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Quadratically fast IRLS for sparse signal recovery
Chiara Ravazzi and Enrico Magli

Dipartimento di elettronica e delle telecomunicazioni, Politecnico di Torino, Italia.

Abstract—We present a new class of iterative algorithms for sparse re-
covery problems that combine iterative support detection and estimation.
More precisely, these methods use a two state Gaussian scale mixture
as a proxy for the signal model and can be interpreted both as iter-
atively reweighted least squares (IRLS) and Expectation/Maximization
(EM) algorithms for the constrained maximization of the log-likelihood
function. Under certain conditions, these methods are proved to converge
to a sparse solution and to be quadratically fast in a neighborhood of
that sparse solution, outperforming classical IRLS for `τ -minimization.
Numerical experiments validate the theoretical derivations and show
that these new reconstruction schemes outperform classical IRLS for
`τ -minimization with τ ∈ (0, 1] in terms of rate of convergence and
sparsity-undersampling tradeoff.

I. SPARSE RECOVERY VIA IRLS FOR `τ -MINIMIZATION

The theory of compressed sensing has demonstrated that a k-
sparse signal x? ∈ Rn (i.e., it has at most k nonzero entries) can
be recovered from a smaller number m << n of linear measure-
ments y = Ax? ∈ Rm than traditional sampling theory believed
necessary [1]. The literature describes a large number of algorithms
to recover a sparse signal from an under-determined linear system.
An attractive solution is provided by the constrained `τ -minimization
with τ ∈ (0, 1] (see [2]) that consists in selecting the element which
is compatible with the observations which has minimal `τ -norm with
τ ∈ (0, 1]:

min
x∈Rn

‖x‖`τ s.t. y = Ax. (1)

The optimization problem in (1) can be solved by an iteratively
rewighted least squares method (IRLS, [3]). More precisely, given an
initial guess x(0), at each iteration this class of algorithms requires
to solve a constrained weighted least-squares problem:

x(t+1) = argmin
y=Ax

n∑
i=1

w
(t)
i x2i

with w(t+1)
i = ((ε(t))2+(x

(t)
i )2)τ/2−1 and a suitable non-increasing

sequence ε(t). Sufficient conditions ensure the convergence of these
methods to a sparse solution globally linearly fast when τ = 1 and
locally superlinearly fast with rate 2− τ for τ ∈ (0, 1).

Although classical IRLS algorithms appear very appealing for
their simplicity and for their theoretical guarantees, the superlinear
convergence is valid only in a neighborhood of the desired solution.
Numerical experiments show that exact recovery is achieved when
τ is not too small (i.e. τ > 1/2) and tends to be trapped in local
minima when τ < 1/2 [4]. The design of heuristic techniques to
avoid local minima is still an open issue.

II. GSM-IRLS

In the proposed methods, which we call GSM-IRLS, the elements
of the signal are modeled as a two state gaussian mixture (GSM, [5]):

x?i = zi
√
αui + (1− zi)

√
βui

where ui are identically and independently distributed (i.i.d.) zero
mean Gaussians and zi are i.i.d. Bernoulli variables with probability
mass function P(zi = 1) = 1 − p, p = k/n, α ≈ 0, and β >> 0.
In the last years, several authors devoted their attention to sparse

signal recovery using prior information on the support. In our case
the considered model is only used as a proxy for sparse signals [6].
The recovery is performed via the minimization of the negative log-
likelihood function subject to the constraint y = Ax. One possible
procedure is provided by the constrained Expectation Maximization
based IRLS (EM-IRLS), whose updates are presented in Algorithm
1.

Algorithm 1 EM-IRLS
Input: Measurements y ∈ Rn, data matrix A ∈ Rn

1: Initialization: α(0) = α0, β
(0) = β0, π

(0) ∈ [0, 1]n

2: for t = 0, 1, . . . , StopIter do
3: Weights update: w(t+1)

i = π
(t)
i /α(t) + (1− π(t)

i )/β(t)

4: Constrained weighted least squares:

x(t+1) = argmin
x∈Rn:y=Ax

n∑
i=1

wi(x
2
i + |ε(t)|2)

5: Posterior beliefs of the signal coefficients:

π
(t+1)
i =

f(x
(t+1)
i , α(t), 1− p)

f(x
(t+1)
i , α(t), 1− p) + f(x

(t+1)
i , β(t), p)

f(s, σ, q) = exp

(
− s

2

2σ
− log(σ)

2
+ log(q)

)
6: Parameters update:

α(t+1) =

∑n
i=1 π

(t+1)
i |x(t+1)

i |2 + |ε(t)|2∑n
i=1 π

(t+1)
i

β(t+1) =

∑n
i=1(1− π

(t+1)
i )|x(t+1)

i |2 + |ε(t)|2∑n
i=1(1− π

(t+1)
i )

7: end for

Moreover, we consider two other versions of IRLS, which we
call ML-IRLS and K-EM-IRLS Algorithm, which differ from EM-
IRLS as the beliefs are discrete variables or obtained by thresholding
and taking into account that we are seeking a K-sparse signal,
respectively. Besides the design of the algorithms, we prove that,
under suitable conditions, the sequence of provided estimations
converges to a fixed point of the map that rules their dynamics.
Moreover, we derive conditions for exact recovery that are verifiable
a posteriori. Finally, the algorithms turn out to be quadratically fast in
a neighborhood of a sparse solution (see Fig.1). Figures 2-4 compare
the performance of GSM-IRLS with classical IRLS methods, Basis
Pursuit (BP, [7]), Iterative support detection (Threshold-ISD, [8]) and
Orthogonal Matching Pursuit (OMP, [9]), in terms of the empirical
recovery success rate, averaged over 50 experiments, as a function
of the sparsity level and number of measurements. The recovery
is considered successfully when the reconstruction error is below
10−4. Finally, we show that GSM-IRLS converge even in presence
of noise (see Fig. 5) and are robust against noise (see Fig. 6), in that
small errors on the measurements produce small perturbation in the
reconstruction. Form more details the reader can refer to [6].
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Fig. 1. A typical evolution of the approximation error E(t) = ‖x(t+1)−
x?‖/‖x?‖ for classical IRLS algorithms (with τ = 1, 0.7, 0.2) and IRLS
based on ML and EM. The nonzero components of the signal x? are drawn
from a uniform distribution U([−10, 10]).
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Fig. 2. Empirical probability of successful recovery as a function of the
sparsity value k with n = 512 and m = 160. The nonzero components
of the signal x? are drawn from a uniform distribution U([−10, 10]).
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Fig. 3. Empirical probability of successful recovery as a function of
the number of measurements m ∈ [80, 220] with sparse Bernoulli signals
n = 600 and k = 40.
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Fig. 4. Average running times (computed over 50 experiments) as a
function of the number of measurements m ∈ [80, 220] with sparse
Bernoulli signals n = 600 and k = 40. The error bar represents the
standard deviation of uncertainty.
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Fig. 5. Noisy scenario: A typical evolution of MSE as a function of
the iterations for classical IRLS algorithms (with τ = 1, 0.7, 0.2) and
GSM-IRLS. The nonzero components of the signal x? are drawn from
a uniform distribution U([−10, 10]) and the additive white noise has
standard deviation σ = 0.01.
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Fig. 6. Robustness: Mean square error after 40 iterations as a function
of the SNR for classical IRLS (with τ = 1, τ = 0.7 and τ = 0.5)
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