi[v,v](s, x)‖1 =

∫

R

∣∣∣∣∣∣

m∑

h, k=1

x+ξ∫

x

{
(η̄[nu] − η̄[nv])Ai

hk[nu]ûhûk

+ η̄[nv](Ai
hk[nu] − Ai

hk[nv])ûhûk

+ η̄[nv]Ai
hk[nv](ûh − v̂h)ûk

+ η̄[nv]Ai
hk[nv](ûk − v̂k)v̂h

}
w dx∗

∣∣∣∣ dx,

where we have omitted the variables of the functions under the integrals for brevity. Using
the nonnegativity of u,v ∈ BT , and consequently that of the the table of games and of
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the unweighted interaction rate (Assumptions 4.1, 4.2) we obtain

‖Ĝi[u,u](s, x) − Ĝi[v,v](s, x)‖1 ≤
m∑

h, k=1

∫

R

∫

R

|η̄[nu] − η̄[nv]|Ai
hk[nu]ûhûkw dx∗ dx

+
m∑

h, k=1

∫

R

∫

R

η̄[nv]|Ai
hk[nu] − Ai

hk[nv]|ûhûkw dx∗ dx

+

m∑

h, k=1

∫

R

∫

R

η̄[nv]Ai
hk[nv]|ûh − v̂h|ûkw dx∗ dx

+
m∑

h, k=1

∫

R

∫

R

η̄[nv]Ai
hk[nv]|ûk − v̂k|v̂hw dx∗ dx.

The Lipschitz continuity of the unweighted interaction rate and of the table of games with
respect to n given by Assumption 5.1 implies

|η̄[nu] − η̄[nv]| ≤ Lη̄|nu − nv| ≤ Lη̄

m∑

j=1

|ûj − v̂j |e
−λs

as well as

|Ai
hk[nu] − Ai

hk[nv]| ≤ LA|nu − nv| ≤ LA

m∑

j=1

|ûj − v̂j |e
−λs,

therefore we deduce

‖Ĝi[u,u](s, x) − Ĝi[v,v](s, x)‖1 ≤ (Lη̄CwK + LACη̄,KCwK)‖u(s)‖1‖u(s) − v(s)‖1

+ Cη̄,KCw(‖u(s)‖1 + ‖v(s)‖1)‖u(s) − v(s)‖1

≤ C ′‖u(s) − v(s)‖1

where C ′ > 0 is a cumulative constant deduced when bounding from above with K1 the
L1-norms of u(s) and v(s).

Analogous calculations yield

‖L̂i[v](s)v̂i(s) − L̂i[u](s)ûi(s)‖1 ≤ (Lη̄ + Cη̄,K)Cw‖vi(s)‖1‖v(s) − u(s)‖1

+ Cη̄,KCw‖u(s)‖1‖vi(s) − ui(s)‖1,

so that Eq. (5.26) finally gives, after summing over the index i = 1, . . . , m,

‖(Su)(t) − (Sv)(t)‖1 ≤ (mC ′ + C ′′)

t∫

0

‖u(s) − v(s)‖1e
−λs ds + λ

t∫

0

‖u(s) − v(s)‖1 ds

for C ′′ = (Lη̄ + 2Cη̄,K)Cw. Consequently

‖Su − Sv‖XT
≤ (mC ′ + C ′′ + λ)T‖u − v‖XT

,
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which shows that if T2 is chosen such that

T2 <
1

mC ′ + C ′′ + λ

then S is a contraction on BT2
as desired.

Lemma 5.5. The set BT is closed in XT each T ≥ 0.

Proof. Let {un}n≥1 ⊂ BT be a sequence converging to ū ∈ XT , that is

lim
n→∞

‖un − ū‖XT
= 0. (5.27)

The closure of BT in XT corresponds to the fact that actually ū ∈ BT as well. Owing to
the definition of the norm in XT (cf. Eq. (5.15)), Eq. (5.27) implies

lim
n→∞

‖un(t) − ū(t)‖1 = 0, ∀ t ∈ [0, T ], (5.28)

that is for every fixed t ∈ [0, T ] the sequence {un(t)}n≥1 converges to ū(t) in (L1(R))
m

.
Upon passing to a subsequence if necessary, we can hence assume that the functions
un(t, x) converge pointwise to ū(t, x) for almost every x ∈ R, namely

lim
n→∞

un(t, x) = ū(t, x), for a.e. x ∈ R,∀ t ∈ [0, T ]. (5.29)

On this basis we check that ū satisfies all the requirements needed to be an element of the
set BT .

1. Equation (5.29) immediately implies ˆ̄u(t, x) ≥ 0 for a.e. x ∈ R and all t ∈ [0, T ], as
the same is true for ûn(t, x) each n ≥ 1 by assumption.

2. Let t ∈ [0, T ], τ ≥ 0, then

m∑

i=1

ˆ̄ui(t, x − viτ) =

m∑

i=1

lim
n→∞

(ûi)n(t, x − viτ)

= lim
n→∞

m∑

i=1

(ûi)n(t, x − viτ) ≤ Keλt for a.e. x ∈ R.

3. Equation (5.28) implies ‖ū(t)‖1 = limn→∞ ‖un(t)‖1 all t, hence we get ‖ū(t)‖1 ≤ K1

for all t ∈ [0, T ].

We are now in a position to prove our local existence theorem for the initial value
spatially inhomogeneous problem. For the sake of definiteness, we recall in the statement
of the theorem all hypotheses that bring to the result.
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Theorem 5.6. Let Assumptions 4.1, 4.2, 5.1, 5.2 on the unweighted interaction rate, the
table of games, and the weight function hold. Fix moreover two constants 0 ≤ K0 < K < 1
and assume that the initial data are such that ϕi ∈ L1(R), ϕi(x) ≥ 0 for a.e. x ∈ R for
all i = 1, . . . , m, with in addition

m∑

i=1

ϕi(x − vit) ≤ K0, for a.e. x ∈ R, ∀ t ∈ [0, T ].

Then there exists T ∗ > 0 such that Problem (5.1)-(5.2) admits a unique nonnegative
solution f ∈ XT ∗ such that

n(t, x) ≤ K, for a.e. x ∈ R, ∀ t ∈ (0, T ∗].

Proof. Let us choose T ∗ ≤ min{T1, T2}, where T1, T2 > 0 are determined by Lemmas
5.3 and 5.4, respectively. Then the operator S maps BT ∗ into itself (Lemma 5.3), and
is moreover a contraction on BT ∗ (Lemma 5.4). In addition, owing to Lemma 5.5, BT ∗

is closed in XT ∗ , therefore we can apply Banach Fixed Point Theorem and conclude on
the existence and uniqueness of a fixed point φ ∈ BT ∗ of S. Specifically, since φ satisfies
by definition Sφ = φ, from Eq. (5.18) we see that it solves Eq. (5.13) on R × (0, T ∗],
hence it generates, via the transformation (5.10), the unique solution f ∈ XT ∗ to Problem
(5.1)-(5.2).

It is plain that f ≥ 0, indeed φ ∈ BT ∗ implies in particular φ ≥ 0. Furthermore we
deduce

∑m
i=1 φ̂i(t, x− viτ) ≤ Keλt for a.e. x ∈ R and all t ∈ (0, T ∗], τ ≥ 0, whence setting

τ = t and recalling Eq. (5.16) entails the desired estimate on n(t, x).

5.2.2 Further remarks on the local solution

Theorem 5.6 states that if the initial data {ϕi}
m
i=1 satisfy some basic requirements of

boundedness, nonnegativity, and integrability then the initial value spatially inhomoge-
neous problem admits a unique solution f = f(t, x) = (f1(t, x), . . . , fm(t, x)) defined for
t ∈ (0, T ∗], x ∈ R, which features some nice mathematical properties making it meaningful
from the physical point of view. In particular, it is possible to control the macroscopic
density of vehicles so that it never exceeds the maximum density allowed along the road
as determined by the road capacity. This is expressed by a bound of the form

n(t, x) ≤ K, a.e. in R, ∀ t ∈ (0, T ∗]

which, given the nonnegativity of the local solution, implies a uniform in time and space
boundedness estimate for the fi’s:

max
t∈(0, T ∗]

ess sup
x∈R

fi(t, x) ≤ K, i = 1, . . . , m,

to be compared with the analogous estimate (4.7) for the spatially homogeneous problem.
Actually, it can be observed that if the initial datum ϕ ∈ (L1(R))m is further required

to fulfil
lim

|x|→∞
ϕ(x) = 0, (5.30)
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then the solution f(t) ∈ (L1(R))m provided by Theorem 5.6 satisfies the analogous property

lim
|x|→∞

f(t, x) = 0, ∀ t ∈ (0, T ∗].

This means that, under condition (5.30), the solution to the Cauchy problem (5.1)-(5.2)
belongs more precisely to the subset B0

T ∗ ⊂ BT ∗ of the functions which, at all times, are
infinitesimal at infinity. This is technically proved by applying Theorem 5.6 in B0

T ∗ after
showing, via slight modifications of Lemmas 5.3, 5.5, that for each T > 0 the operator S
maps B0

T into itself and that, in addition, B0
T is closed in XT .

Therefore we discover in particular

lim
|x|→∞

q(t, x) = lim
|x|→∞

m∑

i=1

vifi(t, x) = 0, ∀ t ∈ (0, T ∗].

As a consequence, integration over x ∈ R of the macroscopic mass conservation equation
(3.30) yields

d

dt

∫

R

n(t, x) dx = 0,

that is ∫

R

m∑

i=1

fi(t, x) dx =

∫

R

m∑

i=1

ϕi(x) dx, ∀ t ∈ (0, T ∗]

or, in terms of norms,

‖f(t)‖1 = ‖ϕ‖1, ∀ t ∈ (0, T ∗]. (5.31)

In other words, the L1-norm of the solution f(t) is preserved, and in particular it equals
that of the initial datum. Equation (5.31) can be viewed as the analogous, in the spatially
inhomogeneous case, of the a priori estimate (4.3) valid on the solution to the spatially
homogeneous problem. In addition, it demonstrates that the condition ‖u(t)‖1 ≤ K1

imposed on the functions of BT ∗ is not restrictive, as it is automatically satisfied by the
solution f for all possible choices of the constant K1 > ‖ϕ‖1. Its utility is rather merely
technical, being due to the necessity to have BT ∗ bounded in XT ∗ as needed in Lemma
5.4 to prove the Lipschitz continuity of the operator S.

Another interesting property of the local solution f concerns a more precise lower
bound that can be obtained by suitably manipulating Eq. (5.9). The nonnegativity of f
entails Ĝi[f , f ](t, x) ≥ 0, hence

∂f̂i

∂t
(t, x) + f̂i(t, x)L̂i[f ](t, x) ≥ 0, a.e. in R, ∀ t ∈ (0, T ∗]. (5.32)

If we let

Λ̂i[f ](t, x) :=

t∫

0

L̂i[f ](s, x) ds
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denote the formal antiderivative of L̂i[f ](s, x) with respect to s vanishing for s = 0, from
Eq. (5.32) we deduce

∂

∂t

(
eΛ̂i[f ](t, x)f̂i(t, x)

)
≥ 0,

thus, after integration in time,

f̂i(t, x) ≥ ϕi(x)e−Λ̂i[f ](t, x), a.e. in R, ∀ t ∈ (0, T ∗].

However, recalling from Eq. (5.11) that L̂i[f ](s, x) = L̂i[φ](s, x)e−λs and inspecting the
proof of Lemma 5.3 we get L̂i[f ](s, x) ≤ KCη̄,K , whence Λ̂i[f ](t, x) ≤ KCη̄,Kt and conse-
quently

f̂i(t, x) ≥ ϕi(x)e−KCη̄,Kt, a.e. in R, ∀ t ∈ (0, T ∗].

Coming back to the solution f this rewrites as

fi(t, x) ≥ ϕi(x − vit)e
−KCη̄,Kt, a.e. in R, ∀ t ∈ (0, T ∗], (5.33)

which shows in particular that at time t the amount of vehicles of the i-th velocity class
located in the spatial position x is bounded from below by their amount at time t = 0
in the corresponding initial position x0 = x − vit. Notice the presence, in the estimate
(5.33), of an exponential damping factor decaying in time at a rate fixed by the maximum
macroscopic density K and by the maximum value Cη̄,K attained by the unweighted
interaction rate η̄ for that density. Since, as discussed in Chapt. 3, Subsect. 3.3.2, the
unweighted interaction rate may be thought of as a measure of the reactiveness of the
drivers, Eq. (5.33) suggests that the prompter the latter are the higher the number of
possible velocity class transitions is with respect to the initial configuration.

We end this section by briefly commenting on the assumption (5.19) on the initial da-
tum. If no interaction terms were present in the kinetic equations, namely if the solution
f were simply given by the advection of ϕ along the characteristics, this condition would
produce n(t, x) ≤ K0 for a.e. x ∈ R and for all t ∈ (0, T ∗]. In presence of interactions,
the control (5.19) on the initial datum is still necessary to obtain the uniform in time
and space boundedness of the macroscopic density of cars, although in this case the ad-
vection of ϕ along the characteristics is no longer the only factor which plays a role in
shaping the solution (see the next Subsect. 5.2.3 for further discussions on this issue). A
straightforward way to choose the initial data {ϕi}

m
i=1 so that Eq. (5.19) holds is

ϕi(x) ≤
K0

m
, for a.e. x ∈ R, ∀ i = 1, . . . , m.

In particular, if some of the ϕi’s, say m0 < m of them, are zero then the remaining
non-zero initial data can be increased accordingly as

ϕi(x) ≤
K0

m − m0
, for a.e. x ∈ R.
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5.2.3 On the existence of the solution for large times

Existence of a global in time solution to Problem (5.1)-(5.2) may be proved starting from
the local solution f by showing that the results of Theorem 5.6 extend to the whole real
axis, i.e., that one can formally take T ∗ = +∞ (cf. the spatially homogeneous case,
Theorems 4.3, 4.4). For this, a basic requirement is that the local solution f features
at the final time t = T ∗ all properties assumed on the initial datum, so that, with the
further aid of proper a priori estimates ensuring boundedness in time, one can first repeat
the reasoning of local existence on the interval (T ∗, 2T ∗] taking f(T ∗, x) as new initial
condition, and then use it inductively to uniquely extend f to a solution defined for all
t > 0.

For the local solution of the spatially homogeneous problem at hand, however, this
procedure fails because Theorem 5.6 does not guarantee the same uniform in space bound
on the initial datum ϕ and on the solution f . Indeed, starting from the assumption

m∑

i=1

ϕi(x − vit) ≤ K0, a.e. in R, ∀ t ≥ 0

one gets (see Lemma 5.3)

m∑

i=1

fi(t, x − vi(τ − t)) ≤ K, a.e. in R, ∀ t ∈ (0, T ∗], τ ≥ 0

so that choosing f(T ∗, x) as new initial condition and renaming τ − T ∗ =: τ ′ leads to

m∑

i=1

fi(T
∗, x − viτ

′) ≤ K, a.e. in R, ∀ τ ′ ≥ 0.

Unfortunately, since K > K0, this is not the same condition holding on ϕ. On the other
hand, Lemma 5.3 clearly shows that it is impossible to assume K = K0, for this would
force T1 = 0 (cf. Eq. (5.24)) and consequently also T ∗ = 0, i.e., no local solution in
practice. This necessary non-zero gap between K0 and K can be explained considering
that, even if the total mass of cars (i.e., the integral of the vehicle density n(t, x) over
x ∈ R) is conserved, one cannot exclude local mass generation along the characteristics
caused by the state transitions of the vehicles among the different velocity classes. In
other words, the local contributions of the gain and loss operators may not balance, as
it has to be expected since the final solution is actually not simply the advection of the
initial datum along the characteristics.

Such an issue prevents from using the local solution to obtain a global in time solution
to the spatially inhomogeneous problem via the reasoning explained above. As a matter of
fact, at present we are unable to fix directly this inconvenience. Therefore, here we propose
to follow a different strategy, namely to slightly modify the mathematical structure of the
problem so as to obtain a theoretical setting which enables one to successfully look at least
for a solution existing for arbitrarily large times T , possibly also T = +∞. Nevertheless,
we immediately point out that this operation will not be of zero cost, indeed the gain
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Figure 5.1. A possible form of the coefficients of the table of games fulfilling the new
requirement given by Eq. (5.34).

of such a solution will have as counterpart the loss of control on the uniform in time
boundedness of the macroscopic density n.

The basic idea is to remove the explicit requirement of upper boundedness of the vehicle
density n from the set of assumptions of the problem. In doing so, we clearly have to mind
that the table of games and the unweighted interaction rate still fulfil the fundamental
properties dictated by the general modeling framework we have presented in Chapt. 3.

In particular, the coefficients Ai
hk[n] must remain a discrete probability distribution

for the transitions among the velocity classes. The lack of an explicit upper bound on n,
however, may lead in principle to a violation of the condition 0 ≤ Ai

hk[n] ≤ 1, therefore
we force this by restating Assumption 4.1 as follows:

0 ≤ Ai
hk[n] ≤ 1, ∀n ≥ 0. (5.34)

We incidentally observe that the table of games proposed in Chapt. 3, Subsect. 3.3.1,
does not comply with this new assumption, indeed for n > 1 some of the coefficients
Ai

hk[n] become negative (e.g., α(1 − n)) and, correspondingly, some others greater than 1
(e.g., 1−α(1−n)). However, this can be readily fixed by suitably modifying the analytical
expression of the mappings n 7→ Ai

hk[n]. A constant table of games, that is a table of games
whose coefficients Ai

hk do not depend either on n or on x, like the one used by Coscia et
al. [18], is the prototype of the admissible tables of games in the present context. Another
possibility is to use the indicator function

χ[0, 1](n) =

{
1 if n ∈ [0, 1]

0 otherwise

to transform the above expressions in α(1−n)χ[0, 1](n), 1−α(1−n)χ[0, 1](n), respectively
(see Fig. 5.1). A more refined choice might involve mollified versions of these functions.
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This way one mimics Eqs. (3.23)-(3.26) for 0 ≤ n ≤ 1 while fulfilling at the same time Eq.
(5.34) for n > 1. This preserves also the property

∑m
i=1 Ai

hk[n] = 1 for all h, k = 1, . . . , m
(cf. Eq. (3.19)) and the Lipschitz continuity of the mapping n 7→ Ai

hk[n] (cf. Assumption
5.1) for all n ≥ 0.

Concerning the unweighted interaction rate, since we are dealing with unconstrained
positive densities n we can no longer allow for a blow up of the mapping n 7→ η̄[n] when
n → 1−, hence we are going to assume that Assumption 4.2 holds for every n ≥ 0, i.e.,
that there exists a constant Cη̄ > 0 such that

0 < η̄[n] ≤ Cη̄, ∀n ≥ 0. (5.35)

As for Assumption 5.1, we simply update it by requiring that the mapping n 7→ η̄[n] be
Lipschitz continuous on the whole real positive axis. It is plain that this prevents from
using directly the unweighted interaction rate given by Eq. (3.27). In particular, from the
modeling point of view the global boundedness of η̄[n] stated by Eq. (5.35) amounts to
assuming a finite reactiveness of the drivers at all densities, with a maximum value fixed
by Cη̄.

In this modified setting, we need not have the boundedness of the initial datum ϕ

anymore, i.e., the hypothesis (5.19) drops, and we can first seek a local solution in the
new set

B̃T = {u ∈ XT : û(t, x) ≥ 0, ‖u(t)‖1 ≤ K1 a.e. in R, ∀ t ∈ [0, T ]} ⊇ BT .

By inspecting the proofs of Lemmas 5.3, 5.4, 5.5 one sees that the same conclusions hold
when one replaces the original set BT with B̃T . In particular, for suitable choices T̃1, T̃2

of the final time T , the operator S introduced in Eq. (5.18) maps B̃T̃1
into itself and is a

contraction on B̃T̃2
, while B̃T turns out to be closed in XT for all T ≥ 0. Thus, picking

up a final time 0 < T̃ ∗ ≤ min{T̃1, T̃2} and using the transformation (5.10) we get again
existence and uniqueness of a nonnegative local in time solution f ∈ XT ∗ to Problem
(5.1)-(5.2), satisfying further the a priori estimate (5.31) and the lower bound (5.33).

The advantage is that now this local solution can be extended for large times via the
reasoning illustrated at the beginning of this subsection, because f(T ∗, x) shares with the
initial datum ϕ all necessary properties for that machinery to be booted. Nevertheless,
the drawback of this approach is that we are unable to predict the boundedness of the
macroscopic density of cars within reasonable values, say n ≤ 1 or at most n ≤ 1 + ν
for moderately small ν > 0, which may be tolerated if one imagines to perform the
nondimensionalization of n with respect to a characteristic average value rather than to
the maximum road capacity (see e.g., Hilliges and Weidlich [30]). Actually, for bounded
initial conditions we can at least guarantee, in view of Theorem 5.6, that n(t) is uniformly
bounded from above in space by a constant Ct > 0 possibly depending on t, i.e., that
n(t, x) ≤ Ct for a.e. x ∈ R. However, the open problem still remains that Ct grows in
principle unboundedly with t.
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5.3 The periodic initial-boundary value problem

The periodic initial-boundary value problem is a particular application of the spatially
inhomogeneous problem, which simulates the evolution of the traffic on a road whose ends
coincide, for instance a ring.

From the experimental point of view, this is probably the mainly used setting to
perform real measurements in inhomogeneous flow conditions, see e.g., Kerner [32]. Indeed,
the limited spatial extension of the ring and its simultaneous virtually unlimited length (in
the sense that it allows vehicles to cover in principle whatever distance) make it suitable
for data recording, while permitting at the same time the observation of a wide variety of
traffic phenomena like, e.g, stop-and-go waves or clustering.

This kind of problem is mathematically described by the system of equations (5.1)
on a bounded spatial domain, say in dimensionless form Dx = [0, 1], joined to the initial
condition (5.2) for x ∈ (0, 1) and to periodic boundary conditions of the form

fi(t, 0) = fi(t, 1), ∀ t ∈ (0, T ], i = 1, . . . , m. (5.36)

By consequence, the solution f is expected to be periodic in space with unit period.
Let us introduce the space (L1

#(R))m consisting of all vector-valued 1-periodic functions
u : R → Rm, u(x) = u(x + 1) for a.e. x ∈ R, which are integrable on [0, 1], along with the
norm

‖u‖1,# :=
m∑

i=1

1∫

0

|ui(x)| dx.

It is immediate to notice that this space can be identified with (L1(0, 1))m, with however
the further property that its functions are integrable on every interval of R of unit length.
In fact, a simple computation shows that for all a ∈ R it results

m∑

i=1

a+1∫

a

|ui(x)| dx =

m∑

i=1




1∫

0

|ui(x)| dx −

a∫

0

|ui(x)| dx +

a+1∫

1

|ui(x)| dx



 = ‖u‖1,#,

since the last two integrals in the above expression cancel out mutually due to the peri-
odicity of each ui, i = 1, . . . , m.

In Eq. (5.1), the interaction length ξ must obviously be assumed lower than the
length of the ring, thus ξ < 1. As a result, under suitable nonnegativity properties of
the functions, the integrals over [x, x + ξ] appearing in the gain and loss terms of the
kinetic equations can be bounded from above by the corresponding integrals over [0, 1].
In addition, the formal extension of the functions to R by periodicity makes it possible
to use the mild formulation (5.13) of the problem with the same transformation (5.10),
so that finally all results proved for the initial value problem apply straightforwardly also
to this case. Specifically, after introducing the Banach space XT = C([0, T ]; (L1

#(R))m)
endowed with the norm

‖u‖XT
:= sup

t∈[0, T ]
‖u(t)‖1,# = sup

t∈[0, T ]

m∑

i=1

1∫

0

|ui(t, x)| dx,
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together with its subset

BT =

{
u ∈ XT : û(t, x) ≥ 0,

m∑

i=1

ûi(t, x − viτ) ≤ Keλt,

‖u(t)‖1,# ≤ K1 a.e. in [0, 1], ∀ t ∈ [0, T ], τ ≥ 0

}
,

one can show, under the same assumptions on the initial condition given for the initial
value problem, and by slightly adapting the proofs of Lemmas 5.3, 5.4, 5.5, and of Theorem
5.6, that Problem (5.1)-(5.2)-(5.36) admits a unique nonnegative local solution f ∈ XT ∗

defined up to a final time T ∗ > 0, such that

n(t, x) ≤ K, for a.e. x ∈ (0, 1), ∀ t ∈ (0, T ∗].

This solution satisfies in addition both the a priori estimate (5.31) and the lower bound
(5.33). In particular, the former is now entailed by the periodicity of f , which implies
q(t, 0) = q(t, 1) for all 0 < t ≤ T ∗.

Concerning the regularity of f , we observe the initial datum has to be consistent
with the boundary conditions, i.e., ϕ(0) = ϕ(1). Indeed, if this is not the case then
a jump across the boundary of the spatial domain arises, which propagates along the
characteristics making the solution discontinuous.

Finally, regarding the possibility to extend the local solution to a global in time solution
there is at present no improvement here with respect to the issues discussed in Subsect.
5.2.3 about the initial value problem.

5.4 Computational analysis of some cases study

We end this chapter devoted to the study of the spatially inhomogeneous problem by
performing a numerical analysis of some representative cases well documented in the spe-
cialized literature (see e.g., Klar and Wegener [34]), in order to test the ability of the
model to reproduce some typical characteristics of the inhomogeneous flow of vehicles.

In all problems discussed below we use a uniform velocity grid Iv constituted by six
velocity classes, with in particular v1 = 0 and v6 = 1 (cf. Eq. (3.1)). The hyperbolic
system (5.1) has been integrated by a high resolution conservative method based on the
slope-limiters technique, in which the first order upwind flux is combined with a correction
term given by the Superbee limiter (see LeVeque [38] for further details). We choose the
interaction length to be ξ = 0.05 and use the weight function given by Eq. (3.28). The
table of games and the unweighted interaction rate are as described in Chapt. 3, Subsects.
3.3.1, 3.3.2, for different values of the road parameter α to be specified from time to time.

5.4.1 Formation of a queue

We intend to simulate the formation of a queue due to the accumulation of some incoming
vehicles behind a pre-existing group of motionless vehicles.
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Figure 5.2. Evolution of the density of cars in a queue at different times. An initial plateau
of motionless vehicles (t = 0) is reached by an incoming flux of vehicles (t = 3) entering
the domain from the left boundary x = 0. This makes the local density increase, and gives
rise to a density wave propagating backward until new vehicles stop entering the domain
(t = 5). At that time the emptying of the queue begins as a consequence of the flow of
vehicles from the right (t = 15).

As initial condition we set all distribution functions fi to zero but the one corresponding
to the first velocity class i = 1, which is instead assumed constant in a suitable stretch
behind the outflow boundary x = 1 of the spatial domain. Hence, f1 determines for
t = 0 the initial profile of the density n, which exhibits a plateau representing the above-
mentioned pre-existing queue. At the inflow boundary x = 0 we imagine a group of
incoming vehicles entering the domain with a certain positive velocity, that we choose as
the maximum possible according to our velocity grid.

Figure 5.2 shows the result of the simulation in terms of the macroscopic density n.
Note in particular the expected enlargement of the plateau due to a backward propagation
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of the queue toward the inflow boundary, with a nearly constant maximum value of the
density located in the rear part of the group of vehicles. A fundamental contribution in
reproducing correctly these features is given by both the dislocation of the interactions
over the whole amplitude of the visibility zone and the increment in the interaction rate
for growing density. Indeed, it is well known that without the former there is no way to
obtain backward propagation of the information (see e.g., Klar and Wegener [34]), that is
the initial plateau would not grow longitudinally along the road, its rear front remaining
fixed at the same initial location for all t > 0. On the other hand, without the latter
the density may achieve locally values greater than 1. This risk is especially high in the
rear part of the queue, at the attack point between the slow queued vehicles and the fast
incoming ones, where many incoming vehicles are required to slow down due to the little
space left to overtake. The effect of the interaction rate, which grows to infinity for n close
to 1, is precisely that of inducing numerous transitions of velocity class by the vehicles,
avoiding then the superposition of different density waves which may locally sum to more
than 1.

At time t = 5 the left boundary condition switches to zero for all distribution functions
fi, that is no vehicle is entering the domain anymore from then on. As a consequence, a
slow flow of vehicles from the right boundary begins, with a progressive emptying of the
queue.

5.4.2 The bottleneck

Next we want to study the effect on the traffic of a variation in the maximum density
allowed along the road. This situation may arise for instance as a consequence of a
reduction in the number of lanes available to the vehicles, or more in general because of a
narrowing of the roadway, and is usually referred to as a bottleneck.

In our model we obtain this effect by simply rescaling the nondimensional density n by
a variable maximum value, which depends on x as shown by the dashed line in Fig. 5.3.
This corresponds to performing a nondimensionalization of the physical density of cars with
respect to a characteristic maximum value given by a function of x: N = nmax = nmax(x).
In particular, we use a bottleneck density profile which is close to 1 at the inflow boundary
and decreases to 0.4 at the outflow boundary, causing a reduction of approximately 60%
in the road capacity.

Initial and boundary conditions for this problem are similar to those prescribed in
Subsect. 5.4.1, with a group of slow vehicles inside the bottleneck and an incoming group
of fast vehicles at the left boundary. Once again, formation and backward propagation of
a queue are observed, with a density profile which closely follows that of the bottleneck.
We stress that such a result is mainly due to the action of the interaction rate, which
regulates the number of vehicles undergoing velocity jumps on the basis of the maximum
density locally allowed.
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Figure 5.3. Formation and evolution of a queue in a bottleneck, that is a variation in
the maximum density allowed along the road due to a reduction in the road capacity.
Dashed line represents the bottleneck density profile, obtained in this simulation using
an arc tangent-like function.

5.4.3 Merging of two clusters and stop-and-go waves

Finally we consider the case of a ring-road where overtaking is forbidden, which can be
formally obtained by setting α = 0 in the table of games (3.23)-(3.26). This may be due,
for instance, to very bad road conditions or to some sort of special limitations imposed on
the traffic. The result is that vehicles simply tend to maintain their current speed until
they reach other slower vehicles. Then, they are forced to slow down to the velocity of the
leaders and to queue, no matter how much free space is actually available on the road.

The simulation (see Fig. 5.4) starts with two clusters of vehicles at the same density
(n = 0.5) traveling at different speeds. In particular, the front cluster is slower than the
rear one, the difference of speed between them being of one class in the grid Iv. When the
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Figure 5.4. Merging of two clusters of vehicles, whose the faster pursues the slower,
along a ring-road where overtaking is forbidden. Immediately after the encounter
(t = 1.26), a perturbation arises in the density distribution of the rear cluster, due
to a progressive slowdown of the vehicles. This causes a packing of the two clusters
and a simultaneous appearance of some stop-and-go-like waves (t = 1.6). These finally
disappear when the velocity in the rear cluster becomes uniform again, and equal to
that of the front cluster (t = 22).

second cluster reaches the first, they merge into a unique group of vehicles which keeps
the velocity of the slower one.

It is interesting to note the formation of stop-and-go-like waves (cf. Günther et al.
[27]) in the rear cluster as a reaction to the velocity transitions occurring immediately
after the encounter with the front one. Such waves, that finally smooth out as the velocity
within the rear cluster becomes uniform, are observed thanks to the dislocation of the
interactions, which makes the leading vehicles of the rear cluster realize first the need for
slowing down while approaching the front cluster.
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Chapter 6

Conclusions and research

perspectives

In this thesis we have systematically developed a discrete velocity framework for one-
dimensional kinetic modeling of vehicular traffic, using as guidelines the kinetic structures
formalized by Arlotti et al. [1, 2] and by Bellomo [5], as well as some general ideas about
discrete kinetic and stochastic game theory proposed by Bertotti and Delitala [13]. The
main features of this modeling framework include:

(i) Discreteness of the velocity variable, which is allowed to range in a finite set of val-
ues only. Vehicles are thus grouped in velocity classes, that roughly express their
tendency to travel slowly or fast without distinguishing between any two arbitrar-
ily close velocities. Rather than being a pure mathematical technicality aimed at
reducing the analytical and computational complexity of the problem (like in the
traditional discrete kinetic theory associated with the classical Boltzmann equation,
see e.g., Bellomo and Gatignol Eds. [8] and Gatignol [24]), in this context the dis-
cretization of the velocity is conceived so as to account for one of the main sources
of granularity of the flow of cars along a road.

(ii) Microscopic modeling of the interactions among the vehicles, despite the global, i.e.,
macroscopic, point of view on the evolution of the system. Interactions are modeled
by detailing the short-range reactions of the drivers to the traffic conditions ahead
instead of trying to interpret their overall behavior. On the other hand, the latter
is accessible a posteriori, as by-product of the integration of the equations of the
model.

(iii) Stochastic interactions among the vehicles responsible for velocity variations. Non-
classical interactions experienced by cars are modeled without invoking any concept
of force, proper of point mechanics, but appealing instead to a stochastic game the-
ory, which defines suitable transition probabilities among the velocity classes (table
of games). These probabilities are determined on the basis of the current speeds
of the interacting pairs, and possibly also of the local congestion and quality of the
road.
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(iv) Nonlocal interactions. Vehicles are assumed to interact in pairs over a visibility
area, which extends from each car up to a certain characteristic visibility length
along the road. Within the visibility area, interactions are weighted by the distance
separating the interacting pairs, and occur with more or less frequency according
to the reactiveness of the drivers, which is possibly influenced in turn by the local
congestion of the road.

Within this framework, we have also developed a specific traffic model by detailing the
microscopic interactions of the cars in terms of table of games and interaction rate. The
model has shown ability to describe specific traffic flow phenomena in both the spatially
homogeneous and the spatially inhomogeneous problem.

In the first case, existence, uniqueness, and a priori boundedness of a physically rele-
vant solution have been proved. Moreover, the dependence of the equilibrium configura-
tions on a phenomenological parameter linked to the quality of the road has been investi-
gated, at least in some relatively simple but representative cases. Numerical simulations
provide fundamental diagrams and equilibrium velocity distributions highly close to the
corresponding available experimental data. In more detail, the fundamental diagrams of
the macroscopic flux and the average velocity exhibit, at least for good road conditions,
a strong variation in their behaviors when passing from low to high density, which can be
interpreted as the ability of the model to capture the phase transition between free and
congested flow. Specifically, the almost linear behavior of the flux for low density, with
a corresponding nearly constant average velocity close to the maximum allowed value,
and its subsequent nonlinear decrease to zero, with a simultaneous steep decrease of the
velocity toward low values, are in good agreement with the experimental observations
performed in free and congested uniform flow conditions.

The spatially inhomogeneous problem has been addressed from the qualitative point
of view by investigating existence and uniqueness of admissible solutions, especially in
connection with the possibility to control the maximum value attained by the density
of cars. Indeed, confining the density n below the (dimensionless) road capacity, say
nmax = 1, is important not only from the obvious physical point of view but possibly also
for mathematical reasons of consistency of the models generated by the framework. Since
the macroscopic density, which varies in time and space, is in general supposed to affect
the table of games, the necessity arises to guarantee that the latter actually represents
a discrete distribution probability over the velocity variable at all times and all spatial
locations. Depending on the specific analytical expressions of the coefficients of the table
of games as functions of n, this requirement may be violated if the density locally becomes
negative or exceeds its maximum allowed value nmax. For instance, the table of games
proposed in Chapt. 3 contains expressions like αn, α(1−n), which are conceived under the
physically sharable assumption of a (dimensionless) density of cars bounded between 0 and
1. However, the mathematical model need not keep automatically this constraint. On the
other hand, should n become negative or take values greater than 1, the table of games itself
would lose its mathematical consistency, becoming incompatible with the aforementioned
probabilistic setting. Notice that in the spatially homogeneous case this risk is ruled out
by Theorems 4.3, 4.4, which guarantee the global well-posedness of the problem under a
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suitable choice of the initial data. Conversely, in the spatially inhomogeneous case local
in time results have been proved to hold for the Cauchy problem and for the periodic
initial-boundary value problem (cf. Theorem 5.6 and Sect. 5.3), nevertheless at present
they cannot be straightforwardly extended to global in time results. However, by slightly
stiffening the structural assumptions on the table of games and, at the same time, relaxing
the constraint of uniform upper boundedness of the density n, it has been possible to
achieve existence and uniqueness results for arbitrarily large times, which may constitute
a cue toward deeper analysis and suitable improvements of the framework.

Numerical simulations of the spatially inhomogeneous problem have been carried out,
by addressing three representative cases study which highlight the ability of the model
to reproduce correctly some interesting features of traffic. In particular, we recall here
the merging of two clusters of vehicles with concomitant appearance of stop-and-go waves
(Chapt. 5, Subsect. 5.4.3), and the formation and backward propagation of a queue,
possibly in presence of a bottleneck (Chapt. 5, Subsects. 5.4.1, 5.4.2), with a vehicle
density profile which in this second case closely follows that of the bottleneck, and which
in both cases never overcomes the maximum value fixed by the road capacity. If the
dislocation of the interactions is undoubtedly responsible for backward density waves in
spite of the unidirectional motion of the vehicles, the interaction rate introduced in the
interaction terms of the equations favors instead the boundedness of the density. Since
the rate of the interactions among the candidate vehicle and the field vehicles strongly
increases when the macroscopic density approaches the upper limit threshold, a larger
number of velocity transitions toward lower velocity classes is induced in such a case, thus
preventing the superposition of different density waves which may locally sum to more
than the threshold.

The modeling framework developed in this thesis accounts for a fully mechanical mi-
croscopic state of the vehicles, which is described by their position x and their (discrete)
velocity vi. On the other hand, it can be argued that cars are actually not completely
mechanical subjects, for the presence of the drivers is likely to affect their behavior in an
essentially unconventional way.

The specialized literature offers some examples of models trying to explicitly account
for the action of the drivers on the evolution of the traffic. For instance, in the context
of first order hydrodynamic models, De Angelis [20] introduces the concept of fictitious
density n∗, that is the density of cars along the road as perceived by the drivers, in order to
express the personal feelings of the latter about the local conditions of traffic, and to model
accordingly their instantaneous reactions. Specifically, the fictitious density is linked to
the actual density n and to its spatial gradient ∂xn in such a way that when n is increasing
(respectively, decreasing) n∗ increases (respectively, decreases) in turn but more quickly
than n, while for n approaching the limit threshold 1 also n∗ tends to saturate to 1. In
other words, the sensitivity of the drivers should consist in feeling a fictitious congestion
state of the road higher or lower than the real one, and by consequence in anticipating
certain behaviors that a purely mechanical agent would exhibit only in presence of the
appropriate external conditions. The dependence of n∗ on n, ∂xn proposed by De Angelis
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is

n∗[n, ∂xn] = n + γ(1 − n)
∂n

∂x
, (6.1)

where γ > 0 is a parameter. It can be observed that for increasing actual density, that
is ∂xn > 0, the fictitious density is larger than n, thus suggesting a more careful attitude
of the system car-driver with respect to the purely mechanical case, while for decreasing
actual density, namely ∂xn < 0, the fictitious density is lower than n, which implies a
more aggressive behavior induced by the presence of the driver.

Particular mathematical models are obtained by plugging Eq. (6.1) into the expression
of the velocity diagram used in first order macroscopic models. This amounts essentially to
devising a closure relation of the mass conservation equation (1.2) of the form u = u(n∗),
so that the evolution equation finally reads

∂n

∂t
+

∂

∂x
(nu(n∗)) = 0.

At the kinetic level of representation, no model has been so far introduced in the
literature taking the action of the driver explicitly into account. As a matter of fact, one
may observe that the stochastic game theory framework acknowledges some nonclassical
behavioral components in the evolution of traffic, nevertheless these are by themselves
only implicit hints about a more complex structure of the system, which calls instead for
a suitable modeling via proper mathematical tools.

Enhancements of the discrete velocity kinetic framework presented in this thesis can
be conceived in order to effectively introduce in the theory the action of the drivers. This
can be done by referring to the generalized kinetic methods for systems of active particles
(Bellomo [5]), that is particles whose microscopic state includes, besides the standard
mechanical variables, also an additional internal variable named activity, a scalar or a
vector quantity depending on the specific application.

In the case of vehicular traffic, the activity may be represented by a scalar dimension-
less variable u, ranging in the domain Du = [0, 1], which stands for the driving ability, or
alternatively for the personality, of each driver. Low values of u close to 0 denote timid and
inexperienced drivers, whereas high values close to 1 identify aggressive and experienced
drivers. In more detail, we observe that it may be convenient to think of the activity as a
discretely distributed variable, for this exempts from giving it a so fine definition to catch
the difference between any two arbitrarily close values of u. Indeed, the driving ability
being a subjective, hence hardly quantifiable, concept, what really matters is simply to
make a rough distinction between bad and good drivers. Therefore, one can introduce a
grid Iu = {uj}

p
j=1 in Du, which classifies the drivers in activity classes according to their

driving skills, and let consequently u ∈ Iu. As for the discretization of the velocity, the
number p of activity classes has to be kept in principle small enough for the above men-
tioned rough distinction among the different abilities of drivers to make sense, coherently
with the general modeling ideas underlying the discrete kinetic theory of traffic.

In this enlarged framework, the distribution function f depends also on u in such a
way that the quantity

f(t, x, v, u) dx dv du
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gives a measure of the number of cars that at time t are located between x and x+dx, with
a velocity comprised between v and v + dv, and an activity state between u and u + du.
In particular, in view of the discretization of both v and u, the following representation of
f can be introduced:

f(t, x, v, u) =
m∑

i=1

p∑

j=1

fij(t, x)δ(v − vi)δ(u − uj),

where fij(t, x) gives the distribution at time t and in the point x of the vehicles with
velocity and activity comprised in the i-th velocity class and in the j-th activity class,
respectively. Summing over the index j allows formally to recover the distribution function
fi of the vehicles in the i-th velocity class:

fi(t, x) =

p∑

j=1

fij(t, x), (6.2)

whereas summing over the index i gives the distribution of the vehicles in the j-th activity
class:

Pj(t, x) =
m∑

i=1

fij(t, x).

The macroscopic variables of interest are instead recovered by summing out both indexes
i, j or, equivalently, by applying the definitions (3.3)-(3.6) to Eq. (6.2).

Suitable evolution equations in time and space for the collection of distribution func-
tions {fij(t, x)}i, j can be derived, following an analogous procedure to that illustrated
in Chapt. 3. Notice that the internal structure u of the vehicles has to be explicitly
accounted for as a component of the microscopic state, which is now represented by the
triple w = (x, vi, uj). In particular, the interaction terms, and specifically the table of
games, should now depend also on the activities uj of the drivers, so as to introduce their
effect on the dynamics of the system.

A second research thread may involve the discretization of the whole state space,
namely not only of the velocity and possibly the activity but also of the space variable, in
order to include in the kinetic theory of vehicular traffic the spatial granularity of the flow
of cars. Some hints and ideas toward this topic are provided in the already cited book
by Bellomo [5], however research in this area is still at a very embryonic stage. Here we
simply remark that not only modeling issues but also nontrivial technical difficulties have
to be dealt with, like, among others, the proper way to render in a discrete space context
the spatial derivatives appearing in the kinetic equations.
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