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1. INTRODUCTION 

Drought affects more people than any other natural disaster and results in serious economic, social and 

environmental costs. The development of effective drought monitoring and early warning has been a 

significant challenge because of the unique characteristics of drought [1]. In fact, considering the 

multifaceted nature of drought phenomena (i.e. hydrological, meteorological, and agricultural), a 

comprehensive and integrated approach is required to define effective Early Warning Systems (EWS), which 

are thus based on the monitoring of different drought-related parameters and complex drought indicators. 

In such a context, several studies have shown how temporary changes of vegetation indices and their 

anomalies are strongly correlated with precipitations, especially in arid and semi-arid environments (see, 

for instance, [2], [3],[4],[5]). Besides, satellite-derived vegetation indicators and climatic data have been 

widely used to study and monitoring droughts and included in the main existing EWS developed by the 

international community (e.g. global systems, such as US-AID FEWSNET, JRC MARS FOODSEC, FAO GIEWS, 

or designed for a specific area of interest, as in the case of MESA South Africa Drought Monitoring, the US 

Drought Monitor, and the JRC European Drought Observatory). 

In this work, a study aimed at investigating spatial and temporal vegetation dynamics in the whole Africa 

and their relationships with climate factors, considering as a base data long-term time-series of vegetation-

related phenological parameters is proposed. The outcomes of this study have been used in order to define 

proper drought monitoring procedures to be used by ITHACA (Information Technology for Humanitarian 

Assistance, Cooperation and Action) for early warning purposes. In fact, in recent years, through its 

partnership with the World Food Programme (WFP), ITHACA has focused its efforts to develop an 

automated drought EWS, based on the monitoring of relevant environmental variables that allow the early 

detection of vegetation stress patterns and agricultural drought phenomena on a global scale, finally 

providing near real-time alerts about vegetation conditions and productivity. In particular, the fortnightly 

monitoring of satellite-derived vegetation indexes during growing seasons allows the early detection of 

water stress conditions of vegetation, and the assessment of derived phenological parameters. These 

parameters, coupled with the evaluation of precipitation conditions, allow the near real-time assessment of 

the vegetation productivity which can be expected at the end of the considered growing season. The timely 

detection of critical conditions in vegetation health and productivity, during a vegetation growing season, 

leads to the identification of the agricultural areas where crop failures are likely to occur. Finally, the 

proposed system incorporates a simplified drought vulnerability model, able to show food security 

conditions starting from the hazard situation evaluated in near real-time [6]. The system outputs and 

information related to identified alerted areas are updated fortnightly and disseminated using a proper 

web display application. 
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The described study has been conducted using time-series of vegetation phenological parameters 

extracted from satellite-derived NDVI datasets (global 15-day NDVI time-series, available from 2000 to 

present, at a 5.6 km spatial resolution, derived from the MODIS MOD13C1 Terra CMG dataset), and 

precipitation time-series obtained from the Tropical Rainfall Measuring Mission TRMM mission (0.25° x 

0.25° spatial resolution) Multisatellite Precipitation Analysis estimation, computed at daily intervals (TRMM 

3B-42 daily data), for period of 1998-present. 

For the purpose of the proposed statistical analysis, ten phenological metrics (the time for the start and 

the end of the season, the length of the season, the season base level, the time for the mid of the season, 

the largest NDVI data value during the season, the seasonal amplitude, the rate of increase at the beginning 

of the season and the rate of decrease at the end of the season, and, finally, the seasonal integral) have 

been extracted from the yearly NDVI function that best fits the original yearly NDVI time-series and 

considered for each vegetation growing season [7] in the examined time interval (2000-2014). These 

metrics are able to describe synthetically the trend of the season in both the time and the integrated 

NDVI/time domains and are related to the seasonal vegetation productivity. 

Different precipitation fortnightly time-series have been used for the study, obtained taking into 

consideration different cumulating intervals (1-3-6-9-12 months values). 

Specific routines have been implemented in order to investigate, on a pixel basis, and to explain the 

statistical relationship between the considered time-series of phenological parameters and precipitation 

data. Obtained results have been spatially analyzed and aggregated taking into consideration different 

vegetation types, and maps showing the areas where the observed vegetation phenological parameters are 

largely dependent on rainfall patterns have been produced. Moreover, the precipitation cumulative interval 

and the period, in the year, when precipitation influence on vegetation productivity has proved to be 

significant, have been identified and discussed, also in relation to the rainfall seasonality and crop calendar 

in the examined area. 

The monitoring of vegetation conditions based on the analysis of phenological metrics, as originally 

provided in the ITHACA drought EWS, proved to effectively support WFP activities in several cases (i.e. 

Niger and Chad 2009[8], Sahel 2012, Horn of Africa crisis 2011). 
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The final aim of conducted statistical study, object of this thesis work, was to correctly define the 

operational use of precipitation data for drought detection, in support to the vegetation monitoring 

procedures. The outcomes of the carried out work supported the planning and definition of effective 

procedures for the integration, where it is meaningful, in the ITHACA vegetation conditions  monitoring  

activities , based on the analysis of phenological parameters, with the near real-time evaluation of 

precipitation deficits explained, for multiple time scales, using the Standard Precipitation Index (SPI). 

Indeed, the studied relationships between rainfall and vegetation dynamics allowed to determine the areas 

where the spatial and the temporal variability in vegetation conditions are closely related to the climate, 

and the best rainfall cumulating interval to be used for SPI monitoring purposes as well. In these areas, the 

fortnightly near real-time monitoring of the precipitation permits to earlier identify drought warnings, by 

considering also climate conditions before the start of the vegetation growing season. Moreover, in the 

same areas, the near real-time SPI analysis during the vegetation growing season supports the monitoring 

of phenological parameters in a way to identify very critical events characterized by both vegetation 

productivity and rainfall anomalies. 
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2. DROUGHT AND NATURAL HAZARDS 

2.1. Natural Hazards and Disaster Risk 

According to The World Meteorological Organization (WMO),  Natural hazards are severe and extreme 

weather and climate events that occur naturally in all parts of the world. Apart from that, some regions are 

more vulnerable to certain hazards than others. Despite of the term “natural”, a natural hazard has an 

element of human participation. A physical event that does not affect human being is a natural 

phenomenon but not a natural hazard. A natural phenomenon that occurs in a populated and causes 

unacceptably large numbers of fatalities or overwhelming property damage is a natural disaster.  

Hazards such as droughts, floods, hurricanes, earthquakes, and landslides can have devastating effects 

on human life and economies. With growing numbers of people living in crowded cities and vulnerable 

areas, it is really important than ever to improve our understanding of natural disasters and the ways in 

which humans respond to them.  

Each year a number of disasters related to climate change, meteorological and hydrological events, 

generate significant economic and human losses. As shown by statistics in recent years, in the period 

between 2003 and 2012 the average annual disaster frequency observed was 388 whilst the annual 

average of killed people was 106,654 persons and almost 216 million people became victims each year. On 

the other hand, it was produced economic losses estimated at over US $ 156.7 billion per year.[9] See 

Figure 1 and Figure 2. 

Regardless of the rising global trend in the occurrence of disasters and associated economic losses, 

global loss of life related with meteorological, hydrological or climate-related hazards in 2005, decreased to 

one-tenth of levels in the 1950’s. This notable decline is a expression that preparedness and prevention, 

combined with efficient early warning systems and emergency management, can considerably contribute 

to reducing impacts of hazards on human life. [10] 

 

 



5 

 

 

 

 

Figure 1.Trends in occurence and victims (Death and total affected) [9] 

 

 

Figure 2. Natural disaster summary 1900-2011 (linear-interpolated smoothed lines)[11] 
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lakes and reservoirs lead to reduced oxygen levels, which can affect aquatic life and water quality. Runoff 

from drought-related wildfires can carry extra sediment, ash, charcoal, and woody debris to surface waters, 

killing fish and other aquatic life by decreasing oxygen levels in the water.  

Reduced precipitation and increased evaporation of surface water can impact the recharge of 

groundwater supplies over time. Of all groundwater systems, shallow groundwater aquifers that exchange 

water with surface waters are likely to be the most affected by drought. [15]   

Water may become especially polluted during times of drought due to the lack of rain water to dilute 

industrial and agricultural chemicals. This toxic water can be harmful to plants and animals that use it and 

make it difficult to clean for drink water. In the worst droughts, farmers are unable to maintain their fields 

because of the drought conditions and the restrictions placed on water.  

Another impact of drought is the reduction of electrical generation. In the areas where the power 

generation depends on the use of water for hydropower, if water use is restricted, then power plants need 

to be shut down and more expensive kinds of energy generation may be need to be used. 

For humans, the health implications of drought are numerous and far reaching. Some drought-related 

health effects are experienced in the short-term and can be directly observed and measured. However, the 

slow rise or chronic of drought can result in longer term, indirect health implications that are not always 

easy to anticipate or monitor. The quality and quantity of food supply can be affected by drought 

conditions, which can potentially lead to several types of adverse health effects.[15] 

 

Country Date No Killed 

Somalia, Drought February 1, 2010 20000 

Pakistan, Drought January 1, 2014 180 

China P Rep, Drought May 1, 2006 134 

Paraguay, Drought September 1, 2008 4 

Kenya, Drought July 1, 2008 4 

Table 1. Top 10 most important Drought disasters for the period 2006 to 2015 sorted by numbers of killed at the 

country level. [11] 
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Country Date No Total Affected 

China P Rep, Drought October 1, 2009 60000000 

China P Rep, Drought December 1, 2010 35000000 

China P Rep, Drought August 1, 2014 27500000 

China P Rep, Drought May 1, 2006 18000000 

Thailand, Drought April 1, 2008 10000000 

Niger, Drought September 1, 2009 7900000 

Thailand, Drought March 1, 2010 6482602 

Ethiopia, Drought May 1, 2008 6400000 

Ethiopia, Drought January 1, 2009 6200000 

China P Rep, Drought January 1, 2013 5000000 

Table 2. Top 10 most important Drought disasters for the period 2006 to 2015 sorted by numbers of total affected 

people at the country level. [11] 
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2.3. Types of  Drought  

Many definitions of drought exist because the characteristics of drought differ between regions. Drought 

impacts also vary significantly between locations because of differences in economic, social and 

environmental characteristics at the micro and macro scales. All droughts originate from a deficiency of 

precipitation.[16] 

Nevertheless, three principals types of drought can be identified (see Figure 4): meteorological, 

agricultural, and hydrological. Meteorological drought is mainly defined by the deficit of precipitation from 

expected amount over an defined period of time. Agricultural drought may be characterized by a deficiency 

in water availability for crop or plant growth. Although precipitation deficiencies are important, agricultural 

drought severity is frequently associated with deficiencies in soil moisture, the most significant factor in 

defining crop production potential. Agricultural drought usually occurs after the meteorological drought, 

depending on the reserve of water in the soil. Some soils are more resilient to drought because of high 

water holding capacity. Vulnerability is highest on soils with a low water holding capacity, although 

appropriate soil management practices can reduce the impacts of drought on crops. Hydrological drought is 

defined by deficiencies in surface and ground water resources, which lead to a lack of water availability to 

meet normal and specific water demands. Hydrological or water supply drought usually occurs after the 

agricultural drought because considerable time elapses between precipitation deficiencies and declines in 

ground water and reservoir levels. Similarly, these components of the hydrologic system are usually the last 

to recover from longer-term droughts. [16] 

Moreover, there is another type of drought know as socioeconomic drought, which associates the supply 

and demand of some economic good with elements of meteorological, hydrological, and agricultural 

drought. It differs from the other types because its incidence depends on the time and space processes of 

supply and demand to identify or classify droughts. The supply of many economic goods, such as water, 

forage, food grains, fish, and hydroelectric power, depends on weather. Because of the natural variability of 

climate, water supply is abundant in some years but unable to meet human and environmental needs in 

other years. Socioeconomic drought occurs when the demand for an economic good exceeds supply as a 

result of a weather-related shortfall in water supply. [17] 
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Figure 4. Sequence of Drought Impacts[18] 

 

On the basis of a set of defined criteria, the intensity and duration of drought is expressed with a drought 

index developed as a means to measure drought. Usually, drought index integrates various parameters like 

rainfall, temperature, evapotranspiration, runoff and other water supply indicators into a single number 

and gives a comprehensive picture for decision-making. In fact, different types of drought require different 

indices that can be used to quantify the moisture condition of a region and thereby detect the onset and 

measure the severity of drought events. This can assist in quantifying the spatial extent of a drought event 

thereby allowing a comparison of moisture supply condition between[19] .  
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2.4. The role of remote sensing for drought monitoring  

In recent years, the rising population and overstress on natural resources, decrease in water resources, 

soil degradation, and future projected climate change scenarios have become important areas of concern. 

The implication on food security and a hold up in agricultural and fodder production leads to socio-

economic unrest especially in developing countries[20]. Then, management of natural resources in 

developing as well as developed countries requires information on the state and changes in a range of 

biophysical variables.  

In many zones of the world, droughts still to be a potential disaster and consequently, there is a need for 

appropriate quantification of drought impacts and monitoring and reporting of drought development in 

economically and environmentally susceptible areas. However, the detection, monitoring and mitigation of 

disasters require gathering of fast and continuous relevant information that are not to be reached through 

traditional means. Since disasters that cause vast social and economic disruptions normally affect big areas 

or territories and are linked to global change, it is not possible to efficiently collect continuous data using 

conventional methods. For example, meteorological data from the ground stations can be a good source of 

information that can be used for agricultural drought assessment. However, the poor density of weather 

stations makes it difficult to get sufficient temporal and spatial data to make consistent assessment and risk 

mapping. In addition, the data collected from existing meteorological stations are incomplete, limited in 

area coverage and not available timely.[21] 

With the aim to management the crisis generate for the possible drought impacts, remote sensing data is 

an valid choice[18], [22] and is currently utilized worldwide[23]–[25]. The remote sensing tools offer 

excellent possibilities of collecting general information and data, useful to monitoring the drought events. 

This is because the technology has capability of collecting information at global and regional scales fast and 

frequently and the data is collected in digital form. According to Westen[26], for the management of 

natural disasters a large quantity of multi-temporal spatial data is necessary and satellite remote sensing is 

the ideal tool for disaster management, because it offers information over big areas, and at short time 

intervals. Furthermore, observation from space provides permanent data archive, additional visual 

information, and enables to have regular and repetitive view of nearly the earth’s entire surface[20]. This 

technique make possible to quickly acquire information fast over big areas by means of sensors operating 

in several spectral bands mounted on satellites. A satellite, which orbits the earth, is able to explore the 

whole surface in a few days and repeat the survey of the same area at regular intervals, whilst an aircraft 

can give a more complete analysis of a smaller area, if a specific need occurs. The spectral bands used by 

these sensors cover the whole range between visible and microwaves. 
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The development and advancements in space technology, to address issues like drought detection, 

monitoring and assessment have been dealt with very successfully and helped in formulation of plans to 

deal with this slow onset disaster. With the help of environmental satellites, drought could be detected 

before and delineated more correctly, and its impact on agriculture would be diagnosed far in advance of 

harvest, which is the most vital for global food security and trade [20]. For a precise assessment of the 

occurrence, extent and severity of drought, it is essential to get a correct picture of the spatial and 

temporal distribution of a number of hydrological, meteorological, and surface variables. Space observation 

technologies having this potential has made a significant contribution in this field.  
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3. LITERATURE REVIEW 

In this chapter a review of drought situation in Africa and some system and indicators that are 

fundamentals to develop this study are reported.  

3.1. An Overview of drought situation in Africa  

Sustainable development in Africa has been affected by drought and desertification in the last years. 

These problems have far reaching adverse impacts on human health, food security, economic activity, 

physical infrastructure, natural resources and the environment and national and global security.  

The most important variable of drought in Africa is the water deficit, that result in a water shortage for 

some activity, group, or environmental sector. A more in-depth definition of drought includes four sub 

definitions including meteorological, hydrological, agricultural and socio-economic drought 

The underlying cause of most droughts can be related to changing weather patterns manifested through 

the excessive build up of heat on the earth’s surface, meteorological changes which result in a reduction of 

rainfall, and reduced cloud cover, all of which results in greater evaporation rates. The resultant effects of 

drought are exacerbated by human activities such as deforestation, overgrazing and poor cropping 

methods, which reduce water retention of the soil, and improper soil conservation techniques, which lead 

to soil degradation.[27] 

Desertification on the other hand is defined as a process of land degradation in arid, semi-arid and dry 

sub-humid areas, resulting from various factos, including climatic variations and human activities. There are 

different direct and indirect factors that causes desertification. Normally the phenomenon occurs because 

there are some ecosystems (e.g. drylands) that are extremely vulnerable to over-exploitation and 

inappropriate land use, generating underdevelopment of economies and in entranced poverty among the 

affected populations. [27] 

Two thirds of Africa is classified as deserts or drylands. These are concentrated in Sahelian region, the 

Horn of Africa and the Kalahari in the south. Africa is especially susceptible to land degradation and bears 

the greatest impact of drought and desertification. It is estimated that two-thirds of African land is already 

degraded to some degree and land degradation affects at least 485 million people or sixty five percent of 

the entire African population. Desertification especially around the Sahara has been pointed out as one the 

potent symbols in Africa of the global environment crisis. Climate change is set to increase the area 

susceptible to drought, land degradation and desertification in the region. Under a range of climate 

scenarios, it is projected that there will be an increase of 5-8% of arid and semi Arid lands in Africa. [27] 
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 With regard to drought, Africa presented a high frequency of occurrence and severity of drought. This is 

one of the most important natural disasters in the continent. A study from Bristol University projects that 

areas of western were at most risk from decreasing  water supply and droughts as a result of rising 

temperatures. Actually, some climate scenarios predict that the driest regions of the world will become 

even drier, presenting a risk of persistence of drought in many areas of Africa which will consequently bear 

greater and sustained negative impacts. [27] 

 

Figure 5. Drought Events per country from 1970 to 2004 within Sub-Saharan Africa [27] 
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3.2. Impacts of drought 

Drought generate impacts that spans many sectors of the economy and reaches well beyond the area 

experiencing physical drought. This complexity exists because water is integral to society’s ability to 

produce goods and provide services. 

Impacts are commonly referred to as direct and indirect. Direct impacts include reduced water levels, 

increased livestock and wildlife mortality rates, and damage to wildlife and fish habitat. The consequences 

of these direct impacts illustrate indirect impacts. For example, a reduction in crop, and forest productivity 

may result in reduced income for farmers and agribusiness, increased prices for food and timber, 

unemployment, reduced tax revenues because of reduced expenditures, foreclosures on bank loans to 

farmers and businesses, migration, and disaster relief programs.[28] 

3.2.1. Economic impacts 

Many economic impacts occur in agriculture and related sectors, because of the reliance of these sectors 

on surface and groundwater supplies. In addition to losses in yields in crop and livestock production, 

drought is associated with insect infestations, plant disease, and wind erosion. The incidence of forest and 

range fires increases substantially during extended periods of droughts, which is turn places both human 

and wildlife populations and higher levels of risk. 

Income loss is another indicator used in assessing the impacts of drought. Reduced income for farmers 

has a ripple effect. Retailers and other who provide goods and services to farmers face reduced business. 

This leads to unemployment, increased credit risk for financial institutions, capital shortfalls, and eventual 

loss of tax revenue for local, state, and federal governments. Prices for food, energy, and other products 

increase as supplies are reduced. In some cases, local shortages of certain goods result in importing these 

goods from outside the drought-stricken region. Reduced water supply impairs the navigability of rivers and 

results in increased transportation cost because products must be transported by alternative means. 

Hydropower production may also be significantly affected. [28] 
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3.2.2. Environmental impacts 

Environmental losses are their result of damages to plant and animal species, wildlife habitat, and air and 

water quality, forest and range fires, degradation of landscape quality, loss of biodiversity, and soil erosion. 

Some of these effects are short-term conditions returning to normal following the end of the drought. 

Other environmental effects last for some time and may even become permanent. Wildlife habitat, for 

example, may be degraded through the loss of wetlands, lakes, and vegetation. However, many species 

eventually recover from this temporary aberration. The degradation of landscape quality, including 

increased soil erosion, may lead to a more permanent loss of biological productivity. [28] 

3.2.3. Social impacts 

Social impacts involve public safety, health, conflicts between water users, reduced quality of life, and 

inequities in the distribution of impacts and disaster relief. Many of the impacts identified as economic and 

environmental have social components as well. Population migration is a significant problem in many 

countries, often stimulated by a greater supply of food and water elsewhere. Migration is usually to urban 

areas within the stressed vicinity, or to regions outside the drought affected area or may even be to 

adjacent countries and usually when the drought has abated, the migrants seldom return home, depriving 

rural areas of valuable human resources. The drought migrants place increasing pressure on the social 

infrastructure of the urban areas, leading to increased poverty and social unrest. [28] 
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3.3. Drought impacts in Africa 

It is common knowledge that land degradation and desertification constitutes major causes of forced 

human migration and environmental refugees, deadly conflicts over the use of dwindling natural resources, 

food insecurity and starvation, destruction of critical habitats and loss of biological diversity, socio-

economic instability and poverty and climatic variability through reduced carbon sequestration potential. 

The impacts of drought and desertification are among the most costly events and processes in Africa. The 

widespread poverty, the fact that a large share of Africa’s economies depend on climate-sensitive sectors 

mainly rain fed agriculture, poor infrastructure, heavy disease burdens, high dependence on and 

unsustainable exploitation of natural resources, and conflicts render the consistent especially vulnerable to 

impacts of drought and desertification. The consequences are mostly borne by the poorest people and the 

Small Island Developing States (SIDS). In the region, women and children in particular, bear the greatest 

burden when land resources are degraded and when drought sets in. As result of the frequent droughts 

and desertification, Africa has continued to witness food insecurity including devastating famines, water 

scarcity, poor health, economic hardship and social and political unrest.[27] 

 

3.3.1. Impact on economic growth and poverty reduction  

The majority fo the population in most African countries live on marginal lands in rural areas practicing 

rain-fed agriculture. The impact of drought and climatic variability in both economic and mortality terms is 

generally larger for relatively simple and predominantly agricultural economies. These types of economies 

dominate Africa. In 2004, the UNCCD estimated that some six million hectares of productive land was being 

lost every year since 1990, due to land degradation. This in turn had caused income losses worldwide of 

US$ 42 billion per year. With two-thirds of arable land expected to be lost in Africa by 2025, land 

degradation currently leads to the loss of an average of more than 3 percent annually of agriculture GDP in 

the Sub-Saharan Africa region. In Ethiopia, GDP loss from reduced agricultural productivity is estimated at $ 

130 million per year. In Uganda land degradation in the dry lands threatens to cause havoc on the country’s 

economy and escalate poverty. This is because these dry lands constitute the Uganda cattle corridor, which 

accounts for over 90 percent of the national cattle herd and livestock production contributes 7.5 percent to 

the GDP and 17 percent to the agricultural GDP. 
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Drought and floods account for 80 percent of loss of life and 70 percent of economic losses linked to 

natural hazards in Sub-Saharan Africa. The drought of 1990/1991 in Zimbabwe resulted in a 45 percent 

drop in agricultural production but also a 62 percent decline in the value of the stock market, a 9 percent 

drop in manufacturing output and a GDP drop of 11 percent. As a proportion of the national economy this 

is a very significant loss and can best be thought of as 2.5 billion dollars of foregone development, for 

example, hospitals and schools not built.  

 

3.3.2. Impact on food security 

The poor households that are affected by drought and desertification do not have adequate resources to 

deal with food shortages leading to food insecurity and hunger that affects millions of people. If land 

degradation continues at the current pace, it is projected that more than a half of cultivated agricultural 

area in Africa could be unusable by the year 2050 and the region may be able to feed just 25 percent of its 

population by 2025. Agriculture being one of the main economic activities in Africa, this would lead to a 

catastrophe with unprecedented repercussions.  

The most severe consequence of drought is famine. Food aid to subcontinent accounts for approximately 

50 percent of the yearly budget of the World Food Aid Programme. The consecutive droughts that have 

occurred in the southern Africa since 2001 have to led serious food shortages. The drought of 2002-03 

resulted in a food deficit of 3.3 million tones, with an estimated 14.4 million people in need of assistance. 

At the height of the Horn of Africa’s drought in 2000, 3.2 million Kenyans were dependent on food aid, and 

malnutrition reached 40 percent of the population, more than 3 times the normal level. In 2005, Concern, 

in partnership with the Diocese of Malindi, Kenya, provided seed and technical support to 2,129 farm 

households who were severely affected by drought. During the same year 2005 many other African 

countries faced food shortages because of the combined effects of severe droughts[29], [30] and 

desertification that could become semi-permanent under climate change. The worst affected countries 

included Ethiopia, Zimbabwe, Malawi, Eritrea and Zambia, a group of countries where at least 15 million 

people would go hungry without aid[31]. The situation in Niger, Djibouti and Sudan also deteriorated 

rapidly. Many of these countries had their worst harvest in more than 10 years and were experiencing their 

third of fourth consecutive severe drought.   
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3.3.3. Impact on water 

Drought influence water availability, which is projected to be one of the greatest constraints to economic 

growth in the future. In Africa, climate change is expected to intensify the continent’s increasingly critical 

water situation. Reduced annual average rainfall and its run-off would worsen desertification in southern 

Africa. This sub-region being one of many water-stressed regions could thus see a further decrease in 

streams flow and the ability of groundwater to ‘recharge’. Furthermore, it is projected that by 2025 

Southern Africa will also join most countries in North Africa that can already be classified as having absolute 

water scarcity today. This means that countries in these regions will not have sufficient water resources to 

maintain their current level of per capita food production from irrigated agriculture – even at high levels of 

irrigation efficiency – and also to meet reasonable water needs for domestic, industrial, and environmental 

purposes. To sustain their needs, water will have to be transferred out of agriculture into other sectors, 

making these countries or regions increasingly dependent on imported food. By the year 2025, it is thus 

estimated that nearly 230 million Africans will be facing water scarcity, and 460 million will live in water-

stressed countries.  

In the Nile region, most scenarios estimate a decrease in river flow up to more than 75 per cent by the 

year 2100. This would have significant impacts on agriculture, as a reduction in the annual flow of the Nile 

above 20 per cent will interrupt normal irrigation. Such a situation could cause conflict because the current 

allocation of water, negotiated during periods of higher flow, would become untenable.  

The situation of women and children who are responsible for fetching water for the households is 

therefore worsened by drought and desertification. These can add hours of labor to an already fully 

charged workday.  
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3.3.4. Impact on biodiversity 

Biodiversity existing in dry lands and other habitats underpin ecosystem services that vital for livelihoods 

of millions of people in Africa. It is the foundation for sustainable development in the region and globally. 

The dry areas of the world are the origin of a large number of globally important cereals and food legumes, 

such as barley, wheat, faba beans and lentils. Four hundred million people, two thirds of sub-Sahara African 

population, rely on forest goods and services for their livelihood. Drought, land degradation and 

desertification have had serious threats to the management, sustainable use and equitable sharing of 

benefits of biodiversity. The projected devastating impacts of climate change in the region including 

exacerbating these factors will escalate biodiversity degradation and loss associated with drought, land 

degradation and desertification. These factors affect biodiversity directly and indirectly. Onsite impacts 

include habitat and species degradation and loss, leading to overall loss of economic and biological 

productivity. For instance on rangelands, overgrazing not only reduces the overall protective soil cover and 

increases soil erosion, but also leads to a long-term change in the composition of the vegetation. Plant 

biodiversity will change over time, unpalatable species will dominate, and total biomass production will be 

reduced. These in turn trigger and contribute to indirect or offsite impacts. Soil erosion will contribute to 

denudation and pollution of wetlands and water bodies. As biological and economic productivity 

deteriorates, communities are forced migrate to other areas or engage in other coping activities that too 

contribute biodiversity degradation.  

According to the Africa Environment Outlook II, approximately half of Africa’s terrestrial eco-regions 

have lost more than 50 per cent of their area to cultivation, degradation or urbanization. It also states that 

some eco-regions such as the Mandara Plateau mosaic, Cross-Niger transition forests, Jos Plateau forest-

grassland mosaic, and Nigerian lowland forests have gone more than more than a 95 percent 

transformation. Nine other eco-regions have lost more than 80 per cent of their habitat, including the 

species-rich lowland Fynbos and Renosterveld and the forest and grasslands of the Ethiopian Highlands; the 

Mediterranean woodlands and forests have lost more than 75 per cent of their original habitat, and the few 

remaining blocks of habitat are highly fragmented.  

In the sand dune areas of countries such as Mauritania, Mali, Niger, Nigeria and Senegal major river 

basins siltation processes accumulate debris and materials that engulf natural vegetation, such as the 

Acacia nilotica riparian forests. Soil erosion contributes to moving the seed capital of the fround, uprooting 

grassy as well as woody species, and in accumulation areas it smothers valuable species.  

In West Africa the movement of people south towards sub-humid to humid tropical areas has resulted 

into loss of primary forests and woodlands, repeated logging of the secondary vegetation, and depletion 

into loss of primary forests and woodlands, repeated logging of the secondary vegetation, and depletion of 
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a number of species. More diffuse degradation of land resources also occurs in the arid and sub-humid 

parts. These include the extraction of tree resources outside forests for charcoal making, and the use of 

high value woods.  

3.3.5. Impact on Energy 

The impacts of drought and desertification on the energy sector are felt primarily through losses in 

hydropower potential for electricity generation and the effects of increased runoff on hydropower 

generation. The gravity of impacts of electricity generation is further demonstrated by the case of Ghana 

where for the first half of 2007, the water level at the Akosombo dam had fallen below the minimum level 

of 240 feet. This led to reduction in hydro-electricity generation and hence load shedding of electricity in 

the whole country. Energy impacts are also experience through changes in the growth rates of trees on 

which a vast majority of the people in the region rely for fuel wood.  

Due to the limited alternatives available to them and low priority accorded to meet their needs in times 

of scarcity, the rural areas and the urban poor bear the greatest cost of decrease in energy resources. This 

undermines efforts to pull these categories of people out of the poverty trap. 
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3.4. Indices for drought monitoring  

On the basis of a set of defined criteria, the measure of the intensity and duration of drought is 

expressed through  a drought index. That integrates into a single number, different parameters like rainfall, 

evapotranspiration, runoff, temperature and some water supply indicators, giving a complete summary for 

decision-making. Actually, each type of drought require different indices that can be used to measure the 

severity and the spatial extents of droughts events, allowing a comparison between different regions [19]. 

It is important to taking into account that for monitoring drought using a combination of monitoring tools 

integrated together is preferable instead to use a single indicator [32].  

3.4.1. Meteorological drought indices 

Meteorological indices measures how much precipitation for a given period of time has deviated from 

historically established norms. Some of the widely used drought indices include Palmer Drought Severity 

Index (PDSI), Crop Moisture Index (CMI), Standardized Precipitation Index (SPI), and Surface Water Supply 

Index (SWSI).  

3.4.1.1. Palmer Drought Severity Index (PDSI) 

Palmer, 1965 developed an index to measure the departure of moisture availability based on the supply 

and demand concept of the water balance equation, taking into account more than just the precipitation 

deficit as specific locations. The objective of the Palmer Drought Severity Index (PDSI) is to provide 

standardized measurements of moisture conditions so that comparison could be made between locations 

and between months. As a meteorological drought index it is responsive to abnormal weather conditions 

either on dry or abnormally wet side but was specifically designed to treat the drought problem in semiarid 

an sub humid climate with cautions that extrapolation beyond these conditions may lead to unrealistic 

results.  

PDSI has been used in west Hungary as soil moisture indicator and also widely utilized in the United 

States for drought monitoring and as a tool to trigger actions associated with drought contingency plans. 

However, several researchers have shown its limitation. The Palmer Drought Severity Index has a time scale 

of about 9 months which does not allow identification of droughts at shorter time scales[33]. Moreover, 

this index has many other shortcomings related to calibration and spatial comparability [34]–[36]. 

Furthermore, it is designed for agriculture thus does not accurately represent the hydrological impact 

resulting from longer droughts[37]. As a solution to these problems, the Standardized Precipitation Index 

(SPI) was developed, an index which can be calculated at different time scales to monitor droughts in the 

different usable water resources[38]. 
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3.4.1.2. Standardized Precipitation Index (SPI) 

The standard precipitation index, developed by Mckee et al. (1993) [38], is the most widely utilized index 

for understanding the magnitude and duration of drought events. The purpose of employing the SPI is to 

assign a single numeric value to the precipitation that can be compared across regions with markedly 

different climates. Technically, it is the number of standard deviations that the observed value would 

deviate from the long-term mean, for a normally distributed random variable. The calculation for any 

location is based on the historical precipitation record that is fitted to a probability distribution, which is 

then transformed into a normal distribution so that mean SPI for the location and desired period is 

zero[39]. 

According to Thavorntam and Mongkolsawat (2006)[40], SPI helps in examining the severity and spatial 

patterns of drought in a given region. Besides, it offers a quick, handy and simple approach with minimal 

data requirements[41]. The index is designed to quantify the impacts of precipitation deficit on 

groundwater, reservoir storage, soil moisture, and stream flow for multiple time scales. Precipitation 

deficits can be effectively quantified for multiple time scales which reflect the impact of drought on the 

availability of the different water resources. Thus, Mckee et al. (1993) [38] originally calculated the SPI for 

3, 6, 12, 14, and 48 months time scales.  

Compared to the Palmers Drought Severity Index (PDSI), SPI is easy to determine and has greater spatial 

consistence therefore a more recommendable drought index. Moreover, it can be used in risk assessment 

analysis and making decisions with special ability for adjustments to time periods for which the users are 

interested, for example, short time periods in life cycle of crops or longer periods regarding water resources 

[33]. According to Mckee et al. (1993) [38], soil moisture conditions respond to precipitation anomalies on 

a relatively short time scale while groundwater, stream flow, and reservoir storage reflect the longer-term 

precipitation anomalies. Normally, drought occurs every time when SPI is negative or its intensity comes to 

-1.0 or lower, while drought stops when SPI is positive. Each drought event, therefore, has a duration 

defined by its beginning and end, and intensity for each month that the event continues. The positive sum 

of the SPI for all the months within a drought event can be termed the drought’s “magnitude”. 

 

SPI Values Drought Category 

0 to -0.99 Mild drought 

 -1.00 to -1.49 Moderate drought 

1.50 to -1.99 Severe drought 

≤ -2.00 Extreme drought  

Table 3. Drought intensity categories defined for values of SPI[38] 
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3.4.1.3. Crop Moisture Index (CMI) 

The Crop Moisture Index (CMI) is based on weekly mean temperature and precipitation which was 

specifically designed as an agricultural drought index[42]. It depends on the drought severity at the 

beginning of the week and the evapotranspiration, soil deficit or soil moisture recharge during the week 

[43]. The index measures both evapotranspiration deficits (drought) and excessive wetness (more than 

enough precipitation to meet evapotranspiration demand and recharge the soil). Designed to monitor 

short-term moisture conditions affecting a developing crop, it is not a good long-term drought monitoring 

tool. The CMI’s rapid response to changing short-term conditions may provide misleading information 

about long-term conditions. Nemani et al. (1992) [44] used CMI for estimating surface moisture status, 

because it depicts changes in soil moisture situation more rapidly than PDSI. It was found that CMI indicates 

more favorable moisture conditions over a particularly wet or dry month even in the middle of a serious 

long-term wet or dry period.  

3.4.1.4. Standardized Water Supply Index (SWSI) 

Shafer and Dezman (1982)[45] developed the Surface Water Supply Index (SWSI) to complement the 

Palmer Index for moisture conditions across the state of Colorado. This index, computed with only 

snowpack, precipitation, and reservoir storage in the winter, compliments the Palmer index for moisture 

condition and is dependent on the season. During the summer months, stream flow replaces snowpack as a 

component within the SWSI equation. SWSI has been used along with PDSI, to trigger the activation and 

deactivation of the Colorado drought plan. However, although is easy to calculate yet it has the limitation 

that values between basins or a region is difficult to compare[46]. 
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3.4.2. Satellite based drought indices for drought characterization 

The use of point measurement using station to calculate drought indices, that is normally implemented, 

could not reflect spatial details particularly where station density is poor. Reed et al. (2002)[47] showed 

how the lack of spatial detail could be the major disadvantage of station based drought indicators, affecting 

reliability of the drought index. In consequence at present, some drought indices have been calculated 

using remote sensing. Furthermore, vegetation based drought indices have been developed and widely 

utilized to address drought related investigations.    

 

3.4.2.1. Normalized Difference Vegetation Index (NDVI) 

Tucker first suggested NDVI in 1979 as an index of vegetation health and density[48] and it has benn 

considered as the most important index for mapping of agricultural drought[49]. 

In satellite image, vegetation appears very different at different light spectrum particularly in the visible 

and near infrared wavelengths. Healthy or dense vegetation absorbs most of the visible light and reflects a 

large portion of the near infrared light whereas the unhealthy or sparse vegetation reflects more visible 

light and less near infrared light. Comparing these two, visible and near infrared light, scientists measure 

the relative amount of vegetation and its vigor using a vegetation index. NDVI is an index of vegetation 

health and density computed from the satellite image using spectral radiance in red and near infrared 

reflectance using the following formula: ���� = 	 (�	
�
)(�	

), where NIR and R refer to the near infrared and 

the red band reflectance respectively.  

NDVI is a powerful indicator to monitor the vegetation cover of wide areas, and to detect the frequent 

occurrence and persistence of droughts[40]. The index provides a measure of the amount and vigor of 

vegetation at the land surface where the magnitude of NDVI is related to the level of photosynthetic 

activity in the observed vegetation. In general, higher values indicate greater vigor and amount of 

vegetation.  

Since climate is one of the most important factors affecting vegetation conditions, AVHRR-NDVI data 

have been used to evaluate climatic and environmental changes at regional and global scales[50]–[52]. 

NDVI is a good indicator of green biomass, leaf area index and patterns of production [22]. Furthermore, it 

can be used not only for accurate description of continental land cover, vegetation classification and 

vegetation vigor but is also effective for monitoring rainfall and drought, estimating net primary production 

of vegetation, crop growth conditions and crop yields, detecting weather impacts and other events 

important for agriculture, ecology and economic [51]. NDVI has been used successfully to identify stressed 
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and damaged crops and pastures but only in homogeneous terrain. In more heterogeneous terrain regions 

their interpretation becomes more difficult [51], [53]. Many studies have been done in some areas in the 

world indicating meaningful direct relationships between NDVI derived from NOAA AVHRR satellites, 

rainfall and vegetation cover and biomass.  

 

3.4.2.2. Vegetation Condition Index (VCI) 

The vegetation condition index is an indicator of the status of the vegetation cover, first suggested b 

Kogan (1997)[54] as a function of the NDVI minimum and maxima encountered for a given ecosystem over 

many years. The index is defined as: ���� = ���	�����	������	�������	��� �100 where, NDVImin and NDVIMAX are 

calculated from long-term record for a particular month and j is the index of the current month. It shows 

how close the NDVI of the current month is to the minimum NDVI calculated from the long-term record. 

The condition of the ground vegetation presented by VCI is measured in percent and values between 50% 

and 100% indicate optimal or above normal conditions whereas VCI values close to zero percent reflect and 

extreme dry month. 

VCI has been used by Kogan and Unganani, 1998[55] for estimation of corn yield in South Africa, drought 

detection in Argentina[56]; drought monitoring over India[57]; monitoring droughts in the southern Great 

Plains, USA[58]; drought detection and monitoring in the Mediterranean region[53] and drought 

assessment and monitoring in Southwest Asia[48]. These studies suggest that VCI captures rainfall 

dynamics better than NDVI particularly in geographically non-homogeneous areas. Also, VCI values indicate 

how much the vegetation has advanced or deteriorated in response to weather. It was concluded from the 

above studies that VCI has provided and assessment of spatial characteristics of drought, as well as its 

duration and severity and were in good agreement with precipitation patterns.  

 

3.4.2.3. Temperature Condition Index (TCI) 

TCI was also suggested by Kogan (1997) [54], [22]. It was developed to reflect vegetation response to 

temperature i.e. the higher the temperature is the more extreme drought. TCI is based on brightness 

temperature and represents the deviation of the current month’s value from the recorded maximum. TCI is 

defined as: ���� = �������������������� �100 where, BT is the brightness temperature BTmax and BTmin are maximum 

and minimum BT values calculated from the long-term record of remote sensing imafes for a particular 

period j.  
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TCI has been used for drought monitoring in the USA, China, Zimbabwe and the Former Soviet Union. A 

study in Argentina for drought detection revealed that the index is useful to assess the spatial 

characteristics, duration and severity of droughts, and were in good agreement with precipitation 

patterns[56]. 

3.4.3. Water Requirement Satisfaction Index (WRSI) 

WRSI is a geospatial model that was developed by the Food and Agricultural Organization (FAO) for use 

with satellite data to monitor water supply and demand for rainfed crop throughout the growing 

season[59]. It is also a crop performance index based on the availability of water in the soil.  

For example in Ethiopia, crop yields are to a large extent predicted by the amount of available water 

compared to water requirement Taking this into account a new software environment for drought 

indexing, namely Livelihood Early Assessment and Protection (LEAP) was designed specifically for the 

Ethiopian context commissioned by the World Food Program (WFP) in 2006[60]. One of the goals of LEAP is 

to serve as a platform for calculation of weather based indices starting out woth the calculation ofa crop 

water balance indicator, WRSI. In addition, it uses relevant soil information from DAO digital soil map and 

topographical parameters derived from the GTOPO30 digital elevation model (DEM)[61]. 

The performance of the crop during the growing season is one of the indicators of agricultural drought. 

Currently, crop moisture stress on grain crop can be monitored using satellite based crop performance 

index, WRSI[62]. This index indicates the extent to which the water requirement of the crop has been 

satisfied in the growing season[60]. WRSI can be related to crop production using a linear yield reduction 

function to a crop and the reduction of crop yield due to water deficit is simulated from it. WRSI is currently 

operational as monitoring and forecasting tool for region wide food security analyses in drought prone 

countries in Sub-Saharan Africa. Furthermore, Senay and Verdin[63] evaluated the performance of the 

model using district level crop yield data from Ethiopia. Historical yield data from 1996-1999 were used to 

evaluate the performance of a seasonal WRSI for sorghum. The reported district yield data were 

significantly correlated (r=0.77) to the WRSI values and the model particularly found successful in capturing 

the response of the crop during a relatively dry year.  
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3.5. Experiences on monitoring drought conditions in Africa 

Important in the efforts to manage impacts of drought and to tackle desertification are effective systems 

for understanding, monitoring and forecasting drought and land degradation as well as mechanisms for 

identifying and prioritizing appropriate responses, and evaluating the impact of the interventions. 

In terms of monitoring interventions to combat drought, a good practice in establishing Desertification 

Information System (DIS) for National Action Programme (NAP) implementation is demonstrated by case of 

Tunisia. Generally however, the progress in setting up of similar systems in other countries of the region 

has been slow and variable depending on country specificities. This slow progress and indeed lack of DIS is 

witnessed even among some countries that have adopted their NAPs. Countries attribute this to limitations 

of human and financial resources.  

Tunisia has established a monitoring and evaluation system for steering the NAP. It aims to assess the 

impact of investments made in fighting desertification and to enable the compilation of management chart 

for national policy-makers at different levels. In addition, a desertification information pooling system (DIS) 

has been set up to provide crucial information for national planning, helping ensure sustainable 

development by helping decision-makers to make appropriate choices. The DIS consists of the 

desertification issue chart at national level, which shows the quantities and qualities of the various natural 

resources, the causes of desertification in each region and monitoring indicators pertaining to the 

resources.  

Drought monitoring and early warning systems and programs are being developed and made 

operational.  

Regional Climate Outlook Forums are convened annually by the World Meteorological Organization 

(WMO) in the Greater Horn of Africa, in South Africa and in West Africa, to elaborate and ensure 

appropriate dissemination of consensual regional outlooks, bulletins and products about the next rainy 

season. These outlooks are directed towards the needs of users from agriculture, health, water 

management and energy, based upon their input and feedback.  

Climate for Development in Africa (ClimDev Africa) Programme is being developed under the auspices of 

Global Climate Observing System (GCOS) in collaboration with ECA. The purpose of the three-phase 

programme is to guide the effective integration of climate information and services into development 

planning for Africa and to ensure the mainstreaming of climate considerations in achievement of the 

Millennium Development Goals. Outcomes of the programme will be achieved under the following main 

results areas: policy (awareness, accountability and advocacy); climate Risk management; climate services 
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including National Meteorological and Hydrological Services (NMHSs) and other climate service; and 

observations, data management, and infrastructure.  

To support drought monitoring, WMO and the United Nations Development Programme (UNDP) have 

provided support in the establishment of IGAD Climate Prediction and Applications Centre (ICPAC) in 

Nairobi as a specialized institution of the Intergovernmental Authority on Development (IGAD). The 

participating countries are Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Somalia, Sudan, Uganda and 

United Republic of Tanzania. Another centre is established in Harare, Zimbabwe. These centres are charged 

with timely monitoring of drought intensity, geographical extent, duration and impact on agricultural 

production, and issuing early warnings. The African Centre of Meteorological Applications for Development 

(ACMAD) is also in place and provides similar services. ICPAC has linked its drought and conflict monitoring 

activities into the Conflict Early Warning and Response Mechanism (CEWARN) whose drought-monitoring 

centre reports on drought and forage conditions and makes food projections. This is enhancing ICPAC 

capacity to monitor pastoral conflicts and provide to member states timely information on specific events 

and their causes, thus helping countries to prevent escalation of such conflicts.  

The World Hydrological Cycle Observing Systems (WHICOS) contributes towards an easily accessible 

source of hydrological information that provides the basic building blocks for sustainable development 

through water resources assessment and planning, ecosystem and water quality monitoring, flood 

forecasting and drought monitoring and prediction. In this regard, WMO is also providing advisory services 

to the countries in their efforts to reorganize and strengthen the national hydrological services for Volta, 

Niger and later Senegal Basins.  

Few early warning systems have been established at country level. Zambia has an Early Warning System 

that has assisted the country to intervene and take necessary measures where drought has occurred. 

However, even though there has been regular collection of rainfall data and regular forecasting there has 

been little utilization of this information by most of decision makers because the information appears 

complex.[27] 
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4. DATA AND METHODOLOGY 

In the ITHACA drought Early Warning System (EWS) vegetation monitoring procedures are based on 

phenological parameters that describe the dynamics of the different types of vegetation over time. The 

continuous monitoring of these parameters allows to identify the condition of vegetation and the duration 

of growing season. In order to correctly integrate SPI based precipitation monitoring procedures in the 

ITHACA system, a preliminary investigation of existing relationships between the vegetation and 

precipitation dynamics was necessary. For this aim, in this study, the statistical correlation between time-

series of vegetation phenological parameters and fortnightly cumulated precipitation using different 

cumulating periods (namely, 1, 3, 6 and 9 months) has been analysed. The description of the 

methodologies and base data adopted in order to carry out this goal are the object of this chapter. 

For the purposes of this study, after a preliminary analysis of vegetation dynamics, the behavior of the 

precipitation cumulated in different periods of time has been studied and rainy seasons that have a 

considerable impacts on the development of the vegetation have been identified. The selected periods of 

time were defined taking into consideration the outcomes of previous research studies [38]. In particular, 

for this study, the periods corresponding to 1, 3, 6 and 9 months were selected. Furthermore, for each of 

these periods, a SPI dataset has been calculated using the whole available precipitation time-series (1998-

2013) in order to identify historical meteorological drought events and to define effective near real-time 

precipitation monitoring procedures to be used in the current ITHACA drought EWS.  
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4.1. Vegetation Monitoring and ITHACA drought Early Warning 

System (EWS) 

ITHACA developed a system for the early detection and monitoring of vegetation stress and agricultural 

drought events on a global scale. The system mainly relies on satellite derived data.  

The system is based on the near real-time monitoring of a selection metric derived from vegetation index 

time-series that allows the early detection of vegetation stress conditions and the assessment of vegetation 

productivity and its projection at the end of the observed growing season [64].  

The final aim of the system is the timely detection of critical conditions in vegetation health and 

productivity, during a vegetative growing season and at its end. By consequence the system can pinpoint 

agricultural areas with increased crop or pasture failure thus enabling end-users to better plan the 

interventions. Moreover, a simplified vulnerability model, applied to the hazard data, yields the food 

security conditions for the affected areas. The model includes agricultural indicators and socio-economic 

factors linked to people’s strategy to supply the food they need. 

Currently, the development of a webGIS service suitable for the visualization and distribution of final 

monitoring products (near real-time and historical maps) is ongoing. 

4.1.1. Data input and Methodology  

The maps about vegetation conditions, produced fortnightly by the system, derive from the near real-

time analysis of parameters related to vegetation phenology. Vegetation phenology concerns the study of 

periodic vegetative events, such as the annual cycles of green-up, or growth, and senescence. In particular, 

developed Vegetation monitoring procedures are based on extracting and elaborating, for each considered 

vegetation growing season (see Figure 6), a set of phenological parameters from the yearly Normalized 

Difference Vegetation Index (NDVI) function (the regular curve depicted in Figure 6) that best fits the 

original yearly NDVI time-series (the irregular curve depicted in Figure 6) using, as a base data MODIS 

datasets. This data is provided every 16 days projected on a 0.05 degree (5600-meter) geographic Climate 

Modelling Grid (CMG). Considering the availability of the input vegetation data the Drought EWS is updated 

every fortnight during the solar year. 
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Figure 6. Diagram of NDVI/time and derived phenological parameters (A-H) for a vegetation growing season. 

Starting from the yearly NDVI function (see Figure 6), the following phenological parameters can be 

extracted and used in order to describe the current vegetation growing season:  

1. the time for the start of the season (SoS) [A]: time for which the left edge of the NDVI fitted 

function has increased to a user defined level  measured from the left minimum level; 

2. the time for the end of the season (EoS) [B]: time for which the right edge has decreased to a user 

defined level measured from the right minimum level; 

3. the length of the season (Len)[G]: time from the start to the end of the season; 

4. the base level (Base): given as the average of the left and right minimum values; 

5. the time for the mid of the season (MID): computed as the mean value of the time for which, 

respectively, the left edge has increased to the 80 % level [C] and the right edge has decreased to 

the 80 % level [D]. 

6. the largest data value (Larg)[E] for the fitted NDVI function during the season; 

7. the seasonal amplitude (Amp)[F]: difference between the maximal value and the base level; 

8. the rate of increase at the beginning of the season (Incr): calculated as the ratio between the values 

evaluated at the season start and at the left 80% level [C] divided by the corresponding time 

difference; 

9. the rate of decrease at the end of the season (Decr): calculated as the ratio between the values 

evaluated at the season end and at the right 80% level [D] divided by the corresponding time 

difference; 

10. the small seasonal integral (SmI)[H]: integral of the difference between the function describing the 

season and the base level from season start to season end. This is the integral over the growing 

season giving the area between the fitted function and the average of the left and right minimum 

values.  
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Monitoring procedures proposed in the ITHACA drought EWS are currently based on the Start of The 

Season (SoS) and the Small Seasonal Integral (SmI). For the purposes of this study, instead all the presented  

parameters have been taken into consideration and calculated for the whole Africa for all the seasons 

contained in the years 2000-2013. The same calculation can be performed globally. 

The basic idea behind the system developed by ITHACA is that phenological parameters for a given 

growing season, are related to the seasonal vegetation productivity. The parameters take into account both 

agricultural production and available biomass in pastoral areas. Therefore, comparing phenological values 

with the average values and the minimum and maximum ones computed using the whole time-series (2000 

to present) of NDVI data, helps to better explain and understand the performances of the considered 

vegetative season (in case of historical analyses). In case of near real-time monitoring, the analysis provides 

an estimation of a season expected productivity. 

The simple Deviation (D) and Percent Deviation (PD) from the average value are the proposed metrics to 

quantify the deviation of the examined vegetation season conditions from the historical normal behavior: 

� = � − !"    [1] 

#� = (� − !")/!" ∙ 100 [2] 

where μx is the historical average value of the considered phenological parameter, estimated using the 

whole available time-series. 

Mapping the distribution of the deviation indexes [1] and [2] allows to identify areas of reduced 

vegetation productivity. This base information, evaluated continuously on a fortnightly basis and completed 

by ancillary data, such as the distribution of cultivated areas and the type of prevailing cultivation, helps to 

early detect critical conditions in agricultural productivity for a specific vegetative season in order to predict 

future crop failures and food crises. 

Two outputs are produced in the framework of the ITHACA vegetation monitoring system, (i) monitoring 

products generated on a fortnightly basis in near real-time showing the distribution of deviation indexes for 

the Start of the Season and the Seasonal Small Integral parameters for the current growing season, (ii)  

historical maps showing the distribution of the same deviation indexes for all the identified vegetation 

growing seasons from 2000 to present (2 seasons/year, that is 2 maps/year).  
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The Seasonal Small Integral PD imagery describes vegetation condition for the main and secondary 

growing seasons for the years 2000 to present (two images per year) using the SmI parameter extracted 

from MODIS NDVI time-series. Figure 7 shows, for instance, the distribution of the PDs (see equation [2]) 

for the selected phenological parameter, estimated on a pixel basis (0.05 degrees). In addition, in order to 

provide a more effective display of the most affected areas, raw results are also aggregated at the second 

level administrative boundary (Figure 8), according to a higher frequency distribution rule. As an example, 

in the maps reported in in Figure 7 and in Figure 8, areas where the Seasonal Small Integral parameter for 

the examined vegetation season has a negative deviation from the average value are shown using light 

orange to red colors.  

It should be noted that the considered growing seasons, for the different areas of the world, refer to 

different months in the year, according to the specific agro-climatic zoning. For areas with two different 

seasons in their vegetation/crop calendar, mapped Small Integral PDs for main and secondary seasons refer 

respectively to the first and second season encountered from the start of the considered year; for the areas 

where a unique growing season is detected, only the first season is mapped (i.e. in the second season 

image these areas are indicated as areas where no growing season has been detected during the analyses). 

Besides, in the output imagery, barren areas, urban and built-up areas, evergreen/deciduous needle 

leaf/broadleaf forest areas, swamp vegetation, water bodies, and, in general, areas where no growing 

season has been detected during the analyses, are excluded from the analyses and given a specific fill 

value. 

Moreover, raw imagery (0.05 degrees) showing the distribution of the original Seasonal Small Integer 

parameter (Raw Seasonal Small Integral imagery) for examined areas for the main and secondary growing 

seasons (for 2000 to present; 2 images per year) are also produced in order to allow direct vegetation 

productivity comparisons between two or more growing seasons specifically selected by end-users. 
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Figure 7. Pixel based output of the Percent Deviations (PDs) of the phenological parameter Season Small Integral for 

the 2011 growing season for the Sahel area. 

 

Figure 8. Aggregated on the second level administrative boundary output of the Percent Deviations (PDs) of the 

phenological parameter Seasonal Small Integral for the 2011 growing season for the Sahel area. 



36 

 

 

 

The Start of the Season shifts D imagery shows the shifts in the Start of the Season dates for the main 

and secondary growing seasons for the years 2000 to present (two images per year) estimated using MODIS 

NDVI time-series. Images show the distribution of the deviations D (see eq. [1]) for the selected 

phenological parameter, estimated on a pixel basis (0.05 degrees). In addition, the results are aggregated at 

a second level administrative boundaries (Figure 9) according to a higher frequency distribution rule. As an 

example the map in Errore. L'origine riferimento non è stata trovata., displays areas where the Start of the 

Season date for the considered vegetation season exhibits a delay with respect to the average value shown 

in light violet to violet. It should be noted that the Start of the Season dates for the growing seasons, 

estimated using the proposed procedures, are based only on satellite-derived base data, and therefore they 

may differ from official dates reported in crop calendars.  

 

Figure 9. Map showing the Deviations (D) of the phenological parameter Start of the Season date for the 2009 growing 

season for the Niger and Chad areas; output aggregated on the second level administrative boundary. 
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4.1.2. Derived Products  

Value-added products/information that can be derived from the above mentioned base datasets are the 

following: 

• direct vegetation productivity comparisons, based on raw Seasonal Small Integral imagery, 

between two or more growing seasons specifically selected. Besides, the Condition Index (CI), 

which provides a measure of the proximity of the considered value, or an examined year, of the 

selected parameter to the minimum (CI=0) and maximum (CI=1) ones, can be estimated using 

raw Seasonal Small integral imagery. The CI is expressed as:  

�� = "�&'(�&)"��&'(� ∗ 100	 [3]	
where  

x is the value of the phenological parameter for the examined growing season; minx and maxx 

are the minimum and maximum values of the parameter considered, extracted from the whole 

available historical time-series (2000 to present). 

• drought historical products, that is the investigation of the historical occurrence of vegetation 

stress events in a region through the aggregation of the Seasonal Small Integral Percent 

Deviation values for selected years. This analysis allows the identification of the areas showing 

the greatest number of negative vegetation productivity deviations in subsequent growing 

seasons. For instance, areas most affected by poor vegetation growth in the selected time 

interval could be considered more vulnerable in case of future drought events (Figure 10). This 

dataset allows drought hazard identification, which is a required step in drought risk assessment 

and identification. Refinement though is possible by coupling historical vegetation productivity 

information with ancillary data, such as the distribution of cultivated areas and the type of 

prevailing cultivation, or the livelihood zones distribution. 
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Figure 10. Map showing the number of negative vegetation productivity deviations between 2006 and 2010 in the 

Sahel area. 
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4.1.3. Drought vulnerability 

Vulnerability is considered as the entirety of factors that exacerbate of mitigate the possible effects of 

hazard hitting a populated area. Measuring the effects of a disaster implies firstly the identification and 

definition of what those effects are. As Peduzzi et al.[65] stated in 2009, casualties normally. Previous 

studies ([66], [65]) had pointed out that the estimation of affected people is highly complex and inaccurate 

to some extent compared to that of other natural disasters. In fact, drought-related mortality is caused by 

impacts on livelihoods, which contributes to reduce food intake, exacerbate migration, and creation of 

water and sanitation problems, leading to deterioration of health conditions, augmenting diseases, and 

eventually death [67]. However official national statistics of drought affected population are often 

unavailable or based on different assumptions, which causes data to be barely comparable.  

The food security condition of any households or individuals, here considered as the ultimate drought 

effect, is the outcome of the interaction of a broad range of agro-environmental, socio-economic and 

biological factors [68]. The concept of food security, as it is widely accepted, rests on three pillars: 

availability, access, and utilization of food. In the frame of this study only the availability of and the access 

to food were taken into consideration, the first analyzed with indicators for crop production anomalies and 

the second modeled considering physical accessibility to markets.  

Two different raster layers (i.e. an agricultural vulnerability layer and a risk surface one) serve as basis of 

the vulnerability model  which is applied to the drought hazard layer resulting from the vegetation 

monitoring. Details of agricultural vulnerability, risk surface and final alerts are provided in the following 

paragraphs. 

 

4.1.3.1. Agricultural vulnerability 

The Agricultural Vulnerability layer is built by considering three indicators: (i) the soil suitability for crop 

production (FAO Global Agro-Ecological Zones database), (ii) the percentage of irrigated area (FAO Global 

Map of Irrigation Areas dataset) and (iii) the Crops Diversity Index (modified after Julich, 2006; based on 

FAO CountrySTAT administrative level 1 production database). The above mentioned indicators are 

combined in order to take into account, respectively: (i) the agricultural potential of soils themselves; (ii) 

the presence of irrigation facilities which is subjected to augment the agricultural potential; (iii) the 

diversification of cultivated crops, which is supposed to play an important role in the degree of vulnerability 

of a cropland area.  

 



40 

 

 

 

4.1.3.2. Risk surfaces 

Specific risk units, shaped on the basis of people’s strategy to sell and buy staple foods, were defined. In 

this way the hazard that hits a particular area is subdivided into homogeneous units in which the potential 

impacts could occur. The risk surfaces here presented (see Figure 11left) were created by considering an 

accessibility term and a gravity model integrated with market flows. The first accounts for both physical 

distance and travel times to identified food source locations (i.e. markets). The second models the people 

attraction exerted by the different market categories and their interconnections. 

• Accessibility: it refers to the distance to a location of interest and the ease with which this 

location can be reached [70]. In this work it assumes a value inferring the probability, for people 

living in a determined area, to be able to displace for selling and buying commodities at a specific 

location. A considered country is subdivided into market catchment areas calculated on the basis 

of the easiness to access important markets, identified through a market survey. The accessibility 

is intended as a “friction surface” that takes into account distance and travel times to markets, 

considered equally important at this stage. Travel times are calculated as suggested by Pozzi & 

Robinson, 2008 [71]. 

• Gravity model: market areas own an economic sense that does not correspond to other more 

commonly used territorial or administrative divisions. The theories of delineation of trade areas, 

though not conceived for the purpose of market analysis in developing countries, are considered 

promising in the context of this work. 

According to literature, the attractiveness of market center is essentially measured using two variables: 

center population (i.e. the mass term), which exerts a positive attraction over consumers, and distance (i.e. 

the friction term), which discourage consumers from moving [72], [73]. Huff (1962) improved the spatial-

interaction model by introducing a probabilistic approach for the definition of trade areas; i.e. each trade 

center has a certain probability of being patronized. To determine the probability of a consumer in i visiting 

a particular store in j (Pij), Huff postulates that this probability equals the ratio of the utility of the 

considered store (Uij) to the sum of utilities of all the stores in the analyzed area (Uik): 
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where  Pij = probability of consumer at i visiting store j; k = is the set of competing stores in the region; 

Uij = utility of store j for individual at i; Sj = size of outlet j; Dij = Euclidean distance between consumer at i 

and store j. 

In order to adapt Huff’s law to the present study several adjustments were made: 

- the size of the store (S) was substituted with an importance factor related to the type of market 

(wholesale, assembly and retail); 

- the Euclidean distance (D) was replaced by the distance calculated with the accessibility model in 

order to take into account physical hindrances and therefore rather realistic travel times.  

The modified Huff gravity model has been implemented in a GIS environment to obtain a raster 

containing: (i) the maximum probability value for each pixel and (ii) an identifier of the specific market to 

which this maximum value belongs.  

The gravity model output was then integrated with data related to known flows of staple food from a 

market to another. In fact it has been proven that, especially in developing countries, traditional production 

surplus areas supply those areas that cannot satisfy their population food needs with local production, this 

occurring even during average production years. The market flow analysis (available only for few countries) 

is used in the present study in order to distribute the alerts that relapse on traditionally food surplus areas 

over the areas that are normally supplied by the latter. In the same way, when food deficit areas are 

alerted, the surplus areas where the food comes from are screened and if none or minimal alert is found, 

then the deficit area alerts are diminished.  

4.1.3.3. Final alerts 

The output of the drought EWS, hereafter called final alert, (see Figure 11right), furnishes a value linked 

to the food security conditions of a determined area. 

For the near real-time production of the final alerts, the hazard layer produced during the fortnightly 

monitoring activities is firstly superimposed and weighted with the Agricultural Vulnerability layer. The 

hazard raster is clipped with the crop areas in order to consider only the alerts that are meaningful because 

impacting a valuable land; then each retained hazard pixel is multiplied by the Agricultural Vulnerability 

value. The resulting map is expressed in the same units as the hazard. The ratio of the number of alerted 

pixels to the total number of crop pixels is then calculated per each risk surface unit; where this ratio 
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surpasses a threshold value of 20% the corresponding risk surface unit is alerted. The alert value that is 

associated with each risk surface unit is the mean value of the alerted pixel multiplied by the previously 

calculated ratio, giving an account for the relevance of the considered anomalies on the basis of the portion 

of the impacted cropland. 

 

 

Figure 11. On the left: agricultural vulnerability and risk surfaces calculated for Niger, on the right: final alert 

calculated for 2009 season in Niger and distributed over the risk surfaces. 
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4.2. Precipitation monitoring for drought Early Warning purposes 

In  the hydrologic cycle, precipitation is fundamental linking the atmosphere with land surface  

processes. In addition, this variable has the most important role in the terrestrial climate system. Precise 

measurements of precipitation on a variety of space and time scales are important not  only to weather 

forecasters and climate scientists, but also to a wide range of decision makers, including hydrologists, 

agriculturalists, and industrialists[75]. Extreme values of precipitation can cause impact to life and 

environment generating floods and droughts.[76]. 

Therefore, in order to improve the effectiveness of the ITHACA Drought EWS, the inclusion of proper 

precipitation monitoring procedures has been planned. Taking into account the nature of this system, 

which provide a global coverage drought monitoring, the Tropical Rainfall Measuring Mission (TRMM) 

rainfall estimation dataset was selected. TRMM data is generated from remotely sensed sources in almost 

real-time and it is free-of-charge. 

4.2.1. Data 

The Tropical Rainfall Measuring Mission (TRMM) is a joint USA-Japan satellite mission to monitor tropical 

and subtropical precipitation[77]. The mission includes 5 instruments, but just 2 are normally used for 

precipitation measurement purpose: TRMM Microwave Imager (TMI) and Precipitation Radar (PR)[78]. The 

TRMM Multi-satellite Precipitation Analysis (TMPA) provides a calibration-based sequential scheme for 

combining precipitation estimates from multiple satellites, as well as gauge analyses, where feasible, at fine 

scales (0.25° x 0.25° and 3 hourly). TMPA  is available in two formats; based on calibration by the TRMM 

combined instrument that is available with two months of delay and TRMM microwave imager precipitation 

products that is available in almost real time. Both datasets cover the latitude band 50° N-S for the period 

from 1998 to present[79]. TMPA 3B43 monthly precipitation averages and TMPA 3B42 daily and sub-

daily(3h) averages are probably the most relevant TRMM-related products for climate research[78].  

Considering the different types of drought impacts, as already discussed in chapter 2 (See Figure 4), it is 

necessary to study the rainfall and its scarcity considering different observation time intervals, in order to 

identify a possible drought event and completely describe its behavior. Particularly, in the case of an 

agricultural drought event is appropriate to choice monthly, three-monthly, six-monthly and nine-monthly 

cumulative. In the Figure 12, there is an example of different cumulative rainfall maps obtained for a 

selected date and considering different accumulation time intervals preceding this date.  
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Figure 12. TRMM Cumulative Rainfall 16 January 2011. a) 1Month, b) 3Months, c)6Months, d)9Months 
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4.2.2. Standardized Precipitation Index  

For the purposes of the ITHACA drought EWS, the monitoring of rainfall conditions using the 

Standardized Precipitation Index (SPI) has been proposed, and required a procedures for its calculation 

starting from TRMM data have been implemented.. 

 The SPI provides a measure of the rarity of observed rainfall for a given location and accumulation 

period from usual conditions.  

Usually, a drought event is defined as a period in which the SPI is continuously negative and where the 

SPI reaches a value of -1.0 or less. SPI values are usually classified in ranges with values between -1.0 and 

1.0 defined as near-normal conditions. Values between -1.0 and -1.50 are moderately dry, values from -

1.50 to -2.0 are severely dry, and any value less than -2 is extremely dry. At the other end, values between 

1.0 and 1.50 are moderately wet, 1.50 to 2.0 values are very wet, and values greater than 2 are extremely 

wet conditions.   

In this study the SPI for different cumulative periods of rainfall was calculated, as discussed in 4.2.1. A 

python script has been developed in order to calculate on a pixel basis the SPI fitting a gamma probability 

density function to a given frequency distribution of precipitation totals.  

In the drought monitoring frame, the SPI is commonly used in order to identify drought events with large 

impacts on human lives and the environment. As an example, using the implemented procedures for SPI 

calculation, the severe drought event located between southern Somalia, southern ETHIOPIA, eastern 

Kenya and north-eastern Tanzania has been identified. This area was located considering the failure of the 

2 subsequent rainy seasons (October-December 2010 and March-May 2011) (see Figure 13, Figure 14, and 

Figure 15), which was revealed in severe anomalies in SPI values, implying a significant drought impact on 

vegetation, including crops[80]. 
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Figure 13. Evolution of the SPI for 1-month TRMM rainfall accumulations (SPI01) 
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Figure 14. Evolution of the SPI for 3-months TRMM rainfall accumulations (SPI03). 
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Figure 15. Evolution of the SPI for 6-months TRMM rainfall accumulations (SPI06) 
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4.3. Climate and rainfall analysis  

In this chapter the methodology adopted in order to carry out the study of climatology and land cover 

distribution for the African continent is described. The aim of this study was  to preliminary identify 

possible areas where the correlation between rainfall and vegetation is affected by the climate.  

4.3.1. Additional data used 

To describe the Africa climate  and land cover, two database with the same resolution and spatial 

coverage were used.  

4.3.1.1. Climate Classification  

Climate is a complex, abstract concept involving data on all aspects of Earth’s environment. The climate 

of an area is the combination of the environmental conditions that have prevailed there over a long period 

of time. This synthesis involves both averages of the climatic elements and measurements of variability.  

Climate classification  is the formalization of systems that recognize, clarify and simplify climatic 

similarities and differences between geographic areas in order to enhance the scientific understanding of 

climates. Such classification schemes rely on efforts that sort and group vast amounts of environmental 

data to uncover patterns between interacting climatic processes.  

With the aim to analyze the climate conditions impacts in the correlation between the vegetation and 

rainfall in the area of study, it was decided to study the Köppen-Geiser Climate Classification map. This is 

the most frequently used climate classification system, it was presented in the first time by Wladimir 

Köppen in 1900 and was updated by Rudolf Geiger in 1961. Recently, a new version world map of Köppen-

Geiger classification was published by Kottek et al. (2006) [81]. Furthermore, an updated of this product 

that shows the shift of climate zones in the past, present and future were presented[82].  

To generate the latest version of the classification maps and the shift of climate zones in the past, two 

global datasets of climate observations were selected. Both are available on a regular 0.5 degree 

latitude/longitude grid with monthly temporal resolution. The first dataset is provided by the Climatic 

Research Unit (CRU) of the University of East Anglia[83] and delivers grids of monthly climate observations 

from meteorological stations comprising nine climate variables from which only temperature is used in this 

study. This dataset, referred to as CRU TS 2.1, covers the global land areas excluding Antarctica. The second 

dataset, provided by the Global Precipitation Climatology Centre (GPCC) located at the German Weather 
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Service, is the so called GPCC’s Full Data Reanalysis Version 4 for 1901-2007[84]. This recently updated 

gridded precipitation dataset covers the global land areas excluding Greenland and Antarctica.  

The classification mainly consist of 3 letters that are related with precipitation or temperature. The first 

letter represented the main climate.  The second one refers to a subsequent precipitation conditions (see 

Table 4). There is a particular case, the polar climate (E) without precipitation differentiations. The key to 

calculate this letters implies that the polar climates (E) have to be determined first, followed by the arid 

climates (B) and subsequent differentiations into the equatorial climates (A) and the warm temperature 

and snow climates (C) and (D), respectively. [81] 

The annual mean near-surface (2m) temperature is denoted by Tann and the monthly mean temperatures 

of the warmest and coldest months by Tmax and Tmin  respectively.  Pann is the accumulated annual 

precipitation and Pmin is the precipitation of the driest month. Additionally Psmin , Psmax, Pwmin and Pwmax are 

defined as the lowest and highest monthly precipitation values for the summer and winter half-years on 

the hemisphere considered. [81] 

In addition to these temperature and precipitation values a dryness threshold Pth in mm is introduced for 

the arid climates (B), which depends on the absolute measure of the annual mean temperature in °C [Tann], 

and on the annual cycle of precipitation[81]: 
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Type  Description Criteria  

   A Equatorial climates Tmin ≥ +18°C 

Af Equatorial rainforest, fully humid Pmin ≥ 60 mm 

Am Equatorial monsoon Pann ≥ 25(100-Pmin) 

As Equatorial savannah with dry summer Pmin < 60 mm in summer 

Aw Equatorial savannah with dry winter Pmin < 60 mm in winter 

   B Arid climates Pann < 10 Pth 

BS Steppe climate Pann > 5 Pth 

BW Desert climate Pann ≤ 5 Pth 

   C Warm temperature climates  -3°C<Tmin <+18°C 

Cs Warm Temperature climate with dry summer Psmin < Pwmin, Pwmax > 3Psmin and Psmin < 40 mm 

Cw Warm Temperature climate with dry winter Pwmin < Psmin and Psmax > 10 Pwmin 

Cf Warm Temperature climate, fully humid neither Cs nor Cw 

   D Snow climates Tmin ≤ -3°C 

Ds Snow climate with dry summer Psmin < Pwmin, Pwmax > 3Psmin and Psmin < 40 mm 

Dw Snow climate with dry winter Pwmin < Psmin and Psmax > 10 Pwmin 

Df Snow climate, fully humid neither Ds nor Dw 

   E Polar climates  Tmax < +10°C 

ET Tundra climate 0°C≤Tmax < +10°C 

EF Frost climate Tmax < 0°C 

Table 4. Key to calculate the climate formula of Köppen and Geiger for the main climates and subsequent precipitation 

conditions, the first two letters of the classification[81] 

The scheme how to determine the additional temperature conditions (third letter) for the arid climates 

(B) as well as for the warm temperature (C) and snow climates (D), is given in the Table 5[81].  

Type Description  Criterion  

   h Hot steppe/desert Tann ≥ +18°C 

k Cold steppe/desert Tann < +18°C 

   a Hot summer Tmax ≥ +22°C 

b Warm summer not (a) and at least 4 Tmin ≥ +10°C 

c Cool summer and cold winter not (b) Tmin > -38°C 
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d extremely continental  like (c) but Tmin ≤ -38°C 

Table 5. Key to calculate the climate formula of Köppen and Geiger,  the third letter temperature classification[81] 

In the Figure 16 is illustrated the Köppen-Geiger Map Classification with all the respective categories for 

the whole Africa continent.  

 

 

Figure 16. Africa Köppen-Geiger Map Classification 
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4.3.1.2. Land Cover Classification  

Global land cover datasets provide thematic characterizations of the Earth’s surface that capture biotic 

and abiotic properties and that are closely tied to the ecological condition of land areas. Information 

related to land cover is fundamental in the context of global change science. In the past decade available 

data sources and methodologies for creating global land cover maps from remote sensing have evolved 

rapidly[85]. In particular, for the purpose of the proposed study The MODIS land cover product has been 

selected.  

There are two MODIS global land cover classification grids with different spatial resolution. The first grid 

is the MODIS Land Cover Type product (MCD12Q1), that includes five main layers for each calendar year in 

which land cover is mapped using different classification systems. This Product is generated at 500-m 

spatial resolution. 

Moreover, the second grid, the Land Cover Type Climate Modeling Grid (CMG) product (MCD12C1), 

provides the dominant land cover types and also the sub-grid frequency distribution of land cover classes at 

a lower spatial resolution (0.05°) compared to MCD12Q1. MCD12C1 is derived using the same algorithm 

that produces MCD12Q1. It contains three classification schemes, which describe the land cover properties 

derived from observations spanning a year’s input of Terra and Aqua MODIS data.  

With the aim to have spatial coherence between the rainfall, climate, vegetation monitoring and the land 

cover product was decided to use the MCD12C1 product, selecting the  International Geosphere Biosphere 

Programme (IGBP) land cover scheme that identifies 17 land cover classes, which includes 11 natural 

vegetation classes, 3 developed and mosaicked land classes, and 3 non-vegetated land (See Table 6 and 

Figure 17). 
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Class Land Cover Type (IGBP) 

0 Water 

1 Evergreen Needleleaf forest 

2 Evergreen Broadleaf forest 

3 Deciduous Needleleaf forest 

4 Deciduous Broadleaf forest 

5 Mixed forest 

6 Closed shrublands 

7 Open shrublands 

8 Woody savannas 

9 Savannas 

10 Grasslands 

11 Permanent wetlands 

12 Croplands 

13 Urban and built-up 

14 Cropland/Natural vegetation mosaic 

15 Snow and ice 

16 Barren or sparsely vegetated 

255 Fill Value/Unclassified 

Table 6. MODIS (MCD12C1) IGBP Land Cover Types 
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Figure 17. Africa MCD12C1  IGBP Land Cover 

 

4.3.1.3. Geographical Vegetation Mask  

Considering the different climate and geographical conditions that characterize the African continet and 

their variability, it was fundamental to make a preliminary analysis with the aim to identify the areas where 

the results of the vegetation monitoring activities proposed in the  ITHACA Drought EWS are produced with 

insufficient reliability. These areas have been excluded and masked during the statistical analysis carried 

out in ths study.  

Considering the climate classification it can be noticed that the area with reduced reliability  are 

classified as Equatorial rainforest, fully humid (Af) and Equatorial Monsoon (Am). These areas have the 

particularity that are humid zones with high values of rainfall and with a vegetation without a defined 

seasonal behavior. In addition, most of the areas covered by the evergreen needleaf forest type and 

characterized by Af or Am climate types, were not included in the correlation analysis implemented in this 

study. Finally, in the procedures, the areas classified as barren or sparsely vegetated are obviously 

discarded. 

 Figure 18 shows the final masked area (white area) that was kept out of the statistical analyses.  
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Figure 18. Geographical Masked Area 

 

4.3.2. Climate and rainfall analysis 

Considering the importance of the climate conditions in the origin and development of drought events, a 

preliminary phase of this study was to make an analysis of the climate in the whole Africa with special 

attention to the rainfall data.  

Initially, a set of cumulative rainfall periods that could have directly impacts in the normal development 

of the vegetation was defined. In this case, using the TRMM daily data, a dataset was generated 

accumulating rainfall in periods of one, three, six and nine months, selected considering the growing season 

of vegetation and the rainfall season presented in a solar year. This cumulative rainfall was calculated in a 

dynamic temporal window corresponding to MODIS-NDVI fortnightly data presented in the vegetation 

monitoring dataset, creating a file for each cumulative period and for each fortnight in a solar year. With 

the aim to have vegetation and rainfall datasets at same geographical projection and taking into account 

the different resolution between the rainfall data and the vegetation monitoring data, the cumulative 

rainfall files were projected and downscaled to the spatial resolution of the original vegetation data. 
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Furthermore, considering the availability of the different data sets, for the analysis a period of 14 years 

corresponding to the time between 2000 and 2013, was selected.. 

With the aim to identify the rainfall behavior in the different areas of the continent, for each cumulative 

period and for each fortnight the value of average cumulative precipitation in the 14 years of data was 

calculated. Then, the fortnight interval that presented the maximum value for the different calculated 

average values at the same time was identified. 

Then, using the monthly averages was possible identify the parameters that identify the rainfall season 

for each region in the continent; it was possible to define the rainfall start of the season, the duration of the 

rainfall season, the areas with two rainfall seasons in the year and the areas with extreme meteorological 

conditions (The areas with values lower than 25 mm per month). 

This information is essential to understand the relationship between rainfall and vegetation growth, 

especially in the areas where both have similar temporal behavior. In the Figure 19 and Figure 20, is 

showed the evolution of the monthly and three-monthly average rainfall accumulation.  
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Figure 19. Behavior of the cumulative monthly precipitation during the solar year distributed in fortnights 
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Figure 20. Behavior of the cumulative three-monthly precipitation during the solar year distributed in fortnights 
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4.4. Relationship between Vegetation and Rainfall data 

In this chapter the methodology used to investigate the relationship between the vegetation and rainfall 

data is explained. To better understand this relationship, an analysis conducted on phenological 

parameters extracted through to the vegetation monitoring in ITHACA Drought EWS during the period 

between 2000 and 2013. The phenological parameters were correlated through the Pearson correlation 

coefficient with different cumulated rainfall values, obtained as defined in 4.3.2. Then, with the purpose of 

study the significance of the observed correlation a Student’s t-test with significance level of 5 % was 

applied. 

4.4.1. Correlation Analysis  

A correlation analysis describes the linear relationship between two or more variables without 

attributing to one variable the effect generated in other one. This technique is useful because indicates if 

two variables have something in common. A correlation coefficient is an numerical indicator that defines 

the relationship between two variables; it is expressed numerically in a range between -1.00 and +1.00 and 

rises with the increase of the amount of the variance of a single variable that is shared by other 

variables[86]. The correlation can be direct or positive, which means that variables change in the same 

direction or it can be indirect or negative with variables changing in the opposite direction. The most 

important parameter in the correlation is not the sign, it is the absolute value.  

In this study the correlation analysis was carried out using the Pearson correlation coefficient:  

B"L = ∑(N − NO)(P − PO)
Q[∑(N − NO)R]S∑(P − P)OOORT 

where, 

B"L = Pearson correlation coefficient 

N = Individual observations of variable X. 

P = Individual observations of variable Y. 

NO = Mean of variable X. 

PO = Mean of variable Y.  

A proper IDL algorithm  was implemented to calculate the value of the correlation coefficient between 

the different cumulated rainfall values and the phenological vegetation parameters. 
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For each considered phenological parameter a correlation analysis has been performed considering 

each 2000-2013 time-series of MODIS NDVI fortnightly values (23 fortnightly values in a solar year) and 

each fortnightly time-series of cumulated rainfall values (obtained using, as cumulating period, 1, 3, 6, or 

9 months preceding the last day of the examined fortnightly interval, as already described). Concurrently, 

the analysis was implemented considering the presence of vegetations characterized by two growing 

seasons per year, therefore in some areas there were two correlation coefficients for the same 

parameter.  

For instance, in the Figure 21 and Figure 22 are represented the Pearson correlations coefficients in the 

whole Africa correspondent to the relationship between the Amplitude of the vegetation and the 

cumulative rainfall for 1 month and 3 months respectively.  
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Figure 21.Evolution of the Pearson correlation coefficient (r) between cumulative rainfall for 1 month and the 

Amplitude in the period between 2000-2013 for the first (In some areas the only one) season of the solar year 
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Figure 22. Evolution of the Pearson correlation coefficient (r) between cumulative rainfall for 3 months and the 

Amplitude in the period between 2000-2013 for the first (In some areas the only one) season of the solar year 
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4.4.2. Test of Statistical Significance  

The statistical significance is defined like the likelihood that a result or relationship is caused by 

something other than mere random chance. With the aim to determine the significance of the correlation 

coefficient an analysis through a Student’s t-test with significance level of 5 %, was implemented.  

A correlation coefficient is significant if it is possible to assert with certain probability that it is different 

to zero. Normally a test of statistical significance presented two hypothesis ; a null hypothesis and an 

alternative hypothesis. In this case the main objective of the test was to determine the existence of a linear 

relationship using the null hypothesis that the true correlation coefficient is equal to 0, thus the alternative 

hypothesis was that the true correlation coefficient is different to 0. It was demonstrated that the 

correlations sampling distribution from a population characterized by a correlation coefficient equal to zero 

follow a student distribution with N-2 degrees of freedom, where N is the number of observations and 

deviation type: 

<U = V1 − B"LR� − 2  

where, 

 rxy = Correlation Coefficient between variables x and y. 

Consequently, for a determinate correlation coefficient (rxy) it is checked if it is possible that rxy is in the 

sampling distribution under the null hypothesis. Considering the student distribution, it is calculated the 

value of the test statistic using the  following formula: 

9 = B"L − 0
Q1 − B"LR� − 2

 

With the value of the test statistics (t) and the degrees of freedom (N-2) is obtained a P-value that is 

calculated using a statistical software package or statistical tables. This value is compared with the level of 

significance to decide if the null hypothesis is accepted or rejected. In the case in which the null 

hypothesis is rejected, the correlation is defined as significant and is considered that the test of 

significance is passed.   
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Considering the type of data used in this research, a proper IDL algorithm was implemented, to  

identifying the areas where the test of significance was passed.  

In Figure 23 is illustrated the correlation coefficients between cumulative rainfall for 3 months and the 

small integral in the whole area (a) and the same information with the mask generated by the correlation 

coefficients that have not passed the test (b).  

 

 

 

 

 

 

 

 

 

 

Figure 23. a)Pearson correlation coefficient (r) between cumulative rainfall for 3 months and the Small Integral for the 

period corresponded to 11 November to b) Pearson correlation coefficient (r) between cumulative rainfall for 3 months 

and the Small Integral for the period corresponded to 11 November with the no significance correlation areas. 



 

 

 

5. OUTCOMES AND DISCUSS

5.1. Land Cover Analysis

Considering the Land Cover classification described in 4.3.1.2, a preliminary analysis was conducted to 

determine the distribution of 

that not correspond to a vegetation type

17.295,00Km
2.  

 

 

In addition, a small area is characterized by a bi
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OUTCOMES AND DISCUSSION 

Land Cover Analysis 

Considering the Land Cover classification described in 4.3.1.2, a preliminary analysis was conducted to 

determine the distribution of areas covered by the different land cover classes in Africa, excluding the areas 

that not correspond to a vegetation type (See Figure 

Figure 24. Vegetation Land Cover Distribution in Africa (MCD12C1)

In addition, a small area is characterized by a bi-seasonal behavior, presenting two growing seasons per 

year. This area corresponding to the 11% of the vegetation classes in the whole of African continent 

(1.882,63Km2). The distribution of the classes with bi-seasonal behavior is illustrated in the 
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Considering the Land Cover classification described in 4.3.1.2, a preliminary analysis was conducted to 

areas covered by the different land cover classes in Africa, excluding the areas 

classes cover in total an area of 

 

seasonal behavior, presenting two growing seasons per 

year. This area corresponding to the 11% of the vegetation classes in the whole of African continent 

seasonal behavior is illustrated in the Figure 25. 
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Figure 25. Vegetation 

 

As shown in Figure 24 and Figure 25, 

and Evergreen Needleleaf forest classes cover a  really small area of the whole African continent.  

Therefore, considering also their casual distribution and the spatial resolution of the datasets used in 

study (0.05 deg) , these land cover types were considered as not representative, and consequently 

excluded in the subsequent analyses.

Furthermore, as already described in 4.3.1.3, the areas where the ITHACA drought EWS is implemented 

with insufficient reliability, which mainly correspond to the Evergreen Broadleaf forest land cover class, 

were also excluded. In conclusion, with the aim to conduct a reliable analysis, the Open shrublands, Woody 

savannas, Savannas, Grasslands, Croplands and Cropland/Nat

See Figure 26,were considered for the subsequent statistical analyses.
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As shown in Figure 24 and Figure 25, the Deciduous 

and Evergreen Needleleaf forest classes cover a  really small area of the whole African continent.  

Therefore, considering also their casual distribution and the spatial resolution of the datasets used in 

study (0.05 deg) , these land cover types were considered as not representative, and consequently 

excluded in the subsequent analyses. 

Furthermore, as already described in 4.3.1.3, the areas where the ITHACA drought EWS is implemented 

t reliability, which mainly correspond to the Evergreen Broadleaf forest land cover class, 

were also excluded. In conclusion, with the aim to conduct a reliable analysis, the Open shrublands, Woody 

savannas, Savannas, Grasslands, Croplands and Cropland/Nat

,were considered for the subsequent statistical analyses.
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the Deciduous Broadleaf forest, Mixed forest, Closed shrublands, 

and Evergreen Needleleaf forest classes cover a  really small area of the whole African continent.  

Therefore, considering also their casual distribution and the spatial resolution of the datasets used in 

study (0.05 deg) , these land cover types were considered as not representative, and consequently 

Furthermore, as already described in 4.3.1.3, the areas where the ITHACA drought EWS is implemented 

t reliability, which mainly correspond to the Evergreen Broadleaf forest land cover class, 

were also excluded. In conclusion, with the aim to conduct a reliable analysis, the Open shrublands, Woody 

savannas, Savannas, Grasslands, Croplands and Cropland/Natural vegetation mosaic classes, as shown in 

,were considered for the subsequent statistical analyses. 
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Land Cover with two growing season at year, Land Cover Distribution in Africa (MCD12C1) 

Broadleaf forest, Mixed forest, Closed shrublands, 

and Evergreen Needleleaf forest classes cover a  really small area of the whole African continent.  

Therefore, considering also their casual distribution and the spatial resolution of the datasets used in this 

study (0.05 deg) , these land cover types were considered as not representative, and consequently 

Furthermore, as already described in 4.3.1.3, the areas where the ITHACA drought EWS is implemented 

t reliability, which mainly correspond to the Evergreen Broadleaf forest land cover class, 

were also excluded. In conclusion, with the aim to conduct a reliable analysis, the Open shrublands, Woody 

ural vegetation mosaic classes, as shown in 
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Figure 26. Vegetation Land Cover classes used in the analysis.Excluded areas are in white. 
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5.2. Test of  Significance Analysis 

According to the defined significance test described in 4.4.2, an analysis of the results obtained was 

conducted and final outcomes are proposed in this paragraph. The analysis was implemented for all the 

land cover types defined in the precedent paragraph. For each analyzed land cover type the areas that 

passed the significance Student t-test were identified and expressed as a percentage of the total area 

corresponding to the considered land cover class. The main purpose was to identify, for each vegetation 

type,  the phenological parameters that would be potentially affected by the rainfall behavior.  

5.2.1. Open shrublands 

5.2.1.1. First vegetation growing season   

The Open Shrublands land cover type corresponds to a 15.45 % of the vegetated area in the whole 

African continent, and the correlation coefficients calculated between the cumulated rainfall (1, 3, 6 

months) and the different considered phenological parameters shows positive and significant values over a 

large portion of this area.  

The largest areas with positive correlation coefficient values between all the phenological parameters 

and the cumulated rainfall are obtained considering 1 month as cumulating interval. Moreover, the 

smallest areas with positive correlation correspond to the 6 months cumulating period (See Table 7). 

 

Open Shrub SEASON 1 

Phenological 

Parameter  

TEST PASSED 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 67,53% 61,23% 56,27% 

Base  68,45% 65,33% 58,44% 

Decr 66,50% 53,99% 44,13% 

Incr 71,89% 57,73% 48,02% 

Larg 64,77% 61,13% 56,00% 

Len  74,71% 68,32% 55,97% 

SmI 77,99% 73,26% 67,14% 

Table 7. Percentage of the Open Shrublands areas that passed the  Student t-test for the  correlation between 

cumulate rainfall and phenological parameters in the first vegetation growing season. 
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On the other hand, taking into consideration the different examined phenological parameters, the 

Seasonal Small Integral (SMI) presented, in all the cumulated periods, the largest percentage of area with 

positive correlation values with respect to the remaining parameters. The Amplitude (Amp) and the Large 

(Larg) parameters presented a similar behavior, characterized by an evident reduction of the areas showing 

positive correlation when considering the 6 month cumulated rainfall. This is in agreement with what was 

expected, given that these parameters are directly related. Finally, it can be noticed that also the Decrease 

(Decr) and the Increase (Incr) parameters presented considerable reduction if the 3 and 6 months 

cumulating periods are taken into consideration, with respect to the 1 month period.  

Moreover, with the aim to better understand the data given in Table 7, an analysis of the spatial 

distribution of the outcomes of the significance test was carried out ( See Figure 27). Thus, considering the 

different areas of Africa covered by open shrublands, it was observed that the area where all the 

phenological parameters presented larger zones with no significant values of the correlation coefficient, is 

located in the south of the continent (specifically, this area extends between the Angola, Botswana, 

Namibia and South Africa countries). This area does not present a particular climate classification, then the 

causes of lower values of the correlation coefficient, which require further investigations,  are to be sought 

in geographical or topographical factors. 
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Figure 27. Outcomes of the Student t-test for the correlation between the Seasonal Small Integral (SmI) and cumulated rainfall 

(b) 1 month , c) 3 months d) 6 months) for the Open Shrublands vegetation type (a) in the first vegetation season. 
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5.1.1.1. Second vegetation growing season   

The 41.24 % of the area covered by Open Shrublands shows a yearly  bi-modal NDVI function that 

correspond to the presence of two different vegetation growing seasons. The correlation analysis carried 

out between the cumulated rainfall (1, 3, 6 months) and the different phenological parameters related to 

the second growing season showed positive and significant values over a large portion of these areas (See 

Table 8).   

As for the first season analysis, the largest areas with positive correlation coefficient values between all 

the phenological parameters and the cumulated rainfall are obtained considering 1 month as cumulating 

interval. Moreover, the smallest areas showing positive correlation coefficients correspond to the 6 months 

cumulating period (See Table 8).   

 

Open Shrub SEASON 2 

Phenological 

Parameter  

TEST PASSED 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 87,14% 78,57% 70,66% 

Base  62,90% 60,59% 53,38% 

Decr 78,63% 68,71% 56,49% 

Incr 82,21% 67,12% 56,73% 

Larg 83,85% 76,57% 68,15% 

Len  77,50% 59,02% 45,40% 

SmI 91,55% 82,32% 73,19% 

Table 8. Percentage of the Open Shrublands areas that passed the  Student t-test for the  correlation between 

cumulate rainfall and phenological parameters in the second vegetation growing season. 

On the other hand, taking into consideration the different examined phenological parameters, the 

Seasonal Small Integral (SMI) presented, in all the cumulated periods, the largest percentage of area with 

positive correlation values with respect to the remaining parameters. The Amplitude (Amp) and the Large 

(Larg) parameters presented a similar behavior, characterized by an evident reduction of the areas showing 

positive correlation when considering the 6 month cumulated rainfall. This is in agreement with what was 

expected, given that these parameters are directly related. Finally, it can be noticed that also the Decrease 

(Decr) and the Increase (Incr) parameters presented considerable reduction if the 3 and 6 months 

cumulating periods are taken into consideration, with respect to the 1 month period.  
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Furthermore, it can be noticed that, for all the phenological parameters, the percentage values given in 

Table 8 are generally greater than those obtained for the first vegetation growing season. This is in 

agreement with what was expected, given that the area analysed for the significance test in this case is 

significantly reduced compared to the previous case and, more importantly, is practically concentrated in a 

single region of Africa (Horn of Africa, see Figure 28).  

 

 

 

 

Figure 28. Outcomes of the Student t-test for the correlation between the Seasonal Small Integral (SmI) and cumulated rainfall 

(b) 1 month , c) 3 months d) 6 months) for the Open Shrublands vegetation type (a) in the second vegetation season. 
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5.2.2. Woody savannas 

5.2.2.1. First vegetation growing season   

The Woody savannas land cover type corresponds to a 21.19 % of the vegetated area in the whole 

African continent, and the correlation coefficients calculated between the cumulated rainfall (1, 3, 6 

months) and the different considered phenological parameters shows some particular conditions over a 

large portion of this area.  

The largest areas with positive correlation coefficient values between all the phenological parameters 

and the cumulated rainfall are obtained considering 1 month as cumulating interval. Moreover, the 

smallest areas with positive correlation correspond to the 6 months cumulating period (See Table 9). 

 

Woody Sav SEASON 1 

Phenological 

Parameter  

TEST PASSED 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 52,42% 35,44% 23,64% 

Base  74,78% 65,12% 50,87% 

Decr 58,05% 39,82% 26,56% 

Incr 72,53% 55,32% 43,30% 

Larg 61,15% 47,26% 34,84% 

Len  69,01% 56,01% 42,70% 

SmI 60,32% 44,60% 33,15% 

Table 9. Percentage of the Woody Savannas areas that passed the  Student t-test for the  correlation between 

cumulate rainfall and phenological parameters in the first vegetation growing season. 

 

On the other hand, taking into consideration the different examined phenological parameters, the Base 

presented, in all the cumulated periods, the largest percentage of area with positive correlation values with 

respect to the remaining parameters.. The Amplitude (Amp) presented, in all the cumulated periods, the 

smallest percentage of area with positive correlation values with respect to the remaining parameters. 

Finally, it can be noticed that the Decrease (Decr) and the Increase (Incr) parameters presented 

considerable reduction if the 3 and 6 months cumulating periods are taken into consideration, with respect 

to the 1 month period.  

Moreover, with the aim to better understand the data given in Table 9, an analysis of the spatial 

distribution of the outcomes of the significance test was carried out ( See Figure 29). Thus, considering the 

different areas of Africa covered by woody savannas, it was observed that the area where all the 
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phenological parameters presented larger zones with no significant values of the correlation coefficient is 

distributed uniformly in the whole area identified in this class . Considering the distribution and the larger 

areas with no significant values, it was concluded that this type of vegetation does not presented a 

dependence of the rainfall behavior. 

 

 

 

Figure 29. Outcomes of the Student t-test for the correlation between the Seasonal Small Integral (SmI) and cumulated rainfall 

(b) 1 month , c) 3 months d) 6 months) for the Woody savannas vegetation type (a) in the second vegetation season 
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5.2.3. Savannas 

5.2.3.1. First vegetation growing season   

The Savannas land cover type corresponds to a 21.78 % of the vegetated area in the whole African 

continent, and the correlation coefficients calculated between the cumulated rainfall (1, 3, 6 months) and 

the different considered phenological parameters shows some particular conditions over a large portion of 

this area.  

The largest areas with positive correlation coefficient values between all the phenological parameters 

and the cumulated rainfall are obtained considering 1 month as cumulating interval. Moreover, the 

smallest areas with positive correlation correspond to the 6 months cumulating period (See Table 10). 

 

Savannas SEASON 1 

Phenological 

Parameter  

TEST PASSED 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 56,16% 38,43% 27,68% 

Base  82,26% 74,89% 65,69% 

Decr 59,79% 41,87% 28,98% 

Incr 71,47% 50,19% 37,61% 

Larg 66,12% 51,61% 40,13% 

Len  75,70% 66,08% 57,32% 

SmI 69,15% 54,99% 45,34% 

Table 10. Percentage of the Savannas areas that passed the  Student t-test for the  correlation between cumulate 

rainfall and phenological parameters in the first vegetation growing season. 

 

On the other hand, taking into consideration the different examined phenological parameters, the Base 

presented, in all the cumulated periods, the largest percentage of area with positive correlation values with 

respect to the remaining parameters.. The Amplitude (Amp) presented, in all the cumulated periods, the 

smallest percentage of area with positive correlation values with respect to the remaining parameters. 

Finally, it can be noticed that the Decrease (Decr) and the Increase (Incr) parameters presented 

considerable reduction if the 3 and 6 months cumulating periods are taken into consideration, with respect 

to the 1 month period.  

Moreover, with the aim to better understand the data given in Table 10, an analysis of the spatial 

distribution of the outcomes of the significance test was carried out ( See Figure 30). Thus, considering the 

different areas of Africa covered by savannas, it was observed that the area where all the phenological 
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parameters presented larger zones with no significant values of the correlation coefficient is distributed 

uniformly in the whole area identified in this class . Considering the distribution and the larger areas with 

no significant values, it was concluded that this type of vegetation does not presented a dependence of the 

rainfall behavior. 

 

 

 

 

Figure 30. Outcomes of the Student t-test for the correlation between the Seasonal Small Integral (SmI) and cumulated rainfall 

(b) 1 month , c) 3 months d) 6 months) for the Savannas vegetation type (a) in the second vegetation season 
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5.2.4. Grasslands 

5.2.4.1. First vegetation growing season   

The Grasslands land cover type corresponds to a 13.46 % of the vegetated area in the whole African 

continent, and the correlation coefficients calculated between the cumulated rainfall (1, 3, 6 months) and 

the different considered phenological parameters shows positive and significant values over a large portion 

of this area.  

The largest areas with positive correlation coefficient values between all the phenological parameters 

and the cumulated rainfall are obtained considering 1 month as cumulating interval. Moreover, the 

smallest areas with positive correlation correspond to the 6 months cumulating period (See Table 10). 

 

Grassland SEASON 1 

Phenological 

Parameter  

TEST PASSED 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 65,87% 57,37% 51,30% 

Base  73,06% 65,94% 62,44% 

Decr 59,92% 46,63% 37,30% 

Incr 67,58% 49,20% 38,68% 

Larg 66,71% 58,93% 54,15% 

Len  82,26% 76,43% 66,47% 

SmI 84,07% 78,86% 71,70% 

Table 11. Percentage of the Grasslands areas that passed the  Student t-test for the  correlation between cumulate 

rainfall and phenological parameters in the first vegetation growing season. 

On the other hand, taking into consideration the different examined phenological parameters, the 

Seasonal Small Integral (SMI) presented, in all the cumulated periods, the largest percentage of area with 

positive correlation values with respect to the remaining parameters. The Amplitude (Amp) and the Large 

(Larg) parameters presented a similar behavior, characterized by an evident reduction of the areas showing 

positive correlation when considering the 6 month cumulated rainfall. This is in agreement with what was 

expected, given that these parameters are directly related. Finally, it can be noticed that also the Decrease 

(Decr) and the Increase (Incr) parameters presented considerable reduction if the 3 and 6 months 

cumulating periods are taken into consideration, with respect to the 1 month period.  

Moreover, with the aim to better understand the data given in Table 11, an analysis of the spatial 

distribution of the outcomes of the significance test was carried out ( See Figure 31). Thus, considering the 

different areas of Africa covered by grasslands, it was observed that the area where all the phenological 
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parameters presented larger zones with no significant values of the correlation coefficient, is located in the 

south of the continent (specifically located in South Africa). This area present a particular climate 

classification regarding to the whole area classified such grassland, this could be considered such a possible 

cause of lower values of the correlation coefficient, which require further investigations. 

 

 

 

 

Figure 31. Outcomes of the Student t-test for the correlation between the Seasonal Small Integral (SmI) and cumulated rainfall 

(b) 1 month , c) 3 months d) 6 months) for the Grasslands vegetation type (a) in the second vegetation season 
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5.1.1.1. Second vegetation growing season   

The 13.05 % of the area covered by Grasslands shows a yearly  bi-modal NDVI function that correspond 

to the presence of two different vegetation growing seasons. The correlation analysis carried out between 

the cumulated rainfall (1, 3, 6 months) and the different phenological parameters related to the second 

growing season showed positive and significant values over a large portion of these areas (See Table 12).   

As for the first season analysis, the largest areas with positive correlation coefficient values between all 

the phenological parameters and the cumulated rainfall are obtained considering 1 month as cumulating 

interval. Moreover, the smallest areas showing positive correlation coefficients correspond to the 6 months 

cumulating period (See Table 12).   

 

Grassland SEASON 2 

Phenological 

Parameter  

TEST PASSED 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 86,57% 80,08% 70,01% 

Base  73,90% 70,66% 60,12% 

Decr 71,28% 54,41% 40,70% 

Incr 70,31% 49,88% 34,30% 

Larg 84,50% 80,51% 70,75% 

Len  91,20% 85,69% 77,18% 

SmI 96,41% 93,23% 85,68% 

Table 12. Percentage of the Grasslands areas that passed the  Student t-test for the  correlation between cumulate 

rainfall and phenological parameters in the second vegetation growing season. 

On the other hand, taking into consideration the different examined phenological parameters, the 

Seasonal Small Integral (SMI) presented, in all the cumulated periods, the largest percentage of area with 

positive correlation values with respect to the remaining parameters. The Amplitude (Amp) and the Large 

(Larg) parameters presented a similar behavior, characterized by an evident reduction of the areas showing 

positive correlation when considering the 6 month cumulated rainfall. This is in agreement with what was 

expected, given that these parameters are directly related. Finally, it can be noticed that also the Decrease 

(Decr) and the Increase (Incr) parameters presented considerable reduction if the 3 and 6 months 

cumulating periods are taken into consideration, with respect to the 1 month period.  
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Furthermore, it can be noticed that, for all the phenological parameters, the percentage values given in 

Table 12 are generally greater than those obtained for the first vegetation growing season. This is in 

agreement with what was expected, given that the area analysed for the significance test in this case is 

significantly reduced compared to the previous case and, more importantly, is practically concentrated in a 

single region of Africa (Horn of Africa, see Figure 32).  

 

 

 

Figure 32. Outcomes of the Student t-test for the correlation between the Seasonal Small Integral (SmI) and cumulated rainfall 

(b) 1 month , c) 3 months d) 6 months) for the Grasslands vegetation type (a) in the second vegetation season 
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5.2.5. Croplands 

5.2.5.1. First vegetation growing season   

The Croplands land cover type corresponds to a 5.53 % of the vegetated area in the whole African 

continent, and the correlation coefficients calculated between the cumulated rainfall (1, 3, 6 months) and 

the different considered phenological parameters shows positive and significant values over a large portion 

of this area.  

The largest areas with positive correlation coefficient values between all the phenological parameters 

and the cumulated rainfall are obtained considering 1 month as cumulating interval. Moreover, the 

smallest areas with positive correlation correspond to the 6 months cumulating period (See Table 13). 

 

Cropland SEASON 1 

Phenological 

Parameter  

TEST PASSED 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 61,14% 51,60% 40,58% 

Base  78,22% 73,49% 64,86% 

Decr 58,79% 45,58% 29,01% 

Incr 67,30% 50,96% 36,47% 

Larg 64,42% 57,34% 46,93% 

Len  80,96% 73,82% 63,36% 

SmI 81,17% 73,88% 64,27% 

Table 13. Percentage of the Cropland areas that passed the  Student t-test for the  correlation between cumulate 

rainfall and phenological parameters in the first vegetation growing season. 

On the other hand, taking into consideration the different examined phenological parameters, the 

Seasonal Small Integral (SMI) presented, in all the cumulated periods, the largest percentage of area with 

positive correlation values with respect to the remaining parameters. The base of the season,  the Length of 

the season(Len) and the Seasonal Small Integral parameters presented a similar behavior, characterized by 

an evident reduction of the areas showing positive correlation when considering the 6 month cumulated 

rainfall. The Amplitude (Amp) presented a  small percentage of area with positive correlation values with 

respect to other vegetation class. Finally, it can be noticed that also the Decrease (Decr) and the Increase 

(Incr) parameters presented considerable reduction if the 3 and 6 months cumulating periods are taken 

into consideration, with respect to the 1 month period.  
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Moreover, with the aim to better understand the data given in Table 13, an analysis of the spatial 

distribution of the outcomes of the significance test was carried out ( See Figure 33). Thus, in this case 

considering the different areas of Africa covered by croplands, it was observed that there is not a particular 

area where all the phenological parameters presented larger zones with no significant values of the 

correlation coefficient. These areas are presented specially in the 6 months cumulative interval.    

 

 

 

Figure 33. Outcomes of the Student t-test for the correlation between the Seasonal Small Integral (SmI) and cumulated rainfall 

(b) 1 month , c) 3 months d) 6 months) for the Cropland vegetation type (a) in the first vegetation season 
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5.2.6. Cropland/Natural vegetation mosaic 

5.2.6.1. First vegetation growing season   

The Cropland/Natural vegetation mosaic land cover type corresponds to a 10.52 % of the vegetated area 

in the whole African continent, and the correlation coefficients calculated between the cumulated rainfall 

(1, 3, 6 months) and the different considered phenological parameters shows positive and significant values 

over a large portion of this area.  

The largest areas with positive correlation coefficient values between all the phenological parameters 

and the cumulated rainfall are obtained considering 1 month as cumulating interval. Moreover, the 

smallest areas with positive correlation correspond to the 6 months cumulating period (See Table 14). 

 

Crop/NatMos SEASON 1 

Phenological 

Parameter  

TEST PASSED 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 66,72% 53,69% 42,79% 

Base  71,69% 64,23% 53,07% 

Decr 62,07% 48,48% 35,39% 

Incr 70,24% 52,03% 37,86% 

Larg 69,24% 59,03% 48,89% 

Len  78,09% 68,89% 58,50% 

SmI 78,47% 69,34% 61,22% 

Table 14. Percentage of the Cropland/Natural vegetation mosaic areas that passed the  Student t-test for the  

correlation between cumulate rainfall and phenological parameters in the first vegetation growing season. 

 

On the other hand, taking into consideration the different examined phenological parameters, the 

Seasonal Small Integral (SMI) presented, in all the cumulated periods, the largest percentage of area with 

positive correlation values with respect to the remaining parameters. The Seasonal Small Integral (SMI)  

and the Length of the season (Len) parameters presented a similar behavior, characterized by an evident 

reduction of the areas showing positive correlation when considering the 6 month cumulated rainfall. This 

is in agreement with what was expected, given that these parameters are directly related. Finally, it can be 

noticed that also the Decrease (Decr) and the Increase (Incr) parameters presented considerable reduction 

if the 3 and 6 months cumulating periods are taken into consideration, with respect to the 1 month period.  

Moreover, with the aim to better understand the data given in Table 14, an analysis of the spatial 

distribution of the outcomes of the significance test was carried out ( See Figure 31). Thus, considering the 
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different areas of Africa covered by Cropland/Natural vegetation mosaic, it was observed that the area 

where all the phenological parameters presented larger zones with no significant values of the correlation 

coefficient, is located in the east of the continent (specifically located in Uganda). This area present a 

particular climate classification regarding to the whole area classified such Cropland/Natural vegetation 

mosaic, this could be considered such a possible cause of lower values of the correlation coefficient, which 

require further investigations. 

 

 

 

Figure 34. Outcomes of the Student t-test for the correlation between the Seasonal Small Integral (SmI) and cumulated rainfall 

(b) 1 month , c) 3 months d) 6 months) for the Cropland/Natural vegetation mosaic  type (a) in the first vegetation season 
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5.1.1.1. Second vegetation growing season   

The 10.05 % of the area covered by Cropland/Natural vegetation mosaic shows a yearly  bi-modal NDVI 

function that correspond to the presence of two different vegetation growing seasons. The correlation 

analysis carried out between the cumulated rainfall (1, 3, 6 months) and the different phenological 

parameters related to the second growing season did not show positive and significant values over a large 

portion of these areas (See Table 15).   

As for the first season analysis, the largest areas with positive correlation coefficient values between all 

the phenological parameters and the cumulated rainfall are obtained considering 1 month as cumulating 

interval. Moreover, the smallest areas showing positive correlation coefficients correspond to the 6 months 

cumulating period (See Table 15).   

 

Crop/NatMos SEASON 2 

Phenological 

Parameter  

TEST PASSED 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 60,38% 40,72% 25,60% 

Base  62,96% 53,95% 43,03% 

Decr 63,92% 39,81% 32,37% 

Incr 62,46% 37,13% 23,08% 

Larg 59,85% 48,73% 37,89% 

Len  67,10% 49,69% 36,31% 

SmI 67,95% 50,06% 37,25% 

Table 15. Percentage of the Cropland/Natural vegetation mosaic areas that passed the  Student t-test for the  

correlation between cumulate rainfall and phenological parameters in the second vegetation growing season 

On the other hand, taking into consideration the different examined phenological parameters, the 

Seasonal Small Integral (SMI) presented, in all the cumulated periods, the largest percentage of area with 

positive correlation values with respect to the remaining parameters. The Seasonal Small Integral (SMI)  

and the Length of the season (Len) parameters presented a similar behavior, characterized by an evident 

reduction of the areas showing positive correlation when considering the 6 month cumulated rainfall. This 

is in agreement with what was expected, given that these parameters are directly related. Finally, it can be 

noticed that also the Decrease (Decr) and the Increase (Incr) parameters presented considerable reduction 

if the 3 and 6 months cumulating periods are taken into consideration, with respect to the 1 month period.  

Moreover, with the aim to better understand the data given in Table 15, an analysis of the spatial 

distribution of the outcomes of the significance test was carried out ( See Figure 35). Thus, considering the 

different areas of Africa covered by Cropland/Natural vegetation mosaic in the second growing season, it 
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was observed that the area where all the phenological parameters presented larger zones with no 

significant values of the correlation coefficient is distributed uniformly in the whole area identified in this 

class . Considering the distribution and the larger areas with no significant values, it was concluded that this 

type of vegetation does not presented a dependence of the rainfall behavior in the second season. 

 

 

 

Figure 35. Outcomes of the Student t-test for the correlation between the Seasonal Small Integral (SmI) and cumulated rainfall 

(b) 1 month , c) 3 months d) 6 months) for the Cropland/Natural vegetation mosaic  type (a) in the second vegetation season 
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5.3. Correlation Analysis 

Based on the significance test outcomes described in the precedent paragraph, an analysis of the 

obtained correlation coefficients was conducted, with the main aim to identify the areas where a 

relationship between vegetation and cumulated rainfall exists. For this purpose, three intervals of 

correlation were defined in order to better describe the existing relationship in the analyzed areas: Medium 

Correlation (0.4-0.6), High Correlation (0.6-0.8) and Very High Correlation (0.8-1.0).   

This kind of analysis was conducted for the Open shrublands, Grasslands and Cropland/Natural 

vegetation mosaic land cover types because of  they are the classes that covered larger areas in the African 

continent and are characterized by a positive and significant values of correlation in all the phenological 

parameters considered in this study. For each analyzed land cover type, the different  areas classified in the 

adopted intervals of correlation were identified and expressed as a percentage of the total area 

corresponding to the considered land cover class.  

5.3.1. Open shrublands 

The correlation coefficients calculated between the cumulated rainfall (1, 3, 6 months) and the different 

considered phenological parameters show positive and significant values over a large portion of  the Open 

Shrublands area in the whole African continent.  

Considering the Medium Correlation level, largest areas are in correspondence to  1 month cumulated 

rainfall for all the considered phenological parameters. Moreover, the smallest areas with the same 

correlation level correspond to the 6 months cumulating period (see Table 16). 

 

Open Shrub SEASON 1 

Phenological 

Parameter  

Medium Correlation  

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 31,92% 23,33% 20,52% 

Base  35,60% 31,97% 29,73% 

Decr 33,61% 26,12% 21,38% 

Incr 32,32% 25,64% 22,35% 

Larg 34,40% 26,48% 22,81% 

Len  40,46% 33,56% 29,19% 

SmI 32,75% 23,72% 22,21% 

Table 16. Percentages of Open Shrublands areas showing Medium Correlation level between the phenological 

parameters and cumulated rainfall for the first growing season 
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On the other hand, the Length of the season (Len) parameter presents, for all the cumulating periods, 

the largest percentage of area with Medium Correlation level with respect to the remaining parameters; on 

the contrary, the Amplitude (Amp) parameter presents, in all the cumulated periods, the smallest 

percentage of area. 

Comparing the percentages obtained for the High Correlation level with those related to the Medium 

Correlation one, the Increase (Incr) and the Seasonal Small Integral (SmI) parameters present an increase 

considering all the rainfall cumulating intervals. On the other hand, the percentage values obtained for the 

Base, Decrease (Decr) and Length of the season (Len) parameters present a notable reduction. The 

Amplitude (Amp) and the Large (Larg) parameters present a similar behavior, characterized by a reduction 

if the 1 month cumulating interval is considered, and an increase in the remaining cases. (see Table 17). 

 

Open Shrub SEASON 1 

Phenological 

Parameter  

High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 30,89% 27,36% 24,93% 

Base  30,48% 29,05% 25,32% 

Decr 28,86% 23,47% 19,21% 

Incr 34,27% 26,97% 21,79% 

Larg 27,65% 27,85% 25,67% 

Len  32,11% 31,83% 24,71% 

SMI 40,30% 38,23% 32,64% 

Table 17. Percentages of Open Shrublands areas showing High Correlation level between the phenological parameters 

and cumulated rainfall for the first growing season 

 

Finally, considering the areas showing Very High Correlation levels, it can be noticed that the Seasonal 

Small Integral (SmI) and the Amplitude (Amp) parameters present similar behavior, characterized by large 

percentages of area in correspondence of the 3 and 6 months rainfall cumulating intervals (See Table 18). 

The areas showing Very High Correlation levels may be considered, with particular prudence, areas where 

the examined land cover type presents some vulnerability to rainfall anomalies. 
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Open Shrub SEASON 1 

Phenological 

Parameter  

Very High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 4,72% 10,54% 10,82% 

Base  2,37% 4,31% 3,40% 

Decr 4,04% 4,40% 3,54% 

Incr 5,31% 5,12% 3,88% 

Larg 2,72% 6,79% 7,53% 

Len  2,14% 2,93% 2,07% 

SMI 4,95% 11,32% 12,29% 

Table 18. Percentages of Open Shrublands areas showing Very High Correlation level between the phenological 

parameters and cumulated rainfall for the first growing season 

In accordance with this hypothesis, it can be stated that the Seasonal Small Integral (SmI) parameter 

presents a condition of  vulnerability higher respect to the remaining parameters, as described Figure 36.  

 

Figure 36. Correlation Analysis for the Open Shrubland land cover type, first growing season 
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5.3.2. Grasslands 

The correlation coefficients calculated between the cumulated rainfall (1, 3, 6 months) and the different 

considered phenological parameters show positive and significant values over a large portion of  the 

Grasslands area in the whole African continent 

Considering the Medium Correlation level, largest areas are in correspondence to  1 month cumulated 

rainfall for all the considered phenological parameters. Moreover, the smallest areas with the same 

correlation level correspond to the 6 months cumulating period (See Table 19). 

 

Grassland SEASON 1 

Phenological 

Parameter  

Medium Correlation  

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 37,53% 29,15% 26,00% 

Base  39,76% 33,00% 30,72% 

Decr 33,03% 25,85% 22,21% 

Incr 35,36% 29,08% 24,25% 

Larg 38,65% 30,09% 27,41% 

Len  38,91% 32,22% 29,89% 

SMI 37,54% 30,39% 28,56% 

Table 19. Percentages of Grasslands areas showing Medium Correlation level between the phenological parameters 

and cumulated rainfall for the first growing season 

On the other hand, the Base parameter presents, for all the cumulating periods, the largest percentage 

of area with Medium Correlation level with respect to the remaining parameters; on the contrary, the 

Decrease (Decr) parameter presents, in all the cumulated periods, the smallest percentage of area. 

Comparing the percentages obtained for the High Correlation level with those related to the Medium 

Correlation one, the Length of the season (Len) and the Seasonal Small Integral (SmI) parameters present 

an increase considering all the rainfall cumulating intervals. On the other hand, the percentage values 

obtained for the Amplitude(Amp), Base,  Decrease (Decr), Increase (Incr) and Large (Large) parameters 

present a notable reduction. (See Table 20). 
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Grassland SEASON 1 

Phenological 

Parameter  

High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 26,92% 25,35% 22,55% 

Base  31,21% 29,85% 28,46% 

Decr 24,16% 18,64% 14,11% 

Incr 29,56% 18,69% 13,53% 

Larg 26,73% 26,21% 23,99% 

Len  40,17% 39,45% 32,88% 

SMI 42,81% 41,84% 36,77% 

Table 20.High Percentages of Grasslands areas showing High Correlation level between the phenological parameters 

and cumulated rainfall for the first growing season 

Finally, considering the areas showing Very High Correlation levels, it can be noticed that the Seasonal 

Small Integral (SmI) and the Length of the season (Len) parameters present similar behavior, characterized 

by large percentages of area in correspondence of the 3 and 6 months rainfall cumulating intervals See 

Table 21). The areas showing Very High Correlation levels may be considered, with particular prudence, 

areas where the examined land cover type presents some vulnerability to rainfall anomalies. 

 

 

Grassland SEASON 1 

Phenological 

Parameter  

Very High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 1,42% 2,86% 2,75% 

Base  2,10% 3,10% 3,26% 

Decr 2,74% 2,14% 0,97% 

Incr 2,66% 1,43% 0,90% 

Larg 1,33% 2,62% 2,76% 

Len  3,17% 4,76% 3,70% 

SMI 3,72% 6,63% 6,36% 

Table 21. Percentages of Grasslands areas showing Very High Correlation level between the phenological parameters 

and cumulated rainfall for the first growing season 
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In accordance with this hypothesis, it can be stated that the Seasonal Small Integral (SmI) parameter 

presents a condition of  vulnerability higher respect to the remaining parameters, as described Figure 37. 

 

 

Figure 37. Correlation Analysis for the Grasslands land cover type, first growing season 
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5.3.3. Cropland/Natural vegetation mosaic 

The correlation coefficients calculated between the cumulated rainfall (1, 3, 6 months) and the different 

considered phenological parameters show positive and significant values over a large portion of  the 

Cropland/Natural vegetation mosaic area in the whole African continent.  

Considering the Medium Correlation level, largest areas are in correspondence to  1 month cumulated 

rainfall for all the considered phenological parameters. Moreover, the smallest areas with the same 

correlation level correspond to the 6 months cumulating period (See Table 22). 

 

Crop/NatMos SEASON 1 

Phenological 

Parameter  

Medium Correlation  

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 40,73% 31,50% 25,25% 

Base  41,22% 35,41% 29,42% 

Decr 36,06% 29,10% 22,38% 

Incr 36,56% 30,03% 23,37% 

Larg 41,18% 33,02% 27,44% 

Len  39,97% 33,02% 28,70% 

SMI 38,05% 29,23% 25,38% 

Table 22. Percentages of Cropland/Natural vegetation mosaic areas showing Medium Correlation level between the 

phenological parameters and cumulated rainfall for the first growing season 

On the other hand, the Base parameter presents, for all the cumulating periods, the largest percentage 

of area with Medium Correlation level with respect to the remaining parameters; on the contrary, the 

Decrease (Decr) parameter presents, in all the cumulated periods, the smallest percentage of area. 

Comparing the percentages obtained for the High Correlation level with those related to the Medium 

Correlation one, the Seasonal Small Integral (SmI) parameter presents an increase considering all the 

rainfall cumulating intervals. On the other hand, the percentage values obtained for the Length of the 

season (Len) parameter present a larger percentage of area with high correlation respect to the remaining 

parameters (See Table 23). 
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Crop/NatMos SEASON 1 

Phenological 

Parameter  

High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 24,88% 20,84% 16,39% 

Base  29,03% 27,14% 22,05% 

Decr 23,95% 17,86% 12,24% 

Incr 30,36% 20,37% 13,56% 

Larg 26,73% 24,33% 19,81% 

Len  35,88% 32,82% 27,20% 

SMI 37,59% 35,31% 30,88% 

Table 23.High Percentages of Cropland/Natural vegetation mosaic areas showing High Correlation level between the 

phenological parameters and cumulated rainfall for the first growing season 

Finally, considering the areas showing Very High Correlation levels, it can be noticed that the Seasonal 

Small Integral (SmI) and the Length of the season (Len) parameters present similar behavior, characterized 

by large percentages of area in correspondence of the 3 and 6 months rainfall cumulating intervals See 

Table 24). The areas showing Very High Correlation levels may be considered, with particular prudence, 

areas where the examined land cover type presents some vulnerability to rainfall anomalies. 

 

Crop/NatMos SEASON 1 

Phenological 

Parameter  

Very High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 1,11% 1,35% 1,15% 

Base  1,45% 1,69% 1,60% 

Decr 2,07% 1,52% 0,77% 

Incr 3,33% 1,62% 0,93% 

Larg 1,33% 1,69% 1,64% 

Len  2,23% 3,05% 2,60% 

SMI 2,83% 4,80% 4,96% 

Table 24. Percentages of Cropland/Natural vegetation mosaic areas showing Very High Correlation level between the 

phenological parameters and cumulated rainfall for the first growing season 
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In accordance with this hypothesis, it can be stated that the Seasonal Small Integral (SmI) parameter 

presents a condition of  vulnerability higher respect to the remaining parameters, as described  Figure 38. 

 

Figure 38. Correlation Analysis for the Cropland/Natural vegetation mosaic land cover type, first growing season 
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5.4. Integration Analysis 

With the aim to better investigate and summarize the results of the correlation analysis, described in the 

precedent paragraph, a spatial correlation analysis was conducted using the correlation intervals already 

defined and the cumulative rainfall intervals corresponding to the maximum values of correlation.  

In addition, using the percentages of the areas classified in the different correlation levels for each 

vegetation land cover type, an integrated index was calculated with the purpose to assign a level of 

possible vulnerability to each land cover type. Finally, the cumulating rainfall interval corresponding to the 

maximum vulnerability value, was identified and  a dataset integrating the two parameters, was generated.   

5.4.1. Spatial Correlation Analysis 

Considering the maximum values of the correlation coefficients calculated for each vegetation land cover 

type between the phenological parameters and the different cumulated rainfalls and with the aim to use 

this information for the purposes of the ITHACA Drought EWS, a spatial analysis was implemented on a 

pixel basis in the whole African continent. For this analysis, each pixel is classified according to the 

correlation interval levels defined in the precedent paragraph.  

In particular, the analysis was implemented considering all the examined rainfall cumulating intervals 

(see Figure 39) with the main purpose to identify the areas characterized by different levels of correlation 

and, consequently, different levels of possible vulnerability. The final dataset produced in this phase was a 

map containing the weights to be applied to the rainfall alerts generated in near real-time in the ITHACA 

Drought EWS, before their integration with the vegetation based alerts.   
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Figure 39. Maps showing the Maximum Correlation levels for the Seasonal Small Integral (SmI) on a pixel basis for each 

cumulating intervals (a) 1 month, b) 3 months, c) 6months) for the Open shrublands vegetation land cover type (first growing 

season)  
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In addition, a comparative analysis was conducted, for each vegetation land cover type, in order to 

identify, on a pixel basis, the examined rainfall cumulating interval that corresponds to the obtained 

absolute maximum value of correlation. The output of this analysis showed the maximum correlation to be 

reached for each area in the whole African continent, classified considering  the already discussed 

correlation levels. Finally, the rainfall cumulating interval corresponding to each maximum absolute 

correlation value, evaluated on a pixel basis, allowed to identify the proper  rainfall cumulating interval to 

be used for near real-time SPI calculation in the ITHACA drought EWS (see Figure 40)  

 

 

Figure 40.a) Maximum Absolute Correlation levels for the Seasonal Small Integral (SmI)  on a pixel basis for the Open 

shrublands vegetation cover type for the first growing season, b) rainfall cumulating intervals corresponding to the absolute 

maximum correlation level for the Seasonal Small Integral (SmI) on a pixel basis for the Open shrublands vegetation cover 

type for the first growing season 
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5.4.2. Vulnerability Analysis. 

As already discussed, for some land cover classes high correlation values may indicate, with prudence, a 

greater vulnerability to the vegetation to rainfall anomalies. Therefore, with the aim to  carry out a 

preliminary investigation about the vulnerability of the vegetation to the cumulated rainfall, a vulnerability 

index was defined based on the correlation levels described in the precedent paragraph. Outcomes 

obtained in this phase were used to propose recommendations to be applied in the existing ITHACA 

Drought EWS.   

Considering that obtained correlation values were classified into three intervals, in order to propose a 

vulnerability index a scale between 0 and 3 was selected. In this scale, the  value 0 was adopted as the 

minimum value, that corresponds to the areas where not significant correlation values are found, the value 

1 was adopted as the value of vulnerability index corresponding to a Medium Correlation level, while the 

values 2 and 3 were used for the High and Very High Correlation levels, respectively.  

The proposed index was calculated for all examined vegetation land cover types, generating an index for 

all selected phenological parameters and rainfall cumulating intervals. A value of vulnerability between 0 

and 3 was calculated starting from Tables discussed in 5.3 using the following formula:  

 

�'� = 1WX'� + 2WY'� + 3W�Y'�  
where, 

Vij = Vulnerability index for each phenological parameter i and for each cumulative rainfall interval j. 

WMij= Weight assigned to the areas classified in the medium correlation interval for each phenological 

parameter i and for each cumulative rainfall interval j. 

WHij = Weight assigned to the areas classified in the high correlation interval for each phenological 

parameter i and for each cumulative rainfall interval j. 

WVHij = Weight assigned to the areas classified in the very high correlation interval for each phenological 

parameter i and for each cumulative rainfall interval j. 
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The calculation of the proposed vulnerability index allowed to integrate the outcomes of all the previous 

phases, related to the significance test and the correlation analysis, and is used in order to make a complex 

evaluation  of the existing  relationship between vegetation and rainfall dynamics. In particular, in this 

study, for each vegetation land cover type the vulnerability index corresponding to all examined 

phenological parameters were calculated and assigned to all the pixels in the whole African continent 

belonging in the same vegetation class.   

Considering the Open Shrubland land cover type, the study of the vulnerability index revealed that the 

parameter that is the  most vulnerable to rainfall anomalies among the examined phenological parameters, 

is the Seasonal Small Integral (SmI), and that, in this case, the highest vulnerability coefficient value is 

obtained considering  a 3 months rainfall cumulating interval. In addition, it can be noticed that all the 

phenological parameters present a vulnerability index close to the value corresponding to the Medium 

Correlation level (See Table 25). 

 

Open_Shrubland_Season1 Vulnerability Index  

Phenological Parameters 
TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 1,079 1,097 1,028 

Base  1,037 1,030 0,906 

Decr 1,034 0,863 0,704 

Incr 1,168 0,949 0,776 

Larg 0,979 1,026 0,967 

Len  1,111 1,060 0,848 

SMI 1,282 1,341 1,244 

Table 25. Vulnerability Index for the phenological parameters using different  rainfall cumulating intervals for the Open 

Shrubland land cover type and for the first growing season. 

Considering the Grasslands land cover type, the study of the vulnerability index revealed that the 

parameter that is the  most vulnerable to rainfall anomalies among the examined phenological parameters, 

is the Seasonal Small Integral (SmI), and that, in this case, the highest vulnerability coefficient value is 

obtained considering  a 1 month rainfall cumulating interval. In addition, it can be noticed that all the 

phenological parameters present a vulnerability index close to the value corresponding to the Medium 

Correlation level (See Table 26). 
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Grasslands_Season1 Vulnerability Index  

Phenological Parameters 
TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 0,956 0,884 0,793 

Base  1,085 1,020 0,974 

Decr 0,896 0,696 0,533 

Incr 1,025 0,708 0,540 

Larg 0,961 0,904 0,837 

Len  1,288 1,254 1,068 

SMI 1,343 1,340 1,212 

Table 26. Vulnerability Index for the phenological parameters using different rainfall cumulating intervals for the 

Grasslands Vegetation cover type and for the first growing season. 

Considering the Open Shrubland land cover type, the study of the vulnerability index revealed that the 

parameter that is the  most vulnerable to rainfall anomalies among the examined phenological parameters, 

is the Seasonal Small Integral (SmI), and that, in this case, the highest vulnerability coefficient value is 

obtained considering  a 1 month rainfall cumulating interval. In addition, it can be noticed that all the 

phenological parameters present a vulnerability index close to the value corresponding to the Medium 

Correlation level. On the other hand, the Amplitude (Amp), the Decrease (Decr) and the Increase (Incr) 

presented lower values of vulnerability in the cumulative intervals corresponding to 1 and 3 months (See 

Table 27). 

 

Crop/Nat_Veg_ Mos_Season1 Vulnerability Index  

Phenological Parameters 
TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 0,938 0,772 0,615 

Base  1,036 0,947 0,783 

Decr 0,902 0,694 0,492 

Incr 1,073 0,756 0,533 

Larg 0,986 0,867 0,720 

Len  1,184 1,078 0,909 

SMI 1,217 1,143 1,020 

Table 27. Vulnerability Index for the phenological parameters using different  rainfall cumulating intervals for the 

Cropland/Natural vegetation mosaic cover type and for the first growing season. 
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With the aim to convert the results obtained in this study into effective suggestions for the integration of 

rainfall data into the ITHACA drought EWS, a dataset showing, for each analyzed land cover class, the 

maximum vulnerability index for each phenological parameter and the corresponding rainfall cumulating 

interval, was generated for the whole African continent (see Figure 41). This information may help, indeed, 

to correctly identify, for each type of land cover, the rainfall cumulating interval to be used for the purposes 

of inclusion in the ITHACA Drought EWS of effective procedures for near real-time SPI calculation. 

Moreover, the vulnerability values, obtained for each land cover class, may be used in order to allow a 

preliminary weight operation  of the alerts generated using the rainfall anomalies index.  

 

 
Figure 41. a)Maximum vulnerability Index identified for the whole African continent, for the Seasonal Small Integral (SmI) in 

the first growing season, and b) corresponding rainfall cumulating interval..   
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6. CONCLUSIONS AND RECOMMENDATION 

The first purpose of this study was to complete the existing ITHACA drought EWS, based on the 

monitoring of vegetation conditions based on phenological parameters, introducing  proper procedures 

able to to monitorrainfall conditions in near real-time. Consequently, considering the available precipitation 

datasets  the Standardized Precipitation Index (SPI) was selected as the parameter to identify the possible 

meteorological drought events directly related with the rainfall. Proper procedures for the calculation of 

the SPI on a global scale for different cumulative rainfall intervals have been implemented. 

Furthermore, a research has been conducted to identify the possible relationships between vegetation 

and rainfall in the whole Africa through a correlation analysis of several phenological vegetation 

parameters and the cumulated rainfall corresponding to the cumulative intervals of 1, 3 and 6 months. The 

main purpose of this step of the study was to identify the areas and the parameters that correctly support 

the planning and definition of effective procedures for the integration, where it is meaningful, of the 

vegetation monitoring procedures and the rainfall anomalies calculated through the SPI in the final ITHACA 

drought EWS. Obviously, due to the simplifications related to the resolution of spatial  data used for the 

conducted analysis (0.05 deg), final recommendations and operative proposals may need further validation 

on a regional scale using also local datasets, where available.  

In order to implement the research and considering the impacts that the drought events generate in the 

population, the whole African continent was selected as study area. First of all, a  preliminary analysis 

aimed at identifying the areas where the results of the vegetation monitoring activities proposed in the  

ITHACA drought EWS are produced with insufficient reliability, was conducted. Then, an analysis of the land 

cover dataset was performed. In particular, considering the spatial distribution of the land cover types and 

the spatial resolution of the datasets used in this study (0.05 deg), the Croplands, Grasslands, Savannas, 

Woody Savannas, Open Shrublands and Cropland/Natural Vegetation Mosaic classes were selected for the 

subsequent correlation analyses proposed in this study.  

A preliminary test of statistical significance of the correlation values obtained has been carried out. The 

main outcome of this test was the identification of the rainfall cumulating interval, specifically the 1 month 

interval, that produced  larger areas with positive and significant correlation values for all the examined 

phenological parameters and land cover classes. Consequently, the monitoring of rainfall anomalies 

calculated using the 1 month SPI, which presents a higher likelihood to be the correct and effective 

information to be used in order to complete the vegetation conditions monitoring, has been initially 

proposed for its use in the ITHACA drought EWS.  In addition, for the Woody Savannas and Savannas land 

cover types  considerable areas with significant and positive correlation values could not be identified, 
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therefore it can be expected that, in these areas, the alerts generated through the vegetation monitoring 

would be independent to the rainfall anomalies.  

Based on the outcomes of the test of statistical significance, a correlation analysis was conducted.  The 

vegetation Seasonal Small Integral (SmI) and the Length of the growing Season (Len) phenological 

parameters were found to be the more correlated  for all the examined vegetation land cover types. In 

addition, it was observed that the level of correlation of the Base, Amplitude (Amp) and Increase (Incr) 

phenological parameters depends of the considered vegetation land cover type. In particular, in the 

Increase parameter case, the correlation level decreases considerably considering a 6 months rainfall 

cumulating interval. On the other hand, the decrease (Decr) parameter presents the lower correlation 

values for all the vegetation land cover type. Therefore, through results obtained in this phase, it was 

possible to confirm the effectiveness of the use of the vegetation Seasonal Small Integral (SmI) parameter 

for drought early warning purposes. However, it was also proposed to investigate, in the future, the 

possible use of the Length of the growing Season (Len) as an alternative vegetation parameter or as a 

possible linked parameter between the rainfall and the vegetation.  

Moreover, it was observed that the Grasslands and the Open Shrublands land cover classes presented, as 

a whole, the higher correlation values considering all the phenological parameters, except in  the southern 

regions of the Africa, where large areas without significant correlations have been identified. However, the 

Grasslands land cover class presented large areas with high correlation values in the Horn of Africa area. In 

this area,  this vegetation type shown to be directly correlated with the rainfall behavior in both the existing 

vegetation growing seasons.  

Considering that, for some land cover classes, the obtained high correlation values may indicate, with 

prudence, a greater vulnerability to the vegetation to rainfall anomalies, a proper Vulnerability Index has 

been defined based on the different correlation levels found for each examined land cover class and 

investigated. The highest values of this index were found to be in correspondence to the 1month and 3 

months rainfall cumulating intervals. Specifically, the areas that showed the highest values in 

correspondence to the 3 months rainfall cumulating interval are located in the south of the African 

continent (specifically, in the area that extends between the Botswana, Namibia and South Africa countries) 

and in the Horn of Africa, while the remaining areas presented highest values of vulnerability in 

correspondence to the 1 month rainfall cumulating interval.  

 

 



106 

 

 

 

Therefore, considering these results, it was proposed the possibility to use, in the ITHACA drought EWS, 

the developed Vulnerability Index in order to weight rainfall anomalies detected using the SPI, before the 

production of the final drought hazard dataset, which will be based on vegetation and precipitation 

anomalies detected in near real-time. In addition, based on the analysis of the Vulnerability Index, were 

also definitely identified and proposed, for each land cover type, the rainfall cumulating intervals (1, 3 or 6 

months) to be correctly and effectively used for SPI calculation purposes, in order to complete the 

vegetation conditions monitoring. 
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8. APPENDICES 

8.1. Test of  Significance Analysis 

8.1.1. Open shrublands 

8.1.1.1. First growing season  

 

 

Figure 42. Outcomes of the Student t-test for the correlation between the Amplitude (Amp) and cumulated rainfall (b) 1 

month , c) 3 months d) 6 months) for the Open Shrublands vegetation type (a) in the first vegetation season. 
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Figure 43. Outcomes of the Student t-test for the correlation between the Length (Len) and cumulated rainfall (b) 1 month , c) 

3 months d) 6 months) for the Open Shrublands vegetation type (a) in the first vegetation season. 
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8.1.1.2. Second growing season  

 

 

 

 

 

 

Figure 44. Outcomes of the Student t-test for the correlation between the Amplitude (Amp) and cumulated rainfall (b) 1 

month , c) 3 months d) 6 months) for the Open Shrublands vegetation type (a) in the second vegetation season. 
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Figure 45. Outcomes of the Student t-test for the correlation between the Length (Len) and cumulated rainfall (b) 1 month , c) 

3 months d) 6 months) for the Open Shrublands vegetation type (a) in the second vegetation season 
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8.1.2. Woody savannas 

8.1.2.1. First growing season  

 

 

 

 

 

Figure 46. Outcomes of the Student t-test for the correlation between the Amplitude (Amp) and cumulated rainfall (b) 1 

month , c) 3 months d) 6 months) for the Woody Savannas vegetation type (a) in the first vegetation season. 
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Figure 47. Outcomes of the Student t-test for the correlation between the Length (Len) and cumulated rainfall (b) 1 month , c) 

3 months d) 6 months) for the Woody Savannas vegetation type (a) in the first vegetation season. 
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8.1.3. savannas 

8.1.3.1. First growing season  

 

 

 

 

 

Figure 48. Outcomes of the Student t-test for the correlation between the Amplitude (Amp) and cumulated rainfall (b) 1 

month , c) 3 months d) 6 months) for the Savannas vegetation type (a) in the first vegetation season. 
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Figure 49. Outcomes of the Student t-test for the correlation between the Length (Len) and cumulated rainfall (b) 1 month , c) 

3 months d) 6 months) for the Savannas vegetation type (a) in the first vegetation season 
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8.1.4. Grasslands 

8.1.4.1. First growing season  

 

 

 

 

 

Figure 50. Outcomes of the Student t-test for the correlation between the Amplitude (Amp) and cumulated rainfall (b) 1 

month , c) 3 months d) 6 months) for the Grasslands vegetation type (a) in the first vegetation season. 
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Figure 51. Outcomes of the Student t-test for the correlation between the Length (Len) and cumulated rainfall (b) 1 month , c) 

3 months d) 6 months) for the Grasslands vegetation type (a) in the first vegetation season. 
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8.1.4.2. Second growing season  

 

 

 

 

 

 

Figure 52. Outcomes of the Student t-test for the correlation between the Amplitude (Amp) and cumulated rainfall (b) 1 

month , c) 3 months d) 6 months) for the Grasslands vegetation type (a) in the second vegetation season. 
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Figure 53. Outcomes of the Student t-test for the correlation between the Length (Len) and cumulated rainfall (b) 1 month , c) 

3 months d) 6 months) for the Grasslands vegetation type (a) in the second vegetation season 
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8.1.5. Croplands 

8.1.5.1. First growing season  

 

 

 

 

 

Figure 54. Outcomes of the Student t-test for the correlation between the Amplitude (Amp) and cumulated rainfall (b) 1 

month , c) 3 months d) 6 months) for the Croplands vegetation type (a) in the first vegetation season 
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Figure 55. Outcomes of the Student t-test for the correlation between the Length (Len) and cumulated rainfall (b) 1 month , c) 

3 months d) 6 months) for the Croplands vegetation type (a) in the first vegetation season 
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8.1.6. Cropland Natural Vegetation Mosaic 

8.1.6.1. First growing season  

 

 

 

 

 

Figure 56. Outcomes of the Student t-test for the correlation between the Amplitude (Amp) and cumulated rainfall (b) 1 

month , c) 3 months d) 6 months) for the Croplands/Natural vegetation mosaic type (a) in the first vegetation season 
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Figure 57. Outcomes of the Student t-test for the correlation between the Length (Len) and cumulated rainfall (b) 1 month , c) 

3 months d) 6 months) for the Croplands/Natural vegetation mosaic type (a) in the first vegetation season 
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8.1.6.2. Second growing season  

 

 

 

 

 

 

Figure 58. Outcomes of the Student t-test for the correlation between the Amplitude (Amp) and cumulated rainfall (b) 1 

month , c) 3 months d) 6 months) for the Croplands/Natural vegetation mosaic type (a) in the second vegetation season 
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Figure 59. Outcomes of the Student t-test for the correlation between the Length (Len) and cumulated rainfall (b) 1 month , c) 

3 months d) 6 months) for the Croplands/Natural vegetation mosaic type (a) in the second vegetation season 
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8.2. Correlation Analysis 

8.2.1. Open Shrublands 

8.2.1.1. Second growing season 

Open Shrub SEASON 2 

Phenological 

Parameter  

Medium Correlation  

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 32,06% 27,42% 26,41% 

Base  35,57% 33,50% 28,67% 

Decr 35,57% 31,95% 27,04% 

Incr 35,34% 30,07% 26,39% 

Larg 36,51% 29,30% 26,41% 

Len  38,74% 31,80% 24,05% 

SMI 26,56% 24,16% 22,89% 

Table 28. Percentages of Open Shrublands areas showing Medium Correlation level between the phenological 

parameters and cumulated rainfall for the second growing season 

Open Shrub SEASON 2 

Phenological 

Parameter  

High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 42,68% 35,68% 30,51% 

Base  24,56% 24,59% 22,31% 

Decr 36,51% 30,15% 24,23% 

Incr 40,30% 31,59% 25,99% 

Larg 37,39% 34,77% 30,18% 

Len  35,46% 24,76% 19,46% 

SMI 46,60% 35,54% 29,86% 

Table 29. Percentages of Open Shrublands areas showing High Correlation level between the phenological parameters 

and cumulated rainfall for the second growing season 

Open Shrub SEASON 2 

Phenological 

Parameter  

Very High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 12,40% 15,47% 13,75% 

Base  2,78% 2,49% 2,40% 

Decr 6,55% 6,61% 5,21% 

Incr 6,57% 5,46% 4,35% 

Larg 9,96% 12,50% 11,57% 

Len  3,30% 2,47% 1,89% 

SMI 18,40% 22,62% 20,43% 

Table 30. Percentages of Open Shrublands areas showing Very High Correlation level between the phenological 

parameters and cumulated rainfall for the second growing season 
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Figure 60. Correlation Analysis for the Open Shrubland land cover type, second growing season 
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8.2.2. Grasslands 

8.2.2.1. Second growing season 

Grassland SEASON 2 

Phenological 

Parameter  

Medium Correlation  

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 31,69% 27,59% 25,09% 

Base  36,53% 38,56% 31,97% 

Decr 39,51% 31,39% 24,72% 

Incr 40,19% 30,42% 21,47% 

Larg 33,83% 29,70% 25,50% 

Len  32,91% 28,57% 28,62% 

SMI 16,70% 14,18% 15,99% 

Table 31. Percentages of Grasslands areas showing Medium Correlation level between the phenological parameters 

and cumulated rainfall for the second growing season 

Grassland SEASON 2 

Phenological 

Parameter  

High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 47,11% 40,26% 34,34% 

Base  33,92% 29,66% 25,40% 

Decr 28,46% 20,64% 14,51% 

Incr 28,44% 18,20% 11,88% 

Larg 44,20% 39,44% 34,81% 

Len  52,97% 49,17% 41,12% 

SMI 57,92% 44,49% 38,01% 

Table 32. Percentages of Grasslands areas showing High Correlation level between the phenological parameters and 

cumulated rainfall for the second growing season 

Grassland SEASON 2 

Phenological 

Parameter  

Very High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 7,76% 12,23% 10,57% 

Base  3,46% 2,45% 2,75% 

Decr 3,31% 2,39% 1,46% 

Incr 1,68% 1,26% 0,95% 

Larg 6,47% 11,36% 10,44% 

Len  5,32% 7,95% 7,44% 

SMI 21,79% 34,56% 31,68% 

Figure 61. Percentages of Grasslands areas showing Very High Correlation level between the phenological parameters 

and cumulated rainfall for the second growing season 



134 

 

 

 

 

Figure 62. Correlation Analysis for the Grasslands land cover type, second growing season 
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8.2.3. Cropland Natural Vegetation Mosaic 

8.2.3.1. Second growing season 

Crop/NatMos SEASON 2 

Phenological 

Parameter  

Medium Correlation  

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 38,78% 25,26% 17,07% 

Base  35,92% 28,92% 23,29% 

Decr 37,43% 25,76% 16,77% 

Incr 36,83% 24,62% 15,99% 

Larg 37,06% 28,92% 23,13% 

Len  40,52% 26,06% 18,87% 

SMI 34,18% 22,08% 16,33% 

Table 33. Percentages of Cropland/Natural vegetation mosaic areas showing Medium Correlation level between the 

phenological parameters and cumulated rainfall for the second growing season 

Crop/NatMos SEASON 2 

Phenological 

Parameter  

High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 20,68% 14,39% 8,05% 

Base  24,91% 22,72% 17,71% 

Decr 24,43% 13,27% 8,08% 

Incr 24,20% 11,76% 6,79% 

Larg 21,96% 18,83% 13,80% 

Len  25,28% 21,80% 16,01% 

SMI 31,55% 23,24% 17,91% 

Table 34. Percentages of Cropland/Natural vegetation mosaic areas showing High Correlation level between the 

phenological parameters and cumulated rainfall for the second growing season 

Crop/NatMos SEASON 2 

Phenological 

Parameter  

Very High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 0,92% 1,08% 0,48% 

Base  2,13% 2,31% 2,04% 

Decr 2,06% 0,78% 0,30% 

Incr 1,42% 0,75% 0,30% 

Larg 0,82% 0,98% 0,96% 

Len  1,30% 1,83% 1,42% 

SMI 2,22% 4,74% 3,00% 

Table 35. Percentages of Cropland/Natural vegetation mosaic areas showing Very High Correlation level between the 

phenological parameters and cumulated rainfall for the second growing season 
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Figure 63. Correlation Analysis for the Cropland/Natural vegetation mosaic land cover type, second growing season 
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8.2.4. Woody savannas 

8.2.4.1. First growing season 

Woody Sav SEASON 1 

Phenological 

Parameter  

Medium Correlation  

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 35,66% 24,21% 16,46% 

Base  40,60% 34,68% 27,89% 

Decr 34,81% 24,97% 17,64% 

Incr 36,75% 30,11% 24,97% 

Larg 38,76% 29,62% 22,16% 

Len  41,62% 33,57% 26,35% 

SMI 38,95% 28,15% 21,27% 

Table 36. Percentages of Woody Savannas areas showing Medium Correlation level between the phenological 

parameters and cumulated rainfall for the first growing season 

Woody Sav SEASON 1 

Phenological 

Parameter 

High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 16,20% 10,82% 6,91% 

Base 32,39% 28,42% 21,28% 

Decr 21,19% 13,59% 8,36% 

Incr 32,23% 23,06% 16,99% 

Larg 21,53% 16,73% 11,94% 

Len 26,26% 21,21% 15,38% 

SMI 20,49% 15,50% 11,19% 

Table 37. Percentages of Woody Savannas areas showing High Correlation level between the phenological parameters 

and cumulated rainfall for the first growing season 

Woody Sav SEASON 1 

Phenological 

Parameter  

Very High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 0,55% 0,41% 0,27% 

Base  1,79% 2,02% 1,70% 

Decr 2,05% 1,26% 0,56% 

Incr 3,56% 2,15% 1,34% 

Larg 0,86% 0,91% 0,74% 

Len  1,13% 1,23% 0,97% 

SMI 0,89% 0,94% 0,69% 

Table 38. Percentages of Woody Savannas areas showing Very High Correlation level between the phenological 

parameters and cumulated rainfall for the first growing season 



138 

 

 

 

 

Figure 64. Correlation Analysis for the Woody Savannas land cover type, first growing season 
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8.2.5. Savannas 

8.2.5.1. First growing season 

Savannas SEASON 1 

Phenological 

Parameter  

Medium Correlation  

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 36,87% 25,75% 19,13% 

Base  38,53% 33,97% 30,81% 

Decr 35,40% 26,02% 19,29% 

Incr 35,79% 28,94% 23,38% 

Larg 40,76% 32,13% 26,05% 

Len  41,78% 35,34% 31,26% 

SMI 40,50% 32,06% 26,49% 

Table 39. Percentages of Savannas areas showing Medium Correlation level between the phenological parameters and 

cumulated rainfall for the first growing season 

Savannas SEASON 1 

Phenological 

Parameter  

High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 18,61% 12,14% 8,16% 

Base  39,94% 36,68% 31,31% 

Decr 22,36% 14,72% 9,17% 

Incr 32,15% 19,75% 13,43% 

Larg 24,38% 18,57% 13,43% 

Len  32,45% 28,68% 24,14% 

SMI 27,40% 21,63% 17,69% 

Table 40. Percentages of Savannas areas showing High Correlation level between the phenological parameters and 

cumulated rainfall for the first growing season 

Savannas SEASON 1 

Phenological 

Parameter  

Very High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 0,69% 0,53% 0,40% 

Base  3,79% 4,24% 3,57% 

Decr 2,03% 1,13% 0,51% 

Incr 3,53% 1,51% 0,80% 

Larg 0,98% 0,91% 0,66% 

Len  1,47% 2,05% 1,92% 

SMI 1,25% 1,30% 1,16% 

Table 41. Very Percentages of Savannas areas showing Very High Correlation level between the phenological 

parameters and cumulated rainfall for the first growing season 
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Figure 65. Correlation Analysis for the Savannas land cover type, first growing season 
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8.2.6. Croplands 

8.2.6.1. First growing season 

Cropland SEASON 1 

Phenological 

Parameter  

Medium Correlation  

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 39,34% 30,95% 23,65% 

Base  41,00% 33,62% 28,16% 

Decr 34,42% 27,12% 18,63% 

Incr 35,69% 28,34% 21,73% 

Larg 41,03% 33,69% 26,53% 

Len  41,13% 33,07% 29,86% 

SMI 40,70% 31,23% 27,90% 

Table 42. Percentages of Croplands areas showing Medium Correlation level between the phenological parameters and 

cumulated rainfall for the first growing season 

Cropland SEASON 1 

Phenological 

Parameter  

High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 20,81% 19,30% 15,61% 

Base  34,97% 36,52% 32,99% 

Decr 22,63% 16,88% 9,74% 

Incr 28,54% 20,51% 13,66% 

Larg 22,36% 22,25% 18,85% 

Len  37,69% 36,79% 30,31% 

SMI 38,51% 37,33% 31,18% 

Table 43. Percentages of Croplands areas showing High Correlation level between the phenological parameters and 

cumulated rainfall for the first growing season 

Cropland SEASON 1 

Phenological 

Parameter  

Very High Correlation 

TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 0,99% 1,35% 1,31% 

Base  2,25% 3,34% 3,71% 

Decr 1,74% 1,58% 0,64% 

Incr 3,06% 2,11% 1,07% 

Larg 1,02% 1,40% 1,56% 

Len  2,14% 3,96% 3,19% 

SMI 1,96% 5,32% 5,20% 

Table 44. Percentages of Croplands areas showing Very High Correlation level between the phenological parameters 

and cumulated rainfall for the first growing season 
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Figure 66. Correlation Analysis for the Croplands land cover type, first growing season 
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8.3. Integration Analysis 

8.3.1. Spatial Correlation Analysis 

 

Figure 67. Maps showing the Maximum Correlation levels for the Amplitude (Amp) on a pixel basis for each cumulating 

intervals (a) 1 month, b) 3 months, c) 6months) for the Open shrublands vegetation land cover type (first growing season)  



144 

 

 

 

 

 

 

• LEN 

Figure 68.a ) Maximum Absolute Correlation levels for the Amplitude (Amp)  on a pixel basis for the Open shrublands 

vegetation cover type for the first growing season, b) rainfall cumulating intervals corresponding to the absolute maximum 

correlation level for the Amplitude (Amp) on a pixel basis for the Open shrublands vegetation cover type for the first growing 

season 
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Figure 69. Maps showing the Maximum Correlation levels for the Length (Len) on a pixel basis for each cumulating intervals 

(a) 1 month, b) 3 months, c) 6months) for the Open shrublands vegetation land cover type (first growing season) 



146 

 

 

 

 

 

 

 

 

 

 

Figure 70. a ) Maximum Absolute Correlation levels for the Length (Len)  on a pixel basis for the Open shrublands vegetation 

cover type for the first growing season, b) rainfall cumulating intervals corresponding to the absolute maximum correlation 

level for Length (Len)  on a pixel basis for the Open shrublands vegetation cover type for the first growing season 
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Table 45. Maps showing the Maximum Correlation levels for the Seasonal Small Integral (SmI) on a pixel basis for each 

cumulating intervals (a) 1 month, b) 3 months, c) 6months) for the Grasslands vegetation land cover type (first growing 

season) 
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Table 46. a ) Maximum Absolute Correlation levels for the Seasonal Small Integral (SmI)  on a pixel basis for the Grasslands 

vegetation cover type for the first growing season, b) rainfall cumulating intervals corresponding to the absolute maximum 

correlation level for Seasonal Small Integral (SmI) on a pixel basis for the Grasslands vegetation cover type for the first 

growing season 
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Figure 71. Maps showing the Maximum Correlation levels for the Amplitude (Amp) on a pixel basis for each cumulating 

intervals (a) 1 month, b) 3 months, c) 6months) for the Grasslands vegetation land cover type (first growing season) 
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Figure 72. a ) Maximum Absolute Correlation levels for the Amplitude (Amp)  on a pixel basis for the Grasslands vegetation 

cover type for the first growing season, b) rainfall cumulating intervals corresponding to the absolute maximum correlation 

level for the Amplitude (Amp)  on a pixel basis for the Grasslands vegetation cover type for the first growing season 
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Figure 73.Maximum Correlation levels for the Length of the season (Len) on a pixel basis for each cumulative intervals for the 

Grasslands vegetation cover type for the first growing season a) 1 month, b) 3 months, c) 6months. 
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Figure 74. a ) Maximum Absolute Correlation levels for the Length (Len)  on a pixel basis for the Grasslands vegetation cover 

type for the first growing season, b) rainfall cumulating intervals corresponding to the absolute maximum correlation level for 

the Length (Len)  on a pixel basis for the Grasslands vegetation cover type for the first growing season 
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Table 47. Maximum Correlation levels for the Seasonal Small Integral (SmI) on a pixel basis for each cumulative intervals for 

the Cropland/Natural vegetation mosaic cover type for the first growing season a) 1 month, b) 3 months, c) 6months. 
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Table 48. a ) Maximum Absolute Correlation levels for the Seasonal Small Integral (SMI)  on a pixel basis for the 

Cropland/Natural vegetation mosaic cover type for the first growing season, b) rainfall cumulating intervals corresponding to 

the absolute maximum correlation level for the Seasonal Small Integral (SMI)  on a pixel basis for the Cropland/Natural 

vegetation mosaic cover type for the first growing season 
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Figure 75. Maximum Correlation levels for the Amplitude (Len) on a pixel basis for each cumulative intervals for the 

Cropland/Natural vegetation mosaic cover type for the first growing season a) 1 month, b) 3 months, c) 6months. 
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Figure 76. a ) Maximum Absolute Correlation levels for the Amplitude (Amp)  on a pixel basis for the Cropland/Natural 

vegetation mosaic cover type for the first growing season, b) rainfall cumulating intervals corresponding to the absolute 

maximum correlation level for the Amplitude (Amp)  on a pixel basis for the Cropland/Natural vegetation mosaic cover type 

for the first growing season 
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Figure 77. Maximum Correlation levels for the Length of the season (Len) on a pixel basis for each cumulative intervals for 

the Cropland/Natural vegetation mosaic cover type for the first growing season a) 1 month, b) 3 months, c) 6months. 
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Figure 78. a ) Maximum Absolute Correlation levels for the Length (Len)  on a pixel basis for the Cropland/Natural vegetation 

mosaic cover type for the first growing season, b) rainfall cumulating intervals corresponding to the absolute maximum 

correlation level for the Length (Len)  on a pixel basis for the Cropland/Natural vegetation mosaic cover type for the first 

growing season 



159 

 

 

 

8.3.2. Vulnerability Analysis 
 

Open_Shrubland_Season2 Vulnerability Index  

Phenological Parameters 
TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 1,546 1,452 1,287 

Base  0,930 0,902 0,805 

Decr 1,282 1,121 0,911 

Incr 1,357 1,096 0,914 

Larg 1,412 1,363 1,215 

Len  1,196 0,887 0,686 

SMI 1,750 1,631 1,439 

Table 49. Vulnerability Index for the phenological parameters using different  rainfall cumulating intervals for the Open 

Shrubland land cover type and for the second growing season. 

 

Woody_Savannas_Season1 Vulnerability Index  

Phenological Parameters 
TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 0,697 0,471 0,311 

Base  1,107 0,976 0,755 

Decr 0,833 0,559 0,360 

Incr 1,119 0,827 0,630 

Larg 0,844 0,658 0,482 

Len  0,975 0,797 0,600 

SMI 0,826 0,620 0,457 

Table 50. Vulnerability Index for the phenological parameters using different  rainfall cumulating intervals for the 

Woody Savanas land cover type and for the first growing season. 

 

Woody_Savannas_Season2 Vulnerability Index  

Phenological Parameters 
TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 0,842 0,642 0,412 

Base  0,817 0,648 0,506 

Decr 0,866 0,601 0,359 

Incr 0,937 0,568 0,367 

Larg 0,674 0,588 0,400 

Len  1,008 0,773 0,609 

SMI 1,093 0,897 0,680 

Table 51 Vulnerability Index for the phenological parameters using different  rainfall cumulating intervals for the 

Woody Savanas land cover type and for the second growing season 
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Savannas_Season1 Vulnerability Index  

Phenological Parameters 
TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 0,761 0,516 0,366 

Base  1,298 1,200 1,041 

Decr 0,862 0,589 0,392 

Incr 1,107 0,729 0,526 

Larg 0,925 0,720 0,549 

Len  1,111 0,989 0,853 

SMI 0,991 0,792 0,654 

Table 52. Vulnerability Index for the phenological parameters using different  rainfall cumulating intervals for the 

Savanas land cover type and for the first growing season 

 

Savannas_Season2 Vulnerability Index  

Phenological Parameters 
TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 1,114 0,847 0,463 

Base  0,979 0,857 0,692 

Decr 0,915 0,607 0,371 

Incr 0,940 0,621 0,388 

Larg 0,997 0,894 0,581 

Len  1,265 1,099 0,779 

SMI 1,454 1,290 0,923 

Table 53. Vulnerability Index for the phenological parameters using different  rainfall cumulating intervals for the 

Savanas land cover type and for the second growing season 

 

Croplands_Season1 Vulnerability Index  

Phenological Parameters 
TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 0,839 0,736 0,588 

Base  1,177 1,167 1,053 

Decr 0,849 0,656 0,400 

Incr 1,020 0,757 0,523 

Larg 0,888 0,824 0,689 

Len  1,229 1,185 1,000 

SMI 1,236 1,219 1,058 

Table 54. Vulnerability Index for the phenological parameters using different  rainfall cumulating intervals for the 

Croplands land cover type and for the first growing season 
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Croplands_Season2 Vulnerability Index  

Phenological Parameters 
TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 0,925 0,762 0,526 

Base  1,085 0,916 0,762 

Decr 1,077 0,931 0,700 

Incr 0,888 0,628 0,447 

Larg 0,928 0,744 0,531 

Len  0,695 0,675 0,548 

SMI 0,985 0,794 0,650 

Table 55. Vulnerability Index for the phenological parameters using different  rainfall cumulating intervals for the 

Croplands land cover type and for the second growing season 

 

Crop/Nat_Veg_ Mos_Season2 Vulnerability Index  

Phenological Parameters 
TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 0,829 0,573 0,346 

Base  0,921 0,813 0,648 

Decr 0,925 0,546 0,338 

Incr 0,895 0,504 0,305 

Larg 0,835 0,695 0,536 

Len  0,950 0,752 0,552 

SMI 1,039 0,828 0,612 

Table 56. Vulnerability Index for the phenological parameters using different  rainfall cumulating intervals for the 

Cropland/Natural vegetation mosaic land cover type and for the first growing season 

 

Grasslands_Season2 Vulnerability Index  

Phenological Parameters 
TRMM 1 

Month 

TRMM 3 

Months 

TRMM 6 

Months 

Amp 1,492 1,448 1,255 

Base  1,147 1,052 0,910 

Decr 1,064 0,798 0,581 

Incr 1,021 0,706 0,481 

Larg 1,417 1,427 1,264 

Len  1,548 1,508 1,332 

SMI 1,979 2,069 1,870 

Table 57. Vulnerability Index for the phenological parameters using different  rainfall cumulating intervals for the 

Cropland/Natural vegetation mosaic land cover type and for the second growing season. 

 


