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Abstract: The present paper considers the linear static
thermal stress analysis of composite structures by means
of a shell finite element with variable through-the-
thickness kinematic. The temperature profile along the
thickness direction is calculated by solving the Fourier
heat conduction equation. The refined models consid-
ered are both Equivalent Single Layer (ESL) and Layer
Wise (LW) and are grouped in the Unified Formulation
by Carrera (CUF). These permit the distribution of dis-
placements, stresses along the thickness of the multilay-
ered shell to be accurately described. The shell element
has nine nodes, and the Mixed Interpolation of Tenso-
rial Components (MITC) method is used to contrast the
membrane and shear locking phenomenon. The govern-
ing equations are derived from the Principle of Virtual Dis-
placement (PVD). Cross-ply plate, cylindrical and spheri-
cal shells with simply-supported edges and subjected to
bi-sinusoidal thermal loadare analyzed.Various thickness
ratios and curvature ratios are considered. The results, ob-
tained with different theories contained in the CUF, are
compared with both the elasticity solutions given in the
literature and the analytical solutions obtained using the
CUF and the Navier’s method. Finally, plates and shells
with different lamination and boundary conditions are an-
alyzed using high-order theories in order to provide FEM
benchmark solutions.
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1 Introduction
In the typical aeronautical structures composite materials
have found an increasing amount of applications. Ad-
vanced composite materials combine a number of prop-
erties, including high specific strength and stiffness, and
nearly zero coefficient of thermal expansion in the fiber
orientation. These relevant properties result in a grow-
ing use of composite materials in structures subjected to
severe thermal environment, such as high temperatures,
high gradients and cycling changes of temperature. Con-
sequently the thermal deformations and stresses which
are induced by non-uniform temperature in composite
structures become important parameters in structural de-
sign. Use of higher-order theories will make it possible to
determine these parameters precisely in composite struc-
tures. In each developed computational model, the stress
analysis should be preceded by an accurate thermal anal-
ysis, which provides the temperature input data required
for the thermal external load. A satisfactory thermal stress
analysis is only possible if advanced and refined compu-
tational models are developed to correctly approximate
the stiffness matrix, and if a correct thermal load is recog-
nized. Sometimes the evaluation of a correct thermal load
could bemandatory with respect to any further evaluation
for the computational models.
Studies involving the thermo-elastic behaviour using clas-
sical or first-order theories are described by Kant and
Khare [1] andKhdeir and Reddy [2]. In recent years, several
higher-order two-dimensional models have been devel-
oped for such problems, which consider only an assumed
temperature profile through the thickness. Among these,
of particular interest is the higher-order model by Whu
and Chen [3]. The same temperature profile is used by
Khare et alii [4] to obtain a closed-form solution for the
thermomechanical analysis of laminated and sandwich
shells. Khdeir [5] and Khdeir et alii [6] assume a linear or
constant temperature profile through the thickness. Barut
et alii [7] analyze the non-linear thermoelastic behavior
of shells by means of the Finite Element Method, but the
assigned temperature profile is linear. In the framework
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of the arbitrary distribution of temperature through the
thickness, Miller et alii [8] and Dumir et alii [9] are note-
worthy, in the first a classical shell theory for composite
shells is given, the second remarks the importance of the
zig-zag form of displacements in the thermal analysis of
composite shells. In the case of shells, further investiga-
tions were made by Hsu et alii [10] for both closed form
and Finite Element method, and by Ding [11] for a weak
formulation for the case of state equations including the
boundary conditions.
In the last few years many contributions have been pro-
posed, which are based on Carrera Unified Formulation, to
investigate the thermal effects in composite structures. In
[12] a study on the influence of the through-the-thickness
temperature profile on the thermo-mechanical response
of multilayered anisotropic thick and thin plates has been
addressed. The partially coupled stress problem was con-
sidered by solving the Fourier’s conductivity equation.
The importance of mixed theories for a correct predic-
tion of transverse shear/normal stresses due to thermal
loadings have been remarked in [13, 14]. A fully coupled
thermo-mechanical analysis applied to plate structure is
employed in [15]. Different type of loads as problems re-
lated to uniform, triangular, bi-triangular (tentlike), and
localized in-plane distribution of temperature were con-
sidered in [16]. The Ritz method, based on the choice of
trigonometric trial functions, was used in [17]. Extension
to Functionally Graded Materials (FGMs) has been done
in [18]. A thermal stability analysis of functionally graded
material, isotropic and sandwich plates is studied in [19],
the Ritz method is employed and uniform, linear, and
non-linear temperature profile is taken into account for
different cases. An extension of the thermoelastic formu-
lation to shells has been done in [20] and the Fourier heat
conduction equation was employed for shell in [21]. The
thermo-mechanical analysis of functionally graded shell
is considered in [22]. Analytical closed form solutions are
available in very few cases. The solution of the most of the
practical problems demand applications of approximated
computational methods.
In this paper, the authors desire to demonstrate as the as-
sumption of a priori linear temperature profile in the thick-
ness direction couldbewrong for particular shell andplate
configurations, and as the use of the Fourier heat conduc-
tion equation could result mandatory to obtain a correct
thermal load. Therefore, we would like to demonstrate as
a wrong thermal load invalidates the static response of
plate and shell structures even when advanced computa-
tional models are employed. An improved doubly-curved
shell finite element for the analysis of composite struc-
tures under thermal loads is here presented, it is a natural

extension of the plate finite element presented in [23].
The shell finite element is based on the Carrera’s Unified
Formulation (CUF), which was developed by Carrera for
multi-layered structures [24, 25]. Both Equivalent Single
Layer (ESL) and Layer Wise (LW) theories contained in
the CUF have been implemented in the shell finite ele-
ment. The Mixed Interpolation of Tensorial Components
(MITC) method [26–29] is used to contrast the membrane
and shear locking. The governing equations for the linear
static analysis of composite structures are derived from the
Principle of Virtual Displacement (PVD), in order to apply
the finite element method. The temperature profile is cal-
culated solving the Fourier heat conduction equation and
compared with the linear profile through the thickness
for each two-dimensional model. Cross-ply plate, cylin-
drical and spherical shells with simply-supported edges
and subjected to bi-sinusoidal thermal loads are analyzed.
The results obtained with the different models contained
in the CUF, are compared with the exact solution given
in the literature and the analytical Navier’s solution type.
Finally, plates and shells with different lamination and
boundary conditions are also analyzed using high-order
theories in order to provide FEM benchmark solutions

2 Geometrical and constitutive
relations for shell

Shells are bi-dimensional structures in which one dimen-
sion (in general the thickness in z direction) is negligible
with respect to the other two in-plane dimensions. Geome-
try and the reference system are indicated in Fig. 1. By con-
sideringmultilayered structures, the square of an infinites-
imal linear segment in the layer, the associated infinitesi-
mal area and volume are given by:

ds2k = Hkα
2 dα2k + Hkβ

2 dβ2k + H
k
z
2 dz2k ,

dΩk = HkαHkβ dαk dβk ,

dV = Hkα Hkβ H
k
z dαk dβk dzk ,

(1)

where the metric coefficients are:

Hkα = Ak(1 + zk/Rkα), Hkβ = B
k(1 + zk/Rkβ), Hkz = 1 .

(2)

k denotes the k-layer of the multilayered shell; Rkα and Rkβ
are the principal radii of the midsurface of the layer k. Ak

and Bk are the coefficients of the first fundamental form of
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Ωk (Γk is theΩk boundary). In this paper, the attention has
been restricted to shells with constant radii of curvature
(cylindrical, spherical, toroidal geometries) forwhichAk =
Bk = 1. Details for shells are reported in [30].

Geometrical relations permit the in-plane ϵkp and out-
plane ϵkn strains to be expressed in terms of the displace-
ment u. The following relations hold:

ϵkp = [ϵkαα , ϵkββ , ϵ
k
αβ]

T = (Dkp + Akp) uk ,

ϵkn = [ϵkαz , ϵkβz , ϵ
k
zz]T = (DknΩ + Dknz − Akn) uk . (3)

The explicit form of the introduced arrays is:

Dkp =

⎡⎢⎢⎢⎣
∂α
Hkα

0 0
0 ∂β

Hkβ
0

∂β
Hkβ

∂α
Hkα

0

⎤⎥⎥⎥⎦ , DknΩ =

⎡⎢⎢⎣
0 0 ∂α

Hkα
0 0 ∂β

Hkβ
0 0 0

⎤⎥⎥⎦ ,

Dknz =

⎡⎢⎣∂z 0 0
0 ∂z 0
0 0 ∂z

⎤⎥⎦ , (4)

Akp =

⎡⎢⎢⎣
0 0 1

HkαRkα
0 0 1

HkβR
k
β

0 0 0

⎤⎥⎥⎦ , Akn =
⎡⎢⎢⎣

1
HkαRkα

0 0
0 1

HkβR
k
β

0

0 0 0

⎤⎥⎥⎦ . (5)

The definition of the 3D constitutive equations permits
the stresses to be expressed by means of the strains. The
generalizedHooke’s law is considered, by employing a lin-
ear constitutive model for infinitesimal deformations. In a
composite material, these equations are obtained inmate-
rial coordinates (1, 2, 3) for each orthotropic layer k and
then rotated in the general curvilinear reference system
(α, β, z). Therefore, the stress-strain relations after the ro-
tation are:

σkp = [σkαα , σkββ , σ
k
αβ]

T = σkpd − σ
k
pT = Ckpp ϵkp + Ckpn ϵkn − λkp θk

σkn = [σkαz , σkβz , σ
k
zz]T = σknd − σ

k
nT = Cknp ϵkp + Cknn ϵkn − λkn θk

(6)

where

Ckpp =

⎡⎢⎣ Ck11 Ck12 Ck16
Ck12 Ck22 Ck26
Ck16 Ck26 Ck66

⎤⎥⎦ Ckpn =

⎡⎢⎣ 0 0 Ck13
0 0 Ck23
0 0 Ck36

⎤⎥⎦

Cknp =

⎡⎢⎣ 0 0 0
0 0 0
Ck13 Ck23 Ck36

⎤⎥⎦ Cknn =

⎡⎢⎣ Ck55 Ck45 0
Ck45 Ck44 0
0 0 Ck33

⎤⎥⎦
(7)

λkp = Ckpp αkp + Ckpn αkn

λkn = Cknp αkp + Cknn αkn
(8)

αkp =

⎡⎢⎣ αk1αk2
0

⎤⎥⎦ αkn =

⎡⎢⎣ 0
0
αk3

⎤⎥⎦ (9)

λkp =

⎡⎢⎣ λ
k
1
λk2
λk6

⎤⎥⎦ λkn =

⎡⎢⎣ 0
0
λk3

⎤⎥⎦ (10)

The subscripts d and T meanmechanical and thermal
contributions. The material coefficients Cij depend on the
Young’smoduli E1, E2, E3, the shearmoduli G12, G13, G23
and Poisson moduli ν12, ν13, ν23, ν21, ν31, ν32 that char-
acterize the layer material. αij are the thermal expansion
coefficients, λij are the coefficients of thermo-mechanical
coupling and θk is the difference with a reference temper-
ature.

3 Carrera Unified Formulation for
Shell

The variation of the displacement variables along
the thickness direction is a-priori postulated. Several
displacement-based theories can be formulated on the
basis of the following generic kinematic field. The main
feature of the Unified Formulation by Carrera [25, 31, 32]
(CUF) is the unified manner in which the displacement
variables are handled.

uk(α, β, z) = Fs(z)uks (α, β);

δuk(α, β, z) = Fτ(z)δukτ(α, β) τ, s = 0, 1, ..., N (11)

where (α, β, z) is a curvilinear reference system, in which
α and β are orthogonal and the curvature radii Rα and Rβ
are constant in each point of the domainΩ (see Fig. 1). The
displacement vector u = {u, v, w} has its components ex-
pressed in this system. δu indicates the virtual displace-
ment associated to the virtual work and k identifies the
layer. Fτ and Fs are the so-called thickness functions de-
pending only on z. us are the unknown variables depend-
ing on the coordinates α and β. τ and s are sum indexes
and N is the order of expansion in the thickness direction
assumed for the displacements.

Classical Theories

The simplest plate/shell theory is based on the Kirch-
hoff/Love’s hypothesis, and it is usually referred to as Clas-
sical Lamination Theory (CLT)[33],[34]. Both transverse
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Figure 1: Reference system of the double curvature shell.
Figure 2: Reference system of the cylindrical shell.

x

y

z

Figure 3: Reference system of the plate.

shear strains and transverse normal strains are discarded,
in usual applications being negligible with respect to the
in-plane ones,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u(α, β, z) = u0(α, β) − z
∂w0
∂α

v(α, β, z) = v0(α, β) − z
∂w0
∂β

w(α, β, z) = w0(α, β)

(12)

The inclusion of transverse shear strains, in the theory
mentioned here, leads to Reissner-Mindlin Theory, also
known as First-order Shear Deformation Theory (FSDT)
[35], ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u(α, β, z) = u0(α, β) + z u1(α, β)

v(α, β, z) = v0(α, β) + z v1(α, β)

w(α, β, z) = w0(α, β)

(13)

However, these theories, due to their inconsistency
in discarding the transverse normal stress in the material
constitutive equations, are no longer valid when 3D lo-
cal effects appear. Among these, stretching effects are ne-
glected in CLT and FSDT models because the transverse

displacement is assumed constant in the thickness di-
rection. Moreover, local effects due to concentrated loads
cannot be represented if linear displacement field is con-
sidered. To remove the inconsistency completely, higher-
order expansion of the unknown with respect to the z co-
ordinate are needed. Formoredetails, the readers can refer
to the article [24].

Equivalent Single Layer Theories

Many attempts have been made to improve classical
plate/shell models. The CUF has the capability to expand
each displacement variable in the displacement field at
any desired order independently from the others and with
respect to the accuracy and the computational cost has
been introduced. Such an artifice permits us to treat each
variable independently from the others. This becomes ex-
tremely useful when multifield problems are investigated
such as thermoelastic and piezoelectric applications [13,
20, 36].
In the case of Equivalent Single Layer (ESL) models, a Tay-
lor expansion is employed as thickness functions:

u = F0u0 + F1u1 + . . . + FNuN = Fsus , s = 0, 1, . . . , N .
(14)

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN . (15)

Following this approach the displacement field can be
written as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u(α, β, z) = u0(α, β) + z u1(α, β) + ... + zN uN(α, β)

v(α, β, z) = v0(α, β) + z v1(α, β) + ... + zN vN(α, β)

w(α, β, z) = w0(α, β) + z w1(α, β) + ... + zN wN(α, β)
(16)
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Figure 4: Tying points for the MITC9 shell finite element.

In general:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(α, β, z) = F0(α, β) + F1 u1(α, β) + ... + FN uN(α, β)

v(α, β, z) = F0(α, β) + F1 v1(α, β) + ... + FN vN(α, β)

w(α, β, z) = F0(α, β) + F1 w1(α, β) + ... + FN wN(α, β)
(17)

Classical models, such as those based on the First-
order Shear Deformation Theory (FSDT), can be obtained
from an ESL theory with N = 1, by imposing a constant
transverse displacement through the thickness via penalty
techniques (that is, the degree of freedom given by the lin-
ear part of the transverse displacement is penalized by
assigning infinite value to the corresponding term in the
diagonal of the stiffness matrix). Also a model based on
the hypotheses of Classical Lamination Theory (CLT) can
be expressed by means of the CUF by applying a penalty
technique to the constitutive equations (the penalty is here
applied to the shear modulus in the matrix of the material
coefficients). This permits to impose null transverse shear
strains in the shell.

Zig-Zag Models and Layer Wise Theories

Due to the intrinsic anisotropy of multilayered structures,
the first derivative of the displacement variables in the z-
direction is discontinuous. The Layer-Wise (LW)models, in
respect to the ESLs, allow the zig-zag form of the displace-
ment distribution in layered structures to bemodelled. It is
possible to reproduce the zig-zag effects also in the frame-
work of the ESL description by employing the Murakami
theory. According to references [37], a zig-zag term can be
introduced into equation(14) as follows:

uk = F0 uk0 + . . . + FN ukN + (−1)kζkukZ . (18)

Subscript Z refers to the introduced term. Such theories are
called zig-zag (Z) theories. Following this approach the dis-
placement field can be written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(α, β, z) = F0(α, β) + F1 u1(α, β) + ...
+FN−1 uN−1(α, β) + (−1)kζkukZN

v(α, β, z) = F0(α, β) + F1 v1(α, β) + ...
+FN−1 vN−1(α, β) + (−1)kζkvkZN

w(α, β, z) = F0(α, β) + F1 w1(α, β) + ...
+FN−1 wN−1(α, β) + (−1)kζkwkZN

(19)

In the case of Layer-Wise (LW) models, the displace-
ment is defined at k-layer level:

uk = Ft ukt + Fb ukb + Fr ukr = Fs uks ,
s = t, b, r , r = 2, ..., N . (20)

Ft =
P0 + P1

2 , Fb =
P0 − P1

2 , Fr = Pr − Pr−2. (21)

in which Pj = Pj(ζk) is the Legendre polynomial of j-order
defined in the ζk-domain: −1 ≤ ζk ≤ 1. P0 = 1, P1 = ζk, P2 =
(3ζ 2k −1)/2, P3 = (5ζ 3k −3ζk)/2, P4 = (35ζ 4k −30ζ

2
k +3)/8. The

top (t) andbottom (b) values of the displacements are used
as unknown variables and one can impose the following
compatibility conditions:

ukt = uk+1b , k = 1, Nl − 1. (22)

4 Finite Element approximation and
MITC9 method

In this section, the derivation of a shell finite element for
the analysis ofmultilayered structures is presented. The el-
ement is based on both the ESL and LW theories contained



306 | M. Cinefra et al.

in the Unified Formulation. After an overview in scien-
tific literature about the methods that permit to withstand
the membrane and shear locking, the MITC technique has
been adopted for this element. Considering a 9-nodes fi-
nite element with doubly-curved geometry, the displace-
ment components are interpolated on the nodes of the el-
ement bymeansof the Lagrangian shape functionsNi [38]:

us = Njusj δuτ = Niδuτi with i, j = 1, ..., 9
(23)

where usj and δuτi are the nodal displacements and their
virtual variations. Substituting in the geometrical rela-
tions (3) one has:

ϵp =Fτ(Dp + Ap)(NiI)uτi
ϵn =Fτ(DnΩ − An)(NiI)uτi + Fτ,z (NiI)uτi

(24)

where I is the identity matrix.
Considering the local coordinate system (ξ , η), the

MITC shell elements ([39]-[40]) are formulated by us-
ing, instead of the strain components directly computed
from the displacements, an interpolation of these within
each element using a specific interpolation strategy for
each component. The corresponding interpolation points,
called tying points, are shown in Fig. 4 for a nine-nodes
element. Note that the transverse normal strain ϵzz is ex-
cluded from this procedure and it is directly calculated
from the displacements.
The interpolating functions are Lagrangian functions and
are arranged in the following arrays:

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]
Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]
Nm3 = [NP , NQ , NR , NS]

(25)

From this point on, the subscripts m1, m2 and m3 indi-
cate quantities calculated in the points
(A1, B1, C1, D1, E1, F1), (A2, B2, C2, D2, E2, F2) and
(P, Q, R, S), respectively. Therefore, the strain compo-
nents are interpolated as follows:

ϵp =

⎡⎢⎣ϵααϵββ
ϵαβ

⎤⎥⎦ =

⎡⎢⎣Nm1 0 0
0 Nm2 0
0 0 Nm3

⎤⎥⎦
⎡⎢⎣ϵααm1ϵββm2
ϵαβm3

⎤⎥⎦
ϵn =

⎡⎢⎣ϵαzϵβz
ϵzz

⎤⎥⎦ =

⎡⎢⎣Nm1 0 0
0 Nm2 0
0 0 1

⎤⎥⎦
⎡⎢⎣ϵαzm1ϵβzm2
ϵzz

⎤⎥⎦
(26)

where the strains ϵααm1 , ϵββm2 , ϵαβm3 , ϵαzm1 , ϵβzm2 are ex-
pressed bymeans of eq.s (24) inwhich the shape functions
Ni and their derivatives are evaluated in the tying points.
For example, one can considers the strain component ϵαα
that is calculated as follows:

ϵαα =NA1ϵααA1 + NB1ϵααB1 + NC1ϵααC1 + ND1ϵααD1
+ NE1ϵααE1 + NF1ϵααF1 (27)

with:

ϵααA1 = N(A1)
i,α Fτuτi +

1
HαRα

N(A1)
i Fτwτi (28)

The superscript (A1) indicates that the shape function
and its derivative are evaluated in the point of coordi-
nates (− 1√

3 , −
√︁

3
5 ). Similar expressions can be written for

ϵααB1 ,ϵααC1 ,ϵααD1 ,ϵααE1 ,ϵααF1 .

5 Governing FEM equations
The PVD for a multilayered doubly-curved shell reads:

∫︁
Ωk

∫︁
Ak

{︂
δϵkp

T
σkp + δϵkn

T
σkn
}︂
HkαHkβ dΩkdz = δLe (29)

where Ωk and Ak are the integration domains in the
plane and in the thickness direction, respectively. The left
hand side of the equation represents the variation of the
internal work, while the right hand side is the external
work. σkp and σkn contain the mechanical (d) and thermal
(T) contributions, so:∫︁
Ωk

∫︁
Ak

{︂
δϵkp

T (︁
σkpd − σ

k
pT

)︁
+ δϵkn

T (︁
σknd − σ

k
nT

)︁}︂
HkαHkβ dΩkdz

= δLe (30)

In this work no mechanical loads are applied to the shell
structure, so the external work is null, except for the ther-
mal stress contribution of the temperature distribution ap-
plied, so:∫︁

Ωk

∫︁
Ak

{︂
δϵkp

T
σkpd + δϵ

k
n
T
σknd
}︂
HkαHkβ dΩkdz

=
∫︁
Ωk

∫︁
Ak

{︂
δϵkp

T
σkpT + δϵkn

T
σknT
}︂
HkαHkβ dΩkdz (31)

Substituting the constitutive equations (6), the geometri-
cal relations written via the MITC method (26) and apply-
ing the Unified Formulation (11) and the FEM approxima-
tion (23), one obtains the following governing equations:

δqkτiu : Kkτsijuu qksju = Θkτi (32)
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where Kkτsijuu is a 3 × 3 matrix, called fundamental nucleus
of the mechanical stiffness matrix, and its explicit expres-
sion is given in [41]. This is the basic element from which
the stiffness matrix of the whole structure is computed.
The fundamental nucleus is expanded on the indexes τ
and s in order to obtain the stiffness matrix of each layer.
Then, the matrices of each layer are assembled at multi-
layer level depending on the approach considered, ESL or
LW. Θkτi is a 3 × 1 matrix, called fundamental nucleus of
the thermal load, and its explicit expression is given in the
following section. qksju and δqkτiu are the nodal displace-
ments and their virtual variation, respectively.

6 Heat conduction problem in
layered structures

Theheat conductionproblem is investigatedby solving the
Fourier heat conduction equation as described in [42] for
the plate case. Here the solution is given for the shell case
as proposed in [21]. If the values of the temperature are
known at the top and bottom surface of the shell, the tem-
perature profile through the thickness can be considered
in two different ways. The first method introduces an as-
sumed profile θ̂ (z) that varies linearly from the top to the
bottom as follows:

θ̂ (z) = θbottom+
θtop − θbottom

h *
(︂
z + h2

)︂
z ∈

[︂
−h
2 ; h2

]︂
(33)

Independently by the number of considered layers the lin-
ear profile is always the same.
The second one computes θ̂ (z) by solving the Fourier heat
conduction equation. In case of multi-layered structures,
in general for the kth homogeneous orthotropic layer, the
differential Fourier equation of heat conduction reads:(︂

Kk1
(Hkα)2

)︂
δ2θ
δα2 +

(︃
Kk2

(Hkβ)2

)︃
δ2θ
δβ2 +

(︁
Kk3
)︁ δ2θ
δz2 = 0 (34)

where Kk1, Kk2, Kk3 are the thermal conductivities coeffi-
cients inmaterial coordinates (1, 2, 3) for each orthotropic
layer k and then rotated in the general curvilinear refer-
ence system (α, β, z). In case of multi-layered structures,
continuity conditions for the temperature θ and the trans-
verse normal heat flux qz hold in the thickness direction at
each kth layer interface, reading:

θkt = θk+1b qkzt = qk+1zb for k = 1, ..., Nl − 1 (35)

where Nl is the number of layers in the considered struc-
ture. The relationship between the transverse heat flux

and the temperature is given as:

qkz = Kk3
δθ
δz (36)

For the kth layer of the shell structure it is supposed that
Kk1, Kk2, Kk3 are constant because in each layer Hkα , Hkβ are
calculated. For each layer both governing equations and
boundary conditions are satisfied by assuming the follow-
ing temperature field:

θ (α, β, z) = f (z) θΩ(α, β) (37)

where θΩ in this paper is considered bi-sinusoidal as fol-
lows:

θΩ(α, β) = sin
(︁mπα

a

)︁
sin
(︂
nπβ
b

)︂
(38)

and f (z) is assumed as:

f (z) = θ0 exp
(︁
skz
)︁

(39)

where θ0 is a constant and sk a parameter. Substituting 37
in 34 and solving for sk:

sk1,2 = ±

⎯⎸⎸⎸⎸⎷ Kk1
(Hkα)2

(︁mπ
a

)︁2
+ Kk2
(Hkβ)2

(︁nπ
b

)︁2
Kk3

(40)

Therefore:

f (z) = θk01 exp
(︁
sk1z
)︁
+ θk02 exp

(︁
sk1z
)︁

or:
f (z) = Ck1 cosh

(︁
sk1z
)︁
+ Ck2 sinh

(︁
sk1z
)︁

(41)

The solution for a layer k can be written as:

θc (α, β, z) = θk =
[︁
Ck1 cosh

(︁
sk1z
)︁
+ Ck2 sinh

(︁
sk1z
)︁]︁

sin
(︁mπα

a

)︁
sin
(︂
nπβ
b

)︂
(42)

wherein the coefficients Ck1 and Ck2 are constant for each
layer k. In 41 for each layer k two unknowns ( Ck1 and Ck2 )
remain. Therefore, if the number of layers is Nl, the num-
ber of unknowns is (2Nl) and (2Nl) equations to deter-
mine the unknowns are needed. The first two conditions
are given by the temperature at the top and the bottom of
the shell structure:

f (zbottom) = θ̂bottom = C11 cosh
(︁
s11zbottom

)︁
+ C12 sinh

(︁
s11zbottom

)︁
f
(︀
ztop

)︀
= θ̂top = CNl1 cosh

(︁
sNl1 ztop

)︁
+ CNl2 sinh

(︁
sNl1 ztop

)︁
(43)



308 | M. Cinefra et al.

Another (Nl − 1) equations can be obtained from the con-
tinuity of temperature at each layer interface as follows:

Ck1 cosh
(︁
sk1zkt

)︁
+ Ck2 sinh

(︁
sk1zkt

)︁
− Ck+11 cosh

(︁
sk+11 zk+1b

)︁
− Ck+12 sinh

(︁
sk+11 zk+1b

)︁
= 0 (44)

and another (Nl − 1) equations can be obtained from the
continuity of heat flux through the interfaces as follows:

sk1Kk3
[︁
Ck1 sinh

(︁
sk1zkt

)︁
+ Ck2 cosh

(︁
sk1zkt

)︁]︁
− sk+11 Kk+13

[︁
Ck+11 sinh

(︁
sk+11 zk+1b

)︁
+ Ck+12 cosh

(︁
sk+11 zk+1b

)︁]︁
= 0 (45)

In 44 and 45 subscripts t and b indicate the top and bottom
of each layer. Solving the system given by 43, 44 and 45 the
(2Nl) coefficients Ck1 and Ck2 are obtained. The temperature
amplitude in the thickness shell direction is given by:

θ̂c (z) = θ̂k = Ck1 cosh
(︁
sk1z
)︁
+Ck2 sinh

(︁
sk1z
)︁

for k = 1, ..., Nl
(46)

So, the explicit expression of the fundamental nucleus
Θkτi, is:

Θkτiα = λk6 Jkτα Wk
i,β + λ

k
1 Jkτβ Wk

i,α (47)

Θkτiβ = λk2 Jkτα Wk
i,β + λ

k
6 Jkτβ Wk

i,α (48)

Θkτiz = λk3 Jkτ,zαβ Wk
i +

λk2
Rkβ

Jkτα Wk
i +

λk1
Rkα

Jkτβ Wk
i (49)

Where the following integrals in thedomainΩk are de-
fined:(︁
Wk
i ; Wk

i,α ; Wk
i,β

)︁
=
∫︁
Ωk

(︂
NiθΩ ;

∂Ni
∂α θΩ ;

∂Ni
∂β θΩ

)︂
dαkdβk

(50)

Moreover, the integrals on the domain Ak, in the thickness
direction, are written as:(︁
Jkτα ; Jkτβ ; Jkτ,zαβ

)︁
=
∫︁
Ak

(︂
Fτ θ̂kHkα ; Fτ θ̂kHkβ ;

∂Fτ
∂z θ̂

kHkαHkβ
)︂
dz

(51)

7 Acronyms
Several refinedandadvanced two-dimensionalmodels are
contained in the Unified Formulation. Depending on the
variables description (LW, ESL) and the order of expansion

N of the displacements in z, a large variety of kinematics
shell theories can be obtained. A system of acronyms is
given in order to denote these models. The first letter in-
dicates the multi-layer approach which can be Equivalent
Single Layer (ESL) or Layer Wise (LW). The number N in-
dicates the order of expansion used in the thickness direc-
tion (from 1 to 4). In the case of LW approach, the same or-
der of expansion is used for each layer. In the case of ESL
approach, a letter Z can be added if the zig-zag effects of
displacements is considered by means of Murakami’s zig-
zag function. Summarizing, ESL1-ESL4 are ESL models. If
Murakami zig-zag function is used, these equivalent sin-
gle layer models are indicated as ESLZ1-ESLZ3. In the case
of layer wise approach, the acronym LW is considered in
place of ESL, so the acronyms are LW1-LW4. Sometimes the
Navier analytical method is employed in place of the FEM
method and a subscript (a) is used. In the case of the cal-
culated temperature profile the solutions are indicated by
Tc, while Ta is used for the solutions deriving from an as-
sumed linear temperature profile.

8 Numerical results
This section is composed of two parts. The first one is de-
voted to the assessment of the shell element based on the
Unified Formulation by the static analysis of simply sup-
ported plates, cylindrical shells and spherical shells. All
of them are evaluated applying a thermal load with a bi-
sinusoidal in-plane distribution. Before the assessment re-
sults of the static analysis a brief discussion about the eval-
uation of the temperature profile is given. Using the the-
ory that provides the most accurate results, the second
part presents some benchmark solutions relative to plates,
cylindrical shells and spherical shells with particular lam-
ination and boundary conditions.

8.1 Temperature profile evaluation

The temperature profile along the thickness direction is
given in Figures 5-6 for the plate structure and the cylin-
drical shell panel, for both the assumed linear profile and
the calculated one.

For the three layered composite plate structure (see
Figure 5) the calculated profile is plotted for different thick-
ness ratios a/h. It is evident that for thin plates the temper-
ature profile can be assumed almost linear, conversely for
thick plates the temperature behavior is very far from the
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linear one, and large errors can be committed if the tem-
perature profile is assumed as linear.

For the two layered composite cylindrical shell panel,
see Figure 6, the calculated profile is plotted for different
thickness to radius ratios R/h and thickness ratio a/h =
10. One can note that the effect of the curvature on the dis-
tribution of the temperature profile is negligible and the
difference with the linear profile is only due to the thick-
ness ratio a/h = 10.

The proposed evaluations of temperature profile clar-
ify the importance of a calculated temperature profile for
thick plates and shells in order to avoid large errors in the
approximation of thermal load.

8.2 Assessment

To assess the efficiency of this shell element, three ref-
erence problems are considered: the first one is a cross-
ply squaremultilayered platewith lamination (0∘/90∘/0∘)
and simply-supported boundary conditions and is com-
pared with the 3D elasticity solution given by Bhaskar
et al. in [43]. The second problem is a square cylindri-
cal panel, analytically analyzed, with lamination (0∘/90∘)
and simply-supported boundary conditions. The last one
is a square spherical panel, analytically analyzed, with
lamination (0∘/90∘). The boundary conditions are simply-
supported. All of them are analyzed by applying a thermal
load with a bi-sinusoidal in-plane distribution:

θ (α, β, z) = θ̂ (z) sin
(︁mπα

a

)︁
sin
(︂
nπβ
b

)︂
(52)

where m = n = 1. These three problems are briefly de-
scribed in the following sections.

8.2.1 Multilayered plate

The structure analyzed by Bhaskar et al. [43] (see Figure
3) is a composite multilayered square plate with lamina-
tion (0∘/90∘/0∘). The physical properties of the material
of the plate, composite, are given in Table 1. The geometri-
cal dimensions are: a = b = 1m. The temperature bound-
ary conditions are: θ̂top = 1 K, θ̂bottom = −1 K. The re-
sults are presented for different thickness ratios a/h =
2, 10, 50, 100. Amesh grid of 10 ×10 elements is taken to
ensure the convergence of the solution (see Table 2). The
values of the transversal displacement w and the trans-
verse shear stress σαz are listed in Table 3 for the temper-
ature profile calculated solving the Fourier heat conduc-
tion equation and compared with the assumed linear tem-
perature profile. Other results in terms of transverse shear

stress and transversal displacement are shown in Figures
7-10. All the FEM solutions, with an assumed linear tem-
perature profile, lead to accurate results with respect to
the 3D solution [43], that makes use of the same linear
profile assumption. The results agree also with the ana-
lytical solutions provided for all the thickness ratios, ex-
cept in the case of FSDTmodel. Indeed, plate elements that
present a constant transverse normal strain such as FSDT
lead to inaccurate results for both thick and thin plates.
It is confirmed what found in [12]: at least a parabolic ex-
pansion for the displacements (u, v, w) is required to cap-
ture the linear thermal strains that are related to a lin-
ear through-the-thickness temperature distribution. The
results obtained with the calculated temperature profile
are close to them of the assumed linear profile for plates
with thickness ratios a/h = 50, 100, while for plates with
thickness ratios a/h = 2, 10 the thermal profile is clearly
non linear and results are different from the linear cases
even if the displacement field is approximated by refined
models.

In general, LW theories perform better than ESL ones
and generally a lower-order expansion of the displace-
ments is sufficient. Equivalent single layer analyses are
quite satisfactory only for the transverse displacement if
applied to thin plates a/h = 100, but not for the solution
of the transverse shear stresses, as shown in Figures 7-10.
On the other hand, higher-order LW theories lead to better
results but computationally more expensive.

Table 1: Physical data for multilayered plate, cylindrical and spheri-
cal shell.

Material Composite Carbon

EL
ET

25.0 25.0

GLT
GTT

0.5
0.2

0.5
0.2

ν 0.25 0.25

αT
αL

1125.0 3.0

KL
KT

36.42
0.96

36.42
0.96
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Table 2: Convergence study. Plate with thickness ratio a/h = 100, cylindrical panel and spherical panel with radius to thickness ratio
R/h = 500. All the cases are computed for the calculated temperature profile Tc and with a LW4 theory.

Mesh 4 × 4 6 × 6 8 × 8 10 × 10 Analytical

Plate w 10.27 10.26 10.25 10.25 10.25
σxz 7.466 7.213 7.102 7.084 7.069

Cylindrical w 1.0966 1.0955 1.0953 1.0952 1.0953
σαz -1.7090 -1.7131 -1.7093 -1.6983 -1.6957

Spherical w 1.0958 1.0948 1.0946 1.0945 1.0945
σαz -2.2848 -2.2065 -2.1562 -2.1461 -2.1403
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8.2.2 Multilayered cylindrical panel

In this section, a cylindrical composite panel with lami-
nation (0∘/90∘) is analyzed (see Figure 2). The lamination
angle is 0∘ for the bottom layer and 90∘ for the top layer.
The geometrical dimensions are: a = 1 m and b = 1 m,
global thickness htot = 0.1 m, curvature radius Rα = ∞.
The physical properties of the carbon are given in Table
1. The temperature boundary conditions are: θ̂top = 0.5 K,
θ̂bottom = −0.5K for all the cases. The results are compared
with the corresponding closed form solutions obtained
with the Navier method and are presented for different ra-
dius to thickness ratios Rβ/htot = 10 , 50 , 100 , 500 with
the corresponding curvature radii Rβ = 1 , 5 , 10 , 50.
A mesh grid of 10 × 10 elements is taken to ensure the
convergence of the solution (see Table 2). The values of
the transversal displacement w and the transverse shear

stress σαz are listed in Table 4 for the temperature profile
calculated solving the Fourier’s heat conduction equation
and compared with the assumed linear temperature pro-
file. Other results in terms of transverse shear stress and
transversal displacement are shown in Figures 11-14.

All the FEs, in both calculated and assumed linear
cases, lead to accurate resultswith respect to the analytical
solutions for all the thickness ratios, except for FSDT ele-
ments. The difference between the calculated temperature
profile and the assumed linear one is a constant and it is
not affected by the curvature of the cylinder Rβ; this differ-
ence is due to the thickness ratiowhich is a/h = 10. In gen-
eral, LW theories perform better than ESL ones and often
alsowith a lower-order expansionof theunknowns. Equiv-
alent single layer analyses are quite satisfactory for the
transverse displacement, even when lower radii to thick-
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Table 3: Plate with lamination (0∘/90∘/0∘). Transverse displacement w = w(a/2, b/2) * htot, evaluated at z = ±h/2. Transverse shear stress
σxz = σxz(a, 0), evaluated at z = +h/6.

a/h 2 10 50 100

w 3D[43] 96.79 17.39 10.50 10.26
σxz 3D[43] 63.92 60.54 14.07 7.073

w

LW4a
Ta 96.78 17.39 10.50 10.26
Tc 49.09 16.39 10.47 10.25

LW4 Ta 96.77 17.39 10.50 10.26
Tc 48.85 16.39 10.47 10.25

LW1 Ta 89.23 17.62 11.14 10.91
Tc 44.17 16.69 11.11 10.91

ESLZ3 Ta 94.85 17.37 10.50 10.26
Tc 50.08 16.41 10.47 10.25

ESL4a
Ta 98.21 16.90 10.47 10.25
Tc 49.55 15.93 10.44 10.25

ESL4 Ta 98.20 16.90 10.47 10.25
Tc 49.29 15.93 10.44 10.25

ESL2 Ta 83.45 14.96 10.38 10.23
Tc 40.87 14.09 10.35 10.22

FSDT Ta 41.27 18.33 15.17 15.06
Tc 20.35 17.26 15.13 15.05

σxz

LW4a
Ta 63.82 60.54 14.07 7.073
Tc 30.11 57.07 14.04 7.069

LW4 Ta 63.93 60.66 14.10 7.088
Tc 30.00 57.18 14.07 7.084

LW1 Ta 42.54 58.78 13.69 6.883
Tc 31.69 56.35 13.21 6.879

ESLZ3 Ta 27.42 52.61 12.45 6.263
Tc 23.42 50.43 12.43 6.260

ESL4a
Ta 37.25 36.33 8.251 4.143
Tc 24.04 34.47 8.232 4.140

ESL4 Ta 37.30 36.41 8.268 4.152
Tc 23.96 34.55 8.250 4.149

ESL2 Ta 11.58 16.21 3.624 1.819
Tc 6.065 15.31 3.616 1.818

FSDT Ta 44.48 28.00 6.127 3.073
Tc 22.09 26.41 6.112 3.071

ness ratios are considered (R/h = 10), but not for the trans-
verse shear stress, as shown in Figures 11-14.
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Table 4: Cylindrical panel with lamination (0∘/90∘). Transverse displacement w = w(a/2, b/2), transverse shear stress σαz = σαz(a, 0) *
102, evaluated at z = 0.

Rβ/h 10 50 100 500

w

LW4a
Ta 0.7450 1.1192 1.1359 1.1412
Tc 0.7188 1.0748 1.0904 1.0953

LW4 Ta 0.7450 1.1192 1.1359 1.1412
Tc 0.7158 1.0743 1.0902 1.0952

LW1 Ta 0.7712 1.1538 1.1706 1.1759
Tc 0.7412 1.1082 1.1243 1.1293

ESLZ3 Ta 0.7454 1.1177 1.1342 1.1396
Tc 0.7147 1.0717 1.0875 1.0926

ESL4a
Ta 0.7461 1.1194 1.1360 1.1413
Tc 0.7199 1.0751 1.0907 1.0955

ESL4 Ta 0.7461 1.1194 1.1360 1.1413
Tc 0.7170 1.0746 1.0904 1.0955

ESL2 Ta 0.7455 1.1152 1.1316 1.1369
Tc 0.7150 1.0695 1.0852 1.0902

FSDT Ta 0.8745 1.2781 1.2941 1.2979
Tc 0.8367 1.2229 1.2382 1.2419

σαz

LW4a
Ta −10.901 −3.7541 −2.8789 −2.2428
Tc −10.051 −3.1516 −2.3086 −1.6957

LW4 Ta −10.923 −3.7615 −2.8845 −2.2471
Tc −10.011 −3.1485 −2.3086 −1.6983

LW1 Ta −8.3115 −4.0011 −3.5188 −3.1781
Tc −7.7544 −3.6140 −3.1507 −2.8235

ESLZ3 Ta −10.522 −3.5686 −2.7832 −2.2277
Tc −9.7816 −3.1176 −2.3651 −1.8329

ESL4a
Ta −6.8978 −1.7276 −1.2097 −0.8599
Tc −6.3568 −1.3735 −0.8747 −0.5374

ESL4 Ta −6.9120 −1.7309 −1.2120 −0.8614
Tc −6.3345 −1.3701 −0.8732 −0.5377

ESL2 Ta −5.6195 −1.7814 −1.4294 −1.2006
Tc −5.3090 −1.6296 −1.2921 −1.0727

FSDT Ta −4.8037 −0.6032 −0.2571 −0.0436
Tc −4.5916 −0.5767 −0.2457 −0.0418
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Table 5: Spherical panel with lamination (0∘/90∘). Transverse displacement w = w(a/2, b/2), evaluated at z = 0, transverse shear stress
σαz = σαz(a, 0) * 102 evaluated at z = −h/4.

R/h 10 50 100 500

w

LW4a
Ta 0.3299 1.0507 1.1174 1.1404
Tc 0.3203 1.0087 1.0725 1.0945

LW4 Ta 0.3299 1.0507 1.1174 1.1405
Tc 0.3240 1.0091 1.0726 1.0945

LW1 Ta 0.3386 1.0836 1.1516 1.1751
Tc 0.3325 1.0414 1.1062 1.1285

ESLZ3 Ta 0.3306 1.0496 1.1159 1.1388
Tc 0.3235 1.0071 1.0701 1.0918

ESL4a
Ta 0.3309 1.0511 1.1176 1.1406
Tc 0.3213 1.0093 1.0728 1.0947

ESL4 Ta 0.3309 1.0511 1.1176 1.1406
Tc 0.3250 1.0096 1.0729 1.0947

ESL2 Ta 0.3315 1.0477 1.1134 1.1361
Tc 0.3248 1.0054 1.0679 1.0895

FSDT Ta 0.3927 1.1967 1.2709 1.2965
Tc 0.3837 1.1459 1.2163 1.2406

σαz

LW4a
Ta 24.096 1.1199 -1.3854 -2.5674
Tc 23.379 1.3972 -1.0041 -2.1403

LW4 Ta 24.131 1.1212 -1.3877 -2.5714
Tc 23.289 1.3831 -1.0122 -2.1461

LW1 Ta 19.500 1.5598 -0.5309 -1.5931
Tc 18.818 1.6718 -0.3315 -1.3536

ESLZ3 Ta 21.061 2.4154 0.1275 -1.0771
Tc 20.328 2.5096 0.3181 -0.8407

ESL4a
Ta 21.281 0.8662 -1.3842 -2.4603
Tc 20.593 1.0635 -1.0932 -2.1270

ESL4 Ta 21.312 0.8673 -1.3865 -2.4641
Tc 20.521 1.0521 -1.1000 -2.1325

ESL2 Ta 20.284 3.0723 0.9925 -0.0983
Tc 19.598 3.1406 1.1473 0.0970

FSDT Ta 21.845 3.9515 1.5581 0.2307
Tc 21.011 3.8024 1.5047 0.2240
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Table 6: Benchmark problems. Case 1 with anti-simmetric lamination ±45∘. Plate, cylindrical and spherical panel, transverse displacement
w = 10w(a/2, b/2, +h/2) and transverse shear stress σαz = 102 σαz(a, b/2, 0).

Plate Cylindrical Spherical

a/h 10 100 R/h 10 100 10 100

w

LW4 Ta 1375.4 4607.8 4.8796 7.4058 2.6295 7.4971
Tc 1293.5 4604.7 4.5741 7.0165 2.5533 7.1029

LW1 Ta 1274.3 4895.2 4.7358 7.5077 2.4930 7.6005
Tc 1203.2 4892.2 4.4477 7.1343 2.4305 7.2202

ESLZ3 Ta 1307.7 4586.4 4.7120 7.3351 2.5257 7.4200
Tc 1232.7 4583.4 4.4154 6.9528 2.4542 7.0325

ESL4 Ta 1250.8 4550.1 4.7274 7.3978 2.5388 7.4776
Tc 1177.8 4547.1 4.4239 7.0045 2.4615 7.0793

ESL2 Ta 1164.1 4501.7 4.7187 7.2171 2.5756 7.3229
Tc 1096.3 4498.8 4.4192 6.8330 2.5029 6.9316

FSDT Ta 1294.9 7222.5 5.0729 7.5539 2.6941 7.6548
Tc 1219.4 7217.9 4.8079 7.2151 2.6483 7.3099

σαz

LW4 Ta -85.932 -56.181 15.624 2.4665 24.592 3.7828
Tc -81.708 -56.148 14.483 1.9577 22.964 3.2169

LW1 Ta -98.335 -56.066 17.223 5.5156 23.450 6.7916
Tc -93.436 -56.033 16.299 5.1621 22.161 6.3780

ESLZ3 Ta -97.289 -55.800 17.350 2.6837 26.823 4.0857
Tc -92.420 -55.767 16.512 2.5503 25.369 3.8853

ESL4 Ta -80.357 -52.295 16.651 0.3544 27.067 1.8573
Tc -76.298 -52.264 15.711 0.2248 25.347 1.6474

ESL2 Ta -61.532 -37.094 15.936 2.8891 23.900 4.2028
Tc -58.089 -37.072 15.343 2.9668 22.689 4.2054

FSDT Ta -92.857 -45.626 12.861 2.2035 20.014 3.2885
Tc -87.595 -45.598 12.219 2.0645 18.994 3.0974

8.2.3 Multilayered spherical panel

In this section, a square, spherical panel is analysed (see
Figure 1). The temperature boundary conditions are: θ̂top =
0.5 K, θ̂bottom = −0.5 K for all the cases. The results are
compared with the analytical solutions obtained with the
Navier method. Amesh grid of 10×10 elements is taken to
ensure the convergence of the solution (see Table 2). The
geometrical dimensions are: a = 1 m and b = 1 m, global
thickness htot = 0.1 m and curvature radii Rα = Rβ = R.
The physical properties of the carbon are given in Table 1.
The results are presented for different radius to thickness
ratios R/htot = 10 , 50 , 100 , 500with the corresponding

curvature radius R = 1.0 , 5.0 , 10.0 , 50.0). The lamina-
tion angle is 0∘ for the bottom layer and 90∘ for the top
layer. The values of the transversal displacementw and the
transverse shear stress σαz are listed in Table 5 for the tem-
perature profile calculated solving the Fourier heat con-
duction equation and compared with the assumed linear
temperature profile. Other results in terms of transverse
shear stress and transversal displacement are shown in
Figures 15-18.

Considerations similar to the previous problem can be
made. All the FEs, in both calculated and assumed linear
cases, lead to accurate results with respect to the analyt-
ical solutions for all the thickness ratios, except for FSDT
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Table 7: Benchmark problems. Case 2 with clamped-free boundary condition. Plate, cylindrical and spherical panel, transverse displace-
ment w = 10w(a/2, b/2, +h/2) and transverse shear stress σαz = 102 σαz(a, b/2, 0).

Plate Cylindrical Spherical

a/h 10 100 R/h 10 100 10 100

w

LW4 Ta 1226.8 3096.9 4.5476 5.3307 -0.3479 3.7373
Tc 1157.7 3094.9 4.3447 5.1018 -0.1750 3.6265

LW1 Ta 1210.9 3274.4 4.6164 5.3874 -0.3642 3.8575
Tc 1145.2 3272.3 4.4100 5.1571 -0.1923 3.7404

ESLZ3 Ta 1222.0 3096.8 4.5239 5.2945 -0.3407 3.7334
Tc 1155.2 3094.9 4.3237 5.0705 -0.1681 3.6250

ESL4 Ta 1183.3 3083.9 4.5479 5.3215 -0.3423 3.7477
Tc 1116.2 3081.9 4.3460 5.0941 -0.1696 3.6368

ESL2 Ta 986.40 3048.6 4.5152 5.2473 -0.3369 3.7263
Tc 929.51 3046.7 4.3093 5.0195 -0.1652 3.6119

FSDT Ta 1039.7 4356.4 4.7747 5.5564 -0.5836 3.9916
Tc 979.72 4353.6 4.5553 5.3129 -0.4107 3.8624

σαz

LW4 Ta -2619.8 -522.26 -3.9875 -5.1179 15.086 0.2373
Tc -2519.9 -522.01 -3.9154 -5.0207 13.754 -0.0535

LW1 Ta -2655.5 -579.97 -1.5318 -2.3709 14.765 1.8361
Tc -2520.6 -579.67 -1.5150 -2.3397 13.594 1.5630

ESLZ3 Ta -2436.3 -537.18 -2.9825 -3.9052 14.614 0.8821
Tc -2303.2 -536.90 -2.8354 -3.7432 13.481 0.6988

ESL4 Ta -2695.3 -465.54 -3.3266 -4.2840 14.134 0.4614
Tc -2582.7 -465.30 -3.2708 -4.2082 12.905 0.1929

ESL2 Ta -2287.1 -240.08 -2.8190 -3.6334 13.936 0.7940
Tc -2159.2 -239.94 -2.7079 -3.5120 12.809 0.5937

FSDT Ta -4195.5 -446.19 -6.0953 -6.9657 13.570 -2.0926
Tc -3955.6 -445.91 -5.7896 -6.6468 12.506 -2.1219

elements. The difference between the calculated tempera-
ture profile solutions and the assumed linear one is con-
stant and it is not affected by the curvature Rβ. In gen-
eral, LW theories perform better than ESL ones and gen-
erally a lower-order expansion of the unknowns is suffi-
cient. Equivalent single layer analyses are quite satisfac-
tory only for the transverse displacement, even for lower
radii to thickness ratios (R/h = 10). Figures 15-18 show
a different behavior for the transverse shear stress, where
higher-order LW models are required to get accurate re-
sults.

8.3 FEM benchmark solutions

Similar plates, cylindrical shells and spherical shells are
analyzed, considering two newproblems that have not ref-
erence analytical solutions:

1. Structures with lamination ±45∘ under bi-
sinusoidal load and simply-supported boundary
conditions.

2. Structures with clamped-free boundary conditions:
edges parallel to β-direction clamped and those par-
allel to α-direction free. The lamination is equal to
the assessment cases.
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8.3.1 Anti-simmetric lamination ±45∘

The first structure analyzed is a composite multilayered
square plate with lamination (−45∘/45∘/−45∘). The phys-
ical properties of the material, the geometrical data and
the temperature boundary conditions are the same of the
assessment cases. The structure is simply supported. The
results are presented for different thickness ratios a/h =
10, 100. The samemesh grid of 10×10 elements of the as-
sessment cases is taken to ensure the convergence of the
solution. The values of the transversal displacementw and
the transverse shear stress σαz are listed in Table 6.

The second structure analyzed is a composite square
cylindrical panel with lamination (−45∘/45∘). The lami-
nation angle is −45∘ for the bottom layer and 45∘ for the
top layer. The physical properties of the material, the ge-
ometrical data and the temperature boundary conditions
are the same of the assessment cases. The structure is sim-
ply supported. The results are presented for different ra-
dius to thickness ratios R/h = 10, 100. The same mesh
grid of 10 × 10 elements of the assessment cases is taken
to ensure the convergence of the solution. The values of
the transversal displacement w and the transverse shear
stress σαz are listed in Table 6.

The last structure analyzed is a composite square
spherical panel with lamination (−45∘/45∘). The lamina-
tion angle is −45∘ for the bottom layer and 45∘ for the top
layer. The physical properties of the material, the geomet-
rical data and the temperature boundary conditions are
the same of the assessment cases. The structure is simply
supported. The results are presented for different radius
to thickness ratios R/h = 10, 100. The same mesh grid of
10×10 elements of the assessment cases is taken to ensure
the convergence of the solution. The values of the transver-
sal displacement w and the transverse shear stress σαz are
listed in Table 6.

8.3.2 Clamped-free boundary conditions

In this part, the structures are considered with clamped-
free boundary conditions: edges parallel to β-direction
clamped and those parallel to α-direction free.
The first structure analyzed is a composite multilayered
square plate. The physical properties of the material, the
lamination angle, the geometrical data and the tempera-
ture boundary conditions are the same of the assessment
cases. The results are presented for different thickness ra-
tios a/h = 10, 100. The samemeshgrid of 10×10 elements
of the assessment cases is taken to ensure the convergence

of the solution. The values of the transversal displacement
w and the transverse shear stress σαz are listed in Table 7.

The second structure analyzed is a composite square
cylindrical panel. The physical properties of the material,
the lamination angle, the geometrical data and the tem-
perature boundary conditions are the same of the assess-
ment cases. The results are presented for different radius
to thickness ratios R/h = 10, 100. The same mesh grid of
10×10 elements of the assessment cases is taken to ensure
the convergence of the solution. The values of the transver-
sal displacement w and the transverse shear stress σαz are
listed in Table 7.

The last structure analyzed is a composite square
spherical panel. The physical properties of the material,
the lamination angle, the geometrical data and the tem-
perature boundary conditions are the same of the assess-
ment cases. The results are presented for different radius
to thickness ratios R/h = 10, 100. The same mesh grid of
10×10 elements of the assessment cases is taken to ensure
the convergence of the solution. The values of the transver-
sal displacement w and the transverse shear stress σαz are
listed in Table 7.

9 Conclusions
This paper has dealt with the static analysis of compos-
ite shells by means of a finite element based on the Uni-
fied Formulation by Carrera. An assessment of the ele-
ment has been performed by analyzing simply-supported
cross-ply plates, cylindrical and spherical shells under bi-
sinusoidal thermal load with both calculated thermal pro-
file (solving the Fourier heat conduction equation) and as-
sumed linear temperature profile. The results have been
presented in terms of both transversal displacements and
transverse shear stresses, for various thickness ratios and
curvature ratios. The performances of the shell element
have been tested, and the different theories (classical and
refined) contained in the CUF have been compared. The
conclusions that can be drawn are the following:

1. The shell element is locking free, for all the LW and
ESL models considered. The results converge to the
reference solution by increasing both the mesh and
the order of expansion of the displacements in the
thickness direction.

2. LW models work better than ESLZ theories, and
these last perform better than ESL models in thick
shell cases.
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3. The classical models, such as FSDT, lead to erro-
neous results in the analysis of thermal problem,
even in the case of thin shells.

4. The use of LW models produces better results for
both thick and thin shells. Their use becomes
mandatory if an accurate description of transverse
stresses along the thickness and fulfillment of inter-
laminar continuity conditions are required.

Finally, some benchmark solutions have been calcu-
lated for plates, cylindrical and spherical shells that have
not analytical reference solutions: lamination (−45∘/45∘)
and clamped-free boundary conditions have been consid-
ered. The results have been presented in terms of transver-
sal displacement and transverse shear stresses in the form
of tables.
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