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ABSTRACT 

Although Ensemble empirical mode decomposition (EEMD) 
method has been successfully applied to various applications, 
features extracted using EEMD could not detect anomalies 
for roller bearings, especially when anomalies includes small 
defects. In this study a novel feature extraction method is 
proposed to detect the state of roller bearings. Performance 
improved EEMD, which is a reliable adaptive method to 
calculate an appropriate noise amplitude is applied to 
decompose the acceleration signals into zero-mean 
components called intrinsic mode functions (IMFs). Then, 
three dimensional feature vectors are created by applying the 
Teager-Kaiser energy operator (TKEO) to the first three 
IMFs.  The novel features obtained from the healthy bearing 
signals are utilized to construct the separating hyperplane 
using one-class support vector machine (SVM). In order to 
validate the method proposed, a number of operating 
conditions (shaft speed and load) are considered to generate 
the data (vibration signals) by means of an assembled test rig. 
It is shown that the proposed method can successfully 
identify the states of the new samples (healthy and faulty). 
The   uncertainty of the model prediction is investigated 
computing Margin and the number of support vectors.  It 
create less complex (less fraction of support vectors) and 
more reliable (higher Margin) hyperplane than the EEMD 
method. 

1. INTRODUCTION 

Since roller bearings constitute one the most important 
elements of rotating machines, early fault diagnosis of roller 
bearings is extremely important, especially for high speed, 
automatic and precise machines. Thus, many research efforts 
have been focused on fault diagnosis and detection of roller 
bearings. 

Several signal processing techniques exist to decompose a 
signal and extract informative features for roller bearings. 
Randall and Antoni (2011) have broadly treated the 
background of some powerful diagnostic methods for roller 
bearings in a very useful tutorial paper. Empirical mode 
decomposition (EMD) is another recent technique, a so-
called self-adaptive data driven technique, for analyzing 
multi-component nonlinear and non-stationary signals and 
brake down them into some elementary modes called 
Intrinsic mode functions (IMFs). (Huang et al., 1998). 
However, this technique still holds some drawbacks such as 
mode mixing problem. Ensemble empirical mode 
decomposition (EEMD) is a more recent developed method 
aimed to solve mode mixing problem (Wu & Huang, 2009). 
Although the EEMD has been successfully applied to damage 
detection of roller bearings (Lei et al., 2013), it is shown that 
there are still some cases for which it is not able to recognize 
introduced novelties. 

In this study a new feature extraction method is proposed for 
novelty detection, which is based on performance improved 
EEMD and Teager-Kaiser energy operator (TKEO). In 
traditional EEMD the amplitude of noise added to the original 
signal is considered as a predefined constant value. Whereas, 
in   performance improved EEMD (PIEEMD) proposed by 
the authors (Tabrizi et al., 2015A), amplitude of added noise 
is adaptively computed for each data point explained in 
section 2.1. 

Teager-Kaiser energy operator (TKEO) technique is a non-
linear operator able to track the energy and to identify the 
instantaneous frequencies and instantaneous amplitudes of 
signals. Teager (1980) proposed TKEO first for modelling 
nonlinear speech production. Kaiser (1990) applied it to 
single time varying signals, for simultaneous modulation of 
amplitude and frequency. As it detects a sudden change of the 
energy stream without a priori assumption of the data 
structure, it can be utilized for vibration based condition 
monitoring (non-stationary signals). Junsheng et al. (2007) 
applied the TKEO to each IMFs decomposed by the EMD to 
extract the instantaneous amplitudes and frequencies. Then 
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envelope spectra were obtained using the spectrum analysis 
to look for characteristic frequencies of damaged roller 
bearings. Li, Fu & Zhang (2009) applied the TKEO to the 
original vibration signals and characteristic frequencies were 
extracted from envelope spectra. Li, Zhang & Tang (2009) 
implemented a novel method to recognize faults of roller 
bearing based on Teager-Huang transform (THT) introduced 
by Cexus & Boudraa (2006). In all those studies, it was 
investigated how to identify a big damage size (1mm in 
depth, 1.5mm width of the groove). Feng et al. (2011) utilized 
the Fourier spectrum of Teager energy to identify the 
characteristic frequency of faulty bearings (very big defect 
sizes: 2mm diameter and 1mm depth). Liu et al. (2013) 
presented an approach to bearing fault diagnosis based on the 
TKEO and the Elman neural network. The wavelet packet 
was used to reduce noise existing in the Teager energy signal, 
and then feature vectors were extracted from the Teager 
spectrum. Rodriguez et al. (2013) transformed the vibration 
signal to the Teager-Kaiser domain and featured it with 
statistical and energy-based measures. The diagnosis was 
performed with the neural network and the least square 
support vector machine (LS-SVM). Kwak et al. (2014) 
applied the TKEO in a combination with minimum entropy 
deconvolution (MED) to detect a defective roller bearing in 
terms of Kurtosis. 

There are various pattern recognition methods such as 
Artificial neural network (ANN) and Support vector machine 
(SVM) which was introduced by Vapnik (1995). The SVM is 
a relatively new computational learning method based on 
statistical learning theory which has been applied 
successfully to numerous applications (Widodo & Yang, 
2007). It can solve the learning problem with a smaller 
number of samples. Thus, taking into account the fact that 
acquiring sufficient faulty samples is not applicable in 
practice, the SVM has been used in a number of fault 
diagnosis problems successfully. As in many diagnostic 
applications, this is the case of a single type of data (the 
healthy one), one-Class SVM proposed by Scholkopf et al. 
(2000) can be adopted for anomaly detection.  

In this study a new feature extraction method is proposed to 
detect the state of roller bearings. The signal is decomposed 
using performance improved EEMD. Then, the three 
dimensional feature vectors are created by applying TKEO to 
the first three IMFs of the healthy bearing signals are utilized 
as input for one-class SVM to construct the separating 
hyperplane. It is shown that the method proposed can 
successfully identify the states of the new samples (healthy 
and anomaly ones). A number of healthy and faulty 
acceleration signals are analyzed to verify the feature 
extraction proposed in this study. 

The methodology is introduced in two parts, feature 
extraction in section 2 and pattern recognition in section 3.  
In feature extraction section, the performance improved 
EEMD method and Teager-Kaiser energy operator are 

introduced in section 2.1 and 2.2, respectively. One-class 
SVM is introduced as the pattern recognition method used in 
this study in section 3. The procedure of the novel feature 
extraction method is explained in section 4. The experimental 
setup and the data-acquisition process are presented in 
section 5. The application of the new approach to the acquired 
data and the results are discussed in section 6. Finally, the 
paper concludes after some discussion in section 7. 

2. FEATURE EXTRACTION METHODS 
The In this study informative features introduced, which are 
extracted by applying Teager-Kaiser energy operator to IMFs 
obtained using performance improved EEMD. These 
methods are explained in the next sections. 

2.1. Performance improved Ensemble empirical mode 
decomposition (EEMD) 

The EEMD repeatedly decomposes the original signal with 
added white noise into a series of IMFs by applying the 
original EMD process, and treats the means of the 
corresponding IMFs during the repetitive process as the final 
EEMD decomposition result. The decomposition steps by the 
EEMD can be summarized as follows: 

1. To add a random white noise signal to the acquired original 
signal: 

𝑥𝑗(𝑡) = 𝑥(𝑡) + 𝐴𝑚𝑝 ∙ 𝑛𝑗(𝑡) (1) 

where 𝑗 = 1,2, … , 𝑀 and 𝐴𝑚𝑝 is the amplitude of added 
white noise and M  is the pre-determined number of trial. 

2. To decompose the obtained signal (𝑥𝑗(𝑡)) into IMFs using 
EMD: 

𝑥𝑗(𝑡) = ∑ 𝑐𝑖𝑗

𝑁𝑗

𝑖=1

+ 𝑟𝑁𝑗 

(2) 

where 𝑐𝑖𝑗  represents the i-th IMF of the j-th trial, 𝑟𝑁𝑗  
represents the residue of j-th trial and 𝑁𝑗 is the IMFs number 
of the j-th trial. 

3. To repeat steps a and b until the predefined ensemble trial 
number (M) (add different random noise signal each time). 

4. To calculate the ensemble means of the corresponding 
IMFs of the decompositions as the final result (𝑐𝑖): 

𝑐𝑖(𝑡) = (∑ 𝑐𝑖𝑗

𝑀

𝑗=1

) 𝑀⁄  

      (3) 

where 𝑖 = 1,2, … , 𝐼 and I is the minimum number of IMFs 
among all the trials. 
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Adding the noise aims to affect the extrema of the original 
signal so that the intermittency of the components will be 
removed. Rather than adding a predefined constant amplitude 
value (such as 0.2 of standard deviation of the signal in the 
traditional EEMD method), which might not effectively 
change some extrema, the adaptive method is used to 
improve the performance of the EEMD (Tabrizi et al., 
2015A). After adding a random white noise, by applying the 
SNR definition (Eq. (4)), the Amplitude value for each data 
point of a sample is obtained using Eq. (5). Considering an 
appropriate value for SNR, the extrema of the original signal 
are influenced adequately. 

𝑆𝑁𝑅(𝑡) = 20 log(𝑥(𝑡) (𝐴𝑚𝑝𝑗(𝑡) ∙  𝑛𝑗(𝑡))⁄ ) 
(4) 

𝐴𝑚𝑝𝑗(𝑡) = 10−(𝑆𝑁𝑅(𝑡) 20⁄ )  ∙ (𝑥(𝑡) 𝑛𝑗(𝑡))⁄  

(5) 

where  𝑗 = 1, … , 𝑀 (𝑗 is the is the ensemble trial number). 

Tabrizi et al., (2015A) showed that the performance 
improved EEMD achieves better damage detection results. A 
simulated signal and its decomposition results using the 
EEMD and the performance improved EEMD methods are 
shown in Figures 1 and 2, respectively. Obviously, the IMF 
obtained using the performance improved EEMD (PIEEMD) 
is more similar to the high frequency component. 

 
Figure 1. The simulated signal and its high and low 

frequency components 

 

 
Figure 2. The high frequency component and the IMF 

obtained sing the EEMD and the performance improved 
EEMD (PIEEMD) 

 

2.2. Teager-Kaiser energy operator (TKEO) 

The energy of a signal is the sum of squared absolute value 
of the signal over a time, which is not the instantaneous 
summed energy. Kaiser (1990) observed that a second order 
differential equation is the energy required to generate a 
simple sinusoidal signal varies with both amplitude and 
frequency. In order to estimate the instantaneous energy of a 
signal x(t), Teager-Kaiser Energy Operator (TKEO) is used 
as an energy tracking operator as follows (Maragos, 1993A):  
 

𝛹[𝑥(𝑡)] = 𝐴2 = 𝑥̇2(𝑡) − 𝑥(𝑡) 𝑥̈(𝑡)  (6) 

  

where )t(x� and )t(x�� are the first and the second time 
derivatives of x(t), respectively. 

For a discrete time signal x(n) (where n is the discrete time 
index), using difference to approximate differential, the 
TKEO can be proposed as: 

Ψ[𝑥(𝑛)] = [𝑥(𝑛)]2 − 𝑥(𝑛 − 1)𝑥(𝑛 + 1)  (7) 

As at any instant, only three consecutive samples are needed 
to estimate the instantaneous TKEO, it is adaptive to the 
instantaneous changes in signals to resolve transient events. 
It has some merits such as low computational cost, high 
resolution of time and frequency and adaptability to 
instantaneous feature. 

The instantaneous frequency and instantaneous amplitude at 
any time instant of the signal 𝑥(𝑛) are defined as follows 
(Maragos, 1993B): 
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𝑓(𝑛) =
1

2𝜋
 √

Ψ[𝑥̇(𝑡)]
Ψ[𝑥(𝑡)] 

  (8) 

|𝑎(𝑛)| =
Ψ[𝑥(𝑡)]

√Ψ[𝑥(𝑡)]
 

  (9) 

They can be represented as follows: 

𝑓(𝑛) =
1
2

 𝑎𝑟𝑐𝑐𝑜𝑠 (1 −
Ψ[𝑥(𝑛 + 1) − 𝑥(𝑛 − 1)]

2Ψ[𝑥(𝑛)] ) 

(10) 

|𝑎(𝑛)| =
2Ψ[𝑥(𝑛)]

√Ψ[𝑥(𝑛 + 1) − 𝑥(𝑛 − 1)]
 

  (11) 

3. PATTERN RECOGNITION (ONE-CLASS SUPPORT VECTOR 
MACHINE) 

In order to construct a pattern recognition model for novelty 
detection, only one class of data (features extracted from 
healthy bearing signals) is used to create one-class SVM 
model. It constructs a hyperplane around the data, such that 
its distance to the origin is maximal among all possible 
hyperplanes and classifies new samples belong to other 
possible classes as anomaly (Scholkopf et al., 2000).  

The Margin is defined as: 

𝑀𝑎𝑟𝑔𝑖𝑛 = 𝜌 ‖𝑤‖⁄  (12) 

In real problems, an exact line dividing the data is not 
obtainable and we might have a curved decision boundary. 
Ignoring few outlier data points will create smooth boundary 
(using slack variables). To separate the data set from the 
origin, the following quadratic program must be solved 
(Scholkopf et al., 2000): 

min (
1
2

‖𝒘‖2 +
1
𝜐𝑙

∑ 𝜉𝑖

𝑙

𝑖=1

− 𝜌) 

(13) 

subject to  {𝑦𝑖(𝒘 ∙ 𝜙(𝒙𝑖)) ≥ 𝜌 − 𝜉𝑖
𝜉𝑖 ≥ 0

    𝑖 = 1, … , 𝑙 

 

where 𝒘  and 𝜌  are the weight vector and the offset 
parameterizing the hyperplane.  𝜉𝑖 is the slack variable, 𝜐 is 
the regularization parameter and represents an upper bound 
on the fraction of outliers (training errors) and a lower bound 
on the fraction of support vectors (SVs) with respect to the 
number of training samples. It is a variable taking values 
between 0 and 1 that monitors the effect of outliers (hardness 

and softness of the boundary around data). The decision 
function used to label new samples whether they are healthy 
or outliers (anomaly) is as follows: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(〈𝑤. 𝑥𝑖〉 − 𝜌) (14) 

The SVM could also be applied in a case of non-linear 
classification by mapping the data onto a high dimensional 
feature space, where the linear classification is hence 
possible. A non-linear vector function such as 𝚽(𝒙) =
(𝜑1(𝒙), … , 𝜑𝑙(𝒙)) is used to map the n-dimensional input 
vector x onto l dimensional feature space, so that the decision 
function becomes as follows: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(〈𝑤. 𝛷(𝑥𝑖)〉 − 𝜌) (15) 

By applying the Kernel function as the inner product of 
mapping functions, it is not necessary to explicitly evaluate 
mapping in the feature space. 

𝐾(𝑥𝑖, 𝑥𝑗) = (Φ(𝑥𝑖) ∙ Φ(𝑥𝑗)) (16) 

Various kernel functions could be used such as: 

x Linear   𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖 ∙ 𝑥𝑗)𝑑
 

 

x Polynomial 𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖 ∙ 𝑥𝑗 + 1)𝑑
 

 

x Gaussian radial basis function (RBF) 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖2) 

x Hyperbolic tangent 
 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝑘𝑥𝑖 ∙ 𝑥𝑗 + 𝑐) 

As the kernel function defines the feature space in which the 
training set is classified, the selection of the appropriate 
kernel function is very important. 

Introducing Lagrange multipliers we obtain the dual problem 
as: 

𝑚𝑖𝑛 
1
2

∑ 𝛼𝑖𝛼𝑗

𝑙

𝑖,𝑗=1

𝑲(𝒙𝑖, 𝒙𝑗) 

      (17) 

Subject to  {
0 ≤ 𝛼𝑖 ≤ 1

𝜐𝑙
∑ 𝛼𝑖

𝑁
𝑖=1 = 1

 

If 𝜐  approaches 0, the upper boundaries on the Lagrange 
multipliers tend to infinity, so the second inequality 
constraint in Eq. (17) becomes void. As the penalization of 
errors becomes infinite, it returns to the corresponding hard 
margin algorithm. 

For the positive, non-zero multipliers (support vectors 𝑥𝑖)) 
we will have: 

http://en.wikipedia.org/wiki/Hyperbolic_function
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𝜌 = 𝑤 ∙ 𝜙(𝑥𝑖) = ∑ 𝛼𝑗

𝑙

𝑗=1

𝐾(𝑥𝑗, 𝑥𝑖) 

     (18) 

Accordingly the non-linear decision function for labelling 
new samples is represented as follows ( 𝑥𝑖  represents the 
positive, non-zero multipliers called support vectors): 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖

𝑙

𝑖=1

𝐾(𝑥𝑖, 𝑥) − 𝜌) 

 (19) 

4. METHODOLOGY 

The goal of this study is to evaluate performance of the 
proposed feature extraction algorithm in condition detection 
of a roller bearing.  

The fault diagnosis method for the traditional EEMD 
technique is given as the following (Tabrizi et al., 2014): 

1. To collect the acceleration signals of the healthy and 
defective bearings at three different external loads and two 
shaft speeds.  

2. To apply the EEMD method to decompose the vibration 
signals into some IMFs.  The first m IMFs including the most 
dominant fault information are chosen to extract the feature. 

3. To calculate the total energy iE of the first m IMFs: 

𝐸𝑖 = ∫ |𝑐𝑖(𝑡)|2 𝑑𝑡
+∞

−∞

 

(20) 

4. To create a feature vector with the energies of the m 
selected IMFs: 

𝐹𝑉 = [𝐸1, 𝐸2, … , 𝐸𝑚] (21) 

 

5. To normalize the feature function: 

𝐹𝑉𝑛 = [𝐸1 𝐸⁄ , 𝐸2 𝐸⁄ , … , 𝐸𝑚 𝐸⁄ ] (22) 

 

where  𝐸 = (∑ |𝐸𝑖|2𝑚
𝑖=1 )1/2 . 

Whereas the proposed feature extraction is implemented as 
the following steps: 

1. To decompose the signal using the performance improved 
EEMD (PIEEMD) with SNR=10 dB (Tabrizi et al., 2015A)  

2. To apply the TKEO to the first m IMFs of each signal. 

3. To calculate the sum of each TKEO. 

𝑇𝐾𝐸𝑂𝑖 = ∑ 𝜓(𝐼𝑀𝐹𝑖)
𝑚

𝑖=1

 

      (23) 

4. To create a feature vector with the sum of the calculated 
TKEO: 

𝑇𝐾𝐸 = [𝑇𝐾𝐸𝑂1, 𝑇𝐾𝐸𝑂2, … , 𝑇𝐾𝐸𝑂𝑚]  (24) 

  

5. To normalize the feature: 

 

𝑇𝐾𝐸𝑛 = [𝑇𝐾𝐸𝑂1/𝑇𝐾𝐸𝑂𝑡𝑜𝑡, 𝑇𝐾𝐸𝑂2/𝑇𝐾𝐸𝑂𝑡𝑜𝑡, … , 𝑇𝐾𝐸𝑂𝑚/
𝑇𝐾𝐸𝑂𝑡𝑜𝑡]     

      (25) 

where  𝑇𝐾𝐸𝑂𝑡𝑜𝑡 = (∑ 𝑇𝐾𝐸𝑂𝑖
𝑚
𝑖=1 ) . 

 

Finally, the training procedure of one-class SVM is carried 
out by utilizing the normalized feature vectors so far 
obtained. The 80% of healthy samples are used for training 
and the rest (remaining healthy samples and all faulty data) 
are taken as the test samples. Once the training procedure is 
successfully performed, the parameters are hold to test 
samples to identify the different work conditions and fault 
patterns. Cross validation is used to optimize the parameters 
of pattern recognition method. 

5. EXPERIMENTS 

The bearing data set (acceleration signals) were collected 
under various operating conditions using the test rig (Figure 
3) developed and assembled by the Dynamics & 
Identification Research Group (DIRG) at the Department of 
Mechanical and Aerospace Engineering of Politecnico di 
Torino. The Kistler triaxial accelerometers (model 
8763A500) were used to acquire signals at 102.4 kHz 
sampling frequency for both healthy and defective roller 
bearings. The small artificial defects severity over one roller 
was 150 and 450 microns in diameter. Two different shaft 
speeds (200 and 300 Hz) and three different external radial 
loads (1.0, 1.4 and 1.8 kN) were considered to acquire the 
signals in different operating conditions (as a common 
industrial set up) in laboratory supervised conditions, 
allowing speed, load and oil temperature monitoring. The 
original acquired healthy signals were divided into 30 
segments (20 segments for defective bearing) including 
10000 data points each, to extract required informative 
feature vectors. Thus, each healthy signal includes 30 
segments which create 30 feature vectors (20 feature vectors 
for defective bearing) as inputs for the one-class SVM. 
Selecting samples as the training ones includes all the 
possible random selections to obtain the maximum 
classification accuracy rate for training. 
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(a) 

 

 
 
 
 

(b) 

Figure 3. DIRG test rig (a) the damaged roller used in the 
tests (b) 

6. RESULTS AND DISCUSSIONS 

An acquired acceleration signal, its three first IMFs 
(decomposed using EEMD) and the TKEO of those IMFs are 
shown in Figure 4. Implementing the methodology to the 
signals, the normalized energy of IMFs (𝐹𝑉𝑛) for the EEMD 
method (using only first three elements of the feature vectors 
(Tabrizi et al., 2014)) and the normalized 𝑇𝐾𝐸𝑛  for the 
proposed method. 0.3 of standard deviation of each original 
signal is used as the appropriate amplitude of added noise in 
the traditional EEMD method (Tabrizi et al., 2015B). As it 
can be seen in Figure 5, there is a confusion among healthy 
and faulty samples for the lighter defect size (150 microns) 
obtained by the EEMD method. In view of this, the novel 
feature proposed along this study is applied to check whether 
it can improve the performances of detection. As it can be 
seen in Figure 6, the healthy and faulty samples are perfectly 
separable. Thus, it is expected to achieve higher success rate 
in labelling of new samples. 

In Table 1 and Table 2, the results of classification are shown 
(for shaft speed = 200 and 300 Hz) using one-class SVM. The 
results are highly dependent on the classification parameters. 

The optimal values of the classification parameters ( J andQ
) obtained by cross validation are presented for each methods. 
The success rates obtained using the proposed feature 
extraction, are higher so that in some cases there exist 
considerable differences. For example, with the condition 
300 Hz speed and 1.8 kN load, the proposed double steps 
technique improves the test success rate 23.1%.  

 
(a) 

 
(b)  

 
(c) 

Figure 4. A collected acceleration signal (a), first three IMFs 
(b) and TKEO of the IMFs (c) 
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Figure 5. The normalized energy 𝐹𝑉𝑛 of three first IMFs using EEMD for the 150 microns defect size (Speed = 300 Hz and 

load = 1.8 kN) 

 
Figure 6. The normalized 𝑇𝐾𝐸𝑛  of three first IMFs using performance improved EEMD (PIEEMD) for the 150 microns 

defect size (Speed = 300 Hz and load = 1.8 kN) 
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 Load 
              

Method 
1.0 kN      1.4 kN 1.8 kN 

J  Q  training test J  Q  training test    J  Q  training Test 
EEMD 0.3 0.1 100 96.2 0.1 0.3 100 100 0.3 0.05 100 92.3 
New feature extraction 0.1 0.3 100 100 0.1 0.3 100 100 0.1 0.3 100 100 

Table 1. The classification results for both methods (Shaft speed = 200Hz) 

 

 Load 
              

Method 
1.0 kN       1.4 kN 1.8 kN 

J  Q  training test    J  Q  training test    J  Q  training Test 
EEMD 0.1 0.3 95.8 96.2 0.1 0.1 95.8 92.3 0.05 0.3 100 73.1 
New feature extraction 0. 05 0.35 100 100 0.05 0.2 100 92.3 0.1 0.2 100 96.2 

Table 2. The classification results for both methods (Shaft speed = 300Hz) 

 

As the model might predict incorrectly the state of the new 
unseen samples introduced, in addition to the classification 
rate index, Margin (Eq. 10) and the number of support vectors 
are computed to test the reliability and uncertainty of the 
model. The complexity of the constructed hyperplane and the 
Margin are compare for traditional EEMD and the new 
feature extraction method (Tables 3 and Table 4). The 
bearing condition can be perfectly recognized (using EEMD) 
for a single working condition (Speed = 200 Hz and load = 
1.4 kN). In this condition, the fraction of SVs is 8/24, whereas 
applying the new method the complexity of the hyperplane 
decreases because it is defined by a lower SVs fraction (5/24). 
Furthermore, the Margin created by the EEMD is 0.999305, 
while using the proposed method the Margin is improved to 
1.146190. It means that the proposed feature extraction 
generates a less complex and more reliable hyperplane. Thus, 
the uncertainty of the model in identifying the state of new 
samples would be less than using the traditional EEMD.  

In all operating conditions, adopting the proposed method to 
construct the hyperplane, higher Margins are obtained, which 
indicates more reliable classification.   

It achieves the perfect success rates in the most cases, except 
for two operating conditions (Speed = 300Hz, load = 1.4 and 
1.8 kN). Even in these conditions, the success rates are higher 
than the EEMD.  In the load = 1.8 kN condition, there exist 
only one misclassified sample, which is a healthy sample 
labelled as a faulty bearing (false alarm). In fault diagnosis, 
it is more important not to classify a faulty sample as a 
healthy one than having a faulty alarm. 

When the Q parameter approaches zero, the problem then 
resembles the corresponding hard margin algorithm, since the 
penalization of errors becomes infinite (Eq. (17)). As it can 

be seen in tables 1 to 4, in some cases, the constructed 
hyperplane based on EEMD, seems to be hard-margin 
because of very low Q and very small number of SVs. For 
example, the condition corresponding to the speed of 200 Hz 
and the applied load of 1.8 kN, the parameter value is 0.05 
and the achieved number of SVs is only 2. It indicates a hard-
margin condition that only a few outlier can determine the 
boundary and makes the classifier significantly sensitive to 
noise in the data. By increasing the Q parameter to create a 
soft-margin model, the training accuracy will be reduced 
considerably. In contrast, all the constructed models based on 
the proposed feature extraction method are soft-margin SVM 
and more reliable. 

In order to detect the larger defect size (450 microns), the 
proposed feature extraction method is applied and the perfect 
success rates of classification are achieved for all operating 
conditions. As it can be seen in Figure 7, the healthy and 
faulty samples are perfectly separable, even for the condition 
where the states of the bearing were not detected perfectly for 
the smaller defect size (Speed = 300 Hz and load = 1.4 kN). 

7. CONCLUSIONS 

Applying the EEMD does not lead to a perfect anomaly 
detection in the case of small size defect (150 microns). 
However, it is shown that the proposed feature extraction 
method (based on performance improved EEMD and the 
normalized TKE) is a powerful method for detecting even the 
smallest damage level (150 microns) so that it can classify 
the samples perfectly in various operating conditions. It 
create less complex (less fraction of SVs) and more reliable 
(higher Margin) hyperplane than EEMD method. For the 
larger defect size (450 microns), utilizing the proposed 
technique, the healthy and faulty samples are completely 
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separable and the success rates of labelling the new samples 
are exact in all operating condition. 

 Load 
              

Method 
1.0 kN          1.4 kN 1.8 kN 

Fraction of 
SVs Margin Fraction of  

               SVs Margin Fraction of  
           SVs Margin 

EEMD 3/24 0.999722 8/24 0.999954 2/24 0.999305 
New feature extraction 8/24 1.13989 8/24 1.16538 8/24 1.26256 

Table 3. The fraction of SVs and calculated Margin (Shaft speed = 200Hz) 

 

 Load 
              

Method 
1.0 kN          1.4 kN 1.8 kN 

Fraction of 
SVs Margin Fraction of  

               SVs Margin Fraction of  
           SVs Margin 

EEMD 8/24 1.000010 3/24 0.999994 8/24 1.000030 
New feature extraction 8/24 1.098540 5/24 1.094330 5/24 1.146190 

Table 4. The fraction of SVs and calculated Margin (Shaft speed = 300Hz) 

 
 

 

 
Figure 7. The normalized 𝑇𝐾𝐸𝑛  of three first IMFs based on performance improved EEMD for the 450 microns defect size 

(Speed = 300 Hz and load = 1.4 kN) 
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