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Abstract. Understanding heat and mass transfer phenomena at solid-liquid nanoscale 

interface plays a crucial role for introducing novel and more rationally designed theranostic 

particles, drug with tailored features and for gaining new insight on the biomolecules 

functioning. For instance, the water transport properties in the proximity of Amyloid beta 

peptides can influence the formation of amyloid plaques found in the brains of Alzheimer 

patients. 

In the present work, transport behavior of water molecules in nanoconfined conditions has 

been investigated. By means of equilibrium Molecular Dynamics (MD) simulations, 

characteristic length of water confinement has been evaluated in the proximity of several 

biomolecules such as proteins and amino acids. Moving from proteins to their building blocks 

(i.e. amino acids), a similarity in water behavior was initially expected; MD simulations 

results show, instead, a more complex picture revealing a difference between the potential of 

water nanoconfinement by either proteins or amino acids. Hence, the reduction of water 

mobility in the proximity of nanoscale interfaces does not rely only on the local physical and 

chemical properties of the biomolecules surface, but the effects of size and potentials overlap 

should be also taken into account. 

1 INTRODUCTION 

Nanomedicine is the science dealing with the design and development of therapeutic 

and/or diagnostic agents in the nanoscale range (i.e. diameters from 1 to 100 nm), including 

all the critical aspects linked to the transport and delivery of therapeutic molecules and drugs 

in the body. Several studies underline the importance of nanoscience in medicine. For 

instance, Nuclear Magnetic Resonance Imaging (NMRI), which is one of the most spread and 

powerful diagnostic techniques, is receiving great advantages thanks to the use of 

nanoparticles. Relaxivity parameters (  and   ) of MRI contrast agents are enhanced by 

nanoconfined conditions: for examples, Ananta et al. experimentally found    increases by 

confining contrast agents in mesoporous silica [1], whereas, Gizzatov A. et al. proved similar 

results for    of ultra small paramagnetic iron oxides nanoparticles (USPIOs) [2]. Other 

examples of successful coupling of nanotechnology to medicine come from therapeutic 
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application. Nanotechnology-based approaches to hyperthermia seem to have great 

potentiality and a reduced invasiveness [3][4]. 

In all the previous examples, the understanding of heat and mass transport phenomena at 

the nanoscale takes on great importance for designing patient-tailored and more performing 

biomedical devices. In particular, the modulation and precise control of the water molecules 

diffusion in the vicinity of MRI contrast agents allow remarkable improvement in imaging 

performance, whereas an accurate study of heat conduction in the proximity of heated 

nanoparticles can be extremily useful to design their shape, size and coating for thermal 

ablation. Moreover, also proteins may modify their structure and thus their functionality 

according to the dynamics of the surrounding water environment [5][6]. Enzymatic activity, 

molecular recognition and folding process of proteins are strongly influenced by surrounding 

water mobility [7][8]. Furthermore the hydration layer has a key role in the formation of 

protein aggregates, such as those involved in Alzheimer’s and Parkinson’s diseases [9][10]. 

The properties of water nanoconfinement and the reduced water mobility at the solid-liquid 

interfaces have been studied and scaled by Chiavazzo et al. [13][14]. After having evaluated 

the self-diffusion coefficient of water in several nanoconfined geometries, authors formulated 

a scaling behaviour for water molecules diffusion in confined configurations:  ( )  
  (   ) where   is the water self-diffusivity in the solvated system,    is the bulk self-

diffusion coefficient of water and   is a dimensionaless parameter which is related to 

confinement conditions. In particular,   is given by the ratio between the water confined 

volume and the total volume of water in the system. 

In this article, the nanoconfinement of water has been studied in the proximity of proteins 

and their building blocks: amino acids. Numerous experimental and theoretical studies have 

already demonstrated that the water molecules in the proximity of a protein surface are 

subjected to confined dynamics [15][16]. Moreover several works have shown the important 

role of amino acids in the protein structure stabilization [26][27], or their influence on water 

viscosity [26]. However, a broad physical understanding of the water mobility modification in 

the vicinity of any protein is still a subject of investigation, mainly because of the variety of 

amino acids physicochemical properties (hydrophilic vs. hydrophobic). 

Here, molecular dynamics simulations are used for evaluating the different water confining 

capabilities of a large variety of proteins and amino acids. The main results show the 

hydration layer around poroteins, forming beacause of the attractive potential with interface, 

is almost 40% bigger than the amino acids. The reason of this descrepacy has been attributed 

to the few atoms of proteins building blocks involving in the non-bonded interaction with 

water molecules. This latter evidence sheds light on the difficulty in diriving water 

confinement around proteins starting from their building blocks: just 20 amino acids can join 

with several possible configurations providing different proteins characteristics and 

functionality. Finally, some points of discussions for a future work  are presented.  

2 METHODOLOGY 

2.1 Molecular Dynamics simulations 

In order to study the water transport properties at the solid-liquid nanoscale interface, 

Molecular Dynamics (MD) simulations have been performed by GROMACS (GROningen 
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MAchine for Chimical Simulations) software [17]. By solving classical Newton’s laws, MD 

simulations are able to describe the motions of single atoms within a complex molecule or 

particle. 

In this study, equilibrium MD simulations have been carried out for five proteins (B1 

Immunoglobulin binding-domain, 1PGB; Ubiquitin, 1UBQ; Green Fluorescence Protein, 

1QXT; Lysozime, 1AKI; Leptine, 1AX8) and 13 amino acids. The proteins sample covers a 

large variety of these biomolecules, with different structure and functionality, which allows to 

deduce water confinement behavior independently from the specific protein characteristics. 

Among the 20 amino acids in nature, just some examples per each group (polar, charged and 

neutral) have been studied (Figure 1). Hence, hydrophobic as well as hydrophilic behavior is 

investigated. In detail we considered arginine (ARG), aspartic acid (ASP), glutamic acid 

(GLU) and lysine (LYS) as charged amino acids; asparagine (ASN), glutamine (GLN), serine 

(SER), threonine (THR) and tyrosine (TYR) among polar amino acids and valine (VAL), 

isoleucine (ISO), leucine (LEU) and glycine (GLY) for the neutral family. 

The geometries of all the studied cases have been downloaded from the RCSP Protein Data 

Bank [18] and the topologies have been completed by including CHARMM27 [19][20] force 

field. Each of these biomolecules has been solvated in a dodecahedral box of water where 

solvent molecules are described by spc/e model [20]. Before minimizing the energy, ions are 

added where needed, in order to achieve the neutrality of the system. Then two equilibration 

steps of 100 ps each have been performed: the former has been computed within a canonical 

ensemble (fixed Number of particles, Volume and Temperature-NVT) at 300 K by imposing a 

V-Rescale thermostat [21] on both water and biomolecule; the latter (fixed Number of 

particles, Pressure and Temperature -NPT), equilibrates the system to 300 K and 1 bar 

pressure, by means of Parinello-Rahman barostat [23][24]. Finally a 1 ns simulation has been 

performed for the equilibrated system. 

Confining characteristics of the considered biological surfaces are studied by post-

processing MD trajectories at steady state conditions. 

The solvent mobility has been described by the self-diffusion coefficient related to the slope 

of the mean square displacement (MSD) of water by the Einstein relation: 

    
   

〈‖  ( )    ( )‖
 〉         

where   ( ) and   ( ) are the position vectors of the solvent molecules at the time t, and at 

the time t = 0, respectively and   the self diffusion coefficient of water. The considered 

simulation time is larger compared to the typical time of the velocity autocorrelation function, 

so that any dynamical coherence of the molecules motion has disappeared. The GROMACs 

tool to compute the solvent self-diffusion is g_msd. Instead by g_sas, the solvent accessible 

surface (SAS) [25] of each bio-structure can be calculated. Both the total Stot and local solvent 

accessible surface related to the single atom (Sloc,i) are readily computed by GROMACS, once 

the geometry of the system is known (e.g. in the form of a pdb file). Moreover, the g_sas 

option, “-q” provides a pdb file containing the Cartesian coordinates of the points forming the 

solvent accessible surface. 
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Figure 1: Structure of the 11 amino acids studied in the present work. Amino acids pictures are made with 

USCF Chimera [11]. 

2.2 Derivations of the characteristic length of water confinement 

Moving from the bulk region to the proximity of solid-liquid surfaces, water molecules 

show a reduction of mobility and a more ordered structure. While in the bulk, fluid water 

molecules fluctuate with a kinetic energy proportional to    , where    is the Boltzmann 

constant (1.38 × 10−23 JK
−1

) and T is the temperature, close to the solid surfaces they are 

subjected to Van der Waals (Uvdw) and Coulomb (Uc) interactions, which interfere with their 

state of agitation. This induces a layering of water molecules with reduced mobility at the 

soli-liquid interfaces, as already pointed out in other works [12]. 

Chiavazzo and colleagues [13] introduced a characteristic length, δ, to quantify the 

thickness of such confined water layer. The length δ is derived from the effective potential 

Ueff that water molecules feel at the Solvent Accessible Surfaces (SAS). The calculation takes 

into account just the interactions between water and the N atoms of the solid structure within a 

fixed cut-off radius (Rc), where Rc has been chosen large enough to include all atoms with a 

potential contribution different to zero, namely Ueff ~0. The corresponding effective potential 

energy Ueff is due to Van der Waals (Uvdw) and Coulomb (Uc) interactions and it has been 

computed as:   

      ( )       ( )   〈  〉( )  (1) 
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where the n-axis is orthogonal to the SAS and it is passing through the center of the atom i-th. 

Van der Waals interactions are modelled by: 

     ( )   ∑   [(
  
  
)
  

 (
  
  
)
 

]

  

   

  (2) 

with   ,    and    denoting the depth of the potential well, the distance where such potential 

becomes zero (both obtained with Lorentz-Berthelot rule), and the Euclidean distance 

between the generic line point with coordinate n and the center of k−th nearest neighbour, 

respectively. For the Coulomb interactions, the average potential energy between the N atoms 

and the water dipoles, at a fixed temperature T, is 

 〈  〉( )        (
   
   

)  (3) 

where E, μw, and Г denote the electrical field strength, water dipole moment (7.50 ×10
-30

 C m 

for SPC/E model) and the Langevin function. The 〈  〉( ) formulation is derived from the 

Maxwell-Boltzmann distribution of water dipoles orientation, due to the thermal agitation. 

Knowing the effective potential Ueff (n) for the atom i, a corresponding characteristic length  δi 

can be estimated. According to [13], δi is evaluated considering the depth within which the 

effective potential is stronger than water molecules thermal energy. Therefore, based on the 

definition of δi, all the water molecules located within such a distance are significantly 

affected by the Van der Waals and Coulomb interactions, whereas all the water molecules 

beyond the characteristic length δi can escape the potential well generated by the solid wall. In 

general, the quantity δi varies per each atom i. The mean characteristic length  ̅ of the overall 

solid surface can be derived as: 

  ̅   
∑         
 
   

    
  (4) 

with Sloc,i and N being the specific (per-atom) SAS for the atom i and the total number of 

atoms, respectively. Note that the above formulation is general and applies to hydrophilic and 

hydrophobic surfaces, regardless of their electrostatic surface charge. 

3 RESULTS 

3.1 Water confinement at solvent-proteins interfaces 

The computed characteristic lengths of water confinement for the five proteins previously 

described are shown in Table 1. Although the study cases present strong differences in 

structure, shape and functionality, the thickness of water molecules layer forming in the 

proximity of proteins surfaces is comparable and it oscillates in the range: 0.305±0.01 nm. 

Hence, results show that independently from the specific protein, just few layers of water 

molecules are significantly affected by the effective potential of the solid surface. 

Regarding the solvent accessible surface, values cover a range from 36.04 nm
2
 (B1 
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Immunoglobulin binding-domain) to 108.8 nm
2
 (Ubiquitin). 

The self-diffusion coefficient of water in the proximity of the studied proteins is reduced 

respect to the bulk value (2.6·10
-9

 m
2
/s [26]) and it goes from 2.364 ± 0.025 ·10

-9
 m

2
/s 

(Lysozime protein) to 2.434 ± 0.014 ·10
-9

 m
2
/s (B1 Immunoglobulin binding-domain protein). 

The latter results are in good agreement with the prediction of the scaling law suggested by 

[13]. 

Table 1: Mean characteristic length  ̅ of water nanoconfinement, solvent accessible surface (SAS) and water 

self-diffusion coefficient for five solvated proteins 

Proteins  ̅  [nm] SAS [nm
2
] D [m

2
/s] 

1 PGB 0.295 36.04 (2.434 ± 0.014) ·10
-9

 

1UBQ 0.309 48.02 (2.411 ± 0.063) ·10
-9

 

1QXT 0.302 108.8 (2.425 ± 0.016) ·10
-9

 

1AKI 0.306 67.4 (2.364 ± 0.025) ·10
-9

 

1AX8 0.315 68.9 (2.372 ± 0.016) ·10
-9

 

3.2 Water confinement at solvent-amino acids interfaces 

As described in the previous paragraph, the relation between water nanoconfinement 

length and proteins surface properties appears not so trivial: although proteins present 

different fuatures and configurations, they show the same ability in confining water at their 

surface. Because of this complexity a deeper investigation has been carried out on proteins 

building blocks: amino acids in dilute aqueous solution. 

The combined use of molecular dynamics simulations and computational methods has 

brought to the results in Table 2. Although just slight differences are evident among the 

characteristic length of polar, charged and neutral amino acids, it is interesting to note that 

those with similar solvent accessible surface present values of  ̅ increasing with the 

hydrophilicity. For example, the water molecules layer in the proximity of aspartic acid ( ̅ = 

0.18 nm), is larger than the Valine characteristic length ( ̅ = 0.153 nm). This result can be 

considered in line with the definition of  : because of the presence of charged and polar 

residues in the side chain of aspartic acid, water molecules are affected by a deeper potential 

well and thus by a stronger confinement at the solid-liquid interface.  

Concerning the self-diffusion coefficients of water in the proximity of the latter amino 

acids, D values are comparable to those of proteins. 

Table 2: Mean characteristic length  ̅ of water nanoconfinement and solvent accessible surface (SAS) for the 13 

amino acids considered 

Charged amino acids  ̅  [nm] SAS [nm
2
] 

ARG 0.208 3.06 

ASP 0.180 2.26 

GLU 0.185 2.52 

LYS 0.184 2.77 
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Polar amino acids  ̅  [nm] SAS [nm
2
] 

ASN 0.168 2.30 

GLN 0.182 2.55 

SER 0.163 1.98 

THR 0.164 2.19 

TYR 0.213 3 

Neutral amino acids  ̅  [nm] SAS [nm
2
] 

VAL 0.153 2.29 

ISO 0.167 2.51 

LEU 0.180 2.57 

GLY 0.155 1.65 

3.3 Interpreting the mismatch between   proteins and amino acids 

A comparison between Table 1 and Table 2 clearly leads to the consideration that the mean 

characteristic length of confinement evaluated for the amino acids is almost 40% less than the 

proteins one. This mismatch becomes even more evident from the Figure 2 where, the average 

value of  ̅ is plotted for the three amino acids groups (charged, polar and neutral) and for the 

studied proteins. 

It is well established that the hydration layer forming at the solvent-particle interface is 

strongly dependent on the surface physicochemical properties. However, since amino acids 

are proteins building blocks, the significant differences in terms of the mean characteristic 

length could result unclear. The latter behavior may be due to a size-dependent effect. In fact, 

because of the reduced number of atoms forming the amino acids, a water molecule in their 

proximity is subjected to a weak effective potential.  

Two further analysis have been followed to prove the size dependent feature of  . First, a 

MD configuration made out of two identical amino acids (arginine in this case) has been set-

up (Figure 3a). The initial distance, h, between arginines centers of mass has been fixed at 3 

nm and 1 ns equilibrium molecular dynamics simulation has been performed while fixing the 

amino acids relative position. In this case, each amino acid was characterized by its own  ̅, 

which exactly corresponds to the specific value reported in Table 2. Then, h was 

progressively decreased to 2 nm, 1nm up to 0.5 nm values (Figure 3b-d). As shown in Figure 

3, the solvent accessible volume in the region between the amino acids (h) is reduced as the 

amino acids were forced to approach each other. At one extreme, when h = 0.5 nm, water 

molecules are no more able to wet the entire surface of the two arginines, but they can just 

access to the external part of the coupled molecules. Comparing the  ̅, obtained for each set-

up, it is interesting to note an increase of the characteristic length of water confinement as the 

inter amino acids distance reduces (Table 3). This behavior is strictly connected to the 

effective potential overlap: as the arginines  approach, more atoms are located within the cut-

off radius, Rc, and thus more intense non-bonded interactions can be established between 

water molecules and the atoms of the bio-structure. Similar analysis has been repeated 

increasing the number of amino acids within the water box. Configurations with four and nine 
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amino acids are then simulated. As evident from Table 3, the mean characteristic length of 

water confinement further increases, as the amino acids distance reduces. A maximum value 

of 0.279 nm is reached in case of 9 arginine amino acids arranged in a 3x3 matrix with inter 

distances of 0.5 nm. 

 

Figure 2: Comparison between amino acids’ and protein’ s characteristic length of water confinement. An 

avarage value of  ̅ is calculated among proteins and charged, polar, and neutral amino acids. 

The latter value can be almost compared with the proteins hydration layer previously 

obtained, even if, probably the strong dipole of the peptide bonds (covalent chemical bonds 

formed when the amino group of one amino acid joins to the carboxyl group of its neighbor) 

can increase the effect of water confinement around a protein. Hence, in addition to the 

physicochemical properties of the solid surface, the water nanconfinement length is also 

influenced by the size of the considered molecule, and the potential overlapping assumes a 

relevant role to reduce the mobility of the polar solvent molecules close to the interfaces. 

To confirm the argument of potential overlapping, a second analysis has been considered. 

The MD trajectories of the solvated Ubiquitin protein (1UBQ) have been performed. Then, 

just a small portion of 1UBQ solvent accessible surface was analyzed and the effective 

potential Ueff evaluated (Figure 4). Results in Figure 4 clearly show that the solvent felt the 

potential from several amino acids present in its vicinity. Hence, the water local confinement 

can be attributed to the complex overlapping of the non-bonded potentials arising from 

contiguous amino acids. 
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Table 3: Mean characteristic length  ̅ of water nanoconfinement and SAS for different configuration of coupled 

arginine amino acids. 

n° Arginine 

molecules 
h [nm]  ̅  [nm] SAS [nm

2
] 

1  0.208 3.06 

2 3 0.198 6.21 

2 2 0.209 6.23 

2 1 0.216 6.09 

2 0.5 0.255 5.11 

4 0.5 0.256 9.10 

9 0.5 0.279 16.15 

 

 

Figure 3: Two ARG amino acids at different distane h. a) h = 3nm b) h = 2nm. c) h = 1 nm. d) h = 0.5 nm. 

Atoms within the cut-off radius contribuite to the effective potential which influences the water mobility at the 

solid-liquid interfaces. 

a b

c d

h
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Figure 4: Local effective potential (Ueff) felt by water molecules located along one of the normal directions to 

Ubiquitin surface. Because of the precise position on the protein, the dominant contribution to the effective 

potential comes from arginine -ARG- and  glutamic acid -GLN- atoms 

4 CONCLUSIONS 

The study of water dynamics under nanoconfined conditions has strong implication in 

nanomedicine, from the diagnostic to the therapeutic field. 

In this work, the water transport behavior in the proximity of proteins and their building 

blocks, amino acids, has been investigated. By means of molecular dynamics simulations and 

matlab computational tools, the water confinement length  ̅ has been evaluated at some 

proteins and amino acids interface. The latter physical quantity is defined as the distance 

between a water molecule and the solid surface where the attractive non-bonded interactions 

of the solid prevail on the kinetic energy of the liquid, thus causing a reduced mobility for 

water. The analysis of several study cases has shown a consistent mismatch: the almost 

constant values of δ among different proteins (       ) is significantly larger than the 

average one for amino acids (         ). We have demonstrated that the hydration layer at 

the solid-liquid interface has a strong dependence on the biomolecules size, in addition to the 

physicochemical properties of the solid surface. Thus, the limited amount of atoms in the 

amino acids structure determines a weak attractive potential with the water molecules in their 

proximity and thus a reduced confinement length. 

The latter evidence has been further proved by analyzing the  ̅ value in the light of the 

possible superposition principle of the solid-liquid non bonded potential. On one hand,  ̅ has 

been evaluated at the interface of two coupled amino acids at a variable distance, namely 

          . Moreover, also configurations with four and nine amino acids have been 

considered. On the other hand, the effective potential between water molecules and amino 

acids atoms has been calculated on a local portion of Ubiquitin surface. Results show that the 

enhanced water confinement capabilities of proteins do not depend on the average value of 

the amino acids one, but a cross interaction of the effective potential could occur. Therefore, 
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overall water confining properties of proteins are not strictly coupled to the ones of their 

building blocks, but they are enhanced by complex amino acids-amino acids interactions. 

The study of the hydration layer around amino acids or very small peptides such as 

Alzheimer’s amyloid-β(1–40) peptide could have implication in understaing the biomolecules 

aggragation, dynamics and functionality [29][30]. 
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