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Microscopic treatment of energy dissipation and

decoherence via many-body Lindblad superoperators

R Rosati1, R C Iotti1, F Dolcini1,2 and F Rossi1

1 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli
Abruzzi 24, I-10129 Torino, Italy
2 CNR-SPIN, Monte S. Angelo - via Cinthia, I-80126 Napoli, Italy

E-mail: roberto.rosati@polito.it

Abstract. Starting from a recent reformulation of the Markov limit, we apply the mean-
field approximation to the resulting Lindblad-type many-electron dynamics, and derive a
closed equation of motion for the electronic single-particle density matrix in the presence of
one- and two-body scattering mechanisms. The proposed formulation preserves the positive-
definite character of the single-particle density matrix. This result is in striking contrast with
conventional Markov approaches, where the single-particle mean-field equations can lead to
positivity violations and therefore to unphysical results.

One of the most challenging problems in the microscopic modeling of state-of-the-art electronic
quantum systems and devices is the derivation of suitable scattering superoperators (see, e.g.,
[1]) to account for decoherence and dissipation phenomena (see, e.g., [2, 3, 4]). When the
system-environment coupling becomes strong and/or the excitation timescale is extremely short,
Markovian approaches are known to be unreliable, and memory effects have to be taken into
account via quantum-kinetic approaches (see, e.g., [5, 6]); however, even in regimes where the
Markov limit is applicable, conventional Markov approaches may lead to unphysical results, such
as negative eigenvalues of the density matrix. To overcome this serious limitation, a few years
ago an alternative and more general Markov procedure has been proposed [7]; however, in spite
of its conceptual importance, the practical implementation of the latter is limited by the fact
that the many-body evolution is in general not exactly solvable. So far, all relevant applications
of such Markov treatment to semiconductor nanosystems are limited to the low-density limit,
where a Lindblad-type scattering-induced evolution is demonstrated also for the single-particle
density matrix (see, e.g., [8, 9]).

Aim of this contribution is to discuss a recently proposed kinetic treatment based on a
nonlinear density-matrix equation [10]. More specifically, by applying the conventional mean-
field approximation to the many-electron dynamics obtained via the alternative Markov limit
recalled above, it is possible to derive a closed equation of motion for the electronic single-
particle density matrix, in the presence of carrier-carrier as well as carrier-phonon scattering
mechanisms. While in the low-density limit such nonlinear equation exhibits a Lindblad form
–like for the many-body density matrix– at finite or high carrier concentrations the equation
turns out to be non-Lindblad and highly nonlinear. Nevertheless, we can prove that the mean-
field approximation does preserve the positive-definite character of the single-particle density
matrix, an essential prerequisite of any reliable kinetic treatment of semiconductor quantum
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devices. This result is in striking contrast with the case of mean-field approximations applied
to conventional (non-Lindblad) Markov approaches, where the corresponding single-particle
equations may lead to positivity violations. The power and flexibility of the proposed density-
matrix formalism has been confirmed by a recent investigation of phonon-induced quantum
diffusion in state-of-the-art carbon nanotubes [11], where non-linear effects are found to play a
relevant role.

The study of electro-optical processes in semiconductors mainly relies on physical quantities
that depend on the electronic-subsystem coordinates only. This suggests the introduction of a
many-electron density-matrix operator ρ̂, defined as the trace of the global (i.e., electron plus
various crystal excitations) density-matrix operator over non-relevant degrees of freedom (e.g.,
phonons, plasmons, etc.). Starting from the alternative Markov procedure proposed in Ref. [7],
which allows one to derive a global Lindblad scattering superoperator, it is possible to show that
also such a reduced many-electron dynamics is still of Lindblad type, i.e.,

dρ̂

dt

∣∣∣∣
scat

=
∑
s

(
Âsρ̂Âs† − 1

2

{
Âs†Âs, ρ̂

})
, (1)

where the explicit form of the reduced or electronic operators Âs can be derived starting from
the global Lindblad ones.

Within the above description, one has already performed a statistical average over the phonon
bath, but the electronic subsystem is still treated via a many-body picture. However, in the
investigation of semiconductor-based quantum materials and devices, many of the physical
observables of interest (like, e.g., total carrier density, mean kinetic energy, charge current,
and so on) may be well described via single-particle electronic operators. The study of the time
evolution of such single-particle quantities requires the derivation of a closed equation of motion

for the single-particle density matrix ρα1α2 = tr{ĉ†α2 ĉα1ρ̂}. Combining the definition of ρα1α2

with the many-electron Lindblad dynamics in Eq. (1), and employing the cyclic property of the
trace, one gets:

dρα1α2

dt

∣∣∣∣
scat

=
1

2

∑
s

tr
{[

Âs†, ĉ†α2
ĉα1

]
Âsρ̂

}
+ H.c. (2)

In order to get a closed equation of motion for the single-particle density matrix, it is now central
to specify the form of the many-electron Lindblad operators Âs which, in turn, depends on the
particular interaction mechanism considered.

For the case of a generic carrier-phonon (cp) interaction mechanism the corresponding (one-
body) Lindblad operator is always of the form

Âs =
∑
αα′

Acp
αα′ ĉ

†
αĉα′ ; (3)

the latter describes the phonon-induced carrier transition (i.e., destruction plus creation) from
the initial state α′ to the final state α. In this case, the label s ≡ q,± shall correspond to the
emission (+) or absorption (−) of a phonon with wavevector q.

The Lindblad operator corresponding to carrier-carrier (cc) interaction is of the general (two-
body) form

Âs =
1

2

∑
αα,α′α′

Acc
αα,α′α′ ĉ†αĉ

†
αĉα′ ĉα′ ; (4)

the latter describes the transition (i.e., destruction plus creation) of our electronic pair from the
initial (two-body) state α′α′ to the final state αα.
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By inserting into Eq. (2) the above written carrier-phonon and carrier-carrier Lindblad
operators, and employing the usual fermionic anticommutation relations, one ends up with
terms involving average values of four and eight fermionic operators, respectively. At this point,
the fundamental step to get a closed equation of motion for the single-particle density matrix
consists of performing the well-known mean-field (or correlation-expansion) approximation (see,
e.g., [4]). Employing this approximation scheme and omitting renormalization terms [10], the
resulting single-particle equation is given by

dρα1α2

dt

∣∣∣∣
scat

=
1

2

∑
s

∑
α′α′

1α
′
2

[
(δα1α′ − ρα1α′)Psα′α2,α′

1α
′
2
ρα′

1α
′
2
− (δα′α′

1
− ρα′α′

1
)Ps∗α′α′

1,α1α′
2
ρα′

2α2

]
+ H.c.

(5)
with generalized carrier-phonon scattering rates

Ps=cp
α1α2,α′

1α
′
2

= Acp
α1α′

1
Acp∗
α2α′

2
(6)

and generalized carrier-carrier scattering rates

Ps=cc
α1α2,α′

1α
′
2

= 2
∑

α1α2,α′
1α

′
2

(δα2α1 − ρα2α1)Acc
α1α1,α′

1α
′
1
Acc∗
α2α2,α′

2α
′
2
ρα′

1α
′
2
, (7)

where Acc
αα,α′α′ denotes the totally antisymmetric parts of the two-body coefficients Acc

αα,α′α′ in

Eq. (4). It is worth noting that, opposite to the generalized carrier-phonon rates in Eq. (6), the
generalized carrier-carrier rates in Eq. (7) are themselves a function of the single-particle density
matrix; this is a clear fingerprint of the two-body nature of the carrier-carrier interaction.

The crucial issue related to the proposed kinetic treatment is the positivity analysis of the
nonlinear density-matrix equation (5). Indeed, if the single-particle density matrix describes
a physical state, its eigenvalues are necessarily positive-definite and smaller than one (Pauli
exclusion principle); this feature must be preserved during the scattering-induced time evolution.
As discussed in detail in Ref. [10], in order to prove that, it is crucial to move from the original
single-particle basis {|α〉} to the time-dependent basis {|λ〉} that instantaneously diagonalizes
the single-particle density matrix; more specifically, by denoting with Λλ = ρλλ the generic
density-matrix eigenvalue (corresponding to the eigenstate |λ〉), it is possible to show that its
time evolution induced by the proposed density-matrix equation (5) is simply given by

dΛλ
dt

=
∑
s

∑
λ′

[(1− Λλ)P sλλ′Λλ′ − (1− Λλ′)P
s
λ′λΛλ] , (8)

where P sλλ′ = Psλλ,λ′λ′ are positive-definite quantities given by the diagonal elements of the

generalized scattering rates [see Eqs. (6) and (7)] written in the instantaneous density-matrix
eigenbasis. This result is highly non-trivial: it states that, in spite of the partially coherent
nature of the carrier dynamics in (5), the time evolution of the eigenvalues Λλ is governed by a
non-linear Boltzmann-type equation formally identical to the semiclassical-case one.

We are now in the position to state that the physical interval [0, 1] is the only possible
variation range of our eigenvalues Λλ; to this end, it is crucial to show that when the latter
approach the extremal values, 0 or 1, their time derivatives do not allow them to exit the
interval. Indeed, a closer inspection of the Boltzmann-like equation (8) shows that:

(i) if one of the eigenvalues is equal to zero, the corresponding time derivative is always non-
negative;

(ii) if one of the eigenvalues is equal to one, its time derivative is always non-positive.
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Figure 1. Time evolution of the density
matrix eigenvalues, corresponding to a
simple two-level system in the presence
of carrier-phonon interaction. Panel a):
conventional Markov approach; Panel b):
proposed single-particle model.

This leads us to the important conclusion that, for both carrier-phonon and carrier-carrier
scattering, the proposed nonlinear single-particle equation (5) will preserve the positive-definite
character of the single-particle density matrix. We stress that the above positivity analysis is
based on the fact that the matrix elements P sλλ′ in (8) are positive-definite quantities. This
property, which applies to the proposed single-particle equation (obtained starting from the
global Lindblad-type scattering superoperator), is generally not fulfilled by conventional Markov
models. In this case, starting from a non-Lindblad many-body scattering model, the system
dynamics may exit the physical eigenvalue region, giving rise to positivity violations also in the
low-density limit [7].

The outcome of the positivity analysis presented so far is fully confirmed by the subset of
simulated experiments displayed in Fig. 1, where we report the time evolution of the density-
matrix eigenvalues for the case of a simple two-level system, in the presence of carrier-phonon
scattering. As expected, for the proposed nonlinear equation all the eigenvalue trajectories
fall within the physical interval [0, 1], while for the nonlinear equation obtained within the
conventional Markov limit a significant number of simulated eigenvalue trajectories exit the
physical interval.

We finally stress that the proposed single-particle formulation has been also extended to the
case of quantum systems with spatial open boundaries [10]; this provides a formal derivation of a
recently proposed density-matrix treatment based on a Lindblad-like system-reservoir scattering
superoperator [8].

We are extremely grateful to Salvatore Savasta and David Taj for stimulating and fruitful
discussions. F.D. also acknowledges financial support from Italian FIRB 2012 project
HybridNanoDev (Grant No. RBFR1236VV).
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