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Towards effective flow simulations in realistic Discrete

Fracture Networks

Stefano Berronea, Sandra Pieraccinia,∗, Stefano Scialòa

aDipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi
24, 10129 Torino, Italy.

Abstract

We focus on the simulation of underground flow in fractured media, modeled
by means of Discrete Fracture Networks. Focusing on a new recent numerical
approach proposed by the authors for tackling the problem avoiding mesh
generation problems, we further improve the new family of methods making a
step further towards effective simulations of large, multi-scale, heterogeneous
networks. Namely, we tackle the imposition of Dirichlet boundary conditions
in weak form, in such a way that geometrical complexity of the DFN is not
an issue; we effectively solve DFN problems with fracture transmissivities
spanning many orders of magnitude and approaching zero; furthermore, we
address several numerical issues for improving the numerical solution also in
quite challenging networks.

Keywords: Fracture flows, Darcy flows, discrete fracture networks,
optimization methods for elliptic problems, uncoupled large scale
simulations, XFEM
2010 MSC: 65N30, 65N50, 68U20, 86-08

1. Introduction

The simulation of underground fluid flow in fractured media is a challeng-
ing issue, relevant in several critical applications, such as oil/gas recovery, gas
storage, pollutant percolation, water resources monitoring. The phenomenon
has a heterogeneous multi-scale nature that involves complex geological con-
figurations. A possible approach for modelling the phenomenon is given by
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Preprint submitted to Elsevier June 11, 2015



Discrete Fracture Networks (DFNs) [1, 2, 3, 4, 5, 6, 7, 8, 9], which are com-
plex sets of polygonal intersecting fractures. We focus on the resolution of
the steady-state flow in large fracture networks. The quantity of interest is
the hydraulic head in the whole network, which is the sum of pressure and
elevation, and is evaluated by means of the Darcy law. The rock matrix
surrounding fractures is considered impervious such that fluid flow only oc-
curs through fractures and fracture intersections (called traces). Hydraulic
head continuity and flux balance at fracture intersections is preserved adding
specific matching conditions.

Geological fractured media are characterized by a challenging geometrical
complexity. A crucial issue in DFN flow simulations is the need to provide
on each fracture a good quality mesh [10, 11, 12, 13]. Namely, if the meshes
on the fractures are required to be conforming with the traces, and with the
meshes on the intersecting fractures, the meshing process for each fracture
is not independent of the process on the other fractures, thus yielding in
practice a quite demanding computational effort for the mesh generation. In
some cases, the meshing process may even result infeasible [10].

In [14, 15, 16] the authors proposed a PDE-constrained optimization ap-
proach for overcoming mesh generation problems related to geometrical com-
plexities. The method has proven to be an effective numerical approach for
flow simulations in DFNs. Within this approach, the exact fulfillment of
hydraulic head continuity and flux balance at fracture intersections is re-
placed by the minimization of a cost functional, constrained by the Darcy
law on the fractures. The optimization formulation, tackled with an itera-
tive resolution method, allows for an independent meshing process and an
independent resolution of the constraint equations on the fractures, thus
avoiding the resolution of a huge global linear system. Various finite element
based discretization techniques, such as standard FEM, XFEM or VEM have
been successfully used in order to fully exploit the advantages of the method
[16, 17]. The resulting method is also well suited for parallel implementation
[18]. Advanced uncertainty quantification techniques have been successfully
employed in conjunction with the proposed approach in [19] in order to pre-
dict the response of the method to the randomness of input data.

Here, we focus on the XFEM based discretization. In the present paper
we propose a new formulation of the objective functional, aiming at improv-
ing the method towards an increased flexibility. This reformulation tackles
the imposition of Dirichlet boundary conditions in weak form by means of a
unified treatment of matching conditions at traces and boundary conditions
at the Dirichlet boundary. In this way, the solution process does not require
any knowledge concerning the reciprocal position of the traces and of the
Dirichlet boundary, thus reducing the cost of the geometrical processing of
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the network. This approach can also be useful to enforce Dirichlet bound-
ary conditions for modeling wells or boreholes. Furthermore, when using an
XFEM based discretization, the imposition of boundary conditions requires
special care when traces impact or lie very close to the Dirichlet boundaries:
indeed, the additional basis functions of the XFEM give a non-zero contri-
bution on the boundary, and it might be very difficult to impose boundary
conditions without affecting the behavior of the approximate solution inside
the domain, [20, 21]. Furthermore, if non-smooth Dirichlet boundary condi-
tions are to be imposed, the value of the coefficient of the XFEM additional
basis functions on the Dirichlet boundary is not known in general, requiring
the resolution of additional tailored local problems.

In the present work we also suggest resolution strategies in order to deal
with networks of fractures characterized by a strong variability in fracture
transmissivities, and/or by the presence of fractures with an hydraulic trans-
missivity several orders of magnitudes smaller than the others. In these
situations it is beneficial to introduce some penalty terms in the functional
to force an increased accuracy in the flux balance requirement. A different
technique is also investigated, consisting in solving a modified problem fea-
turing the same solution in terms of hydraulic head but with re-scaled fluxes.
Finally, a preconditioner for the resolution of the discrete linear system of
equations is proposed and investigated. The structure of this preconditioner
is simple and effective, moreover it can be easily used for the resolution of
the problem within a parallel approach.

The structure of the paper is as follows. In Section 2 the model is briefly
recalled and enriched in order to introduce the weak imposition of Dirichlet
boundary conditions; in Section 3 the discrete version of the problem is
derived; in Section 4 we address some numerical issues mainly aimed at
improving the quality of the computed solution. Finally, in Section 5 we
propose some numerical results both on simple test problems and on complex
and realistic DFNs in order to assess the reliability of the approach.

2. The continuous model

Let Ω be a DFN given by the union of open polygons Fi, i = 1, . . . , I,
resembling underground fractures. The set Ω is assumed to be connected.
The intersections between fractures are called traces, and are denoted by Sm,
m = 1, . . . ,M . We assume that each trace is the intersection between exactly
two distinct fractures, Fi and Fj, such that Sm = F̄i ∩ F̄j, and we define, for
further reference, the index set ISm := {i, j}. Furthermore, Si denotes the
set of traces on fracture Fi and S the set of all the traces in the DFN.
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The DFN Ω is assumed to be surrounded by an impervious rock matrix,
such that the fluid flow can only occur through the fractures and across the
traces. The boundary of Ω, ∂Ω, is divided in a Dirichlet part ΓD and a
Neumann part ΓN , such that ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω. Similarly,
the boundary of each fracture Fi, ∂Fi, is also split in a Dirichlet part ΓD

i :=
∂Fi ∩ ΓD and a Neumann part ΓN

i := ∂Fi ∩ ΓN . Functions GD and GN

prescribe the Dirichlet and Neumann boundary conditions, whereas their
restrictions to ∂Fi are denoted by GD

i and GN
i , respectively.

We remark that it may occur that traces are generated by the intersec-
tion of two fractures along the Dirichlet boundary, i.e., it may happen that a
trace Sm is a subset of the Dirichlet boundary of either one or both fractures.
In both these cases we will refer to such traces as Dirichlet traces, whereas if
Sm ∩ ΓD

i = ∅ for all i = 1, . . . , I, we will refer to Sm as an internal trace. In
the case of a Dirichlet trace Sm = F̄i ∩ F̄j with, say, fracture Fj intersecting
Fi along the Dirichlet boundary ΓD

i , we let Fj inherit, along Sm, the Dirichlet
boundary conditions imposed on ΓD

i ∩Sm. For the sake of uniform treatment
of terms involving Dirichlet conditions, also the portions of ΓD

i which do not
contain traces will be interpreted and treated as Dirichlet traces. Accord-
ingly, we split the set Si into two subsets SD

i and S int
i containing the Dirichlet

traces and the internal traces, respectively. Similarly, we split the index set
M := {1, . . . ,M} into two subsets MD and Mint corresponding to Dirichlet
and internal traces, respectively. We assume that MD ̸= ∅ and S int

i ̸= ∅, for
all i = 1, . . . , I.

The DFN problem consists in evaluating the distribution of the hydraulic
head H in the network of fractures, imposing appropriate matching condi-
tions at fracture intersections. A typical choice consists in imposing hydraulic
head continuity and flux balance across the traces, and solving the Darcy
equation on the fractures. This approach leads to the following classical state-

ment of the DFN problem. Let us set V D
i = H1

D(Fi) =
{
v ∈ H1(Fi) : v|ΓD

i
= GD

i

}
and Vi = H1

0,D(Fi) =
{
v ∈ H1(Fi) : v|ΓD

i
= 0

}
, and let us denote by Hi the

restriction of H to Fi. Then the hydraulic head in Ω is given by the following
coupled system of partial differential equations: find Hi ∈ V D

i such that for
all v ∈ Vi∫

Fi

Ki∇Hi∇vdΩ =

∫
Fi

qivdΩ + ⟨GN
i , v|ΓN

i
⟩
H− 1

2 (ΓN
i ),H

1
2 (ΓN

i )

+
∑
S∈Si

⟨
[[
∂Hi

∂ν̂iS

]]
S

, v|S⟩H− 1
2 (S),H

1
2 (S)

, (1)
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and, for i, j ∈ ISm , ∀Sm ∈ S int
i

Hi|Sm −Hj |Sm = 0, (2)[[
∂Hi

∂ν̂iSm

]]
Sm

+

[[
∂Hj

∂ν̂jSm

]]
Sm

= 0, (3)

where Ki is the fracture transmissivity tensor and qi ∈ L2(Fi) is a source

term, and
[[

∂Hi

∂ν̂iSm

]]
Sm

represents the jump of the co-normal derivative of Hi

along a fixed normal direction to Sm.
An alternative approach is proposed in [14, 16], where the previous system

of equations is replaced by a constrained optimization problem. A properly
defined functional J measures the lack of continuity of the hydraulic head
across the traces and the lack of flux conservation across intersecting frac-
tures. The functional is minimized subject to constraints given by the state
equations. In the present work we introduce a modification of such func-
tional, in which additional terms are introduced in order to account for a
weak imposition of the Dirichlet boundary conditions.

Let us introduce, for each fracture Fi and for each internal trace Sm ∈ Si

the quantity

Um
i =

[[
∂Hi

∂ν̂iSm

]]
Sm

+ αmHi|Sm
, αm > 0, m ∈ Mint (4)

whereas for Dirichlet traces we introduce

Um
i =

∂Hi

∂ν̂iSm

+ αmHi|Sm
, αm ≥ 0, m ∈ MD (5)

and let us set

J(H,U) :=
1

2

I∑
i=1

∑
Sm∈SD

i

(
WD

H

∥∥∥Hi|Sm
−GD

i|Sm

∥∥∥2

H
1
2 (Sm)

+WD
U

∥∥∥∥Um
i − ∂Hi

∂ν̂iSm

− αmHi|Sm

∥∥∥∥2

H− 1
2 (Sm)

)

+
1

2

I∑
i=1

∑
Sm∈Sint

i

(
WH

∥∥Hi|Sm
−Hj|Sm

∥∥2

H
1
2 (Sm)

+WU

∥∥Um
i +Um

j −αm

(
Hi|Sm

+Hj|Sm

)∥∥2

H− 1
2 (Sm)

)
(6)
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where we recall that i, j,m are such that {i, j} = ISm . The quadratic func-
tional J(H,U) in equation (6) still measures the lack of continuity of the
hydraulic head across the traces and the lack of flux conservation across
intersecting fractures (first and second terms of the sum over the internal
traces, respectively), and also accounts for a weak imposition of the Dirichlet
boundary conditions (the sum over the Dirichlet traces).

In (6), WH , WU and WD
H , WD

U are given (possibly different) positive
weights, which serve the purpose of allowing to put a larger emphasis on
some terms w.r.t. the others. Indeed, the weights WH , WU are related to the
hydraulic head continuity term and flux conservation term of the functional,
respectively, and WD

H , WD
U refers to the boundary condition terms. We also

note that since ΓD
i is allowed to be empty for some i (see [16]), the first sum

in J(H,U) actually extends over a subset of the total number of fractures in
the DFN.

Remark 1. Due to (5), the term
∥∥∥Um

i − ∂Hi

∂ν̂iSm

− αmHi|Sm

∥∥∥2

in (6) is trivially

zero, however it is introduced in order to provide a uniform treatment for
both boundary and internal traces. Indeed, the corresponding weight WD

U can
actually be a non-negative value. Furthermore, this residual term will be not
nil, in general, in the discrete counterpart of (6).

The constraint equations (1), representing the weak formulation of the
Darcy law on the fractures, are rewritten as: ∀v ∈ Vi, ∀i = 1, . . . , I∫

Fi

Ki∇Hi∇vdΩ +
M∑

m=1

αm

∫
Sm

Hi|Sm
v|Sm

dγ =∫
Fi

qivdΩ +
⟨
GN

i , v|ΓN
i

⟩
H− 1

2 (ΓN
i ),H

1
2 (ΓN

i )

+
M∑

m=1

⟨
Um
i , v|Sm

⟩
H− 1

2 (Sm),H
1
2 (Sm)

. (7)

As a whole, functions Um
i ∈ H− 1

2 (Sm) act as control variables for the
following constrained minimization problem:

min J(H,U) (8)

subject to (7).

Being αm > 0 for m ∈ Mint, well-posedness of the problems on the
fractures is guaranteed. The equivalence of the present formulation with the
formulation (1)-(3) is straightforward, observing that the new formulation
corresponds to the weak imposition of the Dirichlet boundary conditions.
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3. The discrete problem

In the previous Section we have depicted the PDE-constrained optimiza-
tion reformulation of the DFN flow problem. Here we give some details
about the discrete version of problem (8). In the following, we will use lower
case letters for the finite dimensional approximations of functions H and U .
Since the method here proposed is a generalization of the methods described
in previous works, the following description is closely related to similar issues
described by [17]. We refer the reader to such reference for further details.
Without loosing generality, for the ease of description, we will set αm = 0 for
all m ∈ MD, and αm = α for all m ∈ Mint.

Let us consider a finite dimensional (Ni-dimensional) approximation for
Vi, i = 1, . . . , I, with a total number NF =

∑I
i=1Ni of DOFs on the fractures.

Furthermore, we number the control variable on the traces as follows. Let
Sm be a given internal trace, with ISm = {i, j}; assuming i < j, the control
variables related to Sm and corresponding to fractures Fi and Fj are denoted
by u−m and by u+m, respectively. Overloading the notation, we will use the
same symbol also for the corresponding vector of DOFs. The same notation
overload will apply for the hydraulic head.

Let us introduce on the spaces of the control functions u−m and u+m the
basis functions ψ−

m,k, k = 1, ..., N−
m and ψ+

m,k, k = 1, ..., N+
m, respectively, so

that we have, for m ∈ Mint, and for ⋆ = −,+, u⋆m =
∑N⋆

m
k=1 u

⋆
m,kψ

⋆
m,k. As far

as Dirichlet traces are concerned, let us write, for m ∈ MD,

uDm =

ND
m∑

k=1

um,kψm,k

being ψm,k, k = 1, . . . , ND
m , a basis for the space of the control variable uDm.

Setting NT =
∑

m∈Mint(N−
m + N+

m) +
∑

m∈MD ND
m , we define u ∈ RNT

concatenating vectors u−m, u
+
m for all m ∈ Mint and uDm for m ∈ MD. Fur-

thermore, we define h ∈ RNF
concatenating hi, i = 1, . . . , I.

A discrete counterpart of the functional J defined by (6) is obtained. In
order to simplify the notation, within this section we set to one the weights
parameters introduced in (6); the extension to arbitrary values is straight-
forward. Nevertheless, non unitary weights are used for some numerical
experiments proposed in Section 5. Let us consider L2 norms instead of H− 1

2

and H
1
2 norms on the traces and on the Dirichlet boundary. Let us define for

all Sm ∈ S, for p, q ∈ ISm (possibly p = q), the matrices

(CSm
p,q )k,ℓ =

∫
Sm

φp,k |Sm
φq,ℓ|Sm

dγ, Cp,q =
∑

Sm∈Sp

CSm
p,q . (9)

7



With a similar definition we introduce, for each fracture Fi, the matrix
CΓiD

i,i ∈ RNi×Ni as

(C
ΓD
i

i,i )k,ℓ =

∫
ΓD
i

φi,k |
ΓD
i

φi,ℓ|
ΓD
i

dγ, (10)

with the convention that if ΓD
i = ∅ for some i, then C

ΓD
i

i,i is the null matrix.

Furthermore, for m ∈ Mint and ⋆ = −,+ define C⋆
m ∈ RN⋆

m×N⋆
m , C±

m ∈
RN−

m×N+
m and Cm as:

(C⋆
m)kℓ=

∫
Sm

ψ⋆
m,kψ

⋆
m,ℓ dγ, (C±

m)kℓ=

∫
Sm

ψ−
m,kψ

+
m,ℓ dγ,

Cm=

(
C−
m C±

m

(C±
m)

T C+
m

)
,

and B⋆
i,m ∈ RNi×N⋆

m as

(B⋆
i,m)kℓ =

∫
Sm

ψ⋆
m,kφi,ℓ|Sm

dγ,

and set

Bi,m = (B−
i,m B+

i,m) ∈ RNi×(N−
m+N+

m), um = (u−m, u
+
m).

For each fixed i = 1, ..., I, matrices Bi,m, for m such that Sm ∈ Si, are then
grouped row-wise to form the matrixBi ∈ RNi×NSi , withNSi

=
∑

Sm∈Si
(N−

m+
N+

m). Matrix Bi acts on a column vector ui obtained extracting blocks um,
for Sm ∈ Si, from u and appending them in the same order used for Bi,m,

as the action of a suitable operator Ri : RNT 7→ RNSi such that ui = Riu.
Finally, let B ∈ RNF×NT

be defined by

B =

 B1R1
...

BIRI

 .

The matrix CD
m ∈ RND

m×ND
m is defined similarly to C⋆

m as

(CD
m)kℓ =

∫
Sm

ψm,kψm,ℓ dγ

for m ∈ MD.
Let now Gh ∈ RNF×NF

be defined blockwise as follows: for i = 1, ..., I we
set

Gh
ii = (1 + α2)Ci,i + C

ΓD
i

i,i ,
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Gh
ij = (α2 − 1)CS

i,j if j ∈ Ji (0 elsewhere) ,

where, fixed Fi, Ji collects the indices j such that |F̄j ∩ F̄i| > 0. Note that

Gh is a symmetric matrix. Next, let us define the matrix Gu ∈ RNT×NT

blockwise as

Gu =

(
diag(Cm,m ∈ Mint) O

O diag(CD
m,m ∈ MD)

)
.

Finally, letting n be the outward normal to ΓD
i , let us define for i =

1, . . . , I the matrices

(Di)kℓ =

∫
ΓD
i

nT (Ki∇ϕi,k)n
T (Ki∇ϕi,ℓ) dγ,

and

(Du
i )kℓ =

∫
Sm

nT (Ki∇ϕi,ℓ)ψm,k dγ,

with Sm ∈ SD
i . Then we set

D = diag(Di, i = 1, . . . , I),

and

Du =

 Du
1R

′
1

...
Du

IR
′
I

 .

where for i = 1, . . . , I the operator R′
i : RNT 7→ RN i

Si
+ND

i , with ND
i =∑

Sm∈SD
i
ND

m , extracts from u a sub-vector containing the control variables

u⋆m and uDm which refers to traces Sm on Fi.
The discrete functional can finally be written as

J =
1

2

(
hT (Gh +D)h− αhTBu− αuTBTh+ uTGuu

)
−
(
hThD + hTDuu

)
+ c

where hD is a vector accounting for the Dirichlet data and the constant term
c is the sum of the square L2 norm of the Dirichlet boundary conditions GD

i ,
i = 1, . . . , I.

The algebraic counterpart of constraints (7) is written as follows. For all
i = 1, ..., I define the matrix Ai ∈ RNi×Ni as

(Ai)kℓ =

∫
Fi

Ki∇ϕi,k∇ϕi,ℓ dFi + α
∑
S∈Si

∫
S

ϕi,k |Sϕi,ℓ|S dγ,
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k, ℓ = 1, . . . , Ni. For each fracture Fi, we set N i
Si

=
∑

Sm∈Si
N⋆

m as the
number of DOFs on traces of Fi on the Fi “side”, and we define matrices

Bi ∈ RNi×N i
Si grouping row-wise matrices B⋆

i,m, with m spanning traces in
Si, and setting for each m either ⋆ = + or ⋆ = − according to which one
of the two “sides” of trace Sm is on Fi. Matrices Bi act on a column vector
u′i containing all the N i

Si
control DOFs corresponding to the traces of Fi,

obtained extracting from u blocks u⋆m, for Sm ∈ Si, and appending them in
the same order used in the definition of Bi. Again, this can be obtained as

the action of a suitable operator R̃i : RNT 7→ RN i
Si such that u′i = R̃iu. In

practice, R̃i extracts from u only sub-vectors u⋆m corresponding to control
functions on the ”correct side” of the trace.

The algebraic formulation of the primal equations (7) is then

Aihi = q̃i + Biu
′
i, i = 1, ..., I, (11)

where q̃i accounts for the term qi in (7) and for the Neumann boundary
conditions on the fracture Fi.

We set A = diag(Ai, i = 1, ..., I) ∈ RNF×NF
and define B ∈ RNF×NT

as

B =

 B1R
′
1

...
BIR

′
I

 .

Setting q = (q̃1, . . . , q̃I) ∈ RNF
, constraints (11) are then writtenAh−Bu = q.

The problem under consideration is therefore reformulated as the follow-
ing equality constrained quadratic programming problem:

min J(h, u) =
1

2

(
hT (Gh +D)h− αhTBu− αuTBTh

)
+

1

2

(
uTGuu

)
−

(
hThD + hTDuu

)
+ c

s.t. Ah− Bu = q.

By (formally) exploiting the constraints Ah = Bu + q for eliminating
h from the functional, we obtain the unconstrained minimization problem
min Ĵ(u), with

Ĵ(u)=
1

2
uT

(
BTA−T (Gh +D)A−1B +Gu (12)

−αBTA−TB − αBTA−1B − 2BTA−TDu
)
u+

qTA−T
(
(Gh +D)A−1B − αB −Du

)
u− hTDA

−1Bu

=:
1

2
uT Ĝu+ q̂Tu
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The unconstrained minimization problem can be solved without explic-
itly assembling the matrix Ĝ, but rather applying an iterative solver in a
quasi-matrix-free manner to the minimization of Ĵ(u). By applying, e.g.,
a gradient based method such as the Preconditioned Conjugate Gradient
(PCG) method, the repeated computation of the gradient of Ĵ essentially
calls for the solution of linear systems involving the (block-diagonal) ma-
trix A at each iteration, and this in turn corresponds to solving local linear
systems with matrices Ai, for i = 1, . . . , I. These computations can be per-
formed in parallel. For details, we refer the reader to [18].

4. Numerical issues

This Section is devoted to the description of some numerical issues to be
addressed for effective DFN simulations with the proposed optimization ap-
proach. We first deal with issues related to the use of the XFEM, concerning
the possibility of generating linearly dependent, or nearly linearly dependent
basis functions in the discrete functional space of the method. Despite effec-
tive solution to this problem are available in some circumstances (see [22])
the complexity of DFN simulations requires a customized approach. Next,
we tackle the resolution of DFN problems with very small fracture transmis-
sivity values, which usually result in very small fluxes through the network,
which might negatively affect the convergence of the optimization approach.

4.1. Ill conditioning prevention

According to the approach depicted in Section 2, matching conditions
along traces are not exactly imposed but they are made as small as possible
via the optimization approach. Within the process for the minimization of
Ĵ(u), only local problems on fractures are independently solved. As a con-
sequence, meshes on the fractures are neither required to conform to each
other, nor to conform to the traces. Clearly, the finer is the grid, the smaller
is the global mismatch provided by J . Since the solution may present a
non-smooth behavior across the traces, a possible approach for providing a
better description of the solution in the case of non-conforming meshes is
given by the use of XFEM. The XFEM can reproduce irregular solutions by
means of custom enrichment functions that are added to the trial and test
functional spaces of standard finite elements, in order to provide the dis-
crete solution with the required non-smooth behavior, independently of the
position of mesh elements with respect to the interfaces. Nevertheless, the
XFEM stiffness matrix A might result ill conditioned or even singular due to
the presence of almost linearly or linearly dependent basis functions in the
enriched functional space. When two (or more) parallel traces are present in
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the same mesh element, the local enrichment functions are generated start-
ing from global functions that differ only for a translation. This translation,
besides being necessary in order to reproduce the behaviour of the solution,
is also enough to provide linear independence of enrichment functions in the
mesh element under consideration. On the other hand, linear dependencies
in the local enrichment functions of neighbouring elements can arise. Al-
most parallel traces may also result in a ill-conditioned stiffness matrix, or
even numerically singular. Preventive detection of redundant basis functions,
which is a typical choice in some cases [22], is infeasible in this context due
to the complex geometrical configuration of realistic DFNs. For this reason,
we adopt here a different approach which consists in detecting (almost) lin-
early dependent rows and columns in A after having assembled the matrix
on each fracture. This is done operating a rank revealing QR-factorization
of A (see for example [23]), exploiting the special structure of the stiffness
matrix. Indeed, since the matrix A is a block diagonal matrix, being the Ai

block given by the stiffness matrix built on fracture Fi, the QR factorization
is actually independently computed for each diagonal block; since on each
fracture we have a moderate amount of DOFs, the cost for computing the QR
factorizations is easily affordable. Furthermore, this procedure is only per-
formed for fractures with nearly parallel traces with mutual distance smaller
than the maximum element diameter. This precaution further reduces the
computational cost, as the detection of parallel traces and computation of
their distance is a cheap task.

After having computed the rank revealing QR factorization for each di-
agonal block, i.e. Ai = QiRi, with diagonal entries of the upper triangular
matrix Ri sorted in descending order with respect to their absolute value,
we neglect rows and columns corresponding to diagonal entries whose size is
smaller than a prescribed drop tolerance σ. Note that factors Qi and Ri can
then be used for solving the local linear system involving matrix Ai.

4.2. Tackling small transmissivities

We consider here the quite realistic case in which the network presents
fracture transmissivities spanning a wide range of values (i.e., several orders
of magnitude) and having small values, in the sense that the flux term of
the functional becomes orders of magnitude smaller than the hydraulic head
term. This situation is detrimental for the convergence of the method. In-
deed, in these cases the contribution of the flux in the cost functional is
less relevant than the hydraulic head contribution, and many iterations are
required before the hydraulic head term is reduced to the same order of

magnitude of the flux term. Furthermore, the flux part
[[

∂Hi

∂ν̂iSm

]]
Sm

becomes
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negligible with respect to the term Hi|Sm
in the control variable Um

i (see
Eq. (4)), which also has a negative impact on the behaviour of the method.
In these situations it is beneficial to resort to the resolution of a modified
problem, featuring the same solution in terms of hydraulic head, but with
rescaled fluxes. In order to show how the modified problem is defined, let us
compactly write the original problem on a DFN Ω as follows:

(Pa)


−div(Ka∇ha) = qa in Ω \ S

ha = GD on ΓD

Ka
∂ha
∂n

= GN
a on ΓN

completed by the additional matching conditions on the traces. In (Pa), qa
is a source term, GD and GN

a are the functions prescribing the Dirichlet and
Neumann boundary conditions respectively, and n is the outward unit normal
vector to ΓN . We introduce now the modified problem (Pb) in such a way
that, as far as the hydraulic head is concerned, (Pb) has the same solution ha
as (Pa), but the fluxes are different, due to a different fracture transmissivity
value. The modified problem is defined as:

(Pb)


−div(Kb∇ha) = qb in Ω \ S

ha = GD on ΓD

Kb
∂ha
∂n

= GN
b on ΓN

with additional matching conditions on the traces, and with Kb = kKa,
qb = kqa, G

N
b = kGN

a , being k a given scalar value. It is straightforward
to prove that, with such rescaling, all the fluxes in (Pb) are rescaled by a
factor k with respect to the fluxes obtained for (Pa). Choosing k ≫ 1, the
fluxes for problem (Pb) will be larger than the fluxes for (Pa), thus improving
the numerical behavior of the optimization algorithm. We remark that this
approach is more effective than the mere application of the penalty factor
to the flux term in the functional, as with this choice it is possible to con-
trol the weight of the flux terms w.r.t. the hydraulic head terms both in
the cost functional and in the control variables. Our numerical experience
has shown that, with a scalar transmissivity, in most situations the choice
k = 1/min(Ka) gives good results. In the general case, one can relate the
parameter k to the minimum among all eigenvalues of the transmissivity
tensors.

5. Numerical results

In this section we discuss some numerical results in order to describe the
capabilities of the improved method here presented. We start with some
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Source

Sink

Figure 1: DFN configuration for TP1a and TP1b with illustrative mesh. Boundaries with
Dirichlet conditions marked with thicker line

investigations on rather simple DFN configurations in order to assess the
behavior of the method on benchmark problems. Next, we report on simu-
lations on more realistic networks.

All the simulations are performed using first order finite elements with
the XFEM on non-conforming meshes. The computational mesh is built on
each fracture of the considered DFNs independently, regardless of the posi-
tion of the intersections with the other fractures. The mesh size is related
to the mesh parameter δ, representing the maximal element area. As men-
tioned, standard FEM or the VEM could be used as an alternative for the
discretization of the variables, see [16, 17].

As a preconditioner for the PCG method applied to functional (12) (i.e.,
to matrix Ĝ), we used the block diagonal matrix P formed by the mass
matrices C−

m and C+
m, m ∈ Mint, and CD

m , m ∈ MD.
In the rank revealing QR factorization for Ai, i = 1, ..., I, the drop toler-

ance σ has been set to 10−9 maxk |(Ri)k,k|.
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Table 1: TP1a: Relative difference in L2 norm between the computed solution and the
exact boundary condition on the source fracture

δ WD
U WD

H ∥H|ΓD −GD∥/∥GD∥
0.1 0 1 4.861e-3
0.1 0.01 1 1.088e-2
0.01 0 1 5.246e-4
0.01 0.01 1 1.176e-3

F

F2

1
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Figure 4: TP1c: DFN with the computational mesh (left) and solution (right) on fracture
F2

5.1. The boundary conditions

The first set of examples deals with the imposition of boundary conditions
in weak form as described in Section 2. Three different test problems are pro-
posed, labeled TP1a, TP1b and TP1c. Problems TP1a and TP1b share the
same fracture network geometry, shown in Figure 1 along with an example
of nonconforming computing mesh, but with different boundary condition
settings. The DFN is made of six fractures with areas ranging from 12m2

to 28m2; with reference to Figure 1, the fracture labeled as source carries
a non-homogeneous Dirichlet boundary condition on the edge marked with
a thicker line, while the sink fracture has a homogeneous Dirichlet bound-
ary condition on the marked edge. All other fracture edges are insulated,
i.e. homogeneous Neumann boundary conditions are set. For test TP1a the
Dirichlet boundary condition on the source fracture is a smooth sinusoidal
function, and two different meshes have been considered, corresponding to
mesh parameters δ = 0.1 and δ = 0.01. Results for test TP1a are reported
in Table 1 for the two grids and two choices of the parameter WD

U , while WD
H

is set to one for all the simulations. Namely, the table reports the relative
errors between the solution computed at the boundary and the Dirichlet data
GD. As expected, for fixed values of the parameter WD

U , the approximation
improves as the mesh is refined, whereas it is possible to notice that, on
a fixed grid the value WD

U = 0 provides a better result than WD
U = 0.01.

However, looking at Figure 2, which represents the solution computed on the
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Table 2: Value of the hydraulic head on selected traces for TP2a and TP2b compared
with the analytical solution

Trace number Exact solution ∆ TP2a modified ∆ TP2b modified
1 9.842346 3.57e-8 3.0e-6
5 9.839824 5.15e-8 1.35e-3
10 9.839388 5.5e-8 4.46e-4
15 2.185697 2.24e-7 2.1e-4
20 1.405312 1.72e-7 1.08e-4
25 1.141987 1.35e-7 1.37e-5
29 1.000574 4.32e-9 2.09e-6

Dirichlet boundary with the finest mesh and with the two values of WD
U , it

appears that the choice WD
U = 0.01 provides a smoother approximation. Nu-

merical experiments showed that further increasing the value of WD
U rapidly

deteriorates the quality of the reproduced boundary condition.
The boundary condition for TP1b on the source fracture is a non-smooth

function presenting a kink. Also in this case, the obtained value is com-
pared to the exact solution in Figure 3. The irregular behavior is correctly
reproduced.

The geometry for TP1c is reproduced in Figure 5.1. With reference to this
figure, a constant non-homogenous Dirichlet boundary condition (h = 10) is
prescribed on the top edge of fracture F2, and an homogeneous Dirichlet
boundary condition is set on the right edge of fracture F1. All other edges
are insulated. The peculiarity of this test problem is that the intersection
between the two fractures lies very close to the Dirichlet boundary of fracture
F2. In these circumstances the imposition of Dirichlet boundary conditions
on F2 is complex, requiring the resolution of additional local problems, in
order to correctly reproduce both the boundary condition and the irregular
behaviour of the solution across the traces. The weak imposition of boundary
conditions by means of the cost functional allows to overcome these complex-
ities in a straightforward manner. The solution obtained on F2 is reported
in Figure 4, showing that the boundary condition is correctly reproduced.
At the same time the jump of solution gradient across the trace is correctly
catch.

5.2. Tackling small transmissivities

The next two test problems, labeled TP2a and TP2b, respectively, aim
at showing the effectiveness of the approach proposed in Subsection 4.2, in-
tended to improve the numerical results when the transmissivities in the
network are very small and span several orders of magnitude. The geometry
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is depicted in Figure 5: problem TP2b is obtained adding two fractures to
the geometry of TP2a. Traces are numbered from top to bottom for the ge-
ometry used for TP2a, with a total of 29 traces, and the same numbering is
maintained for the corresponding traces of TP2b, with the additional traces
numbered consecutively. For these simulations the transmissivity Ki is con-
stant on each fracture Fi; its distribution among the fractures is reported in
Figure 5 through the colorbar. On the two additional fractures introduced
in TP2b the transmissivity is set to the value K = 10−9, i.e., two orders of
magnitude lower than the minimum value used for TP2a. The same bound-
ary conditions are prescribed for the two problems: a constant hydraulic
head (h = 10) is set on the top edge of the top fracture, whereas a homoge-
neous Dirichlet condition is set on the bottom edge of the bottom fracture.
The wide range of transmissivities considered (Ki ∈ [10−7, 1] for TP2a and
Ki ∈ [10−9, 1] for TP2b) makes the problems very challenging, in particular
due to the presence of values of K ≪ 1. Due to the special structure of prob-
lem TP2a, the analytical solution can be computed for this problem, and it
has been used to assess the accuracy of the obtained solution. Furthermore,
since TP2b is obtained from TP2a by adding two fractures with a very low
transmissivity, the solution of TP2b is a small perturbation of the solution of
TP2a. As a consequence, we compared also the numerical results obtained
for TP2b with the analytical solution for TP2a, showing that the proposed
numerical approach correctly accounts for the marginal effect of the added
fractures.

We remark that when approaching the problem in its original formula-
tion, it is quite hard to obtain an accurate solution, due to the fact that
the fluxes are too small compared to the values of the hydraulic head, and
consequently numerical approximation errors affect the definition of the con-
trol variables, and the flux-related term contributes to a very small extent
to the minimization process. In Table 2 we report some results obtained
for TP2a and TP2b with the modified problem (Pb). Namely, the second
column reports the analytical solution of the hydraulic head for TP2a on
selected traces; the third column shows the errors in the numerical solution;
the fourth column reports the distance of the numerical solution obtained for
TP2b from the exact solution of TP2a.

5.3. Realistic DFNs

We now turn our attention to more realistic DFN configurations. First, we
consider a network composed of 68 fractures and 142 traces (labeled DFN68),
with fracture areas spanning from 2.83×103m2 to 1.13×104m2; the network is
shown in Figure 6. Also in this case the flow occurs between a source fracture
with a constant Dirichlet boundary condition h = 100 on one edge and a
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Figure 9: DFN68: hydraulic head on the source fracture for configuration I; δ = 8.
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Figure 10: DFN68: hydraulic head on the source fracture for configuration II; δ = 8.

Table 3: DFN68, configurations I: error indicators

WU ∆head ∆flux ∆cons

δ = 128
1 1.569e-5 1.585e-6 1.463e-1
10 2.085e-5 1.449e-6 2.835e-2
100 4.473e-5 8.441e-7 5.209e-3
500 6.668e-5 4.450e-7 8.235e-4

δ = 32
1 8.863e-6 6.219e-7 2.348e-2
10 1.015e-5 3.065e-7 3.247e-3
100 1.386e-5 1.657e-7 2.508e-4
500 1.837e-5 8.291e-8 3.450e-4

δ = 8
1 6.216e-6 5.399e-7 1.915e-2
10 7.905e-6 2.132e-7 2.795e-3
100 9.749e-6 9.437e-8 2.199e-4
500 1.147e-5 6.679e-8 4.553e-5

δ = 2
1 2.309e-6 2.945e-7 8.157e-4
10 3.451e-6 1.343e-7 2.508e-5
100 5.093e-6 7.209e-8 5.620e-5
500 7.386e-6 3.866e-8 2.048e-5
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Table 4: DFN68, configuration II: error indicators

WU ∆head ∆flux ∆cons

δ = 8
1 2.787e-5 8.247e-8 8.148e-4
10 3.254e-5 2.633e-8 1.097e-4
100 3.621e-5 9.142e-9 1.504e-5
500 3.929e-5 5.666e-9 5.644e-6

δ = 2
1 7.680e-6 6.043e-8 8.849e-5
10 1.375e-5 2.679e-8 2.742e-5
100 2.095e-5 1.260e-8 7.160e-6
500 2.888e-5 6.521e-9 3.516e-6

sink fracture with an homogeneous Dirichlet boundary condition, all other
fracture edges being insulated. The same geometry is accompanied by two
different hydraulic transmissivity configurations: configuration I, in which
a constant value transmissivity is set on each fracture, and configuration
II in which the hydraulic transmissivity displays strong variations on each
fracture. The distribution of the hydraulic transmissivity for this problem is
shown in Figures 6-7 for the two configurations. More in detail, the values
of the transmissivity on the source fracture are plotted in Figure 8; this
behaviour is representative for all the fractures. We have considered four
different mesh parameters, ranging from δ = 128 (corresponding to 6759 total
degrees of freedom) to δ = 2 (resulting in 144738 total degrees of freedom).
For configuration II we used only the two finest meshes, in order to be able
to resolve the variability of the coefficients. In all the simulations reported
we used the modified problem (Pb). The solutions obtained on the source
fracture, with both configurations, and using the mesh parameter δ = 8, are
reported in Figures 9-10.

The quality of the solution is evaluated in terms of the following error
measures on the internal traces, as the error on the Dirichlet traces is nearly
the round-off error due to the fact that the Dirichlet data are constant. We
define the relative mismatch in hydraulic head continuity per trace length as

∆head =

√ ∑
m∈Mint

∥∥hi|Sm
− hj|Sm

∥∥2

hmaxL
,

being L =
∑

m∈Mint |Sm| the cumulative trace length. Furthermore, let Iin

and Iout denote the index sets corresponding to source and sink fractures, re-
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Table 5: DFN909: number of iterations performed and error measures

Iterations Error measures
δ non prec prec ∆head ∆flux ∆cons

7 124038 27779 1.324e-6 5.650e-10 4.326e-5
2 87902 24895 8.937e-7 3.825e-10 3.717e-5
0.5 42792 25259 5.213e-7 2.384e-10 4.895e-5

spectively, and let Φ̄ denote the computed average flux through the network,
i.e.,

Φ̄ =
1

2

∑
i∈Iin

∑
Sm∈Sint

i

∫
Sm

(umi − αmhi|Sm)

−
∑
i∈Iout

∑
Sm∈Sint

i

∫
Sm

(umi − αmhi|Sm)

 .

The relative flux unbalance per trace length is defined as

∆flux =

√ ∑
m∈Mint

∥∥umi + umj − αm

(
hi|Sm

+ hj|Sm

)∥∥2

Φ̄L
,

and the relative conservation error per trace length as

∆cons =

∣∣∣∑i∈Iin∪Iout
∑

Sm∈Sint
i

∫
Sm

(umi − αmhi|Sm)
∣∣∣

Φ̄
.

The computed errors are reported in Tables 3 and 4 for configuration I
and II, respectively, for all mesh parameters considered in each case and for
several values of the flux penalty factor WU , ranging from 1 to 500.

It can be noted that the use of penalty factors can be beneficial in im-
proving the quality of the solution in terms of flux conservation and flux
balance, at the expenses of a slight deterioration of the hydraulic head con-
tinuity across the traces. It appears that here higher values of WU are more
effective for the coarsest grid than for the finest grid, even if, however, the
differences are almost negligible.

We end this section with some results concerning a DFN made of 909
fractures, with area ranging from 376m2 to 104m2, and 7084 traces (problem
DFN909). This DFN is particularly challenging due to the presence, in the
same fracture, of non intersecting traces very close to each other, and of
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Figure 11: DFN909. Top: distribution of angles between pairs of intersecting traces in
the same fracture; right: a detail of smallest values. Bottom: distribution of the length of
traces (left) and of distances between pairs of non-intersecting traces (right).

Figure 12: DFN909: detail of the finer mesh
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Figure 13: DFN909: distribution of the hydraulic head. Solution on the finer mesh

traces intersecting in the same fracture with angles smaller than 1◦. These
challenging geometrical features of the DFN are summarized in Figure 11,
representing the distribution of angles between intersecting traces (with a
zoom of the smallest values), the distribution of trace lengths in the DFN
and of the distances between non intersecting traces on the same fracture.

Methods relying on some kind of mesh conformity are likely to generate
on this network poor quality meshes. On the other hand, with the approach
here adopted the problem can be tackled without any modification of the
geometry of the DFN or any special care in the generation of a good quality
mesh. Three mesh sizes have been considered: the finest mesh, corresponding
to δ = 0.5, yields 619,120 total degrees of freedom for the control variables
and 3,132,723 degrees of freedom for the hydraulic head; the coarsest mesh
corresponding to δ = 7 yields 161,089 DOFs for the control variables and
572,334 DOFs for the hydraulic head. Figure 12 reports the computational
mesh corresponding to δ = 2, having 306,517 and 1,191,483 DOFs for the
control variables and for the hydraulic head, respectively. On each fracture
we set a constant fracture transmissivity, with values ranging from 10−4 to
1. Also in this case the modified problem (Pb) has been considered to tackle
small transmissivity values.

Numerical computations were performed on a parallel computer with 20
cores; iterations were stopped when a relative residual smaller than 10−6 was
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met. The solution obtained on the finest mesh is reported in Figure 13, in
which the colouring is proportional to the hydraulic head h, and iso-h lines
are also shown to highlight gradients.

In Table 5 we report the error measures computed on DFN909, along with
the number of iterations needed to reach a relative residual smaller than 10−6.
Also in this quite challenging problem, the error measures are remarkably
satisfactory. In order to show the effectiveness of the preconditioner adopted,
the number of iterations is compared with those needed for reaching the same
accuracy without preconditioner, showing that the number of iterations is at
least halved. The number of iterations also appears to be almost independent
of the mesh parameter δ.

Comparing the error measures of test problems DFN68 and DFN909, it
is possible to see that the errors achieved are nearly of the same order of
magnitude, despite the challenging geometrical features present in DFN909
and not in DFN68 (i.e., narrow angles, close traces, multi-scale distribution
of fracture areas). This highlights the robustness of the method in handling
such complex geometries.

6. Conclusions

Focusing on the resolution of the steady-state flow in large fracture net-
works, we have proposed further improvements with respect to previous
works proposed by the authors [14, 15, 16]. Namely, a new formulation
of the objective functional has been proposed, tackling the imposition of the
Dirichlet boundary conditions in a weak form and thus improving the method
towards an increased flexibility.

As far as the XFEM discretization is concerned, we address ill-conditioning
issues; we also suggest resolution strategies in order to deal with networks
of fractures characterized by a strong variability in fracture transmissivities,
and/or where some fractures have an hydraulic transmissivity many orders
of magnitudes smaller than the others.

A preconditioner for the resolution of discrete linear system of equations
is proposed. The structure of this preconditioner is simple and effective,
and it can be easily used for the resolution of the problem within a parallel
approach.

All the previous issues are crucial for handling complex, large scale, het-
erogeneous networks without any need of ad hoc intervention tailored on the
specific DFN.
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